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ination epoch and a late-time accelerated expansion is confronted with SNIa, CMB, SDSS,

BAO and H(z) galaxy ages data, as well as current measurements of the linear growth of

structure. We show that the combination of geometrical probes and growth data exploited

here allows to rule out f(R) gravity models, in particular, the logarithmic of curvature

model. We also apply solar system tests to the models in agreement with the cosmological

data. We find that the exponential of the inverse of the curvature model satisfies all the

observational tests considered and we derive the allowed range of parameters. Current data

still allows for small deviations of Einstein gravity. Future, high precision growth data, in

combination with expansion history data, will be able to distinguish tiny modifications of

standard gravity from the ΛCDM model.
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1. Introduction

Astronomical observations have led to the inference that our universe is approximately flat

and its mass-energy budget consists of 5% ordinary matter, 22% non-baryonic dark matter,

plus a dominant negative-pressure component that accelerates the Hubble expansion [1–5].

The current accelerated expansion of the universe reveals new physics missing from our

universe’s picture, and it constitutes the fundamental key to understand the fate of the

universe.

The most economical description of the cosmological parameters attributes the negative-

pressure dark energy component to a cosmological constant (CC) in Einstein’s equations.

The CC represents an invariable vacuum energy density that assumes a greater importance

as the Universe expands. The equation of state w of the dark energy component in the CC

case is constant and w = Pde/ρde = −1, where Pde and ρde denote dark energy pressure

and energy density, respectively. However, when computing the vacuum energy density
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from the quantum field theory approach, the naively expected value exceeds the measured

one by 123 orders of magnitude and it needs to be cancelled by extreme fine-tuning. This

is the so-called CC problem. A related problem is the so called why now? or coincidence

problem, i.e. why the dark matter and dark energy contributions to the energy budget of

the universe are similar at this precise moment of the cosmic history.

A dynamical alternative attributes the accelerated expansion to a cosmic scalar field,

quintessence [6–11], that changes with time and varies across space, slowly approaching

its ground state. In this case, the equation of state w could vary over time. However,

quintessence models are not better than the CC scenario as regards fine-tuning, since there

is no symmetry that explains the tiny value of the potential at its ground state.

There exists another possible scenario, in which the gravitational sector is modified,

as an alternative to explain the observed cosmic acceleration. Although this requires the

modification of Einstein’s equations of gravity on very large distances [12], or on small

curvatures [13–15], this is not unexpected for an effective 4-dimensional description of

higher dimensional theories. Modifications of gravity have been examined in the context of

accelerated expansion. The proposed modified gravity models have extra spatial dimensions

or an action which is non linear in the curvature scalar, that is, these models include

extensions of the Einstein-Hilbert action, for instance, to higher derivative theories [16],

scalar-tensor theories or generalized functions of the Ricci scalar f(R).

Among a plethora of f(R) models, a recent study [17] has identified those cosmo-

logically acceptable, i.e. models with a standard matter era followed by an accelerated

attractor. We focus here on the cosmological bounds on these viable f(R) models. We use

recent SNIa, BAO, CMB and H(z) galaxy ages data to constrain the background evolution

in this class of f(R) models. We exploit as well current measurements of the linear growth

of structure, which provides us an additional test to be combined with the background

probes. The f(R) models which are not ruled out by the global cosmological analysis will

be examined under solar system constraints.

The structure of the paper is as follows. We start in Sec. 2 specifying the class of mod-

ified gravity models explored here, as well as the equations which describe the background

evolution and the linear perturbation theory in a generic f(R) model. Section 3 contains

a description of the different cosmological data sets used in the analysis performed here.

Our results are presented in Sec. 4. We describe the solar system constraints in Sec. 5. We

summarize our results, draw our conclusions and discuss future work in Sec. 6.

2. f(R) Models

We investigate the simplest family of modified gravity models, obtained by adding to the

usual Hilbert-Einstein Lagrangian some function f(R) of the Ricci scalar R, with an action

given by

L =

∫

d4x (R + f(R))
√

g + Lmatter . (2.1)

Here we analyse f(R) models which are cosmologically viable, i.e., models which predict a

matter dominated period followed later by an accelerated expansion epoch. In the matter
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domination era the effective equation of state is close to ωeff = 0 and the scale factor a

grows with time as a(t) ∼ t2/3.

The authors of [17] have explored the general conditions for the cosmological viability

of f(R) models in the context of a flat, homogeneous and isotropic background. The

cosmological behaviour of f(R) models can be characterized by studying the m(r) curve

on the (m, r) plane [17], where

m =
RfRR

1 + fR
; r = −R(1 + fR)

R + f
, (2.2)

and fR ≡ df/dR. A given f(R) model will have a standard matter dominated period

followed by a late time accelerated era if the conditions m(r) ≈ +0 and dm/dr > −1 at

r ≈ −1 are satisfied, respectively.

Reference [17] shows that all f(R) models with an accelerated global attractor belong

to four classes, two of which can be cosmologically acceptable: models of Class II, asymp-

totically equivalent to the ΛCDM model (ωeff = −1), and models of Class IV, which have

a non-phantom final accelerated expansion period (ωeff > −1). In practice, there are not

f(R) models belonging to Class IV, unless they are built by hand from a well-behaved m(r)

function. There are other type of models, as those from Class III, which have an unstable

matter era followed by a phantom acceleration (ωeff < −7.6). These Class III models are

generally ruled out by observations, although a more careful numerical analysis is needed.

We focus here on the Class II models of Ref. [17], studying the following four cases:

H1 : f(R) = αRn , α < 0, 0 < n < 1 ; (2.3)

H2 : f(R) = R [log(αR)]q − R , (q > 0) ; (2.4)

H3 : f(R) = R exp(q/R) − R ; (2.5)

H4 : f(R) = αR2 − Λ , (αΛ ≪ 1) . (2.6)

2.1 Background evolution

The field equations, which can be obtained varying the action (2.1) with respect to gµν ,

read

(1 + fR)Rµν − gµν

2
(R + f − 2�fR) −∇µ∇νfR = 8πGTµν . (2.7)

The metric we take is of the form of a flat Friedman Robertson Walker (FRW) background

ds2 = −dt2 +a(t)2
∑3

i=1(dxi)2, with a(t) the scale factor. The Friedmann equation is given

by

H2 − (H2 + aHH ′)fR + aH2f ′
R +

1

6
f =

8πG

3
ρ (2.8)

where ′ ≡ d/da, H = (da/dt)/a denotes the Hubble expansion rate , ρ refers to the total

cold dark matter energy density and R = 6(2H2 +aHH ′). The present dark matter energy

density has been fixed to Ω0
m = 0.24 (when not treated as a free parameter), accordingly

to a recent fit to cosmological data [2]. We have integrated numerically the background

equation (2.8) for the four f(R) Class II functions given by Eqs. (2.3), (2.4), (2.5) and (2.6).
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We have determined the ranges of the free parameters which lead to a value of the Hubble

constant within its current 1σ range H0 = 74.2 ± 3.6 km/s/Mpc [18]. Figure I shows the

results for the Hubble parameter H(a) for the four different f(R) models explored here.

As a comparison, we depict as well the Hubble rate for a flat universe with a CC (ΛCDM

model)∗. The H0 values for the choice of parameters used in Fig. I are 76.7, 75.4, 70.6 and

71.0 km/s/Mpc for f(R) = αRn, f(R) = R (log(αR))q − R, f(R) = R exp(q/R) − R and

f(R) = αR2 − Λ, respectively.
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Figure I: Expansion history of various f(R) models. The red solid curves depict the Hubble

rate versus the scale factor for the f(R) models explored in this work. The parameters were chosen

so to have an acceptable expansion history. We have added the ΛCDM model H(a) (blue dashed

curve) for comparison.

2.2 Linear growth rate δ(a)

We consider scalar linear perturbations around a flat FRW background in the Newtonian

gauge

ds2 = −(1 + 2Ψ)dt2 + a(t)2(1 + 2Φ)

3
∑

i=1

(dxi)2 . (2.9)

The perturbations to the metric are the Newtonian potential Ψ and the perturbation to the

spatial curvature Φ. Since we are working in the Jordan frame, in which matter is minimally

∗The Hubble rate for the ΛCDM model, neglecting the radiation contribution, reads H(a) =

H0

p

Ω0
ma−3 + (1 − Ω0

m).
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coupled, the conservation equations for the cold dark matter component have the same form

than in general relativity. At first order in the perturbations, the conservation equations

read

δ̇ = 3Φ̇ − θ ;

θ̇ = −Hθ +

(

k

a

)2

Ψ , (2.10)

where ˙ means derivative with respect to t, δ is the cold dark matter overdensity and θ is

the dark matter (comoving) peculiar velocity divergence. For subhorizon modes (k >∼ aH),

and in the quasi-static limit†, the perturbed 0 − 0 and i − j (i 6= j) components of the

Einstein equations read

2

(

k

a

)2
[

Φ(1 + fR) − fRR

(

k

a

)2

(Ψ − 2Φ)

]

= −8πGρ δ ; (2.11)

Ψ =

(

1 − 2Q

1 − Q

)

Φ , (2.12)

where we have set the anisotropic stress of cold dark matter to zero, ρ refers to the cold

dark matter energy density and we have neglected the radiation contribution. The factor

Q is defined as

Q(k, a) = −2

(

k

a

)2 fRR

1 + fR
. (2.13)

By substituting the equation for the i− j component into the one for the 0− 0 component

one gets the modified Poisson equation

Φ =
−8πG

(

k
a

)2
(1 + fR)

ρδ

(

1 − Q

2 − 3Q

)

, (2.14)

which reduces to the standard one if fR = 0. The growth factor equation is obtained by

combining Eqs. (2.10) and Eq. (2.14), see also Ref. [19]:

δ′′ + δ′
(

3

a
+

H ′

H

)

− 3Ωm(a)

(H/H0)
2 (1 + fR)

1 − 2Q

2 − 3Q

δ

a2
= 0 , (2.15)

where ′ ≡ d/da, Ωm(a) = Ω0
ma−3 and δ is normalized such that δ → a when a → 0. In

general relativity, the factor Q given by Eq. (2.13) is zero and therefore the linear density

growth is scale independent for all dark energy models. However, for f(R) models, the

scale dependent Q(k, a) induces a nontrivial scale dependence of the growth δ.

We illustrate this scale dependence of the growth factor in Fig. II, where it is shown the

present value of the matter overdensity δ as a function of the scale k for the four f(R)

models considered here. We depict as well the current value of the matter overdensity for a

ΛCDM universe. Notice that, for the choice of parameters which ensure an acceptable H0,

†In this limit time derivatives are assumed to be negligible with respect to spatial derivatives.
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the growth of matter perturbations within the f(R) = R [log(αR)]q − R model is highly

suppressed with respect to the growth in a universe with a CC. For the other three f(R)

models the growth is very close to the ΛCDM growth at large scales. However, it shows a

k dependence as k increases, due to a larger Q(k, a) factor, see Eq. (2.13). Galaxy surveys

provide information on f , where f is the logarithmic derivative of the linear growth rate,

i.e. f ≡ dlnδ
dlna . Therefore for our numerical analyses we will use f = (δ′/δ) a, see the details

in the next section.
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Figure II: Linear growth rate of various f(R) models. The red solid curves depict the present

linear overdensity δ as a function of the scale k for the f(R) models explored in this work. The

parameters were chosen so to have an acceptable expansion history. We have added the ΛCDM

model δ(k) (blue dashed curve) for comparison.

3. Cosmological data used in the analysis

In this section we describe the cosmological data used in our numerical analyses‡. Four

different geometrical probes (SNIa, CMB, BAO and H(z) galaxy ages datasets) will be

combined with growth of structure data to derive the cosmological bounds on the free

parameters of the f(R) models explored here, see Eqs. (2.3), (2.4), (2.5) and (2.6).

‡For practical purposes, in the following, we will use the redshift z instead of the scale factor a.
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3.1 The Supernova Union Compilation

The Union Compilation [3] is a collection of 414 SNIa, which reduces to 307 SNe after

selection cuts. It includes the recent large samples of SNIa from the Supernova Legacy

Survey and ESSENCE Survey, and the recently extended dataset of distant supernovae

observed with the Hubble Space Telescope (HST). In total the Union Compilation presents

307 values of distance moduli (µ), with relative errors, ranging from a redshift z of 0.05

up to z = 1.551. The distance moduli, i.e. the difference between apparent and absolute

magnitude of the objects, is given by

µ = 5 log
( dL

Mpc

)

+ 25 , (3.1)

where dL(z) is the luminosity distance, dL(z) = c(1 + z)
∫ z
0 H(z)−1dz. The χ2 function

used in the analysis reads

χ2
SNIa(ci) =

∑

z

((µ(ci, z) − µobs(z))2

σ2
obs(z)

)

, (3.2)

where, here and in the following, ci will refer to the free parameters of the f(R) models.

3.2 CMB first acoustic peak

We use here the CMB shift parameter R, since it is the least model dependent quantity

extracted from the CMB power spectrum [20], i.e. it does not depend on the present vale

of the Hubble parameter H0. The reduced distance R is written as

R = (ΩmH2
0 )1/2

∫ 1089

0
dz/H(z) . (3.3)

The WMAP-5 year CMB data alone yields R0 = 1.715±0.021 for a fit assuming a constant

w [2]. The χ2 is defined as χ2
CMB(ci) = [(R(ci) − R0)/σR0

]2.

3.3 BAOs

An independent geometrical probe are BAO measurements. Acoustic oscillations in the

photon-baryon plasma are imprinted in the matter distribution. These BAOs have been

detected in the spatial distribution of galaxies by the SDSS [21] at a redshift z = 0.35

and the 2dF Galaxy Reshift Survey [22] at a redshift z = 0.2. The oscillation pattern is

characterized by a standard ruler, s, whose length is the distance sound can travel between

the Big Bang and recombination and at which the correlation function of dark matter (and

that of galaxies, clusters) should show a peak. While future BAO data is expected to

provide independent measurements of the Hubble rate H(z) and of the angular diameter

distance DA(z) = dL(z)/(1 + z) at different redshifts, current BAO data does not allow to

measure them separately, so they use the spherically correlated function

DV (z) =

(

D2
A(z)

cz

H(z)

)1/3

. (3.4)
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In Ref. [23], a tension among SDSS abd BAO datasets was claimed. Therefore, we will

focus on the SDSS dataset in the following. The SDSS team reports its BAO measurements

in terms of the A parameter,

A(z = 0.35) ≡ DV (z = 0.35)

√

ΩmH2
0

0.35c
, (3.5)

where ASDSS(z = 0.35) = 0.469 ± 0.017. The χ2 function is defined as χ2
BAO(ci) =

[(A(ci, z = 0.35) − ASDSS(z = 0.35))/σA(z=0.35) ]
2.

3.4 Galaxy ages

We use the H(z) data extracted from galaxy ages in the redshift range 0.1 < z < 1.8, see

Ref. [24]. The authors first selected galaxy samples of passively evolving galaxies with high-

quality spectroscopy. Second, they used synthetic stellar population models to constrain

the age of the oldest stars in the galaxy (after marginalising over the metallicity and star

formation history) and then computed differential ages and used them as their estimator

for dz/dt, which in turn gave H(z). We use the eight data points shown in Figure 1 in

Ref. [24] to test cosmological models by these data sample. The χ2 function is defined as

χ2
ages(ci) =

∑

z

(

(H(ci, z) − H(z))2

σ2
H(z)

)

. (3.6)

3.5 Growth factor

Galaxy surveys measure the redshift of the galaxies, providing, therefore, the redshift space

galaxy distributions. From those redshifts the radial position of the galaxy is extracted.

However, the inferred galaxy distribution (and, consequently, the power spectrum) is dis-

torted with respect to the true galaxy distribution, because in redshift space one neglects

the peculiar velocities of the galaxies. These are the so called redshift space distortions.

In linear theory and with a local linear galaxy bias b the relation between the true

spectrum in real space and the spectrum in redshift space reads

Predshift(k) =
(

1 + βµ2
k

)2
P (k) , (3.7)

where β ≡ f/b, being f the logarithmic derivative of the growth factor, and µk is the cosine

of the angle between the line of sight and the wavevector k. Notice that perturbations with

k perpendicular to the line of sight are not distorted. By averaging over all directions µk,

one obtains the relation

Predshift(k) =

(

1 +
2

3
β +

1

5
β2

)

P (k) . (3.8)

The relation among real space and redshift space overdensities given by Eq. (3.7) was

first derived by Kaiser [25] and it arises from the continuity equation, which relates the

divergence of the peculiar velocity with the linear matter overdensity. Redshift space

distortions, then, relate peculiar velocities with the growth factor f . A measurement of

β ≡ f/b will provide information on the growth of structure formation if the galaxy bias b
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z β b f References

0.15 0.49 ± 0.09 1.04 ± 0.11 0.51 ± 0.11 [27,28]

0.35 0.31 ± 0.04 2.25 ± 0.08 0.7 ± 0.18 [4]

0.55 0.45 ± 0.05 1.66 ± 0.35 0.75 ± 0.18 [29]

0.77 0.70 ± 0.26 1.30 ± 0.10 0.91 ± 0.36 [30]

Table 1: Current available data for the redshift distortion parameter β, the bias b and the inferred

growth factor, see Ref. [31].

is known. One can estimate the redshift distortion parameter β both by using the ratio of

the redshift space correlation function to the real space correlation function, see Eq. (3.8)

and by exploiting the ratio of the monopole and quadrupole harmonics of the redshift

correlation function [26]:

Qredshift =
P

(2)
redshift(k)

P
(0)
redshift(k)

=
4
3β + 4

7β2

1 + 2
3β + 1

5β2
. (3.9)

We quote the current available data on β, the galaxy bias b and the inferred growth

factor in Tab. 1. Notice from the first of Eqs. (2.10) that the continuity equation in

f(R) theories is exactly the same than in general relativity and therefore the relation

between peculiar velocities and the matter overdensity is not modified in the f(R) models

studied here. Consequently, we use the available data on the logarithmic derivative of

the growth factor f , see Tab. 1 as an additional test for f(R) models, to be added to

the geometrical probes previously described. The χ2 function is defined as χ2
growth =

∑

j [(f(ci, zj , k0) − f(zj))/σf(zj )]
2. Notice that the theoretical prediction for the growth

factor f(ci, zj , k) is scale dependent. We choose k0 = 0.1 Mpc−1 to be within the linear

regime and within the scale range tested by current surveys, see Tab. 1.

4. Analysis of cosmological models

In this section we present the constraints in four modified gravity models (see Eqs. (2.3)

to (2.6)) which arise from the datasets described in the previous section. These models

have been shown to have a long enough matter domination epoch and late-time accelerated

expansion [17].

We show below that the combination of geometrical probes (i.e. distance measure-

ments) and growth of structure data allows to exclude some models. For those consistent

with all the cosmological data sets used here, we derive the allowed range of parameters

and discuss the near future improvements. We will see in next section that some of the

models consistent with all cosmological data, are excluded by solar system tests.

In the discussion, we make use of the individual chi-square functions, the global chi-

square defined by

χ2
tot(ci) = χ2

SNIa(ci) + χ2
BAO(ci) + χ2

CMB(ci) + χ2
ages(ci) + χ2

growth(ci),
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and the only-distances χ2, defined as the global chi-square without the last term. If

not otherwise specified, the cosmological parameters H0 and Ωm are fixed to the values

74.2 Km/s/Mpc and 0.24 respectively.

4.1 Model H1: f(R) = αRn (α < 0, 0 < n < 1)

This model contains two parameters: the power index of the curvature n and the normal-

ization of the modification of gravity α. The αRn model contains the ΛCDM universe as

a limiting case: if n → 0, then f(R) → α, where the parameter α becomes a cosmological

constant. Therefore, it must be allowed by the cosmological data within a parameter range.

The best fit model is acceptable for all the independent data sets and the full data analysis

gives a χ2
min of 325.3 for 322 d.o.f..

We firstly discuss the larger n allowed, and how much α deviates from the cosmological

constant present in a ΛCDM universe. In Fig. III we show the 68.3, 95.4 and 99.7% CL

contours (full colour) resulting from a fit to all the cosmological data exploited here. The

global best fit point is marked by a star. Notice that the power index n can be quite

large and that the normalization α can depart from the cosmological constant value. In

fact, data prefer n = 0.11 and α = −6600 (km/s/Mpc)2×(1−0.11), far from the cosmological

constant (Λ̄) limiting case (α = −2Λ̄ ∼ −20000 (km/s/Mpc)2 and n = 0).

The regions allowed by growth of structure data are depicted by dashed lines, with the

best fit point marked as a plus sign. The allowed regions from a fit to distance measurements

(i.e. geometrical probes) are depicted by black lines. The statistical power is dominated

by distance data: only an expert eye can notice the difference among the global analysis

allowed regions and those coming from the only-distances analysis. SNIa data are the most

important piece of information that constrains the modified gravity parameters. BAO,

CMB and galaxy ages H(z) data sets have a similar weight in the statistical analysis.

Figure III shows some tension between the model predictions and the different data

sets for the largest allowed values of n. Notice that additional, high precision growth data

may further test the high α region and further constrain the deviations of the f(R) = αRn

model from a ΛCDM universe.

4.2 Model H2: f(R) = R
(

log(αR)
)q − R (q > 0)

This model is described by two parameters: the power index of the logarithm of the

curvature q and a normalization of the modification of gravity α. The best fit model is

acceptable for the all the distance measurements, with some tension between the allowed

ranges derived from the different distance observables.

The relevance of testing this model against cosmological data appears when we compare

the allowed regions by geometrical probes to those coming from a fit to growth of structure

data: there is no allowed region at more than 99.73% CL able to fit distances and growth

data simultaneously, see Fig. IV.

Distance measurements prefer larger values of the power index q, while growth data

prefer a much smaller power index. Notice that for parameters that reproduce correctly

the expansion history, the linear growth is k-independent but very much off the ΛCDM

model (see Figs. I and II). Errors in the inferred growth rate are still large (see Tab. 1),
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Figure III: Data analysis of model H1. Full regions correspond to the 68.3, 95.4 and 99.7 %

CL global analysis allowed regions of parameters n-α of the modified gravity model f(R) = αRn.

The best fit point of the global analysis is marked with a star. Dashed lines correspond to the 68.3,

95.4 and 99.7 % CL contours of the growth data analysis. The best fit point of the growth data

analysis is marked with a plus sign.

but sufficient to test this model. We obtain χ2
min = 388.7 for 322 d.o.f., with a probability

of the result being due to chance p < 0.006. Statistically, we can reject the null hypothesis

of the model being compatible with data.

4.3 Model H3: f(R) = R exp(q/R) − R

This model contains one free parameter q. We also allow here the current fraction of the

energy density in the form of dark matter, Ω0
m, to be an additional free parameter.

The f(R) = R exp(q/R)−R model contains the cosmological constant model as a lim-

iting case. If q/R is small, then f(R) → q, where the parameter q becomes a cosmological

constant. The best fit model is acceptable for all the independent data sets and the full

data analysis gives a χ2
min of 332.4 for 322 d.o.f..

Figure V depicts the 68.3, 95.4 and 99.7% CL contours (full colour) resulting from

a fit to all the cosmological data exploited here. The parameter q can deviate from the

cosmological constant in ΛCDM by less than 10%. From the global analysis we obtain

Ω0
m = 0.245±0.015 and q = −23200±1200 (km/s/Mpc)2. The distances only data mostly

contributes to strongly constrain the parameter q of this modified gravity model. Notice

from Fig. V that the growth data prefer smaller values of q and Ω0
m, pushing down the

global allowed region respect to the distances only allowed region. Not surprisingly, the

best fit of the χ2
growth analysis lies outside the region shown here. Future more accurate

growth of structure data could provide tighter bounds on the parameters q and Ω0
m, and
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Figure IV: Data analysis of model H2. Full regions correspond to the 68.3, 95.4 and 99.7

% CL distances only analysis allowed regions of parameters q-α of the modified gravity model

f(R) = R
(

log(αR)
)q − R. The best fit point of the distances only analysis is marked with a star.

Dashed lines correspond to the 68.3, 95.4 and 99.7 % CL contours of the growth data analysis. The

best fit point of the growth data analysis is marked with a plus sign.

potentially reject this model if it would not fit simultaneously distances and future growth

data.

4.4 Model H4: f(R) = αR2 − Λ (αΛ ≪ 1)

The f(R) = αR2 − Λ (αΛ ≪ 1) model is described by two parameters: the cosmological

constant Λ and the normalization of the modification of gravity α. If α → 0, then f(R) →
Λ, a cosmological constant, implying that the model must work in some parameter range.

Notice that the Einstein Hilbert action contains the term R − 2Λ̄, and therefore the Λ

is twice the usual cosmological constant Λ̄. The best fit model is acceptable for all the

independent data sets and the full data analysis gives a χ2
min of 323.6 for 322 d.o.f..

Figure VI depicts the 68.3, 95.4 and 99.7% CL contours (full colour) resulting from a

fit to all the cosmological data exploited here. The data prefer a very small modification

of gravity with log[α (in km/s/Mpc)−2] < −8. The best fit point of the global analysis is

log[α (in km/s/Mpc)−2] = −8.23 and Λ = 23515 (km/s/Mpc)2, which is about 1-σ away

from the preferred Λ = 2Λ̄ without a modification of gravity (i.e. α = 0). High precision

future geometrical probes can reduce the model to a negligible perturbation of the ΛCDM

model.

5. Solar system constraints

We explore here the weak field limit of f(R) = αRn, f(R) = αR2 − Λ and f(R) =
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R exp(q/R)−R, modified gravity models which have been shown to be consistent with the

cosmological probes used in the previous section.

It is well known that f(R) gravity models that produced late time acceleration also

have problems to pass solar system tests [32–42]. The reason is that f(R) gravity theories

introduce a scalar degree of freedom given by fR that, for the background cosmological

density, is very light. As a consequence, it produces a long-range fifth force, leading to a

dissociation of the space-time curvature from the local density. Then, the metric around

the sun is predicted to be different than what is observed. Chiba [43] has shown under

which conditions an f(R) gravity is equivalent to a scalar-tensor theory with Parametrized

Post-Newtonian (PPN) parameter γ = 1/2, far outside the range allowed by observations,

|γ − 1| < 2.310−5 [44].

However, some f(R) theories are still viable: the scalar field mass could be large and

therefore it would not have an effect at solar system scales. Another possibility is a scale

dependent scalar field mass, as in the chameleon mechanism [45–49]. In chameleon cosmolo-

gies, the effective mass of the scalar field becomes very large in high density environments

(as in the Sun’s interior) and the induced fifth force range would be below the detectability

level of gravitational experiments.

In what follows we will apply the criteria presented by Hu and Sawicki in Ref. [38].

If the system’s density (for instance, the Sun’s density) changes on scales that are much

larger than the scalar field Compton wavelength

λfR
≡ m−1

fR
, (5.1)

where

m2
fR

=
1

3

(

1 + fR

fRR
− R

)

, (5.2)

the curvature will follow the Sun’s density, as in general relativity. This is the Compton

condition. If it is satisfied at all radii, high densities will be associated with high curvature

and deviations from general relativity will be highly suppressed. If the Compton condition

is not satisfied, one would need then to check the thin-shell condition. This condition

applies when the (massive) scalar field is trapped within the system and its influence is

only due to a thin shell, shielding the fifth force mediated by the scalar field. For the solar

system, the thin shell criterion reads [38,47]

|∆fR(r⊙)| < (γ − 1)
GM⊙

r⊙
< 4.9 × 10−11 , (5.3)

where ∆fR is the field fR difference from far inside the body to very far away. Local gravity

constraints for the model H1, f(R) = αRn have been already studied in [40], where it is

found that only n < 5 × 10−6 is allowed. Such values of n are too close to ΛCDM, and

therefore not interesting cosmologically.

We find that the only f(R) model which satisfies the Compton condition and therefore

satisfies solar system constraints is f(R) = R exp(q/R)−R. The Compton wavelength for

this model is λfR
≃
√

3q2

R3 . For the best fit values of q ∼ −20000 (km/s/Mpc)2 and for
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densities corresponding to the solar corona ρ ≃ 10−15 g/cm3, λfR
≃ 10−4r⊙. For higher

densities, the Compton wavelength is even smaller and therefore the curvature R will follow

the density profile inside the Sun, as in general relativity.

The other two f(R) models which survive the cosmological , i.e. f(R) = αRn and

f(R) = αR2 −Λ do not satisfy the Compton nor the thin shell criteria, and therefore they

are ruled out by solar system observations.

6. Discussion

We have studied a class of modified gravity models, which possess a long enough matter

domination epoch and late-time accelerated expansion, as identified by the authors of

[17]. Both the background evolution and the growth of structure have been computed

in these well behaved modified gravity cosmologies. We have confronted the expansion

history in these cosmologies with SNIa data, the CMB shift parameter R, the SDSS BAO

measurement and the H(z) data derived from galaxy ages. We have also fitted the linear

growth of structure in these f(R) models to the growth information derived from redshift

space distortions, as a novel approach.

Interestingly, we find that the cosmological data exploited here possess an enormous

potential to rule out modified gravity models. f(R) models with a good expansion history

like f(R) = R
(

log(αR)
)q − R badly fail to reproduce the growth measurements and can

be statistically rejected with present data.

Other modified gravity models as f(R) = αRn, f(R) = αR2 − Λ and f(R) =

R exp(q/R) − R are allowed by all the cosmological data exploited in this study, and

include as a limiting case a ΛCDM universe. We show the allowed range of parameters in

these models, finding that modifications of gravity must be small. The bounds presented

here could be greatly improved with future high precision growth data.

We have also studied the solar system bounds on the three f(R) models which agree

with the cosmological data. The only model which satisfies solar system constraints is

f(R) = R exp(q/R) − R. The other two models, although cosmologically viable, are ruled

out by solar system observations.

From a global fit (which includes SNIa, CMB, BAO, H(z) galaxy ages and growth data)

to the q parameter in the exponential model f(R) = R exp(q/R)−R and to the current mat-

ter energy density Ω0
m, we obtain Ω0

m = 0.245±0.015 and q = −23200±1200 (km/s/Mpc)2.

Geometrical probes mostly contribute to strongly constrain the parameter q of this modified

gravity model, while growth data slightly prefer lower values of both parameters Ω0
m and

q. In the parameter allowed region where the exponential model differs from the standard

CC cosmology, we find that the growth factor is k-dependent, in contrast to the ΛCDM

prediction. More precise growth data at small scales, albeit still within the linear regime,

will potentially find small deviations from a universe with a CC.

Our study shows, with the exploration of several f(R) models, that the combination

of geometrical probes and growth data offers a powerful tool to rule out modified gravity

scenarios and/or constrain deviations from the ΛCDM picture. We can anticipate that

future growth of structure data in the linear regime, combined with a full analysis including
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the nonlinear regime, will have a very important impact in searching for tiny deviations

from Einstein gravity.
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