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ABSTRACT
We show that the number qf invariant CP-violating parameters XCP jumps

from the unique universal one in three generations to nine in the four-
generation case, saturating the parameter space for generation numbers

hi;her then three. This can lead to drastically different consequences in CP-
violating phenomena, We give the quark mass matrices in the three-generatiom
case and speculate for higher generations., We also give some invariant
definitions of "maximal" CP violationm.
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Measurements of the b.particle lifetime and its decay propertiesl have
sharply constrained the parameter space of the'Kobayashi~Maskawa (K model.2
The even smaller allowed reéion remaining after fitting the CP-violating para-
meter € could be ruled out by a little improvement in the upper bound of |z}b|.3
It is simple to understand the origin of this correlation between qub] and
CP-violating effects. The general argument is that if we had one of the moduli
of the KM matrix equal to zero, the CP-violating phase § could be rephased away.
This point is made clear in the mixing matrix by Chau and Keung (CK),4 in which
all the imaginary parts entering the mixing matrix are in the form quble‘i¢.

In general, there are (N-1)(N-2)/2 CP-violating independent phases for N gener-
ations,5 thus an increase in the number of generatiomns will alloé enough freedom

to remedy this situation.6 Some conséquences of the existence of higher generations
have been discussed in the literature. Most of the effects discussed are dependent
on the higher-generation quark masses.

In this paper we shall discuss the consequences of the existence of
higher geéérations, especially those effects that are independent of detailed
model calculations but rely upon some intrimsic properfieé of the presence of
more than three generations. First, we give some generic results of the quark
mixing matrix from its rephasing invariant properties. We show that the number
of invariant CP-violating parameters X.p jumps from the unique universal ome in
three generations to nine in the four-generation case, and saturates the parameter
space for generation mumber higher than three. This immediately leads to the
possibility of very different implicatioms for CP-violating effects. It is well-
known that the general three-generation consequences of small p°, D°, as wel}

) o _o ]
as small B, B, mixing, but appreciable Bs’ Bs mixing, and small

4’ d

mass-matrix (superweak) CP’ violatiom, e.g., small (£*&% - 2747) asymmetry from



p°, B° decays,7 may change with the presence of higher gemerations. But_tﬁese
mass-matrix effects are loop effects depending'on the new quark masses, as demon-—
strated in the explicit calculations in Ref. (6). However, there are CP-violating
effects, dominated by tree graphs, thus independent of the new quark masses, and
dependent only on the existence of the new generations. Especially interesting,
we find that ;he partial deﬁay rate differences in charm decays can be enhanced
by more than an order of magnitude with respect to the three-generation case,
shown in Ref. (8). All this leads to‘interesting consequences from high charm-
particle-producing machines, as well as from high beauty-particle-producing machines.
To help in the general analysis of the CP-violating phenomena, we first
introduce rephasing invariants. Given V, the mixing matrix, we know that
physical observables are independent of .the quark phase convention, i.e., physics
¥

is invariant under the rephasing property V* V = D1 v DZ’ where D1 , are
¥

arbitrary diagonal unitary matrices. Following the seminal paper of Greenberg,

we define the following rephasing invariants (RI)10
1% = efvta%a.} = |v..|?, :
1 1 [ 51 (1)
aB _ +,0 +,B - u* x
1,5 = Te{v’A VA VA VAJ.} Vo; Vai Va1 Vs’

where (AP)jk = Gjaaka' the indices @, B, indicate the charge-2/3 quarks, and the

subindex i indicates the charge-(-1/3) quarks. It can be shownlo that all phys~-

. *
ical quantities can be written in terms of these RI's,T?? are real, T?? = (T??)
a8 Ba . . . a
and Tij = Tji so that the CP-violating observables are controlled by Im (Tij)

N N
a<B,i<j. Using I A% = El Ai = I and unitarity of V for the N generatiom case,
(s 233 | i= .

we only need to consider indices running from 1 to (N-1).



So in the three-generation case we conclude that all CP-violating observ-
¢
ables must be proportional to XCP = Im Tii. This is a general proof of the

theorem shown in Ref. 4. To be wore specific, from unitarity

13 _ 12 11 _ 12 12 11
Typ = “Tyy =~ T3y = *# Ty *+ Ty, = Tgy s we have

_ 12 _ 13 _ 2 2 (2)
XCP Im le Im T32 T C1C,Cq8; §,8485 = cxcycz sxsyszs¢ ,

whare ¢; 98, are the parameters of the KM and CK mixing matrices, respectively.

1.1

Like all other physical observables, X_, can be expressed in terms of Tl,TZ,

Ti, Tg, up to the sign.

cP

In the four-generation case, the same reduction procedure used to get Eq.

(2) tells us that all CP~violating observables are controlled by nine independent

anaalogs to XCP’ that is,
x. )8 = 1 8 (3)
CP'1j 13

where &, 8, i, j run from 1 to (N-1), with a<B, i<j. UNote that there are

((N-l)(N—Z)/Z]Z (XCP)?g, i.e., for N=2, there is zero X.,; for N=3, there is one

XCP; for N=4, there are nine XCP's and it can be proved to be independentlo; for

>3 the number of X..'s saturates the parameter space of the mixing matrix.

cP
So it is a unique feature of the three generation case that there is one
universal CP-violating parameter. This qualitatively distinct feature forms

the basis of our model-independent observation for clues to the existence of

more than three generations of quarks. In particular, partial decay rate dif-
B

. ap .
ferences are proportional to XCP in the three-generation case, and to (XCP)ij in

the four-generation case. So there is the chance that these kinds of observables

will show important differences. We will return to this point later on.



To_bé specific, we shall use the four-generation case as an example, and
~choose the following criteria for constructing'explicitly the mixing matrix:
1) imposing a simple three-generation limit, ii) setting parameters with
straightforwvard experimental correspondences, 1In the three-generation case,

’ so it seems natural

ii) has been accomplished by the CK parametrization,
to choose a generalization of this parametrization. Since this is of the Maiani
12 .
type, we will have
+

v=p I w, . (6.., $..)D, ' (4)
i<y i3 11 1)

where D is an arbitrary diagonal unitary matrix that can be suitably chosen

and mij(eij’¢ij) is a complex rotation between the i and j generations with argu-
ment eij and phases_¢ij. In order to give an explicit parametrization for V inm
(4), we must still decide the particular order we pick for the wij products

and how we choose the phases of D in order to eliminate as many ¢ij complex phases
as possible. The effect of D+ and D in Eq. (4) can be completely absorbed by

fedefining ¢...12’14
1]

Nevertheless, there is a general result that constrains
the ¢ij that can be rephased away: given three generatioms, i<j<k (¢ij + ¢jk -
¢ik) is independent of D. This means that for three given values of i, j,k the

three phases entering into the previous equations cannot be rephased away. So

consistent with requirements i) and ii), our parametrizatiom is

= (5)
v [m34(au)mza(ev’¢3)w14(ew’¢2)][w23(ay)w13(92’¢1)w12(8x)] .

The square bracket to the right is a trivial extension to four generations of

the CK matrix V We put this factor on the right, and the remaining ordination

CK'

of wij to simplify at maximum the first two rows. Requirement (ii) imposes the



location of ¢2 and ¢3 because we will see later on that Gw and ev are restricted

L4
to be relatively small and Gu will be completely free. Then the mixing matrix is
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To set bounds to the mixing angles we will use the experimental informa-

tion! |V | = 0.9734, |V | = 0.224, |v_| < 0.008, |v_| = 0.21 - 0.23
ud us ub cd -

|vcs|3_ 0.81, |vcb| S 0.05, and from unitarity ]vub,l < 0.05 and _|vcb,[ < 0,55.
From this value we get s = 0.224, sy =.0.055, s, £ 0.008, s, < 0.05, s, < 0.55;
but 8, remains a2 free parameter. We must stress that the bounds on Sy depend
esgentially on the |vcs| bound. We have assigned IVcsl a rather conservative
value, so one must keep in gind the possibility of having a slightly smaller
upper bound for S In this pattern, one extremely interesting possibility tha;
immediately comes to mind is that the mixing between the three and four genera-
tions can be of the order of su_{_l. In this case, the submatrix éf these two
generations would be essentially off-diagonal, giving rise to a long lifetime
for the t quark and a suppression of the &ecay mode of W into t, depending of

course on the mass of the b' quark.



To control orders of magnitude, it is convenient to use the

. . ’ 2 3 2
Wolfenstein-type parametrizatlon,l5 s, = Aj 5y = A" s, < AT s, < A% s, S 2 A,

taking into account these orders of magnitude, we found the following approx-

. 4
imate form, to the order of A, for V:
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This matrix represents a simplified version of (6) dictated by experimental ia-
formation, and it can be safely used to perform numerical analysis in involved
processes. In (7) we have included terms of order Xe when the}.are the
leading ones praportional toc some of the complex phases.

Having at hand a rather restricted form of ﬁhe mixing matrix in the four-
generation case, it is of interest to look for the different possibilities

for the mass matrix in the four-generation case. This is useful as a guideline



for model builders, and also in the search for any kind of regularity among

¢
masses and mixing angles. In the standard model, the quark mass matrix is

Lyasg = = ] g M’ wg - $E e wg + Hioc. 3 | (&)

because the right-handed fields are singlet, it is possible to reduce MU and MD
to Hermitian matrice316 (through the polar decomposition of a matrix into an
Hermitian ome times a unitary one and absorbing the unitary transformation

inte the right-handed fields) or symmetric matrices. This is always possible
even outside the standard model, provided the right-handed currents are absent
or sufficiently suppressed at low energies.l7 So without loss of generality

. . U .
in the standard model, one can start with the most general M and MD matrices

being Hermitian or symmetric. But consistently one can go one step further.

. . . . ‘s U .
Let U, be the unitary matrix that diagonalizes the Hermitian M matrix. Then

1
+
if we transform all the quark fields (up, down, left and right) with u, , we

. + ., - .
change only the mass term of the Lagrangiam. But Ul MD Ul is Hermitian, being

MD Hermitian, and now MB is diagonal. Finally, we can apply a suitable unitary

diagonal transformation to all the fields in order to eliminate as many phases

" as possible from U1+MDUi.' So without loss of.generality, the most general form

of KU and MD in the standard model is MU diagonal and MD Hermitian with some
removable phases. Picking the Hermitian case, the mass matrix becomes:

1 = P (diag.) V' =



[ -9y | ~idy _ ]
my, + oS | ms + mbsys e I m, s e mssxsy
N T S S __2

' -] (m,—m Js
1 |
ms +ms s e1¢1 | me Z, m, s 2 s ¥ (9)
~} s'x yz s x y b om s s e-1¢1
| — S X Z o
. (m,—m J)s
m s eltpl - m s s : ™ 16 ! wc 2
x y -m S 5 e 1 l Y
8 l
e I 1

To get (9), we have used the smal}ness of S.v S, and md/mb f_kaf ms/m;_§ KZ.
Similarly, we can get the symmetric mass matrix VMD (diag.) V. Equation (9) is
accurate up to order mbkh. 0f course, (9) reproduces the pattern noted by
Frampton and Jarlskog16 (FI) MU/mt = MH/mS + 0 (kz), although it makes it clearer
that the origin of this pattern comes essentially from the great variety of scales
in the quark masses. The analysis of the four generation case in this pattern
with the Petra limit mb/mb- < A gives all the possible mass matrices allowed by
nature. Instead of writing down M, in the general case, we will present some
interesting particular cases. It is evident that unless we suppress some mixing
angle, mbI.Will dominate almost all the matrix'elements, so if we impose the
condition that not all the elements in the first two rows be dominated by mb|

we obtain the pattern s, < 13 and s, < 12. Now we will concentrate on two rather
orthogonal illustrative examples: the case in which the mixing among the third
and fourth generations is big or small. In the case S, gllz and writing &own

only the leading terms of every matrix element, we get:

—— ey

B4 + mssx2 ) mssx | mbsze-l¢1 mb-swe-f¢2
. R
m, s m, mbsy m s e
M, = +idy _ ' (10)
MyS2® ’ mbsy ®y b
. *idp +ig3 .
my's o m'8ye m e, =, :



Clearly Eq. (10) represents a straightforward generalization of (9), picking the
leading terms. So s_ < X3, s, 2 A2 with s s }2 provides a natural pattern

generalizing the three-generation case. A more exotic situation would be with

2 . .
c < A7, in this case

u
m,+m s 2 m S t5 e_i¢2 i} e_i¢1
d s x § X ' % . b
_1¢3
mssx ms mbrsve *mbsy
MH = +id, +idy : (11)

mbrswe. mbusve mbn mbtcu

+ld)1 .
‘mbsze -mbsy mbvcu mb .

This second possibilfty is remarkable in that if we interchange the third and
fourth geﬁerations, the result turns out to be exactly the same as (10) except

for the presence of unobservable signs and the change (cu*+su). O0f course, this
is a consistancy check of the simple fact that by relabeling the generation number
we can convert an off-diagonal coupling into a diagonal onme. Equations (1o

and (11) represent two simple and extreme situations of the type of mass matrix

we can expect in the four-generation case. So far, nature has followed the
pattern that the order of generation is the order of masses, but in four gener-
ations this pattern may change as in Eq. (il), where, the gemeration order 3

and 4 is reversed with respect to the mass order 3 and 4.

Let us now analyze the experimental signatures of the presence of higher
generations, especially effects independent of the new quark masses. The first
one to check is the unitarity condition in the three-generation case. The
other phenomena that are in&ependent of the new~quark masses are the pértial
decay rate differences (PDRD) in nonfeptonic decays dominated by tree graphs.

aB

These PDRD are proportional to the RI Im Tij' To simplify the discussion,



let us point out that in three generatioms X., s A% sin (¢l); in four gener-

ations some of them are:

12 4 . 13 2 54 . 3

(XCP)IZ ; 2 A% sin (¢2'¢3), (XCP)IZ 5 Su AY sin (¢2 ¢3), (12
23 214 . 23 3 .

(XCP)12 ; s, A? sin (¢2—¢3), (XCP)23 ; (sucu) A” sin (¢3) ,

"This expressiom can be read out from Eqs. (1), (3}, and (7). The impli-

cationg of these (X )93

cpli in Eq. (12) being potentially some order of

magnitude larger than XCP in the three generation case is that it permits a

much wider range for PDRD given the constraint by € and g€'/e. TFor example, for

F + K97 the PDRD A is defined by

_ (&0 -T(F™>k%n7)

A
T(Fra O ) +T(F k01 7) (13)

F

since this decay is dominated by two tree graphs with a relative strong phase

of m/2, we have

12

A . - , (Xepl12
F(A-generatlons) = F(S—generatlons) ——EE;—— . : (14)

2

So this PDRD in four generatioms can be as big as -(1.8 x 107° to 10—1) using

the calculation of Ref. (8); in the three-generation case the value is
- o1
(3.6 x 107% to 2 x 10 3). The other large (XCP)i? in Eq. (12) can only

contribute to PDRD dominated by tree graphs in top decay; ia addition, we also

13 <
13 ¥

All this implies that also the PDRD in top decays will have a much wider allowed

have (XCP) A3 sin@l, an enhancement even in the -case ¢3 = ¢2 = 0.

range in the case of four generationms.

10



It must be stressed that the possible enhancement found through Eq. (14)

#
comes from an enhancement in the numerator in Eq. (13). In b decays, this kind

of enhancement is not possible because, for example (ch)ég = Im Tég is

of the order of magnitude of the experimental value lTégl =
IV12||V13][V22||V23[. Of course there can be significant deviations in PDRD
dominated by loop graphs, but these results ‘are dependent on the mass of the
fourth-generation quarks.

At this point, one may wonder if the set of parameters (12) can be too big
both for € and e' /. Nevertheless, we must stress that the results (12) must
be contemplated as upper bounds and that by picking a suitable scenario, i.e.,

7,19

- - . ' -
fixing m o, m'y S Bk and Bkl, one can try to adjust € and € /e without

spoiling (12) too much. Note that for € and €'/€, we got a contribution from

12 13 23
(x..) (x..) (X )12.

cp’12’ cp’12’ CP It must be stres?ed that in general S, does not have

. 4 . 3
to be too small and that this A bound comes from using s_s_+" A7,
Finally, we would like to comment on the concept of wmaximal CP violatiom.
Till now, most definitions appearing in the literature are parametrizatiom
dependent and contain the ironmic situatiom of no CP violation, e.g., ¢ =7/2,

but Vu = 0. From our discussions here, if maximal CP violation can be defined

b
at all it must be defined through the invariants XCP's.

It seems to us natural to use one of the following two criteria:
- . . aB .. Ce oo AOB af 8 B
i) maximize (XCP)ij’ ii) maximize Aij Z(ch)ij /(fii + f?j).

In the three-generation case, these definitions have the following
features:

case i) the hole mixing matrix is fixed and is equivalent to maximal mixing

IVij‘ = 1//3;

11



_ 1
V=73

Of course this is far from having any connection with the experimental values_V*

. ‘ . . . . 2
is also a solution for maximal CP vioclationm. 0

1 1 1
P elw/3 e—xn/3
1 e—xﬂ/3 elﬁ/3

(13)

In the case ii} 1f one assumes

that non weak interactions are such that they allow maximal CP violation to

. a
manifest itself completely, Ai?

PDRD.21

te

maximized.
2% = 4372,
13

Having nine

. al
independent (XCP)ij

1f, for example we impose A;: = +1, it can be proved that AE; =

Incidentally, in definition i) all PDRD gets the same value

So in definition ii) there is the ambiguity which PDRD gets

are nothing other than the previously introduced

in the four-generation case, the definition

i) also suffers from ambiguities, because it is imposible to maximize simultan-

iously all the (XC

1 . . vos s
(X.5) 4 0,1t must also be stressed that a solution for maximal mixing 1s

CP" 12

(S 1

1
-

This solution contains some (XCP)

describes a CP-conmserving world.

al
P 1

1 1
ia ia

e -e
i ia

-e e

-1 -1

af

1]

).5. In particular, if we first maximize (XCP)

=1

+1

12
12

and (X

)13
CP'12

(16)

= 0 and, what is worse, for @ = 0, T it

So we must conclude that the nice properties

found in (15) are an accident of the three-gemeration case and that it is hard

to imagine any rephasing invariant definition (the only one acceptable) of max-

imal CP violation for any number of generationms.

12

0f course, one can use 1) or

we get



1i) to decide that CP is not maximally violated in any process, but this is not
so useful for obtaining further insight into %?e weak mixing.

In conclusion, we have shown that, in contrast to the single universal
CP violating parameter XCP in the'three—generation case, there are nine independ-
P'S of Eq. (3) in the four-generation cases, and the

C .

XCP's saturate the parameter space of the mixing matrix for anything above

three generations. They can give rise to large partial decay rate differences

ent such invariants, X

in charm and top quark decays in additiom to those in b decays, as in the three-
generation case. These new signatures are independent of the masses of the higher-
generation quarks. In addition, there are other new effects that, however, are
loop effects, depending on the new quark masses, e.§., large D°-D° and

Ba-ﬁz mixing; and large charge asymmetries due to mass-matrix CP violation.

It is most important and exciting to experimentally studf these new'phenomena

since they deviate from the predictions of three generations of quarks.

What is most lacking right now in the unificationm theories is information
on the mass-generation mechanism. We find it interesting that we now actqally
have the mass matrix for the charge-{(-1/3) quark in the three-generation case,
Eq. (9), which is useful for theoretical model building. We have also speculated
on the possible quark mass matrix in the four-generation case. Because of
current interest, we have also given two possible ways of defining "naximal®

CP violation. The most important point to make is that they ought to be rephasing

invariant.

13
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