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Abstract: We use a new weak basis invariant approach to classify all the observable

phases in any extension of the Standard Model (SM). We apply this formalism to determine

the invariant CP phases in a simplified version of the Minimal Supersymmetric SM with

only three non-trivial flavour structures. We propose four experimental measures to fix

completely all the observable phases in the model. After these phases have been determined

from experiment, we are able to make predictions on any other CP-violating observable in

the theory, much in the same way as in the Standard Model all CP-violation observables

are proportional to the Jarlskog invariant.
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1. Introduction

From the point of view of theory, the origin of flavour and CP violation constitute two of

the most urging questions still unanswered in high energy physics. Different theoretical

ideas have been proposed to improve our understanding of these problems [1], but new

experimental input is urgently required to unravel this complex puzzle. In the interlude

between the LEP and LHC colliders, CP violation and Flavour-Changing-Neutral-Current

(FCNC) experiments at low energies are now the main field of research. Even after the

start of the LHC, the interplay between the information obtained at the LHC and the

information from indirect searches will play a fundamental role in the understanding of CP

violation and flavour.

In the Standard Model (SM) both problems are deeply related and the only source of

both CP violation and flavour lies in the fermionic Yukawa couplings. In a three-generation

SM there is only a single CP-odd quantity invariant under redefinitions of the quark basis.

This CP-violating quantity has a nice weak basis invariant formulation with the well-known

Jarlskog invariant [2, 3, 4, 5, 6]:

JCP = det
(

−i
[

YuY
†
u , Yd Y

†
d

])

=
i

3
Tr

(

[

YuY
†
u , Yd Y

†
d

]3
)

=

− 2 Im
[

Tr
(

(YuY
†
u )(Yd Y

†
d )(Yu Y

†
u )2(Yd Y

†
d )2

)]

(1.1)

and all CP-violation effects in the SM are associated to this single observable phase. In

general, any extension of the SM includes additional sources of CP violation and new flavour

structures, which increase the number of observable phases. Supersymmetry is perhaps the

most complete and (theory-) motivated extension of the Standard Model, and we expect to
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be able to find the supersymmetric particles in the neighbourhood of the electroweak scale.

The Minimal Supersymmetric Standard Model (MSSM) is a perfect example of the increase

in the number of observable phases in extensions of the SM. The number of parameters in a

generic MSSM, including real flavour parameters and CP phases, is of 124 [7], out of which

there are 44 physical phases. Most of these phases have received no attention until recently

and only two of them, namely the relative phase between the gaugino masses and the

global trilinear phase ϕA = Arg(A∗M) with Arg(Bµ) = 0 and the relative phase between

the µ-term in the superpotential and the gaugino masses, ϕµ = Arg(µ∗M), have received

full attention, thanks to their relation with electric dipole moments (EDMs). However,

a generic MSSM introduces many additional mixings and phases, and these parameters

have important effects in FCNC and CP-violation experiments [8]. In collider experiments,

the presence of SUSY phases can also have a measurable impact [10]. Therefore, if SUSY

is found either directly or indirectly in near-future experiments, all the SUSY phases will

become observable and a classification of these phases and the construction of fermion basis

invariants analogous to the Jarlskog invariant become especially important1.

In this work we develop a complete formalism that generalizes the construction of weak

basis invariants to a generic extension of the SM. The construction of invariants under

weak basis transformations (WBTs) to study CP violation in the SM and its extensions

has been undertaken for a long time [6, 11, 12, 13, 14, 15, 16]. In this work we extend these

analyses by introducing an improved formalism to relate these invariants with observables

directly measurable at future experiments. This formalism allows us to translate directly

the usual Feynman diagrams into weak basis invariants and vice versa. Furthermore, we

are able to define a basis of independent weak basis invariants and to express any invariant

in terms of this basis. This program was partly developed in [6] and [16] without the

necessary connexion to experimental observables. In particular, in [16] a set of weak basis

invariants spanning all the observable phases in the quark sector of a general MSSM was

constructed, but the connexion to experimental observables and relations between them

was not explicitly presented.

The outline of this work is as follows. In section 2 we define weak basis transformations

and present our formalism to build weak basis invariants. We apply this formalism to

several simple examples in the SM. In section 3 we analyse the quark sector of a simple

MSSM with only three flavour structures, the Yukawa matrices and the squark doublet

mass matrix taking all other matrices to be universal. In this simple model we show the

full power of our formalism. We find a basis of independent invariants and select a set

of experimental observables to fix these invariants. Finally we show that any other CP-

violating observable in this model is completely fixed in terms of our basis of invariants,

masses and moduli of mixing angles. Therefore, we are able to make predictions on any

other CP-violating observable in the theory.

1Weak bases invariants in the context of the MSSM were originally used by Branco and Kostelecky to

find the necessary and sufficient conditions for CP conservation in [11].
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2. Weak basis transformations and

rephasing invariance in the SM

The SM lagrangian density LSM includes the following SU(3)⊗SU(2)L⊗U(1)Y contribu-

tions

LG+F+H = −
1

4
GbµνG

µν
b −

1

4
W a
µνW

µν
a −

1

4
BµνB

µν + q̄0Li /Dq
0
L

+ ū0
Ri /Du

0
R + d̄0

Ri /Dd
0
R + (DµΦ)†(DµΦ) − V (Φ) (2.1)

LH+F = −q̄0LYuu
0
RΦ̃ − q̄0LYdd

0
RΦ + h.c., (2.2)

with Dµ the covariant derivative and the fields q0L, u
0
R, d

0
R in an arbitrary basis with non-

diagonal Yukawa couplings. In the SM, we have three copies (i.e. generations) of repre-

sentations of the SU(3) ⊗ SU(2)L ⊗ U(1)Y gauge group with different masses and mixing

angles given by LH+F . However LG+F+H only depends on the gauge quantum numbers,

and it is completely independent of how we label these three copies; it is invariant under

U(3)L ⊗ U(3)uR
⊗ U(3)dR

global transformations acting on qL, uR and dR. These global

transformations are WBTs. Two equivalent field assignments are related by

q0L = WLq
0
L
′

; u0
R = Wu

Ru
0
R
′

; d0
R = Wd

Rd
0
R
′
, (2.3)

where WL ∈ U(3)L, Wu
R ∈ U(3)uR

and Wd
R ∈ U(3)dR

. While LG+F+H is explicitly

invariant under these U(3)L ⊗ U(3)uR
⊗ U(3)dR

WBTs, LH+F is not invariant. Under

WBTs, LH+F changes to

L′
H+F = −q̄0′L Yu u

0′
RΦ̃ − q̄0′L Yd d

0′
RΦ + h.c. , (2.4)

where the fields transform as in Eq. (2.3) and the Yukawa couplings are unchanged. How-

ever, if we allow these Yukawa couplings to transform under WBTs as

Yu → Yu
′
= WL

†YuW
u
R ; Yd → Yd

′
= WL

†YdWd
R , (2.5)

then LH+F = L′
H+F and the full LSM is invariant under WBTs. Therefore the two theories

given by {q0L
′
, u0
R
′
, d0
R
′
, Y ′

u, Y
′
d} and {q0L, u

0
R, d

0
R, Yu, Yd} provide equivalent physics. These

two theories correspond to two different choices of the weak basis that we use to formulate

our theory. Clearly any physical observable should be independent of our choice and

thus weak basis invariant. Physical processes involve quarks with definite mass. The

mass eigenstates basis is defined by diagonalizing the Yukawa couplings through biunitary

transformations2

UuL
†YuU

u
R =

1

v
Mu ; UdL

†
Yd U

d
R =

1

v
Md . (2.6)

They correspond to the change of basis

u0
L = UuLuL d0

L = UdLdL u0
R = UuRuR d0

R = UdRdR , (2.7)

2
v is the spontaneous symmetry breaking VEV of Φ.
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where uL, uR, dL and dR are the mass eigenstates. Under this diagonalization the Cabibbo–

Kobayashi–Maskawa matrix [17], UuL
†UdL ≡ V appears in the charged-current couplings.

Going to the mass basis in the SM corresponds to the following reparametrization of the

lagrangian:

(Yu , Yd ) →

(

V,
1

v
Mu,

1

v
Md

)

.

It must be stressed that the transformation Eq. (2.7) is not a WBT: uL and dL transform

independently. Nevertheless this reparametrization, as is well known, is remarkably useful,

among other facts because this new set of parameters is WBT-invariant. First we notice

that the biunitary transformations diagonalizing the Yukawa matrices also change under a

WBT:

UuL
′ = WL

† UuL UdL
′
= WL

† UdL UuR
′ = Wu

R
† UuR UdR

′
= Wd

R

†
UdR (2.8)

Then, we have

V ′ = UuL
′† UdL

′
= UuL

† WLWL
† UdL = UuL

† UdL = V

M ′
u

v
= UuL

′† Yu
′
UuR

′ = UuL
† WLWL

† Yu Wu
RWu

R
† UuR = UuL

† Yu UuR =
Mu

v
M ′
d

v
= UdL

′†
Yd

′
UdR

′
= UdL

†
WLWL

† Yd Wd
RWd

R

†
UdR = UdL

†
Yd UdR =

Md

v
(2.9)

and thus they are clearly weak basis invariants. Nevertheless this common parametrization

is not fully defined by Eq. (2.7): as in any diagonalization, the phases of the mass eigenstates

are not well defined. This freedom can be incorporated to Eq. (2.7) with the following

generalization

u0
L = UuLe

iΘu
LuL d0

L = UdLe
iΘd

LdL u0
R = UuRe

iΘu
RuR d0

R = UdRe
iΘd

RdR (2.10)

with Θu
L,Θ

u
R,Θ

d
L,Θ

d
R real, diagonal matrices. It is precisely this freedom that allows choos-

ing the masses real and positive. Even after this choice, we still have some rephasing

freedom that explicitly keeps the diagonal elements in the mass matrix real and positive.

This corresponds to rephasing the mass eigenstates with Θu
L = Θu

R ≡ Θu, Θd
L = Θd

R ≡ Θd;

mass eigenvalues are then invariant under those (reduced) rephasings that we consider in

the rest of this work. Under the above-mentioned rephasing transformations, V is not

invariant and it goes to e−iΘ
u
V eiΘ

d
, implying Vjk → Vjke

i(θd
k
−θu

j ). These are the famous

rephasings of the CKM matrix that reduce to a single phase the number of physical phases

in a three-generation SM. As a by-product we conclude that physical observables must

be both WBT-invariant and rephasing-invariant. Notice, for example, that V is WBT-

invariant and rephasing-variant, and thus V will necessarily enter observables through

rephasing-invariant combinations, as in Eq. (2.12).

In models where all the flavour couplings in the lagrangian are bilinear in the flavoured

fields (as in the SM), WBT and rephasing invariance automatically imply that any physical

observable can be written in terms of traces of well-behaved products of flavour matrices.

If we define

Hu ≡ v2YuY
†
u , Hd ≡ v2Yd Y

†
d , Hi

WBT
→ H ′

i = WL
† Hi WL , (2.11)
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it is well known that any physical observable can be written in terms of:

Tr
(

(Hu)
a(Hd)

b(Hu)
c(Hd)

d . . .
)

. (2.12)

We will call these structures weak basis invariants (WBI). Note that the only matrix

transforming under U(3)uR
or U(3)dR

is Y †
j Yj (j = u, d) and therefore, with this matrix,

we can only construct the trivial observable

Tr
(

(Y †
j Yj )a

)

=
1

v2a
Tr

(

(Mj)
2a

)

=
1

v2a

∑

k

(mjk)2a,

implying that right-handed rotations are not observable.

For CP violation it is clear that Im
[

Tr
(

(Hu)
a(Hd)

b(Hu)
c(Hd)

d . . .
)]

is a genuine CP-

violating phase. Obtaining the Jarlskog invariant [2] in the SM is an instructive exercise. As

Hj is hermitian, Im [Tr (Hj)] = Im [Tr (HjHk)] = 0; the first invariant with an imaginary

part different from zero is

J = Im
[

Tr
(

HuHdH
2
uH

2
d

)]

= (m2
t −m2

c)(m
2
t −m2

u)(m
2
c −m2

u)

× (m2
b −m2

s)(m
2
b −m2

d)(m
2
s −m2

d) Im [V22V
∗
23V33V

∗
32]. (2.13)

Invariants like Eq. (2.12) and its generalization are quite useful to find out the necessary

and sufficient conditions to have CP violation in a given model and therefore to find out the

number of independent CP-violating phases [15]. Nevertheless its relation with physical

observables is far from obvious. In the SM, J only appears in observables “averaged” over

all the quarks, as in the case of the CKM contribution to the electric dipole moments

(EDMs) of leptons; Eq. (2.13) never appears in its full glory in CP-violating observables

of the quark sector. The reason why J does not appear in CP-violating observables of

the quark sector is clear. Equation (2.13) encodes all the necessary conditions to have CP

violation, but, if we are able to distinguish a b quark from an s quark experimentally, then

a given CP-violating observable involving both quarks does not require the presence of the

factor (m2
b −m

2
s). Therefore there must be a way, much simpler than Eq. (2.13), of writing

WBIs directly related to physical observables.

The key point to reach this goal is to write Hj in terms of projection operators over

the mass eigenstates, i.e.

Hu =
3

∑

i=1

m2
ui
|uLi〉 〈uLi| =

3
∑

i=1

m2
ui

P
uL

i . (2.14)

From Eq. (2.7) it is evident that [PuL

i ]αβ = (UuL)αi
(

UuL
†
)

iβ
, that is

P
uL

i = UuLPiU
u
L
† ; (Pi)jk = δijδik . (2.15)

These projection operators transform under WBTs (see Eq. (2.8)) as Hu. It is worthwhile

to mention that, given Yu , Hu is perfectly defined and so are UuL and P
uL

i . In general we

can define the following chiral projectors with well-defined WBT properties:

P
xL

i = UxLPiU
x
L
† ; P

xL

i → P
xL

i
′ = WL

†
P
xL

i WL , x = u, d. (2.16)
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The WBIs in Eq. (2.12) are generalized by allowing any substitution Hu → P
uL

i and

Hd → P
dL

i . For right-handed projectors P
xR

i = UxRPiU
x
R
†, x = u, d, the following relation

v2YxP
xR

i Y †
x = (UxLMxU

x
R
†)(UxRPiU

x
R
†)(UxRMxU

x
L
†) = m2

xi
P
xL

i x = u, d (2.17)

reflects the inobservability of right-handed rotations and reproduces the well known result

that the only thing we need to introduce a right-handed field is a mass insertion. Note

that once we use a right-handed projector, it is mandatory to have, inside Eq. (2.17), the

string YxP
xR

i Y †
x . Equation (2.17) allows us to avoid right-handed projectors.

By using projection operators, the most simple WBI we can construct is

Tr
(

P
uL

i P
dL

j

)

=
∣

∣Vij
∣

∣

2
∝ Γ(dLj → uLi W ), (2.18)

where the first equality is obtained using Eq. (2.15) and the last proportionality is trivial

from the previous result, but can also be obtained from the presence of two projectors,

which means the square of the amplitude 〈uLi|1 |dLj〉. Note that in the weak basis where

we are working, the flavour structure of the W coupling is just the identity. This example

shows that, using projection operators, one can write much simpler WBIs, directly related

to physical processes. The first kind of CP-violating WBI made with projectors is

Im
[

Tr
(

P
uL
1 P

dL
1 P

uL
2 P

dL
2

)]

= Im [V11V
∗
21V22V

∗
12] ∝

∝ Γ
(

D+
s → K0π+

)

− Γ
(

D−
s → K̄0π−

)

. (2.19)

This WBI is the well celebrated imaginary part of the quartets of the CKM matrix.

It must be related to the CP-violating interference of two different weak amplitudes that

appear at tree level, because there are no internal masses. This is the case for D+
s → K0π+,

where the interfering amplitudes are the decay c→ udd̄ and the annihilation (cs̄→ us̄)∗; it

is clear that in this interference we have exactly the four projectors in Eq. (2.19): uū, dd̄, cc̄

and ss̄. It is worthwhile to mention that, from the experimental side, in this decay we are

tagging the quarks u, d, c and s, and there is therefore no need for any mass suppression

factor such as the ones in Eq. (2.13) 3. Notice that, in addition, non-zero strong phase

differences are required. WBIs especially useful are those that involve projectors and the

flavour structures of the lagrangian as Hu and Hd. These invariants are discussed in the

next section in a wider context.

3. The Minimal Supersymmetric SM

In this section we analyse WBIs in the MSSM. If no interactions connect leptons and quarks,

as is the case of an R-parity-conserving MSSM, we can consider both sectors separately.

In this work we concentrate on quarks. A general MSSM involves 7 independent flavour

matrices in the quark sector [18]. These 7 flavour matrices are:

Yu , Yd , Y A
u , Y A

d , M2
Q, M2

U , M2
D. (3.1)

3Note that in the decay D
+
s → K

0
π

+ there is also a highly suppressed penguin contribution.
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In some scenarios, such as the so-called Constrained MSSM [19, 20] or Minimal Flavour

Violation models, the soft mass matrices are supposed to be universal and the trilinear

matrices proportional to the Yukawa matrices [21]. However, in realistic supersymmetric

flavour models [22] we expect all these matrices to have non-trivial flavour structures. Here,

as a first approach to this enlarged flavour scenario, we will consider a simplified situation

with 3 non-trivial flavour matrices; in this restricted MSSM, Yu , Yd , and M2
Q are generic

matrices, while the remaining matrices formula (3.1) are:

M2
U = m2

ũ1 M2
D = m2

d̃
1

Y A
u = A0Yu = A∗

0Yu Y A
d = A0Yd = A∗

0Yd (3.2)

where m2
ũ, m

2
d̃

and A0 are real numbers; HQ̃ ≡ M2
Q is hermitian and, under a WBT,

transforms as Hu and Hd in Eq. (2.11). Furthermore, as we are mainly interested in

flavour-dependent phases we also take a real µ parameter in the superpotential. Using

the same strategy as was already used for the SM in the previous section, we can build

a complete set of invariants in our simple MSSM model. The number of independent

parameters, and thus of independent observables, can be determined as shown in [23]:

N = NF l −NG +NG′ , (3.3)

where NF l is the number of parameters in the flavour matrices, NG is the number of

parameters of the WBTs group G = U(3)L ⊗ U(3)uR
⊗ U(3)dR

, and G′ is the subgroup of

G under which the flavour matrices are invariant, that is the subgroup of G unbroken by

the flavour matrices. Equation (3.3) applies separately to mixings+masses and to phases.

In our simple MSSM, we have NF l = 2 × 18 + 9 = 45, NG = 3 × 9 = 27 and the unbroken

subgroup is only U(1) corresponding to baryon number conservation, NG′ = 1. Therefore

this yields 9 masses, 3×2 mixing angles and 4 CP-violating phases. Corresponding to the 4

CP-violating phases in the model we only need 4 independent complex invariants to describe

CP violation. Using the formalism developed in the previous section, it is clear that we can

build an infinite number of complex invariants. However, as we prove in Appendix A, we

can always express any invariant in terms of a chosen set of four independent invariants.

A second ingredient needed to determine all the independent phases in our model

is the possibility to relate these independent invariants to physical observables. As we

saw in the previous section, this is achieved through the introduction of projectors on

external states. In fact, we can make a direct correspondence between these invariants

and Feynman-like flavour diagrams. Starting from a (set of) Feynman diagram(s) we can

immediately read the corresponding WBI(s) and, conversely, we can draw the Feynman

diagrams corresponding to a given invariant. To do this we only need a few considerations:

• Full invariants and physical observables always correspond to cross sections or decay

rates and hence squared moduli of amplitudes (Feynman diagrams).

• We obtain a flavour loop by joining a Feynman diagram with a conjugated Feynman

diagram contributing to the same amplitude. In theories where the couplings are

always bilinear in flavour we obtain a closed flavour path corresponding directly to a

trace.

– 7 –



• Each initial or final particle is represented by a projector on the corresponding mass

eigenstate.

• To every virtual particle in loops we associate a full flavour structure, Hu, Hd or HQ̃.

Strictly speaking we must include an arbitrary function of those matrices, which can

be expanded: f(HX ,HY . . .) =
∑

nm CnmH
n
XH

m
Y . . . .

• In a given flavour path any transition between different flavour matrices (projectors or

full flavour structures) is mediated by the appropriate flavour-blind gauge or gaugino

lines taking into account the charge and spin of the particles involved: W+ ≡ Hu ↔

Hd, χ
0, g̃ ≡ Hu ↔ HQ̃(u), χ+ ≡ Hu ↔ HQ̃(d), . . .

• Neutral gauge bosons do not modify flavour, hence an arbitrary number of them may

be attached at any point of our flavour path.

Using these as rules, it is straightforward to translate invariants into Feynman diagrams

and vice versa. However, it is important to notice that a given invariant may correspond

to different processes. For instance adding any number of external photons, gluons or Z

bosons to our Feynman diagram does not modify the corresponding invariant.

To illustrate the use of the method exposed in this work we analyse a simple observable,

the CP-violating asymmetry in Z → b̄s and Z → bs̄ decays. Although the example is

fully developed in Appendix B, we show in Fig. 1 (drawn using Jaxodraw [24]) one of

the contributions to the asymmetry: the interference between the standard amplitude of

Fig. 1(a) and the new amplitude of Fig. 1(b), closing a flavour path and joining both

diagrams. The closed flavour path shadowed in Fig. 1 gives the invariant trace (reading

clockwise): Tr
(

P
dL

2 F (Hu)P
dL

3 G†(HQ̃)
)

; as explained in Appendix B, F (Hu) and G(HQ̃)

are loop functions and the circles ‘◦’ over the s and b quark lines correspond to the flavour

projectors P
dL

2 and P
dL

3 .

At this point we already have the necessary tools to choose our basis of 4 independent

invariants that fix all the observable phases in our MSSM model and to relate them to

physical observables. In the first place we notice that we only have to consider invariants

built with projector operators. This is because any invariant, including full flavour struc-

tures, Ha with a = u, d, Q̃, can always be written as a linear combination of invariants

built with projectors and masses4:

Tr
(

(Hu)
a(HQ̃)b(Hd)

c . . .
)

=
∑

αβγ

(m2
uα

)a(m2
Q̃β

)b(m2
dγ

)c Tr
(

P
uL
α P

Q
β P

dL
γ . . .

)

. (3.4)

The first complex invariant we can build involves, at least, three different projectors,

Tr
(

P
uL

i P
dL

j P
Q
k

)

. However, it is more convenient to consider invariants with four ma-

trices, for instance Tr
(

P
uL

i P
dL

j P
Q
k P

dL

l

)

. In fact, these four projector invariants correspond

4Strictly speaking, after electroweak symmetry breaking, left-handed squarks mix with right-handed

squarks in a 6 × 6 mass matrix and the chirality of the eigenvalues is not well defined. Here we can safely

neglect the small left–right mixing proportional to Yukawa couplings. This issue will be further addressed

in [25].
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Figure 1: Interference term contributing to Γ(Z → bs̄) − Γ(Z → b̄s).

directly to the familiar rephasing invariant quartets of mixing matrices. Writing our her-

mitian matrices in terms of masses and relative misalignments,

Hd = Dd, Hu = V †DuV, HQ̃ = U †DQ̃U, (3.5)

where Da are diagonal matrices with eigenvalues m2
ai

. We have

Tr
(

P
uL

i P
dL

j P
Q
k P

dL

l

)

= VijUklV
∗
ilU

∗
kj.

For this reason we will select our independent invariants from the invariants with four

projectors. All other complex invariants can be written in terms of four matrices invariants

using the techniques in Appendix A. In particular, using 1 =
∑

l P
dL

l , it is trivial to

write invariants of three matrices in terms of four matrices invariants, Tr
(

P
uL

i P
dL

j P
Q
k

)

=
∑

l Tr
(

P
uL

i P
dL

j P
Q
k P

dL

l

)

.

The 4 projector invariants will involve at least two projectors of the same kind. They

can be one of the following structures:

Tr
(

P
uL

i P
dL

j P
uL

k P
dL

l

)

, Tr
(

P
uL

i P
Q
j P

uL

k P
Q
l

)

, Tr
(

P
Q
i P

dL

j P
Q
k P

dL

l

)

(3.6)

Tr
(

P
uL

i P
dL

j P
Q
k P

dL

l

)

, Tr
(

P
uL

i P
Q
j P

dL

k P
Q
l

)

, Tr
(

P
uL

i P
dL

j P
uL

k P
Q
l

)

. (3.7)

As shown in Appendix A, all these different structures can be reduced to three families of
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invariants:

J
(V )
ij,kl ≡ Tr

(

P
uL

i P
dL

j P
uL

k P
dL

l

)

= VijVklV
∗
ilV

∗
kj

J
(U)
ij,kl ≡ Tr

(

P
Q
i P

dL

j P
Q
k P

dL

l

)

= UijUklU
∗
ilU

∗
kj

Iij,kl ≡ Tr
(

P
uL

i P
dL

j P
Q
k P

dL

l

)

= VijUklV
∗
ilU

∗
kj. (3.8)

From here it is clear that J
(V )
ij,kl are the familar rephasing invariant quartets of the CKM

mixing matrix (notice that V corresponds to the CKM mixing matrix). It is well known

that all the quartets we can build have the same imaginary part and therefore we only need

one of them plus the moduli of the CKM elements to fix all of them. The same is true for

the quartets J
(U)
ij,kl, although this time in terms of the relative misalignment between squark

doublets and down quarks. Therefore we choose as independent quartets J
(V )
32,23 and J

(U)
32,23.

There are similar properties relating the different Iij,kl quartets. Using the properties

listed in Appendix A, all these Iij,kl, J
(V )
ij,kl and J

(U)
ij,kl can be written in terms of only four

independent quartets, which we choose to be

J
(V )
32,23 ≡ Tr

(

P
uL

3 P
dL

2 P
uL

2 P
dL

3

)

, J
(U)
32,23 ≡ Tr

(

P
Q
3 P

dL

2 P
Q
2 P

dL

3

)

,

I33,32 ≡ Tr
(

P
uL

3 P
dL

3 P
Q
3 P

dL

2

)

, I32,31 ≡ Tr
(

P
uL

3 P
dL

2 P
Q
3 P

dL

1

)

, (3.9)

plus squared moduli of elements of the mixing matrices. These four invariants constitute a

basis of linearly independent complex invariants. Any other complex invariant we can build

in this theory can be uniquely expressed as a linear combination of these four invariants

with coefficients proportional to masses and moduli of elements of the mixing matrices.

This is one of the key results of this work as we are now able to relate unambiguously

all the possible CP-violating quantities of the theory and therefore make predictions on

different observables.

The last step is to relate these four independent invariants to physical observables

where they can be measured. So far supersymmetric particles have not been directly

observed and we will probably have to wait until the LHC is in operation before we can

analyse processes with SUSY particles as external states. In the meantime, we can use

FCNC and CP-violation experiments to measure new contributions with SUSY particles

running in the loops. Consequently we choose our four independent observables within this

class of processes.

At the moment, CP violation has only been observed in neutral kaon and neutral B

systems. These measurements seem to be consistent with a Standard Model interpretation

of the observed CP violation [26]. Nevertheless, any extension of the SM predicts some

departure from the SM expectations once the experimental and theoretical precision is

improved. On the other hand, the CKM Jarlskog quartet is also included in our independent

set of invariants and must be determined from the experimental data. Therefore it is

convenient to include in our set of observables the two best experimental determinations

of CP violation, indirect CP violation in the neutral kaon system – εK – and the CP

asymmetry in B0 → J/ψKS .
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εK corresponds to a particular combination of neutral kaon decay rates: KL and KS

decay rates with I = 0, so that we select CP violation in K0–K̄0 mixing. One contribution

to these decays is, for example, the tree-level K0 → π+π− and the mixing-mediated decay

K0 → K̄0 → π+π−. In this case the external particles are two final-state pions and both

the K0 and the K̄0, as we select explicitly CP violation in K0–K̄0 mixing. Therefore we

need two P u1 and two P d1 projectors corresponding to the pions, also two P d2 projectors

and two P d1 projectors, the projectors corresponding to the K0 and K̄0. Naturally these

processes will have contributions from SM loops and new contributions from the virtual

SUSY particles [27, 28]. In Fig. 2 we show one of the contributions to the interference

between the tree-level SM amplitude (Fig. 2(a)) and the SUSY-mixing-mediated (Fig. 2(b))

amplitude, that is, the leading contribution beyond the SM. The invariant corresponding

to this contribution is easily obtained: starting from an s quark projector, the flavour path

(shadowed) in Fig. 2 reads:
[

Tr
(

P
dL
2 P

uL
1 P

dL
1 HQ̃

)]2
. More accurately the exact structure

would be an arbitrary function F (HQ̃,HQ̃), where F (m2
Qi,m

2
Qj) =

∑

m,nCmnm
2m
Qi ,m

2n
Qj

will be the corresponding Inami-Lim function [29], see Appendix B for an example. For

simplicity, in the following we will only consider the leading term of these expansions.

u

d

ū

s

W

d̄

(a) SM amplitude

×



























d̄

s d

Q̃i

χ

χ

Q̃j

s̄

ū

d̄
W

u



























∗

(b) MSSM in the K̄
0
→ K

0 box

χ

s s

d

d

s d

sχ

sd

s d

d

Q̃j

u

Q̃i

u
W

W

Figure 2: CP violating contribution in K0 → ππ.

Other contributions to the interference follow from Fig. 2 by crossing internal lines in
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theK0–K̄0 (box) mixing; they give rise to a second trace: Tr
(

P
dL
2 P

uL
1 P

dL
1 HQ̃P

dL
2 P

uL
1 P

dL
1 HQ̃

)

.

As in Appendix A, we easily reduce

Tr
(

P
dL

2 P
uL

1 P
dL

1 HQ̃P
dL

2 P
uL

1 P
dL

1 HQ̃

)

=
[

Tr
(

P
dL

2 P
uL

1 P
dL

1 HQ̃

)]2
.

Thus all the interference terms with SUSY particles running in the neutral kaon mixing

share a flavour invariant structure. SM contributions involve up quarks and W ’s in the

mixing, thus giving terms proportional to:

[

Tr
(

P
dL
2 P

uL
1 P

dL
1 Hu

)]2
.

Consequently εK depends on the following complex invariants:

εK = CεK

SMIm

[

Tr
(

P
dL

2 P
uL

1 P
dL

1 Hu

)2
]

+ CεK

MSSMIm

[

Tr
(

P
dL

2 P
uL

1 P
dL

1 HQ̃

)2
]

, (3.10)

where CεK

SM and CεK

MSSM are real coefficients that depend on coupling constants and real

invariants.

The complex invariants relevant to the description of CP violation in B0 → J/ψKS

are obtained as in the εK case. The only difference is the presence of an additional neutral

meson mixing because we have both B0–B̄0 and K0–K̄0 mixings, implying that the ana-

logue of Fig. 2 involves an additional box contribution. The B0 → J/ψKS asymmetry is

ACP(J/ψKS) ∝ sin(2ϕJ/ψKS
) where ϕJ/ψKS

is given by

ϕJ/ψKS
≡ arg







∑

i,j=u,Q̃

C
J/ψKS

ij

(

Tr
(

P
dL

1 HiP
dL

3 P
uL

2

)

Tr
(

P
dL

1 P
uL

2 P
dL

2 Hj

))2







(3.11)

and C
J/ψKS

ij are, again, real coefficients that depend on coupling constants and real invari-

ants. In this case, we expect a large contribution from the SM to this phase. However, a

sizeable SUSY contribution proportional to Tr
(

P
dL

1 HQ̃P
dL

3 P
uL

2

)

is still possible [27, 30] and

can play a relevant role in the unitarity triangle fit.

The third observable we are going to choose is the CP asymmetry in Bs → J/ψΦ or

Bs → D+
s D

−
s . Notice that both processes correspond exactly to the same decays at the

quark level and hence give rise to the same invariant. This channel is especially interesting

for several reasons. First, many realizations of supersymmetry can give a sizeable contri-

bution to Bs–B̄s mixing with a large phase [31]. Then, the SM contribution to the CP

asymmetry is very small and therefore a sizeable CP asymmetry would be a signal of new

physics. Finally, this asymmetry is accessible at B-physics experiments at hadron colliders

such as LHCb or BTeV.

In this case, the diagrams are analogous to the εK diagrams shown in Fig. 2. We also

have a SM contribution to the mixing and a new contribution from SUSY. The correspond-

ing invariants are Im

[

Tr
(

P
dL

2 P
uL

2 P
dL

3 Hu

)2
]

for the SM contribution and Im

[

Tr
(

P
dL

2 P
uL

2 P
dL

3 HQ̃

)2
]

for the MSSM contribution. This CP asymmetry is approximately dominated by the tree-

level decay amplitude [32], and therefore ACP(Bs → D+
s D

−
s ) ∝ sin(2ϕD+

s D
−

s
). The presence
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of a single mixing (B0–B̄0) simplifies the analogue of Eq. (3.11) and this phase is given by

sin(ϕD+
s D

−

s
) =

Im

[

Tr
(

P
dL

2 P
uL

2 P
dL

3 Hu

)2
]

+ CS Im

[

Tr
(

P
dL

2 P
uL

2 P
dL

3 HQ̃

)2
]

∣

∣

∣

∣

Tr
(

P
dL

2 P
uL

2 P
dL

3 Hu

)2
+ CS Tr

(

P
dL

2 P
uL

2 P
dL

3 HQ̃

)2
∣

∣

∣

∣

. (3.12)

The coefficient CS takes into account the differences in (real) couplings and masses from the

SM and the new SUSY contributions; it is known from other CP-conserving measurements.

As said above, the SM contribution to this asymmetry is small:

ϕSM = arg

{

Tr
(

P
dL

2 P
uL

2 P
dL

3 Hu

)2
}

≃ O(λ2
c), (3.13)

with λc the Cabibbo angle. Thus, in practice, this contribution can be safely neglected in

the presence of a sizeable new physics contribution.

Finally, we need a fourth observable to obtain our four independent invariants. The

choice now is more difficult, and there is no clear option. However, we choose the CP

asymmetry in the b → sγ decay, which is already being measured at the B factories

[33] and corresponds to a new invariant, independent of the invariants involved in the

previous observables [34, 20]. Notice that this process entails a change in the chirality of

the down quarks, i.e. it is a transition bR → sLγ. This implies that we now need a right-

handed projector P
dR
3 ; however, using Eq. (2.17), we have Yd P

dR
3 Y †

d = m2
bP

dL
3 . Therefore,

with the exception of this additional quark mass, the diagrams involved are completely

analogous to the diagrams in the Z → bs̄ asymmetry and we have,

ACP(b→ sγ) ∝ Im
[

Tr
(

P
dL
3 HuP

dL
2 HQ̃

)]

. (3.14)

In summary, in Eqs. (3.10)–(3.14) we have four observables that can be expressed as

functions of our four independent invariants using the relations of Appendix A. Therefore

we have four equations and four unknowns and we can fix completely the four CP-violating

invariants of our MSSM. This implies that any other CP violation observable in this model

is already fixed in terms of our four invariants and masses or moduli of mixing angles.

For instance, we can now calculate in our model the CP asymmetry in the Bd → φKS

decay, which could show a discrepancy from the SM expectations [31]. In this case the

relevant invariant, assuming that the large SUSY contribution is in the decay amplitude

while the B–B̄ mixing is SM-dominated, would be

sin(ϕφKS
) ∝ Im

[

Tr
(

P
dL

3 HQ̃P
dL

2 HuP
dL

1 Hu

)]

(3.15)

≃
m2
t

|Vtb|2
Im

[

Tr
(

P
dL
3 HQ̃P

dL
2 P

uL
3

)]

Re
[

Tr
(

P
dL
1 HuP

dL
3 P

uL
3

)]

.

So, it is clear that this asymmetry in our model is directly related to the CP asymmetry

in b → sγ decays. Note that this is only due to the fact that there are no other Left-

Right couplings in our reduced MSSM model, apart from the usual Yukawas. Naturally,

in a complete MSSM, this relation may be destroyed by these additional couplings. This

– 13 –



kind of relations can be extended to any other CP-violating observable in the theory, for

instance new SUSY contributions to ε′/ε [35], K → πνν̄ [36], and possibly CP asymmetries

at future linear colliders [9, 10].

Let us now briefly discuss the realistic experimental determination of these observables.

First, we must emphasize that the situation regarding possible new physics contributions

in B–factories has changed dramatically in recent times. Babar [37] and Belle [38] have

presented for the first time a measurement of the phase γ = arg (−VudV
∗
ubV

∗
cdVcb) from the

”tree-level” decays B± → DK±, B± → D∗K± →
(

Dπ0
)

K±, where the two paths to D0 or

D̄0 interfere in the common decay channel D̄0,D0 → KSπ
+π−. This measurement corre-

sponds to the determination of the pure SM phase in B decays, arg[Tr(P uL

3 P dL

2 P uL

2 P dL

3 )].

Even more important: B factories will achieve a measurement of γ with a precision of

a few degrees in the near future [39]. Using this observable together with the tree level

observables |Vus| , |Vub| and |Vcb| allows a high precision determination of the full VCKM
“independent” of the presence of any new physics that respects 3 × 3 unitarity, as the

MSSM analysed here. At this point, any other FCNC and/or CP violating observable

could be devoted to the search of new phases as deviations from this tree level measure-

ment. In this scenario, it would be enough to use γ together with ǫK , ACP (b → sγ) and

ϕJ/ψKS
. As is well known, at present the first two FCNC observables agree with the SM

prediction and, in principle, can only accommodate a relatively small MSSM contribution.

Recently [40, 41] a model independent analysis of ϕJ/ψKS
has shown that there are two

solutions for this phase, one of them clearly outside the SM. Nevertheless the statistical

significance of this second solution is smaller than the SM one [42], and it is possible that

this second solution gets even less significant when more data become available [40, 41, 42].

Thus we prefer to wait for an updated analysis before we can consider this possibility a

genuine new physics hint. Now the experimental determination of the CP violating phase

in B0
s–B̄

0
s , ϕD+

s D
−

s
is going to be of paramount importance, specially taking into account

its small value in the SM. A clear signal of deviations from the SM in ϕD+
s D

−

s
would be a

very welcome ingredient in our program. Otherwise, MSSM contributions to FCNC and

CP violation processes will be relatively small corrections to the SM predictions and high

precision measurements will be required.

So, it goes without saying that the experimental determination of these observables is

very challenging, requiring sustained hard work along the next years in different experi-

ments, both direct production of SUSY particles at colliders and indirect searches at FCNC

and CP violation experiments. In our exposition, all the CP-conserving quantities such as

masses and moduli of the different mixing angles are supposed to be known, accurately

enough, in order to perform the analysis of the CP-violating quantities. In this scenario we

can use direct measurements at high energy colliders, such as the LHC, the ILC, etc, and

measurements at FCNC experiments to extract the relevant phases. Nevertheless in this

framework our program can only be realized through a long and iterative process with a

synergetic high energy-FCNC interplay, in which the first steps will not produce very pre-

cise results (see reference [9] for an example of a realistic analysis of flavour independent

phases at colliders).

Finally, we would like to relate our expressions with weak basis invariants to the usual
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computations in supersymmetric models, both in the mass insertion formalism [43] and

in the exact mass eigenstate formalism working with flavour changing vertices. The mass

insertion formalism is just a series expansion on the small off-diagonal elements of the

squark mass matrices, useful without performing a full diagonalization of them. In first

place, we must take into account that, as shown in Appendix B, our invariants can contain

an arbitrary function of the internal hermitian mass matrices. These arbitrary functions

are, in the Feynman diagram computations, the usual loop functions. Therefore, all we

have to do to relate our invariant formalism with the usual Feynman diagram calculations is

to express the internal hermitian matrices in terms of projectors, which give us the mixing

matrices entering in the process, and combine the mass eigenstates of these matrices in the

corresponding loop functions. The squark mass eigenstates are a mixture of left and right-

handed squarks; nevertheless it is still possible to expressM2
Q as a linear combination of the

6 squark masses and the 6×6 squark mixing matrices [25]. Naturally, gauge couplings do

not enter in our invariants, but at least we can identify the gauge couplings associated with

gauginos and W bosons, as explained in our rules to build flavour diagrams given above.

The translation to the mass insertion formalism is also straightforward from here. In this

case, we do not express the internal squark mass matrix in terms of projectors, and replace

the mass eigenstates by a universal squark mass in the loop functions. Then the hermitian

squark mass matrix in the invariant plays the role of a new off-diagonal flavour coupling

and the usual mass insertion corresponds directly to (δxL)ij = (UxL
†HQ̃U

x
L)ij/m

2
Q̃
. Notice

that, as pointed out in [16], the full invariant must contain additional mixing matrices to

be completely weak basis invariant.

4. Conclusions

In this work we have presented the complete machinery necessary to find all the independent

WBIs in any extension of the Standard Model and to relate them to physical observables.

We have defined weak basis and rephasing invariance, and shown how any flavour process

in the Standard Model, and in particular any CP-violating process, can be easily expressed

in terms of WBIs. We have introduced a graphical representation of these WBIs as a simple

extension of the usual Feynman diagrams. As a practical application, we have found all the

independent observables in a reduced version of the MSSM with only three flavour matrices.

In this model, we have been able to define a basis of four complex invariants spanning all

the observable phases in the model. Then we have chosen four different physical processes

to fix these four invariants completely; from there, assuming we know the sparticles masses

and moduli of the mixings, we are able to make predictions on any other CP-violating

observable in the model.

This formalism can be applied to more complete models, as for instance the full MSSM

or any other extension of the SM with new flavour structures. This analysis will be pre-

sented in a future work [25].
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A. Traces and mixings

In this appendix we prove that any complex invariant in our reduced MSSM can be written

as a linear combination of only four independent complex invariants. Using Eq. (3.4) we

can concentrate on invariants built only with projectors.

It is obvious that invariants with two projectors are always real and, in fact, Eq. (2.18),

they simply carry the moduli of elements of mixing matrices. We diagonalize the hermitian

matrices, Hu = UuL
†Diag(m2

ui
)UuL, Hd = UdL

†
Diag(m2

di
)UdL and HQ̃ = UQDiag(m2

Qi
)UQ

†
and

define the mixing matrices V ≡ UuL
† UdL (just the CKM matrix) and U ≡ UQ

†
UdL. Then,

we obtain the invariant moduli

Tr
(

P
uL

i P
dL

j

)

=
∣

∣Vij
∣

∣

2
; Tr

(

P
Q
k P

dL

j

)

=
∣

∣Ukj
∣

∣

2
. (A.1)

The next step is to consider invariants involving three different projectors, Tr
(

P
uL

i P
dL

j P
Q
k

)

,

which can have non-zero imaginary parts. Nevertheless, as 1 =
∑

Projectors, we can write

Tr
(

P
uL

i P
dL

j P
Q
k

)

=
∑

ℓ

Tr
(

P
uL

i P
dL

j P
Q
k P

dL

ℓ

)

(A.2)

Any trace over 3 projectors can be expressed in terms of a sum of traces over 4 projectors

where one kind of projector appears twice.

Now, we have two kinds of invariants with 4 projectors. First, invariants that involve

the three sorts of projectors P
dL

i ,PuL

i ,PQi :

Tr
(

P
uL

i P
dL

j P
Q
k P

dL

ℓ

)

, Tr
(

P
uL

i P
dL

j P
uL

k P
Q
ℓ

)

, Tr
(

P
uL

i P
Q
j P

dL

k P
Q
ℓ

)

, (A.3)

then, invariants that involve only two sorts of projectors:

Tr
(

P
uL

i1
P
dL

j1
P
uL

i2
P
dL

j2

)

, Tr
(

P
dL

i1
P
Q
j1

P
dL

i2
P
Q
j2

)

, Tr
(

P
uL

i1
P
Q
j1

P
uL

i2
P
Q
j2

)

. (A.4)

As in the SM case, using unitarity of the mixing matrix, each family of invariants in

Eq. (A.4) provides a single imaginary part.

Using the mixing matrices defined above, we define,

J
(V )
i1j1,i2j2

≡ Tr
(

P
uL

i1
P
dL

j1
P
uL

i2
P
dL

j2

)

= Vi1j1V
∗
i2j1Vi2j2V

∗
i1j2 (A.5)

J
(U)
k1j1,k2j2

≡ Tr
(

P
Q
k1

P
dL

j1
P
Q
k2

P
dL

j2

)

= Uk1j1U
∗
k2j1Uk2j2U

∗
k1j2 (A.6)

Iij,kℓ ≡ Tr
(

P
uL

i P
dL

j P
Q
k P

dL

ℓ

)

= VijV
∗
iℓUkℓU

∗
kj. (A.7)

And now, with 1 =
∑

Projectors and Tr (APiBPi) = Tr (APi)Tr (BPi) (for any pro-
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jector Pi), we have:

Tr
(

P
uL

i1
P
dL

j1
P
uL

i2
P
Q
k

)

=
∑

j2

Tr
(

P
uL

i1
P
dL

j1
P
uL

i2
P
Q
k P

dL

j2

)

=
∑

j2

Tr
(

P
uL

i1
P
dL

j1
P
uL

i2
P
Q
k P

dL

j2

)

Tr
(

P
uL

i2
P
dL

j2

)

Tr
(

P
uL

i2
P
dL

j2

)

=
∑

j2

Tr
(

P
uL

i2
P
Q
k P

dL

j2

)

Tr
(

P
uL

i2
P
dL

j2
P
uL

i1
P
dL

j1

)

Tr
(

P
uL

i2
P
dL

j2

)

=
∑

j2,j3

Tr
(

P
uL

i2
P
dL

j3
P
Q
k P

dL

j2

)

Tr
(

P
uL

i2
P
dL

j2
P
uL

i1
P
dL

j1

)

Tr
(

P
uL

i2
P
dL

j2

)

=
∑

j2,j3

Ii2j3,kj2 J
(V )
i2j2,i1j1

∣

∣Vi2j2
∣

∣

2 . (A.8)

In a similar way, we obtain

Tr
(

P
uL

i P
Q
k1

P
dL

j1
P
Q
k2

)

=
∑

j2,j3

Iij2,k1j3 J
(U)
k1j1,k1j3

∣

∣

∣
Uk1j3

∣

∣

∣

2 (A.9)

Tr
(

P
Q
k1

P
uL

i1
P
Q
k2

P
uL

i2

)

=
∑

j1,j2,j3,j4

Ii1j1,k1j2 Ii2j1,k2j3 Ii2j4,k1j1
∣

∣Uk1j1
∣

∣

2 ∣

∣Vi2j1
∣

∣

2 . (A.10)

Using these relations, the invariant traces in Eqs. (A.4) and (A.3) can be reduced to

three different families, Tr
(

P
uL

i1
P
dL

j1
P
uL

i2
P
dL

j2

)

, Tr
(

P
dL

i1
P
Q
j1

P
dL

i2
P
Q
j2

)

(each one providing a

single imaginary part) and Tr
(

P
uL

i P
dL

j P
Q
k P

dL

ℓ

)

. Higher-order invariants (with more than

4 projectors) are easily reduced to the ones considered through the same method.

With Tr
(

P
uL

i1
P
dL

j1
P
uL

i2
P
dL

j2

)

and Tr
(

P
dL

i1
P
Q
j1

P
dL

i2
P
Q
j2

)

providing two independent imag-

inary parts, we turn our attention to Tr
(

P
uL

i P
dL

j P
Q
k P

dL

ℓ

)

, particularly to the number of

independent imaginary parts in this family of invariants. The interesting relations now are:

Tr
(

P
uL

i P
dL

j P
Q
k P

dL

ℓ

)

=
Tr

(

P
uL

i P
dL

j P
uL
m P

dL

ℓ

)

Tr
(

P
uL
m P

dL

j P
Q
k P

dL

ℓ

)

Tr
(

P
uL
m P

dL

ℓ

)

Tr
(

P
uL
m P

dL

j

) (A.11)

Tr
(

P
uL

i P
dL

j P
Q
k P

dL

ℓ

)

=
Tr

(

P
Q
k P

dL

ℓ P
Q
mP

dL

j

)

Tr
(

P
uL

i P
dL

j P
Q
mP

dL

ℓ

)

Tr
(

P
Q
mP

dL

ℓ

)

Tr
(

P
Q
mP

dL

j

) (A.12)

Tr
(

P
uL

i P
dL

j P
Q
k P

dL

ℓ

)

=
Tr

(

P
uL

i P
dL

j
P
Q
k P

dL
a

)

Tr
(

P
uL

i P
dL
a P

Q
k P

dL

ℓ

)

Tr
(

P
uL

i P
dL
a

)

Tr
(

P
Q
k P

dL
a

) . (A.13)
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Equation (A.11) allows us to select an arbitrary i in Tr
(

P
uL

i P
dL

j P
Q
k P

dL

ℓ

)

; the second rela-

tion, Eq. (A.12), allows us to select an arbitrary k in Tr
(

P
uL

i P
dL

j P
Q
k P

dL

ℓ

)

. As the exchange

j ⇆ ℓ amounts to a conjugation, that is Tr
(

P
uL

i P
dL

j P
Q
k P

dL

ℓ

)

=
[

Tr
(

P
uL

i P
dL

ℓ P
Q
k P

dL

j

)]∗

, only

3 different Tr
(

P
uL

i P
dL

j P
Q
k P

dL

ℓ

)

are independent, the ones in which j 6= ℓ. This number is

further reduced to 2 by the third relation, Eq. (A.13); these two invariants, together with

Tr
(

P
uL

i1
P
dL

j1
P
uL

i2
P
dL

j2

)

and Tr
(

P
dL

i1
P
Q
j1

P
dL

i2
P
Q
j2

)

, span the 4 observable CP-violating phases

that appear in this restricted MSSM.
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B. Z → bs̄ example

As a simple illustrating example we will analyse the CP-violating rate asymmetry Γ(Z →

bs̄)− Γ(Z → b̄s); let us consider the simplest complex invariant traces that may appear in

this observable. As we fix b and s external quarks this requires the presence of P
dL
3 and

P
dL

2 ; there are no other projectors. With two down quark projectors the trace requires two

additional matrices to exhibit an imaginary part; as the available matrices are Hu and M2
Q,

we can expect the presence of the structures

Tr
(

P
dL

2 f1(Hu)P
dL

3 f2(Hu)
)

; Tr
(

P
dL

2 g1(M
2
Q)PdL

3 g2(M
2
Q)

)

Tr
(

P
dL

2 f3(Hu)P
dL

3 g3(M
2
Q)

)

; Tr
(

P
dL

2 g4(M
2
Q)PdL

3 f4(Hu)
)

, (B.1)

where fi(Hu) and gi(M
2
Q) are functions of Hu and M2

Q (loop functions).

Let us consider the leading amplitude A ≡ A(Z → bs̄):

A =

s̄

Z

b

Wui +

s̄

Z

b

χQ̃i (B.2)

The first kind of contribution is the SM one; the second one is the first SUSY contribution

in our simple MSSM, with squarks and gauginos running in the loop. Schematically:

|A|2 =

b

ui

W

W

uj

s̄

Z Z +

b

Q̃i Q̃j

s̄

χ

χ

Z Z +

2Re



















b

ui

W

s̄

Q̃j

χ

ZZ



















(B.3)

Notice that the insertion of ’◦’ in the diagrams recalls the fact that the b and s̄ are external
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states. In terms of invariant traces,

b

ui

W

W

uj

s̄

Z Z →

P
dL

2

P
dL

3

F (Hu) F †(Hu) = Tr
(

P
dL

2 F (Hu)P
dL

3 F †(Hu)
)

(B.4)

b

Q̃i Q̃j

s̄

χ

χ

Z Z →

P
dL

2

P
dL

3

G†(M2

Q)G(M2

Q) = Tr
(

P
dL
2 G(M2

Q)PdL
3 G†(M2

Q)
)

(B.5)

b

ui

W

s̄

Q̃j

χ

ZZ →

P
dL

2

P
dL

3

G†(M2

Q)F (Hu) = Tr
(

P
dL
2 F (Hu)P

dL
3 G†(M2

Q)
)

(B.6)

That is

|A|2 = Tr
(

P
dL
2 F (Hu)P

dL
3 F †(Hu)

)

+ Tr
(

P
dL
2 G(M2

Q)PdL
3 G†(M2

Q)
)

+

2Re
[

Tr
(

P
dL

2 F (Hu)P
dL

3 G†(M2
Q)

)]

(B.7)

Similarly the amplitude Ā = A(Z → b̄s) is

∣

∣Ā
∣

∣

2
= Tr

(

P
dL

2 F †(Hu)P
dL

3 F (Hu)
)

+ Tr
(

P
dL

2 G†(M2
Q)PdL

3 G(M2
Q)

)

+

2Re
[

Tr
(

P
dL

2 F †(Hu)P
dL

3 G(M2
Q)

)]

. (B.8)

Decomposing the loop functions in dispersive and absorptive pieces,

F (Hu) = FDis(Hu) + iFAbs(Hu) ; G(M2
Q) = GDis(M

2
Q) + iGAbs(M

2
Q), (B.9)

we can simplify the CP asymmetry ACP = |A|2 −
∣

∣Ā
∣

∣

2
:

|A|2 −
∣

∣Ā
∣

∣

2
=

4Im
[

Tr
(

P
dL

2 FDis(Hu)P
dL

3 FAbs(Hu)
)]

+ 4Im
[

Tr
(

P
dL

2 GDis(M
2
Q)PdL

3 GAbs(M
2
Q)

)]

+

4Im
[

Tr
(

P
dL
2 FDis(Hu)P

dL
3 GAbs(M

2
Q)

)]

− 4Im
[

Tr
(

P
dL
2 FAbs(Hu)P

dL
3 GDis(M

2
Q)

)]

. (B.10)
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By expanding the different functions, for example FDis(Hu) =
∑

j FDis(m
2
uj

)PuL

j , we can

write

|A|2 −
∣

∣Ā
∣

∣

2
=

4
∑

i,j

FDis(m
2
ui

)FAbs(m
2
uj

)Im
[

Tr
(

P
dL

2 P
uL

i P
dL

3 P
uL

j

)]

+

4
∑

i,j

GDis(m
2
Qi

)GAbs(m
2
Qj

)Im
[

Tr
(

P
dL

2 P
Q
i P

dL

3 P
Q
j

)]

+

4
∑

i,j

[

FDis(m
2
ui

)GAbs(m
2
Qj

) − FAbs(m
2
ui

)GDis(m
2
Qj

)
]

Im
[

Tr
(

P
dL
2 P

uL

i P
dL
3 P

Q
j

)]

. (B.11)

The asymmetry is thus easily written in terms of different irreducibly complex invariants;

Eq. (B.11) is further reduced as there are no absorptive parts in the loops containing

squarks or top quarks: FAbs(m
2
t ) = GAbs(m

2
Qi

) = 0.
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