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Centro Mixto Universidad de Valencia-CSIC,

46100 Burjassot (Valencia), Spain
(Dated: June 12, 2013)

We study nuclear effects in the F A
3 (x) structure function in the deep inelastic neutrino reactions on

iron by using a relativistic framework to describe the nucleon spectral functions in the nucleus. The

results for the ratio R(x,Q2) =
F A
3

(x,Q2)

AF N
3

(x,Q2)
and the Gross-Llewellyn Smith(GLS) integral G(x,Q2) =

R 1

x
dxF A

3 (x, Q2) in nuclei are discussed and compared with the recent results available in literature
from theoretical and phenomenological analyses of experimental data.

PACS numbers: 13.15.+g, 24.10.-i, 24.85.+p, 25.30.-c, 25.30.Pt

I. INTRODUCTION

The recent experimental results reported by the NuTeV collaboration [1] on weak charged and neutral current
induced (anti)neutrino processes on an iron target in the deep inelastic region have emphasized the importance of
nuclear medium effects. There are many theoretical analyses of the deep inelastic scattering of charged leptons from
nuclear targets where various nuclear effects like shadowing, anti-shadowing, Fermi motion and binding of the nucleons
in various kinematic regions have been studied. These have been discussed in several review articles [2, 3, 4], but
in the case of deep inelastic scattering of (anti)neutrinos from nuclear targets, there are few calculations where the
dynamical origin of the nuclear medium effects has been studied [5, 6, 7, 8, 9]. In some theoretical analyses, nuclear
medium effects have been phenomenologically described in terms of a few parameters which are determined from
fitting the experimental data of charged leptons and (anti)neutrino deep inelastic scattering from various nuclear
targets [10, 11, 12, 13, 14].

The differential scattering cross section for the deep inelastic scattering of (anti)neutrinos from unpolarized nucleons
in the limit of lepton mass ml → 0, is described in terms of three structure functions, F ν

1 (x,Q2), F ν
2 (x,Q2) and

F ν
3 (x,Q2), where x = Q2

2Mν = − q2

2Mν is the Bjorken variable, ν and q being the energy and momentum transfer of

leptons. In the asymptotic region of Bjorken scaling i.e. Q2 → ∞, ν → ∞, x finite, all the structure functions
depend only on the Bjorken variable x. In this scaling limit, F ν

1 (x) and F ν
2 (x) are related by the Callan-Gross

relation [15] leading to only two independent structure functions F ν
2 (x) and F ν

3 (x) which are determined from the
experimental data on deep inelastic scattering of (anti)neutrinos in the asymptotic region. Scaling violation effects
have been studied in deep inelastic scattering of (anti)neutrino from nucleon targets using methods of perturbative
and non-perturbative QCD. The Q2 dependence of the structure functions is determined from the Q2 evolution given
by Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [16] obtained in perturbative QCD calculations.
Non perturbative Q2 corrections to the structure functions have been also studied by many authors [17, 18].

Since most of the experimental data on deep inelastic scattering of high energy (anti)neutrinos are obtained on
nuclear targets over a wide range of Q2, it is important to study the nuclear medium modification effects on these
structure functions F ν

2 (x,Q2) and F ν
3 (x,Q2) specially in iron where most recent, high statistics, high precision data

are available [1]. The nuclear medium modification effects on the average structure function FA
3 (x,Q2)= 1

2 (F νA
3 (x,Q2)

+ F ν̄A
3 (x,Q2)) on isoscalar nuclear targets arise mainly due to modification of the valence quark parton distributions

in the nuclear medium. The contributions of sea quarks and gluons in a quark parton picture vanish in the case of
a symmetric sea and arise only when the various sea quark parton distribution are taken to be different. Of much
interest is the estimate of the size of the nuclear medium effects on the GLS sum rule [19] which is measured over a
wide range of Q2 for deep inelastic scattering of (anti)neutrinos on nuclear targets and has been used to determine
the QCD coupling constant αs [20].

In this paper, we study some nuclear medium effects on the nucleon structure function FA
3 (x,Q2) in iron. We use a

theoretical spectral function to describe the momentum distribution of nucleons in the nucleus. The spectral function
has been calculated using the Lehmann’s representation for the relativistic nucleon propagator and nuclear many
body theory is used to calculate it for an interacting Fermi sea in nuclear matter. A local density approximation
is then applied to translate these results to finite nuclei. The method has been earlier used successfully to describe
the EMC and other nuclear effects in deep inelastic scattering of charged leptons from nuclei [21]. Our approach
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describes an alternative method to calculate nuclear medium effects in the nucleon structure functions using nuclear
many body theory different from the approach used by Kulagin [5]. Our model has certain limitations as it only
attempts to consider the modifications of nucleonic contributions to FN

3 (x,Q2) arising due to binding energy, off mass
shell and Fermi motion of the nucleon in the nuclear medium which dominate in the region of x ≥0.3. In the region of
0.3> x >0.1, corresponding to the anti-shadowing region, the nuclear medium modification effects on FA

3 (x,Q2) are
expected to be small due to vanishing of the pion contribution in this model unlike FAl

2 (x,Q2) where contributions
of pion and rho mesons play a dominant role [21]. We do not consider the shadowing region of 0.0< x <0.1 in this
paper and that will be considered in the extension of this work. Therefore, the results presented here should be able
to describe the dominant contribution of nuclear medium effects to FA

3 (x,Q2) in the range of 0.1< x <1.
In sections 2 and 3, we describe briefly the formalism used to calculate nuclear effects and present our results and

discussion in section 4.

II. DEEP INELASTIC NEUTRINO NUCLEON SCATTERING

The cross section for the reaction

νl(ν̄l) + N → l−(l+) + X, (1)

is given by:

σ =
1

vrel

2mν

2Eν(k)

2M

2E(p)

∫

d3k′

2π3

2ml

2El(k′)
(2)

×
N
∏

i=1

∫

d3p′i
2π3

∏

lǫf

(

2M ′
l

2E′
l

)

∏

jǫb

(

1

2ω′
j

)

¯∑∑

|T |2 (2π)4

×δ4

(

p + k − k′ −
N
∑

i=1

p′i

)

where f stands for fermions and b for bosons in the final state X . The index i is split into l and j for fermions and
bosons respectively,

T is the invariant matrix element for the above reaction and is, written as

− iT =

(

iG√
2

)

ūl(k
′)γα(1 − γ5)ul(k)

(

m2
W

q2 − m2
W

)

〈X |Jα|N〉 . (3)

After performing the phase space integration in Eq.(2), the double differential scattering cross section evaluated for
a nucleon target in its rest frame is expressed as,

d2σN
ν,ν̄

dΩ′dE′
=

GF
2

(2π)2
|k′|
|k|

(

m2
W

q2 − m2
W

)2

Lαβ
ν,ν̄ WN

αβ , (4)

where GF is the Fermi coupling constant, mW is the mass of the W boson, l(= e, µ) is a lepton, k is the incoming
neutrino four momentum and k′ is the outgoing four momentum of the lepton, q = k − k′ is the four momentum
transfer and Ω′, E′ refer to the outgoing lepton. N is a nucleon, X is a jet of n hadrons consisting of fermions(f) and
bosons(b) in the final state labeled by l and j in the following.

The lepton tensor for antineutrino(neutrino) scattering Lαβ is given by

Lαβ = kαk′β + kβk′α − k.k′gαβ ± iǫαβρσkρk
′
σ , (5)

and the hadronic tensor WN
αβ is defined as

WN
αβ =

1

2π

¯∑

sN

∑

X

∑

si

n
∏

i=1

∫

d3p′i
(2π)3

∏

lǫf

(

2M ′
l

2E′
l

)

∏

jǫb

(

1

2ω′
j

)

〈X |Jα|N〉〈X |Jβ |N〉∗(2π)4δ4(p + q −
n
∑

i=1

p′i) , (6)

where q is the momentum of the virtual W , sN the spin of the nucleon and si the spin of the fermions in X . In the
case of antineutrino 〈X |Jα|N〉 is replaced by 〈X |J†

α|N〉.
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The most general form of the hadronic tensor WN
αβ is expressed as [22]:

WN
αβ =

(

qαqβ

q2
− gαβ

)

W
ν(ν̄)
1 +

1

M2

(

pα − p.q

q2
qα

)(

pβ − p.q

q2
qβ

)

W
ν(ν̄)
2 − i

2M2
ǫαβρσpρqσW

ν(ν̄)
3 +

1

M2
qαqβW

ν(ν̄)
4 +

1

M2
(pαqβ + qαpβ)W

ν(ν̄)
5 +

i

M2
(pαqβ − qαpβ)W

ν(ν̄)
6 , (7)

where M is the nucleon mass and WN
i are the structure functions, which depend on the scalars q2 and p.q. The terms

depending on W4, W5 and W6 in Eq. (7) do not contribute to the cross section in Eq. (4) in the limit of lepton mass
ml → 0.

In terms of the Bjorken variables x and y defined as

x =
Q2

2Mν
, y =

ν

Eν
, Q2 = −q2, ν =

p.q

M
(8)

we can write the expression for the differential scattering cross section (in the limit of lepton mass ml → 0) as

d2σν(ν̄)

dxdy
=

GF
2MEν

π

{

xy2F
ν(ν̄)
1 (x, Q2) +

(

1 − y − xyM

2Eν

)

F
ν(ν̄)
2 (x, Q2) ± xy(1 − y/2)F

ν(ν̄)
3 (x, Q2)

}

, (9)

where the + (−) sign stands for the neutrino (antineutrino) cross section, and the F ν,ν̄
i (x, Q2) are dimensionless

structure functions defined as

F
ν(ν̄)
1 (x, Q2) = MW

ν(ν̄)
1 (ν, Q2) (10)

F
ν(ν̄)
2 (x, Q2) = νW

ν(ν̄)
2 (ν, Q2)

F
ν(ν̄)
3 (x, Q2) = νW

ν(ν̄)
3 (ν, Q2).

In the Bjorken limit of scaling valid in the asymptotic region i.e. Q2 → ∞, ν → ∞, x finite, the structure functions

F
ν(ν̄)
i (x, Q2) are independent of Q2 and depend only on the single dimensionless variable x, and satisfy the Callan-

Gross relation [15] given as 2xF1(x) = F2(x). Using this relation, the cross section in Eq.(9) is described in terms of
two independent structure functions F2(x) and F3(x). In the quark parton model of deep inelastic scattering, in the
Bjorken scaling limit, these structure functions are determined in terms of parton distribution functions for quarks
and antiquarks.

Specifically, the structure function F3(x) is given as:

F νp
3 = 2[d(x) + s(x) − ū(x) − c̄(x)] ,

F νn
3 = 2[u(x) + s(x) − d̄(x) − c̄(x)] ,

F ν̄p
3 = 2[u(x) + c(x) − d̄(x) − s̄(x)] ,

F ν̄n
3 = 2[d(x) + c(x) − ū(x) − s̄(x)] ,

The average structure function FN
3 (x) on isoscalar nucleon target defined as

FN
3 (x) =

1

2

(

F νN
3 + F ν̄N

3

)

is given by

FN
3 (x) = [uv(x) + dv(x) + s(x) − s̄(x) + c(x) − c̄(x)],

where uv(x) = u(x) − ū(x) and dv(x) = d(x) − d̄(x) are the valence quark parton distributions.
Thus, for an isoscalar target and a symmetric sea, FN

3 (x) structure function is given in terms of valence quarks uv

and dv which satisfies the Gross-Llewellyn Smith sum rule [19]:

∫ 1

0

FN
3 (x)dx = 3. (11)
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FIG. 1: Self-energy diagram of the neutrino in the nuclear medium associated with the process of deep inelastic neutrino-nucleon
scattering. The imaginary part is calculated by cutting along the horizontal line and applying the Cutkosky rule for putting
the particles on the mass shell.

In the non-asymptotic region, scaling violations occur and the structure function Fi(x) acquire Q2 dependence which
are calculated with the DGLAP equations of Q2 evolution obtained using perturbative QCD. As a consequence, the
Callan Gross relation and the Gross-Llewellyn Smith sum rule are modified as follows:

2xF1(x, Q2) = F2(x, Q2)
1 + 4M2x2

Q2

1 + R(x, Q2)
, (12)

where R=σL

σT
is the ratio of the cross section of longitudinally to transversely polarized W bosons [23] and

S(Q2) =

∫ 1

0

F3(x, Q2)dx = 3

(

1 − αs

π
− a(nf )

(αs

π

)2

− b(nf )
(αs

π

)3
)

− ∆HT

Q2
, (13)

where a(nf ) and b(nf ) are functions of the number of quark flavors accessible at a given Q2 and ∆HT is the higher
twist correction [24].

III. NUCLEAR EFFECTS IN NEUTRINO SCATTERING

When the reaction given by Eq.(1) takes place on a nucleon in the nucleus, nuclear effects have to be considered.
There are two main nuclear effects. Firstly, a kinematic effect which arises as the struck nucleon is not at rest but
is moving with a Fermi momentum in the rest frame of the nucleus, leading to a Lorentz contraction of the incident
flux used in deriving Eq.(4). Secondly, the more important dynamic effects which arise due to Fermi motion, Pauli
blocking and strong interaction of the initial nucleon in the nuclear medium.

In a nuclear medium the expression for the cross section given in Eq.(4) is modified as:

d2σA
ν,ν̄

dΩ′dE′
=

G2
F

(2π)2
|k′|
|k|

(

m2
W

q2 − m2
W

)2

Lαβ
ν,ν̄ WA

αβ , (14)

where WA
αβ is the nuclear hadronic tensor defined in terms of nuclear hadronic structure functions WiA(x, Q2) through

Eq.(7). Accordingly, the dimensionless structure functions FA
i (x, Q2) are defined in terms of WA

i (x, Q2) through
Eq.(10). In our formalism the neutrino nuclear cross sections are obtained in terms of neutrino self energy Σ(k) in
the nuclear medium which also defines the dimensionless nuclear structure functions FA

i (x, Q2). A comparison with
Eq.(36) gives the nuclear hadronic tensor WA

αβ . With proper choice of tensor components α, β, the dimensionless

nuclear structure functions FA
i (x, Q2) are obtained[21].

The neutrino self-energy in nuclear matter corresponding to Fig.1 is given by,

Σ(k) = (−i)
GF√

2

4

mν

∫

d4k′

(2π)4
1

k′2 − m2
l + iǫ

(

mW

q2 − m2
W

)2

Lαβ Παβ(q) , (15)
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where Lαβ is given by Eq.(5) and Παβ(q) is the W self-energy in the nuclear medium and is written with the help of
Fig.2 as:

− iΠαβ(q) = (−)

∫

d4p

(2π)4
iG(p)

∑

X

∑

sp,si

n
∏

i=1

∫

d4p′i
(2π)4

∏

l

iGl(p
′
l)
∏

j

iDj(p
′
j)

(−GF m2
W√

2

)

×〈X |Jα|N〉〈X |Jβ |N〉∗(2π)4δ4(q + p − Σn
i=1p

′
i) . (16)

In the above expression Gl(p
′
l) and Dj(p

′
j) are respectively the nucleon and meson relativistic propagators in the final

state which are taken as the standard free relativistic propagators [25]. G(p) is the nucleon propagator with mass M
and energy E(p) in the initial state, which is calculated for a relativistic nucleon in the interacting Fermi sea.

For this we start with the relativistic Dirac propagator G(p) for a free nucleon, which is written in terms of the
contribution from the positive and negative energy components of the nucleon described by the Dirac spinors u(p)
and v(p) using their appropriate normalisations [25] as

G0(p) =
6 p + M

p2 − M2 + iǫ
=

M

E(p)

{∑

r ur(p)ūr(p)

p0 − E(p) + iǫ
+

∑

r vr(−p)v̄r(−p)

p0 + E(p) − iǫ

}

(17)

The nucleon propagator G(p) is then calculated by making a perturbative expansion of G(p) in terms of G0(p)
given in Eq.(17) by retaining the positive energy contributions only(the negative energy components are suppressed).
This perturbative expansion is summed in ladder approximation to give [21]:

G(p) =
M

E(p)

∑

r

ur(p)ūr(p)
1

p0 − E(p)
(18)

+
M

E(p)

∑

r

ur(p)ūr(p)

p0 − E(p)

∑

(p0,p)
M

E(p)

∑

s

us(p)ūs(p)

p0 − E(p)
+ .....

=
M

E(p)

∑

r

ur(p)ūr(p)

p0 − E(p) − ūr(p)
∑N

(p0,p)ur(p) M
E(p)

where ΣN (p0, p) is the nucleon self energy in nuclear matter taken from Ref. [26]. The relativistic nucleon propagator
G(p) in a nuclear medium is then expressed as [21]:

G(p) =
M

E(p)

∑

r

ur(p)ūr(p)

[
∫ µ

−∞

dω
Sh(ω, )

p0 − ω − iη
+

∫ ∞

µ

dω
Sp(ω, p)

p0 − ω + iη

]

, (19)

where Sh(ω, p) and Sp(ω, p) being the hole and particle spectral functions respectively, which are given by [21, 26]:

Sh(ω,p) =
1

π

M
E(p)ImΣN (p0, p)

(p0 − E(p) − M
E(p)ReΣN (p0, p))2 + ( M

E(p)ImΣN(p0, p))2
(20)

for p0 ≤ µ

Sp(ω,p) = − 1

π

M
E(p)ImΣN (p0, p)

(p0 − E(p) − M
E(p)ReΣN (p0, p))2 + ( M

E(p)ImΣN(p0, p))2
(21)

for p0 > µ.
The normalisation of this spectral function is obtained by imposing the baryon number conservation following

the method of Frankfurt and Strikman [27]. For this purpose we evaluate the electromagnetic form factor at q=0,
assuming baryons have unit charge for the purpose of normalisation, corresponding to Fig.2a, i.e.

〈N |Bµ|N〉 ≡ ū(p)γµu(p) = B
pµ

M
; B = 1, pµ ≡ (E(p),p) (22)

When the nucleons are in the nuclear medium the many-body diagram shown by Fig.2b is evaluated [21] and gives

〈A|Bµ|A〉 = −
∫

d4p

(2π)4
V iT r[G(p0, p)γµ]eip0η. (23)
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q = 0q = 0

k

k

k

FIG. 2: Electromagnetic form factors for the case (a) free nucleon, (b) Fermi sea with B baryons.

where V is the volume of the normalisation box and exp(ip0η), with η → 0+, is the convergence factor for loops
appearing at equal times.

Using the expression given by Eq.(19), it can be seen that the convergence factor limits the contribution of the hole
spectral function and this gives

〈A|Bµ|A〉 = V

∫

d3p

(2π)3
M

E(p)
Tr

[

∑

r

ur(p)ūr(p)γµ

]

∫ µ

−∞

Sh(ω, p)dω

= V

∫

d3p

(2π)3
M

E(p)
Tr

[

(6 p + M)onshell

2M
γµ

]
∫ µ

−∞

Sh(ω, p)dω

= 2V

∫

d3p

(2π)3
M

E(p)

pµ
onshell

M

∫ µ

−∞

Sh(ω, p)dω ≡ B
Pµ

A

MA
. (24)

It is to be noted that in the last step we have imposed that this matrix element gives the right current with B baryons,
in analogy to the expression given by Eq. (22). Pµ

A is the four momentum of the nucleus. The operator (6 p + M)
comes from

∑

ur(p)ūr(p) which depends only on p, and that corresponds to a free particle with (pµ = E(p),p),
therefore, the operator (6 p + M) is written on shell. The last step in Eq. (24)) is obtained after performing the trace.
Evaluating Eq. (24) in the rest frame of the nucleus we obtain the normalisation as

2V

∫

d3p

(2π)3

∫ µ

−∞

Sh(ω, p)dω = B = 1. (25)

In the local density approximation, we do not have a box of constant density, and the reaction takes place at a point
r, lying inside a volume element d3r with local density ρp(r) and ρn(r) corresponding to the proton and neutron.
Therefore, the upper limit in the integration over nucleon momentum in Eq. (25) is the local Fermi momentum kFp,n

(r)
of the nucleon given by:

kFp
(r) =

[

3π2ρp(r)
]1/3

, kFn
(r) =

[

3π2ρn(r)
]1/3

. (26)

This makes the spectral function Sh(ω, p) density dependent i.e. Sh(ω, p, kF (r)) and the normalisation condition given
in Eq. (25) is modified to

2

∫

d3p

(2π)3

∫ µ

−∞

Sh(ω, p, kFp,n
(r))dω = ρp,n(r) (27)

For a symmetric nuclear matter of density ρ(r), there is a unique Fermi momentum given by kF (r) =
[

3
2π2ρ(r)

]1/3

for which we obtain

4

∫

d3p

(2π)3

∫ µ

−∞

Sh(ω, p, kF (r))dω = ρ(r), (28)
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where ρ(r) is the baryon density for the nucleus.
This leads to the normalisation condition [28] given by

4

∫

d3r

∫

d3p

(2π)3

∫ µ

−∞

Sh(ω, p, ρ(r)) dω = A (29)

In the antineutrino case the expressions obtained are very similar. Lαβ
5 appears, as in Eq. (5), with a minus sign in

front and in the W self-energy, Eq. (16), we have 〈X |J†
α|N〉, instead of 〈X |Jα|N〉.

The probability per unit time for the neutrino to collide with nucleons when traveling through nuclear matter is:

Γ(k) = − 2mν

Eν(k)
Im Σ(k) , (30)

and the cross section for neutrino scattering from an element of volume d3r and surface dS in the nucleus is given by

dσ = ΓdtdS = Γ
dt

dl
dldS =

Γ

v
d3r = Γ

Eν(k)

|k| d3r = −2mν

|k| Im Σ d3r . (31)

Using Eq.(31) in Eq.(15), we get the expression for the total scattering cross section in the local density approximation
as

σ =
4
√

2GF

|k| Im

∫

d3r

∫

d4k′

(2π)4
1

k′2 − m2
µ + iǫ

(

mW

q2 − m2
W

)2

LαβΠαβ(q) . (32)

The imaginary part of the neutrino self energy in Eq.(32) is evaluated by means of the Cutkosky rules [25] by
cutting the Feynman diagram shown in Fig. 3 along the dotted line which puts the particles corresponding to the cut
propagators on the mass shell by replacing the fermion and meson propagators by their imaginary parts as

Σ(k) → 2iImΣ(k)

D(pj
′) → 2iθ(p0j) ImD(pj

′)

G(pl
′) → 2iθ(p0l

′) ImG(pl
′)

1

k′2 − m2
l + iǫ

→ 2πδ(k′2 − m2
l ). (33)

After performing the k0
′, p0

′ and p0 integrations for all momenta in Eq.(32) using Eqs.(19) and (33), we get the
differential scattering cross section which is written in the local density approximation as:

d2σA
ν,ν̄

dΩ′dE′
=

GF
2

(2π)2
|k′|
|k|

(

m2
W

q2 − m2
W

)2

Lαβ
ν,ν̄ WA

αβ , (34)

where

WA
αβ = 4

∫

d3r

∫

d3p

(2π)3

∫ µ

−∞

dp0 M

E(p)
Sh(p0, p, ρ(r))WN

αβ(p, q), . (35)

with WN
αβ(p, q) is given by Eq.(6).

Note that the factor M
E(p) in Eq. (35) comes naturally in our formalism, when we perform the various momentum

integrations in Eq. (32) to calculate the imaginary part using Eqs. (19) and (33). This can be physically understood
as a kinematic factor which appears in the cross section defined in Eq. (2) for a nucleon moving with momentum
p = (E,p) in the rest frame of the nucleus leading to the equation:

d2σA
ν,ν̄

dΩ′dE′
=

G2
F

(2π)2
|k′|
|k|

M

E(p)

(

m2
W

q2 − m2
W

)2

Lαβ
ν,ν̄ WN

αβ . (36)

When this cross section for a nucleon target moving with momentum pµ in the rest frame of the nucleus of density
ρ(r) and weighted with the spectral function Sh(p0, p, ρ(r)), is summed over all the nucleons in the nucleus, it leads
to Eq. (34). Similar equations are also obtained in Refs. [3, 9, 29, 30].



8

X

FIG. 3: Self-energy diagram of the W-boson in the nuclear medium. The imaginary part is calculated by cutting along the
horizontal line and applying the Cutkosky rules when putting the particle on mass shell.

Now to evaluate FA
3 , we calculate the components xy on both sides of Eq. (35). We get by taking q along the z

axis:

WA
xy = − i

2MA
qzW

A
3 , (37)

and for the right hand side we have for the nucleon moving with momentum p:

WN
xy =

pxpy

M2
WN

2 (p, q) +
i

2M2
WN

3 [pzq0 − p0qz] . (38)

Since we have

q0W
A
3 = FA

3 (x) , (39)

p.q

M
WN

3 (p, q) = FN
3 (xN ) , (40)

with x as defined in Eq. (8) and xN is the Bjorken variable expressed in terms of the nucleon variables , (p0,p), in
the nucleus

xN =
Q2

2p.q
=

Q2

2(p0q0 − pzqz)
, (41)

we obtain the expression for FA
3 (x) in the Bjorken limit

FA
3 (x, Q2) = 4

∫

d3r

∫

d3p

(2π)3
M

E(p)

∫ µ

−∞

dp0Sh(p0, p, ρ(r))

×xN

x

[

p0qz − pzq0

Mqz

]

FN
3 (xN , Q2) , (42)

where the contribution of W2 appearing in Eq. (38) vanishes after momentum integration. Defining γ as

γ =
qz

q0
=

(

1 +
4M2x2

Q2

)1/2

, (43)

we get

FA
3 (x, Q2) = 4

∫

d3r

∫

d3p

(2π)3

∫ µ

−∞

dp0Sh(p0, p, ρ(r))F (p, Q2)FN
3 (xN , Q2), (44)

where F (p, Q2) = M
E(p)

(

p0γ−pz

(p0−pzγ)γ

)

.

This is our main equation which describes the modification on FA
3 (x, Q2) due to nuclear medium effects and was

earlier obtained in Ref.[6].
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R

FIG. 4: Results for the ratio R =
F A
3

(x)

AF N
3

(x)
at different Q2 using MRST NNLO [33] parton distribution function. Solid line at

Q2=10GeV 2, dashed-dotted line at Q2=100GeV 2 and dashed line at Q2=1000GeV 2.

0 0.2 0.4 0.6 0.8
x

0.7

0.8

0.9

1

1.1

1.2

1.3

R

FIG. 5: Results for the ratio R =
F A
3

(x)

AF N
3

(x)
at Q2 = 5 GeV2 by different authors. Solid line: this work using MRST2004

NNLO parton distribution function; double dashed-dotted line: Hirai et al. [10]; short dashed line: NuTeV collaboration [1],
dashed-double dotted line the results of Kulagin [5] and the results of Kulagin and Petti [9] shown by dashed-dotted line.

IV. RESULTS AND DISCUSSION

We obtain the numerical results for FA
3 (x, Q2) using Eq.(44) and Sh given by Eq. (20). The density for 56Fe nucleus

is taken to be a two Fermi parameter distribution i.e.

ρ(r) =
ρ0

1 + exp( r−c1
c2 )

, (45)
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FIG. 6: ∆GLS= 1
3
(3 −

R 1

0
F A

3 (x, Q2)dx) vs Q2.

where the parameters c1=4.106fm and c2=0.519fm and are taken from Ref [31]. While using the spectral function
Sh(ω,p, ρ(r)) in Eq.(44), we ensure that it gives the correct binding energy for the iron nucleus by varying the free
piece of the real part of the nucleon self energy ΣN in Eq.(20).

This is done by calculating the average kinetic and total nucleon energy given by:

< T >=
4

A

∫

d3r

∫

d3p

(2π)3
(E(p) − M)

∫ µ

−∞

Sh(p0, p, ρ(r)) dp0 , (46)

< E >=
4

A

∫

d3r

∫

d3p

(2π)3

∫ µ

−∞

Sh(p0, p, ρ(r)) p0dp0 , (47)

and the binding energy per nucleon given by [21]:

|EA| = −1

2
(< E − M > +

A − 1

A − 2
< T >) (48)

After the free parameter in ΣN is fixed, the expected values of the kinetic energy < T > and the total nucleon energy
< E > are obtained as 30MeV and 48MeV for the case of 56Fe which are in good agreement with other models and
experiment (See e.g. Table II of Ref.[32]). A similar agreement is also obtained with other nuclei. The structure
function FA

3 (x, Q2) is numerically evaluated. For FN
3 (xN , Q2) we use the MRST2004 NNLO parton distribution

functions [33]. The Q2 evolution of FN
3 (x, Q2) is assumed to be given by the Q2 evolution of GLS integral S(Q2)

given in Eq. (12). The strong coupling constant αS(Q2) is calculated using the variable flavour number evolution
equation with Λ = 251MeV for nf = 4 and Λ = 178MeV for nf = 5 [24] which gives αS(MZ)=.1153. The constants
a(nf ) and b(nf ) in Eq. (12) are taken from Larin and Vermarseren [24]. The target mass corrections are incorporated
using the prescription of Petti and Kulagin [3] following the work of Georgi and Politzer [34].

In Fig.4, we show the results for the ratio R(x,Q2)=
F A

3
(x,Q2)

AF N
3

(x,Q2)
as a function of x for various values of Q2. For

Q2=10GeV 2, we get a suppression for x ≤ xmin=0.7, beyond which we get an enhancement. This value of xmin

decreases with increasing Q2. For x > xmin, the ratio increases very fast and becomes larger than unity as x → 1.
This is mainly due to the Fermi motion of the nucleons. In the region of 0.3< x <1, this behavior is very similar to
that seen in the EMC effect with charged lepton and (anti)neutrino scattering from the nuclear targets in the analyses

of the structure function FA,l
2 (x, Q2) and F

A,ν(ν̄)
2 (x, Q2).
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FIG. 7: The contribution to the GLS integral from the region x=0.5 to x=1 for different Q2 using MRST NNLO[33] parton
distribution function(PDF) and its comparison from the results of Kim et al.[20]. The dashed line is the result with the free
case, solid line is the result with nuclear medium effects obtained in our model with spectral function including QCD and TMC
corrections, and the solid square with error bars are the results of Kim et al.[20]

0 0.2 0.4
x

0.8

0.85

0.9

0.95

1

1.05

1.1

ra
tio

FIG. 8: The x dependence of the nucleus/nucleon ratio of the GLS integral from the nuclear effects to the free case i.e. the

ratio

R

1

xmin
F A
3

(x)dx
R

1

xmin
F N
3

(x)dx
at Q2 = 5GeV 2 using MRST NNLO[33] parton distribution function(PDF). The dashed line is the result

of Kulagin [5].

In the region of 0.1< x <0.3, we do not see any enhancement due to the anti-shadowing effect in FA
3 (x, Q2) as found

in FA,l
2 (x, Q2) [21]. In the present calculation, this is due to the neglect of the mesonic contributions, responsible for

the enhancement in FA,l
2 (x, Q2). However, for FA

3 (x, Q2) these mesonic contributions are expected to be small because

of the vanishing of the dominant term due to pions. Even in the case of F
A,ν(ν̄)
2 (x, Q2), the recent[13] estimates of

nuclear medium effects in the anti-shadowing region, do not see any enhancement in this region, in disagreement with
the other results available from earlier analyses [10, 11, 12]. This is not unexpected as these structure functions, at
low x, probe different contributions of the parton distribution functions in the nuclear medium. This suggests that

the nuclear medium modification effects could be different in FA,l
2 (x, Q2), F

A,ν(ν̄)
2 (x, Q2) and F

A,ν(ν̄)
3 (x, Q2), and calls
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for a comprehensive study of nuclear medium modification effects on these structure functions specially in the region
of small x.

In Fig.5, we compare our results for R(x,Q2) with the results of Tzanov et al. [1], Kulagin and Petti [3], Kulagin [5]
and Hirai et al. [10]. While the work of Kulagin [5] and Kulagin and Petti [3, 9] use a nuclear model to calculate the
nuclear effects which shows a Q2 dependence, the work of Tzanov et al. [1] and Hirai et al. [10] are phenomenological
analyses, which assume the nuclear effects to be independent of Q2. In this figure, the results for R(x,Q2) for
Q2 = 5GeV 2, are presented. We find a suppression in FA

3 (x, Q2) for x <0.7 and an enhancement thereafter, which
are respectively smaller than the results of Ref. [5], but are larger than the recent results of Kulagin and Petti [9].
It should be noted that these latter results [9] give suppression in the region of 0.4< x <0.8 and enhancement for
x >0.8, which are smaller than the present results and the results obtained earlier in Ref. [5]. When compared with
the results of Tzanov et al. [1] and Hirai et al. [10], we find a smaller suppression in the region 0.5< x <0.7. In the
region 0.7< x <0.8, we find an enhancement while they obtain a suppression. The results of the phenomenological

analyses shown in Fig. 5 [1, 10] use the experimental data on FA,l
2 (x, Q2) in charged lepton scattering to estimate

the nuclear effects. It can, therefore, be inferred that we find nuclear effects in the case of FA
3 (x, Q2) different than

obtained in the case of FA,l
2 (x, Q2). This is true for all Q2 in our model.

The GLS sum rule (Eq.11) provides a benchmark to test various models used for the calculation of FA
3 (x, Q2). We

find that in the Q2 → ∞ limit, the correction to the GLS sum rule in our model comes from the off shell modifications
to the nucleon spectral function. It is easy to see this from Eq.(44). The nuclear GLS sum rule in the limit Q2 → ∞
(i.e. γ →1) is given by:

S =

∫ 1

0

FA
3 (x)dx = 4

∫

d3r

∫

d3p

(2π)3

∫ µ

−∞

dp0Sh(p0, p, ρ(r))

(

p0 − pz

E(p)

)

FN
3 (xN )dxN (49)

In the limit of noninteracting nucleons this trivially reproduces the GLS sum rule for free nucleons.
The Q2 dependent nuclear effects in the GLS integral enter through the factor γ and the Q2 dependence of

FN
3 (xN , Q2) in Eq.(43) when it is integrated over x. The Q2 dependent nuclear corrections to the GLS sum rule are

thus linked to the Q2 dependent perturbative and non-perturbative QCD effects appearing in FN
3 (xN , Q2). In Fig.6,

we show the Q2 dependence of the nuclear effects of the GLS integral, where we plot ∆GLS= 1
3 (3 −

∫ 1

0
FA

3 (x, Q2)dx)

as a function of Q2. The experimental results from CCFR collaborations[20], CHARM collaborations[35] and IHEP-
JINR collaborations[36] are also shown. The Q2 behavior of ∆GLS has been found to be in agreement with the present
available experimental results. In this figure, we have also shown the theoretical results obtained by Qiu and Vitev [7].
Our results are in agreement with the results of Qiu and Vitev [7] for Q2 > 5GeV 2 where theoretically the suppression
is found to be larger than the experimental results. For Q2 < 5GeV 2, we find a larger suppression compared to the
central value of the experimental result and both theoretical values are within the experimental errors. The nuclear
corrections to the GLS sum rule found by Kulagin and Petti [9] are quite small due to the cancellation of nuclear
shadowing, not included in our model, and off shell effects.

We show in Fig.7, the value of S(x,Q2)=
∫ 1

x
dxFA

3 (x, Q2) for x=0.5, with and without the nuclear effects and compare

them with the experimental results of Kim et al.[20]. The nuclear effects tend to reduce S(x,Q2) but the reductions

are smaller than the experimental uncertainties. In Fig.8, we show the results for S(x,Q2)=
∫ 1

x dxFA
3 (x, Q2) vs x

at Q2=5GeV 2, where we have also shown the result obtained by Kulagin [5]. We find that nuclear medium effects
leading to a suppression in 0.2< x <0.55 region and an enhancement in x >0.55 region are smaller than obtained by
Kulagin [5].

To summarize our results, we have studied nuclear effects in the structure function FA
3 (x, Q2) in the iron nucleus

using a many body theory to describe the spectral function of the nucleon in the nuclear medium for all Q2. The
nuclear effects are found to decrease the value of the structure function for x ≤ xmin=0.7 and increase at higher
x > xmin. The parameter xmin is found to be Q2 dependent which decreases with Q2. The results are compared
with other theoretical analysis of Kulagin [5] and phenomenological analyses of Tzanov et al. [1] and Hirai et al. [10].
The effect of the nuclear medium modifications on the Gross-Llewellyn Smith [19] sum rule and its Q2-dependence
has also been studied. In general nuclear medium effects decrease the value of GLS integral for all Q2.
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