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Abstract

We carefully analyse the present experimental evidence for a com-
plex CKM matrix, even allowing for New Physics contributions to
ǫK , aJ/ΨKS

, ∆MBd
, ∆MBs

, and the ∆I = 1/2 piece of B → ρρ and
B → ρπ. We emphasize the crucial rôle played by the angle γ in
both providing irrefutable evidence for a complex CKM matrix and
placing constraints on the size of NP contributions. It is shown that
even if one allows for New Physics a real CKM matrix is excluded at a
99.92% C.L., and the probability for the phase γ to be in the interval
[−170◦;−10◦] ∪ [10◦; 170◦] is 99.7%.

1 Introduction

At present, the Cabibbo–Kobayashi–Maskawa (CKM) [1] mechanism for
flavour mixing and CP violation is in agreement with all available experimen-
tal data. This is a remarkable success, since it is achieved with a relatively
small number of parameters. Once the experimental values of |Vus| , |Vcb| and
|Vub| are used to fix the angles θ12, θ23 and θ13 of the standard parametriza-
tion, one has to fit, with a single parameter δ13, the experimental values of
a large number of quantities, including ǫK , sin (2β) , ∆MBd

, as well as the
bound on ∆MBs

. This impressive result is nicely represented in the usual
unitarity triangle fits [2]. In view of the remarkable success of the Standard
Model, it is plausible that the CKM mechanism gives the dominant contri-
bution to mixing and CP violation at low energies, although there is still
significant room for New Physics (NP).

1On leave of absence from Departamento de F́ısica and Centro de F́ısica Teórica de
Part́ıculas (CFTP), Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa,
Portugal.

1

http://arXiv.org/abs/hep-ph/0502133v3
http://arXiv.org/abs/hep-ph/0502133


In this paper, we address the question of how the data available at present
already provide an irrefutable proof that the CKM matrix is “non-trivially
complex”, thus implying that the charged weak-current interactions violate
CP. Obviously, in the framework of the Standard Model (SM), the CKM
matrix has to be complex, in order to account for the observed CP violation,
both in the kaon and in the B sector. The above question only becomes non-
trivial if one allows for the presence of NP [3]. We shall carefully analyse
the present experimental indications in favour of a complex CKM matrix,
correcting at the same time various misleading and in some cases erroneous
statements one finds in the literature.

To have an irrefutable proof that the CKM matrix is complex is of the
utmost importance in order to investigate the origin of CP violation, as well
as to analyse what classes of theories of CP violation are viable in view of
the present experimental data provided by B-factories. For example, one of
the crucial questions concerning the origin of CP violation is whether CP
is violated explicitly in the Lagrangian through the introduction of complex
Yukawa couplings or, on the contrary, CP is a good symmetry of the La-
grangian, only spontaneously broken by the vacuum. There are two classes
of theories with spontaneous CP violation:

i) Those where the phases arising from the vacuum lead to a complex
CKM matrix, in spite of having real Yukawa couplings. In this class
of theories, there are in general more than one source of CP violation,
namely the usual KM mechanism, together with some new sources of
CP violation.

ii) Models where all phases can be removed from the CKM matrix and
thus CP violation arises exclusively from New Physics.

Examples of class i) are, for instance, two Higgs doublet extensions of
the SM with spontaneous CP violation, without natural flavour conservation
(NFC) in the Higgs sector [4, 5], as well as models where CP is broken at
a high energy scale [6] through a phase in the vacuum expectation value
(vev) of a complex singlet, which in turn generates a non-trivially complex
CKM matrix through the mixing of isosinglet quarks with standard quarks.
Examples of class ii) are the simplest supersymmetric extensions of the SM
with spontaneous CP violation [7], as well as three Higgs doublet models
with spontaneous CP violation [8] and NFC in the Higgs sector.

It is clear that if it can be proved that experimental data constrain the
CKM matrix to be complex, even allowing for the presence of New Physics,
the only models of spontaneous CP violation that are viable belong to class
i).
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The paper is organized as follows. In the next section we specify what
our assumptions about NP are and we address the question of how to obtain
evidence for a complex CKM matrix which would not be affected by the pres-
ence of this type of NP. In section 3 we discuss the possibility of obtaining an
experimental proof that the CKM matrix is complex, from the measurement
of four indepedent moduli of this matrix. We argue that the cleanest proof
would be obtained if one would use only moduli from the first two rows of
the CKM matrix. However, we point out that contrary to some statements
in the literature, this proof cannot be obtained in practice, since it would
require totally unrealistic precision in the measurement of |Vus|, |Vcd|. In
section 4 we analyse the impact of the measurement of ∆MBd

and aJ/ΨKS

and introduce a convenient parametrization of NP. In section 5 we emphasize
the importance of a measurement of γ either direct or through the combined
measurement of β, α. Finally, we present our summary and conclusions in
section 6.

2 Evidence for a complex CKM matrix unaf-

fected by the presence of New Physics

Our assumptions about NP will be the following. We will assume that in
weak processes where the SM contributes at tree level, NP contributions are
negligible, while NP may be relevant to weak processes where the SM only
contributes at the loop level. This is a rather mild assumption on NP. In
addition, for the moment we will also assume that the 3×3 CKM matrix
is unitary, but we will come back to this point later. An example of this
framework is the minimal supersymmetric standard model (MSSM).

This scenario implies that NP could be competing with any SM loop and
more likely in K0–K̄0, B0

d–B̄
0
d, B0

s–B̄
0
s and D0–D̄0 mixing. Therefore, the

usual interpretation of ǫK , aJ/ΨKS
, ∆MBd

, ∆MBs
in terms of δ13 gets invali-

dated. The same could also be the case for the direct CP-violating parameters
ǫ′/ǫ, ACP

dir (B
0 → K+π−) [9] and various semileptonic rare decays. To clarify

which are the fundamental observables that will not be polluted by NP con-
tributions, let us write the CKM matrix in a particular phase convention [10]
in terms of all the rephasing invariant quantities [11, 12] that can a priori be
measured in the flavour sector:

VCKM =





|Vud| |Vus| e
iχ′

|Vub| e
−iγ

− |Vcd| |Vcs| |Vcb|
|Vtd| e

−iβ − |Vts| e
iχ |Vtb|



 (1)
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where the CP-violating phases introduced in Eq. (1) are defined by:

β = arg (−VcdV
∗
cbV

∗
tdVtb) , γ = arg (−VudV

∗
ubV

∗
cdVcb) ,

χ = arg (−VtsV
∗
tbV

∗
csV

∗
cb) , χ′ = arg (−VcdV

∗
csV

∗
udVus) .

(2)

Note that α ≡ arg (−VtdV
∗
tbV

∗
udVub) obeys the relation α = π − β − γ, by

definition. Without imposing the constraints of unitarity, the four rephasing
invariant phases, together with the nine moduli are all the independent phys-
ical quantities contained in VCKM. In the SM, where unitarity holds, these
quantities are related by a series of exact relations which provide a stringent
test of the SM [12, 13].

It is clear that the moduli of the first two rows are extracted from weak
processes at tree level in the SM. From top decays we have some direct infor-
mation on |Vtb| – useless in practice compared to its unitarity determination
from |Vub| and |Vcb| –, and essentially no direct information on |Vts| and |Vtd|
from tree level decays. Therefore, the extraction of the moduli of the third
row is made with loop processes and consequently can be affected by the
presence of NP. From Eq. (1) it is evident that the phases β and χ will
only enter in loop amplitudes because they appear in transitions involving
the top quark, and therefore the usual extraction of these phases could be
also contaminated by NP. χ′ is too small to be considered (see references
[12, 10]). Therefore, γ is the only phase that can be measured without NP
contamination, since it enters in b → u transitions not necessarily involving
loop mediated processes.

In our framework, the most straightforward irrefutable proof of a complex
CKM could come from the knowledge of the moduli of the first two rows of the
CKM matrix and/or from a determination of γ in a weak tree level process.
To use the information on β, χ and the moduli of the third row will require a
much more involved analysis including the presence of NP. But by the same
token, this analysis will be extremely interesting in the not less important
goal of discovering the presence of NP. In our search for an irrefutable proof
of complex CKM, we will also analyse in parallel its consequences for the
detection of the presence of NP [14], confirming the recent results by Ligeti
[15].

3 Obtaining Im (ViαVjβV ∗

iβV ∗

jα) = J from four

independent moduli

Within this class of models, in order to investigate whether the present exper-
imental data already implies that CKM is complex, one has to check whether
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any of the unitarity triangles is constrained by data to be non-“flat”, i.e. to
have a non-vanishing area. If any one of the triangles does not collapse to
a line, no other triangle will collapse, due to the remarkable property that
all the unitarity triangles have the same area. This property simply follows
from unitarity of the 3×3 CKM matrix. The universal area of the unitar-
ity triangles gives a measurement of the strength of CP violation mediated
by a W -interaction and can be obtained from four independent moduli of
VCKM. The fact that one can infer about CP violation from the knowledge
of CP-conserving quantities should not come as a surprise [16]. It just re-
flects the fact that the strength of CP violation is given by the imaginary
part of a rephasing invariant quartet [17], J = ±Im

(

ViαVjβV
∗
iβV

∗
jα

)

, with
(i 6= j, α 6= β), which in turn can be expressed in terms of moduli, thanks to
3×3 unitarity. Restricting ourselves to the first two rows of VCKM, to avoid
any contamination from NP, a possible choice of independent moduli would
be |Vus|, |Vcb|, |Vub| and |Vcd|. One can then use unitarity of the first two
rows to evaluate J , which is given, in terms of the input moduli, by

4J2 = 4
(

1 − |Vub|
2 − |Vus|

2) |Vub|
2 |Vcd|

2 |Vcb|
2 −

−
(

|Vus|
2 − |Vcd|

2 + |Vcd|
2 |Vub|

2 − |Vcb|
2 |Vub|

2 − |Vcb|
2 |Vus|

2)2
. (3)

Note that Eq. (3) is exact, but the actual extraction of J from the chosen
input moduli, although possible in principle, it is not feasible in “practice”.

To illustrate this point, let us consider the present experimental values
of |Vus| , |Vcb| , |Vub| and |Vcd|, assuming Gaussian probability density distri-
butions around the central values. We plot in Fig. 1 the probability density
distribution of J2, generated using a toy Monte Carlo calculation [18].Only
31.1% of the generated points satisfy the trivial normalization constraints
and, among those, only 7.9% satisfy the condition that the unitarity trian-
gles close (J2 > 0).

In order to extract information on J2 from the input moduli, it may be
tempting to plot only the points that satisfy all unitarity constraints, i.e.
normalization of columns and rows of VCKM, together with the constraint of
having J2 > 0. We have plotted these points in Fig. 2, which naively lead
to J = (2.6 ± 0.8) × 10−5.

We wish to emphasize that, contrary to what has been stated in the
literature [19], one cannot interpret the above result as providing evidence
for a complex CKM matrix, using as input data only |Vus| , |Vcb| , |Vub| and
|Vcd|. This can be trivially seen from the standard CKM parametrization
[20, 21], by noting that from the input moduli |Vus| , |Vcb| and |Vub|, s12, s23

and s13 can be obtained. In order to conclude that |Vcd| has necessarily a
non-vanishing contribution proportional to cos δ13 (the leading one sensitive
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-1.· 10-6
-7.5· 10-7

-5.· 10-7
-2.5· 10-7 0 2.5· 10-7

J2

(a) The complete distribution.

-5.· 10-9
-2.5· 10-9 0 2.5· 10-9

J2

(b) The region J2 ∼ 0.

Figure 1: J2 distribution from |Vus| = 0.2200 ± 0.0026, |Vcb| = (4.13 ±
0.15)10−2, |Vub| = (3.67 ± 0.47)10−3 and |Vcd| = 0.224 ± 0.012.

0 5.· 10-10 1.· 10-9 1.5· 10-9 2.· 10-9

J2

0 1.· 10-5 2.· 10-5 3.· 10-5 4.· 10-5

J

Figure 2: J2 and J distributions.

to δ13), one would need to know |Vcd| with a relative error of ≤ 10−4 ! It
is interesting to point out that the leading contribution to |Vcd| comes from
|Vus|, therefore also |Vus| would have to be known with the same level of
precision, but not |Vub| and |Vcb|. For completeness we plot in Fig. 3(a) the
value of J2 extracted from input moduli that are assumed to have the required
unrealistic precision. It is clear that now, essentially all points have J2 > 0,
and therefore the corresponding J = (3.2 ± 0.5) × 10−5 has full meaning.
Figure 3(b) shows the J2 distribution obtained with the same inputs as in
Fig. 3(a), except for the central value of |Vcd|; in this case only 0.16% of the
points have J2 > 0. Notice that both values, |Vcd| = 0.21985 ± 0.00002 and
|Vcd| = 0.21955 ± 0.00002, are fully compatible with present measurements
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(|Vcd| = 0.224±0.012). These two figures clearly show the required precision
in |Vus| and |Vcd| to check 3×3 unitarity and to have an irrefutable proof of
a complex CKM.

0 5.· 10-10 1.· 10-9 1.5· 10-9 2.· 10-9

J2

(a) |Vcd| = 0.21985± 0.00002

-4.5· 10-9
-3.· 10-9

-1.5· 10-9 0

J2

(b) |Vcd| = 0.21955± 0.00002

Figure 3: J2 distributions assuming the unrealistic precision values |Vus| =
0.22000 ± 0.00002 and |Vcd|.

Finally, it should be also emphasized that although the above analysis
was made using the almost collapsed unitarity triangle corresponding to the
first two rows of VCKM, the same conclusions can be obtained if we consider
the “standard triangle”, corresponding to orthogonality of the first and third
columns. One can evaluate any of the angles of the unitarity triangle in terms
of the input moduli, obtaining for example:

sin2 γ

2
=

|Vtd|
2 |Vtb|

2 − (|Vcd| |Vcb| − |Vud| |Vub|)
2

4 |Vud| |Vub| |Vcd| |Vcb|
, (4)

Since we are using as input moduli |Vus|, |Vcb|, |Vub| and |Vcd|, it has to be
understood that in Eq. (4) one has:

|Vtb|
2 = 1 − |Vcb|

2 − |Vub|
2 ,

|Vtd|
2 = |Vus|

2 − |Vcd|
2 + |Vub|

2 ,

|Vud|
2 = 1 − |Vus|

2 − |Vub|
2 .

(5)

The resulting expression can be easily written in terms of the input moduli
as:

cos γ =
|Vcd|

2 (

1 − |Vub|
2) − |Vus|

2 (

1 − |Vcb|
2) + |Vub|

2 |Vcb|
2

2 |Vub| |Vcd| |Vcb|
√

1 − |Vus|
2 − |Vub|

2
. (6)
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It is obvious that a “legitimate” extraction of γ from the input moduli would
require an unrealistic precision in the determination of the chosen moduli.
In particular, the difference |Vcd|

2 − |Vus|
2 would have to be known at the

level of |Vus|
2 |Vcb|

2, thus requiring |Vcd| and |Vus| to be measured with a 10−4

relative error. This confirms our previous argument, based on the standard
parametrization. Of course, Eq. (4) can be used to determine sin2 γ/2 if
one uses as input moduli |Vus|, |Vub| , |Vcb| and |Vtd|. However, |Vtd| has the
disadvantage that its extraction from experimental data is affected by the
possible presence of NP. We will turn to this question in the next section.

Above, we have argued that, although possible in theory, it is not viable
in practice to prove that VCKM is non-trivially complex, from the knowledge
of four independent moduli belonging to the first two rows of VCKM. We
emphasize that this would be the ideal proof, since the extraction from ex-
periment of the moduli of the first two rows is essentially immune to the
possible presence of NP.

4 The impact of ∆MBd
and aJ/ΨKS

and the

NP parametrization

The experimental measurement of the B0
d–B̄

0
d oscillation frequency has reached

an average accuracy of almost 1% . The theoretical prediction of ∆MBd

within the SM is given by:

∆MBd
= 2 |M12| =

G2
FM2

W

6π2
ηBd

mBd
BBd

f 2
Bd

S0(xt) |VtbV
∗
td|

2 , (7)

where we have followed the standard notation. Equation (7) is an approxi-
mation valid up to order S0(xc, xt)/S0(xt) ∼ 10−3. From this expression we
can extract |VtbV

∗
td|. Furthermore, unitarity and the experimental values of

|Vub| and |Vcb| determine |Vtb|, thus allowing the extraction of |Vtd|. In Fig. 4
we plot the new J2 distribution obtained with |Vtd|, thus determined together
with |Vus|, |Vcb| and |Vub|. Table 3 presents all the values used for the input
parameters.

There is a striking difference between Fig. 4 and Fig. 1. As we have
emphasized in the previous section, the majority of points obtained for J2,
when one uses as input |Vus|, |Vcb|, |Vub|, |Vcd|, do not satisfy the unitarity
condition that the uc triangle closes (i.e. J2 > 0). On the contrary, when we
use |Vus|, |Vcb|, |Vub|, |Vtd| to extract J2, the majority of the points satisfies
the unitarity condition that J2 > 0 and in fact the value of |J | agrees with its
experimental value |J | ∼ 10−5 (of course, using exclusively moduli of VCKM

one cannot determine the sign of J). This means that, within the SM, one can
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-5.· 10-10 0 5.· 10-10 1.· 10-9 1.5· 10-9 2.· 10-9

J2

Figure 4: J2 distribution obtained with |Vus|, |Vcb|, |Vub| and |Vtd| (extracted
from ∆MBd

).

use information on |Vub| / |Vcb| and ∆MBd
to conclude that the triangle cannot

collapse to a line, thus implying a complex CKM matrix. Unfortunately, this
is not an irrefutable proof that CKM is complex, since ∆MBd

can receive
significant contributions from NP, as we have emphasized in section 3. The
same is true for the CP asymmetry aJ/ΨKS

in the B0
d , B̄

0
d → J/ΨKS decays.

Let us introduce the following parametrization of the NP contribution to
B0

d–B̄
0
d mixing:

M12 = r2
de

−i2φd [M12]SM (8)

where [M12]SM is the SM box diagram contribution. The NP contribution to
M12 implies that aJ/ΨKS

no longer measures 2β, but one has instead:

aJ/ΨKS
= sin 2(β − φd) = sin 2β . (9)

Although the expression for [M12]SM is the one given by the SM, its actual
numerical value may differ from the SM prediction, since models beyond the
SM allow in general for a different range of the CKM matrix elements.

It is clear that allowing for the presence of NP in M12, parametrized as
in Eq. (8), one can fit the data on aJ/ΨKS

, ∆MBd
, even with a real CKM

matrix, by putting:

β = 0; sin(2φd) = −aJ/ΨKS
(10)

and then adjusting rd to fit ∆MBd
. Obviously, two solutions are obtained

for rd, corresponding to the two ways the unitarity triangle can collapse (i.e.
γ = 0 or γ = π). It must be stressed that to write Eq. (9) one has to assume
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that the potential NP contamination to the penguin diagram contributing to
the decay amplitude is negligible. This process is dominated by a tree and a
penguin with the same phase; therefore, in this particular case, it is natural
to assume no NP in the decay amplitude. For very small deviations from
these assumptions see [22].

Independently of the question of whether the CKM matrix is complex or
not, it is interesting to investigate what the allowed values for rd, φd are,
taking into account the present data, summarized in Table 3. We calculate,
using again the Monte Carlo method, probability density distributions for
CKM parameters, r2

d and 2φd using as constraints Gaussian distributions for
moduli of the first two rows of the CKM matrix, ∆MBd

and aJ/ΨKS
. In

Fig. 5(a) we plot 68% (black), 90% (dark grey) and 95% (grey) probability
regions of the probability density function (PDF) of the apex −VudV

∗
ub/VcdV

∗
cb

of the db unitarity triangle. In Fig. 5(b) we represent joint PDF regions in
the plane (r2

d, 2φd). Because γ gives the apex of the triangle, it is clear
from Fig. 5(a) that there is essentially no restriction on γ. On the contrary,
because the moduli of the first two rows put an upper bound on |β| and
upper and lower bounds on Rt = |VtdV

∗
tb| / |VcdV

∗
cb|, we can see in Fig. 5(b)

significant constraints on 2φd and r2
d. Although the experimental value of

the semileptonic asymmetry ASL (the asymmetry in the number of equal
sign lepton pairs arising from the semileptonic decay of B0

d–B̄
0
d pairs) has

some impact on these figures, we have not included it in order to show in a
clear way the impact of the actual measurements. We will come back to this
point later on.

At this stage, the following comment is in order. We are assuming a class
of theories beyond the SM that give NP contributions to ∆MBd

, but keep
VCKM unitary. The most important example of this class of theories are the
supersymmetric extensions of the SM. Since in this framework VCKM is still
unitary, once |Vus|, |Vcb|, |Vub| / |Vcb| are fixed by data, there is only β as a
free independent CKM parameter. It is then clear that with only two exper-
imental inputs, namely ∆MBd

, aJ/ΨKS
, one cannot fix the three parameters

rd, φd, β. One may be tempted to include information on ∆MBs
. However,

in our scenario, this would require the introduction of new parameters (rs,
φs) giving NP contributing to ∆MBs

.
In the next section, we will emphasize the importance of γ in obtaining

an irrefutable proof that VCKM is complex, even allowing for the presence of
NP.
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Figure 5: 68%(black), 90%(dark grey) and 95%(grey) probability regions.

5 The importance of a direct measurement of

the phase γ

In our framework, we can distinguish two conceptually different ways of mea-
suring γ in B0

d non-leptonic decays: those that come from the interference
of two tree-level decays such as b → sūc with b → sc̄u, or b → dūc with
b → dc̄u, and those other processes where the presence of both tree and pen-

guin diagrams is allowed, such as b → dūu interfering with b → d. The first
group includes the usual methods that are called, in the literature, meth-
ods to measure γ or 2β + γ [23, 24]. In general they involve the transitions
B → DK or B → Dπ as the flavour-representative examples of the con-
sidered decays. The second group includes the usual methods to measure α
[25, 26], or more generally α = π − β − γ if one allows for the presence of
NP in B0

d–B̄
0
d mixing. By now it is well known that the so-called methods to

measure α in fact ought to be called methods2 to measure β + γ [27, 28]. Of

2Note that by definition α + β + γ = π and also α + β + γ = π. This relation does
not test 3× 3 unitarity, as it cannot be violated since it is a definition. Recall that with 3
complex numbers (the sides of the unitarity triangle – even if they do not close –) we can
define only two independent relative angles: the third one is always a combination of the
other two.
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course, the representative example of this method as far as flavour content
is concerned is B → ππ.

It has to be stressed that there are other available methods to extract γ,
i.e. using b → s transitions. However, in the search for NP, great attention
has to be payed to the assumptions made in order to keep the errors under
control. In this respect, SU(2) is a very good symmetry of the strong in-
teractions, but the same does not hold for SU(3). Furthermore, there are
no first principle calculations of SU(3) breaking effects in non-leptonic B-
decays. Therefore, although analyses based on SU(3), U -spin, can be quite
useful in some instances, we will restrict ourselves to SU(2)-based analyses,
as far as strong interactions are concerned.

Concerning the two previous methods, their fundamental differences lie in
the presence or not of penguin diagrams. The method to extract γ or 2β + γ
relies on pure tree-level processes, therefore no additional assumptions are
needed to get a value of γ 6= 0 so as to have an irrefutable proof for a complex
VCKM. Of course it has to be understood that 2β has been extracted from
B0

d , B̄
0
d → J/ΨKS, J/ΨK0∗, J/ΨK̄0∗ in order to use the method of the 2β+γ

extraction. In the α method, the presence of penguins in general calls for the
additional assumption of no NP competing with these penguins in the decay
amplitudes. Therefore we will present two separate analyses with the actual
relevant data.

5.1 γ from pure weak tree-level decays

The enormous effort developed at the B-factories Belle and BaBar has re-
sulted in the first measurements of γ – although by now still poor – in tree-
level decays B± → DK±, B± → D∗K± → (Dπ0) K±, where the two paths to
D0 or D̄0 interfere in the common decay channel D̄0, D0 → KSπ+π−. From
a Dalitz-plot analysis [29], Belle has presented γ = 68◦± 14◦

15◦ ± 13◦± 11◦ and
BaBar [30] γ = 70◦ ± 26◦ ± 10◦ ± 10◦, together with the solutions obtained
by changing γ → γ ± π. The statistical significance of CP violation in the
Belle measurement is of 98% [29]; by now therefore this can be taken as an
indicative figure of the statistical significance of having a complex CKM.

The method used by Belle and BaBar suffers from model-dependent as-
sumptions in the Dalitz-plot analysis; these can be eliminated with more
statistics following the suggestion of Ref. [24]. Also, the presence of NP
in the D0–D̄0 mixing could modify this analysis, but if necessary, in case
of better precision, this small correction [24] could be included in the way
suggested in Refs. [31].

We average conservatively both measurements to the value γ = 69◦±21◦

(−111◦ ± 21◦), which we take as a quantitative measurement of a complex

12



CKM matrix independent of the presence of NP at the one-loop weak level. To
analyse the implications for the presence of NP, we add this new constraint
to the previous analysis presented in Figs. 5(a) and 5(b). In Fig. 6(a) we
represent the analogue of Fig. 5(a). From Table 1, where we only present
the central values, we clearly see that with two γ values and two signs for
cos(2β) we generate four solutions.
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Figure 6: 68% (black), 90% (dark grey) and 95% (grey) probability regions,
including the constraint on γ.

It has to be stressed that although β presents a fourfold ambiguity, 2β
– necessary to extract 2φd – presents a twofold one. With a measurement
of γ (another twofold ambiguity) we have β and Rt fixed up to a twofold
ambiguity, and therefore in total we have four different solutions for r2

d, 2φd

and the CKM parameters.
These solutions are represented in the (r2

d, 2φd) plane as the joint PDF in
Fig. 6(b). We have the “SM solution” corresponding to 2φd ∼ 0◦, rd ∼ 1,
two NP solutions overlapping at 2φd ∼ −85◦ and another NP solution near
2φd ∼ −169◦. Had we used the constraint on the sign of cos(2β), from
B0

d → J/ΨK∗, we would have eliminated two NP solutions, but the situation
is not conclusive (see [32]). The fact that the central value of γ is a little bit
high with respect to the value obtainable in a SM fit, implies a large value for
Rt for the “SM solution”, and therefore a low central value of rd, i.e. r2

d < 1.
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γ (input) β 2φd r2
d Rt Sign[cos(2β)] 2β (input) α

69◦ 23.2◦ −0.8◦ 0.80 0.93 + 47.2◦ 87.4◦

69◦ 23.2◦ −86.4◦ 0.80 0.93 - 132.8◦ 44.6◦

−111◦ −17.9◦ −83.0◦ 0.48 1.20 + 47.2◦ −92.6◦

−111◦ −17.9◦ −168.6◦ 0.48 1.20 - 132.8◦ −135.4◦

Table 1: “Central” values for the solutions (see Fig. 6).

Information on 2β +γ is also available from partially reconstructed B0 →
D∗±π∓ decays,

∣

∣sin
(

2β + γ
)∣

∣ > 0.58 (90% C.L.) [33]. But at the moment
this result relies on theoretical inputs based on SU(3), and we will therefore
not use this constraint. Coming back to our irrefutable proof of a complex
CKM, with our PDF for γ we find that a real CKM matrix is excluded at
a 99.84% C.L.3. In much more intuitive terms, we find that the probability
corresponding to γ ∈ [10◦; 170◦] ∪ [−170◦;−10◦] is 99.7%.

5.2 γ from α methods

Using these α methods to get an irrefutable proof of a complex VCKM is in
principle much more subtle. They are all based on the transition b → duū,
so that the so-called penguin pollution (weak loops) can also become NP
pollution. The most prominent channels are B → ππ, B → ρπ and B → ρρ.
In the appendix we have shown that the extraction of α = π−β−γ = α+φd

from these channels is valid even in the presence of any NP in the ∆I = 1/2
piece of the weak hamiltonian. As the ∆I = 3/2 piece is dominated by tree
diagrams, this extraction of α is in accordance with our initial assumptions:
“no NP in weak processes where the SM contributes at tree level” means in
this case no NP in the ∆I = 3/2 piece. We conclude that the extraction of α
from these channels is completely independent of the presence of NP in the
usual penguins. Only NP in electroweak penguins (EWP) could spoil this
conclusion, but this is very unlikely due to the small effect of the SM EWP,
of order 1.5◦ (see reference [35]), that can be eventually taken into account.

BaBar has presented a time-dependent analysis of the ρ+ρ− channel [36],
that once supplemented with the ρ+ρ0 and ρ0ρ0 branching ratios [37, 38] and
the measurement of the final polarization [36], can be translated [39] into

3With the standard construction used by Babar and Belle this C.L. is obtained as the
integrated probability over the values of γ having more probability than the most probable
CP-conserving value of γ [34].
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the measured value α = 96◦ ± 10◦ ± 5◦ ± 11◦ where the last error comes
from the usual SU(2) isospin bounds4 |αeff − α| ≤ 11◦. Because the mea-
surement is sensitive to sin(2αeff), α = αeff ± 11◦ presents a fourfold am-
biguity

(

α, α + π, π
2
− α,−α − π

2

)

. In the ρπ channel the pentagon isospin
analysis – from quasi-two-body decays – needs more statistics and/or ad-
ditional assumptions. A time-dependent Dalitz-plot analysis in the chan-
nel B → π+π−π0 has been presented by BaBar [37, 40], with the result
α = 113◦ ± 27◦

17◦ ± 6◦.
Since this analysis is sensitive to both sin (2αeff) and cos (2αeff), the re-

sulting ambiguity is just a twofold one (α, α + π). It is remarkable that these
two solutions are in good agreement with two of the solutions coming from
the ρρ channel. This important property will be used to eliminate two of the
four solutions coming from the ρρ channel, in order to see the future trend
of this analysis in a much clearer way.

The situation in the ππ channel does not yet allow a full isospin anal-
ysis and the isospin bounds are quite poor. Furthermore BaBar and Belle
measurements are still in some conflict, so that we will not use these results.

As before, we average the data from ρρ and ρπ but only keep the two
solutions consistent with the ρπ channel data. Our averaged values are α =
100◦ ± 16◦, (−80◦ ± 16◦).

The analogue of Fig. 6(a) for the apex of the unitarity triangle, with the
information on γ replaced by that on α, is represented in Fig. 7(a).

In this case the data are not conclusive enough to eliminate a real VCKM; a
real CKM is excluded at a 75% C.L.. In the second approach, the probability
of γ ∈ [10◦; 170◦] ∪ [−170◦;−10◦] is 85%. In Table 2, where we include the
central values, we have four solutions from the two α values and the two
signs of cos(2β). Again, the fourfold β ambiguity is effectively reduced to
two because to reconstruct γ, the quantity that matters is (α + β) = π − γ.
These solutions are represented in Fig. 7(b). As before, we have the SM
solution and the other three NP solutions that tend to overlap here more
than in the previous case.

Comparing the two tables and taking errors into account, it is easy to rec-
ognize that the two solutions with positive sign of cos(2β) can be consistent,
but the negative ones are somewhat inconsistent. The reason can be seen by
looking at the α generated from the γ measurement. Because α = π−β −γ,
the two α generated with the same β (the same sign of cos(2β)) differ by π,

4In our notation αeff is the usual αeff of Refs. [25, 14, 27], but where we have introduced
β instead of β as the phase in the B0

d
–B̄0

d
mixing.

15



-0.6 -0.4 -0.2 0 0.2 0.4 0.6
Re

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Im

(a) Apex −
VudV

∗

ub

VcdV ∗

cb

of the unitarity

triangle db.

0 1 2 3 4

rd
2

-250

-200

-150

-100

-50

0

50

100

2
Φ

d

(b) (r2

d
, 2φd) joint distribution.

Figure 7: 68% (black), 90% (dark grey) and 95% (grey) probability regions,
including the constraint on γ through α.

γ β 2φd r2
d Rt Sign[cos(2β)] 2β (Input) α (Input)

56.4◦ 22.8◦ −1.7◦ 0.96 0.85 + 47.2◦ 100◦

13.6◦ 8.5◦ −115.7◦ 1.78 0.62 - 132.8◦ 100◦

−123.6◦ −15.1◦ −77.4◦ 0.44 1.26 + 47.2◦ −80◦

−166.4◦ −3.8◦ −140.5◦ 0.36 1.39 - 132.8◦ −80◦

Table 2: “Central” values for the solutions (see Fig. 7).

so if one of the γ measurements is consistent with one of the α measurements,
so is the other, because both measurements of α and γ differ by π. On the
contrary, for a fixed γ measurement, the two α generated with the different
β (different sign of cos(2β)) differ by 42.8◦, so if one solution is compatible
with the α measurement, the other is not. In our scenario, therefore, a way of
measuring the sign of cos(2β) relies on the measurements of sin(2β), sin(2α),
cos(2α) and tan γ.

In Fig. 8 we repeat the previous analyses including both constraints
from γ and α. As can be seen the solutions with negative cos(2β) have
almost disappeared, in fact just 11.1% of the points have negative cos(2β),
contrary to the previous plots, where they were 50%. Combining γ and α
measurements, a real CKM matrix is excluded at a 99.92% C.L. and the
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probability of γ ∈ [10◦; 170◦] ∪ [−170◦;−10◦] is 99.7%.
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Figure 8: 68% (black), 90% (dark grey) and 95% (grey) probability regions,
including the constraints on γ derived from both direct γ measurements as
well as from α.

As we have mentioned, previous work on these analyses of New Physics
has been presented by Z. Ligeti in [15]. For similar experimental inputs and
theoretical assumptions the results agree.

5.3 Further comments

The semileptonic asymmetry is ASL = Im (Γ12/M12), where in our scenario

M12 is polluted by NP, M12 = 1
2
∆MBd

ei2β , but – to the present level of
precision – Γ12 ∝ (a+be−iγ +ce−i2γ) is not; a, b, c depend on QCD parameters
and moduli of the first two rows of the CKM matrix [41, 42, 14]. Therefore,
by including the measurements of ∆MBd

, aJ/ΨKS
and a determination of the

sign of cos(2β), ASL could be used in the future to obtain information on
γ. The impact of the actual value ASL = (−3 ± 7) × 10−3 [44] in Figs. 6, 7
and 8 is very mild, but a future determination of ASL at the level of the SM
precision (ASM

SL = (−5.0 ± 1.1) × 10−4 [41] ) would be sufficient by itself to
completely eliminate some γ solutions.

In some parts of our analyses we have used 3×3 unitarity. It is important
to clarify that a direct measurement of γ from tree-level decays (or in the
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future from ASL) provides an irrefutable proof of a complex CKM matrix,
independent of violations of 3×3 unitarity; this includes both γ and α meth-
ods. This is not the case of our analyses of NP, where we have extensively
used 3×3 unitarity, for example in the extraction of β and Rt from moduli
of the first two rows and γ so as to obtain 2φd and r2

d.

6 Summary and Conclusions

We have carefully examined the present experimental evidence in favour of
a complex CKM matrix, even allowing for NP contributions to ǫK , ∆MBd

,
∆MBs

, aJ/ΨKS
, B → ρρ and B → ρπ. First, we showed that, contrary to

some statements in the literature [19], it is not feasible in practice to derive
a non-vanishing value of |J | using only the present information on moduli of
the first two rows of the CKM matrix. We showed this by pointing out that
a legitimate determination of |J | from these moduli, although possible in
theory, would in practice require a completely unrealistic high-precision de-
termination of |Vus|, |Vcd|. We then introduced a convenient parametrization
of NP and examined the impact of ∆MBd

and aJ/ΨKS
in obtaining experi-

mental evidence of a complex CKM matrix. We then emphasized that the
best evidence for CKM to be complex, arises from γ, either through a direct
measurement or through a measurement of α, together with β. We conclude
that if NP does not pollute SM amplitudes dominated by tree level diagrams,
a real CKM is excluded at a 99.92% C.L., and the probability of having γ in
the region [10◦; 170◦] ∪ [−170◦;−10◦] is 99.7%. We also illustrated how the
above measurements can be used to place limits on the size of NP, which is
allowed by the present data. As we emphasized in the Introduction, having
an irrefutable piece of evidence for a complex CKM matrix, in a framework
where the presence of NP is allowed, has profound implications for models
of CP violation. In the particular case of models with spontaneous CP vi-
olation, a complex CKM matrix favours the class of models [5], [6] where,
although Yukawa couplings are real, the vacuum phase responsible for spon-
taneous CP violation also generates CP violation in charged-current weak
interactions. Conversely, the evidence for a complex CKM matrix, even al-
lowing for the presence of NP, excludes the class of models with spontaneous
CP violation and a real CKM matrix at a 99.92% C.L..
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|Vud| 0.9738 ± 0.0005 |Vus| 0.2200 ± 0.0026
|Vcd| 0.224 ± 0.012 |Vcs| 0.97 ± 0.11
|Vub| (3.67 ± 0.47)10−3 |Vcb| (4.13 ± 0.15)10−2

aJ/ΨKS
0.734 ± 0.054 ASL (−3 ± 7)10−3

γ (69 ± 21)◦ mod 180◦ α (100 ± 16)◦ mod 180◦

|Vus|F ig3 0.22000 ± 0.00002

|Vcd|F ig3(a) 0.21985 ± 0.00002 |Vcd|F ig3(b) 0.21955 ± 0.00002

∆MBd
(0.502 ± 0.007)ps−1 mBd

5.2794 GeV
fBd

(0.20 ± 0.03) GeV BBd
(1.30 ± 0.18)

ηB 0.55 S0(xt) 2.5745

Table 3: Numerical inputs for the different calculations [21, 44].

Appendix

In this appendix we explain why the extraction of α based in the so-called
isospin analysis is valid even in the presence of New Physics in the ∆I = 1/2
piece of the b → d hamiltonian. This is true for B → ππ, B → ρρ and
B → ρπ.

In the B → ππ case, as has been rephrased in [43], the basic ingredients
to extract α are:

19



(i) The full hamiltonian only contains ∆I = 1/2, 3/2 pieces, and isospin
is a good symmetry of final state interactions. With these ingredients
one has

λ+0 ≡
q

p

A+0

A+0
= e−i2β A3/2

A3/2

, (11)

and λ+0 is a “physical observable” that can be reconstructed (up to
discrete ambiguities) with the directly measurable observables λ+− =
q
p

A+−

A+−

and the branching ratios of the 6 available channels Bi+j → πiπj

and their CP-conjugates; obviously A+0 = A(B+ → π+π0) ∝ A3/2 and
A+− = A(B0 → π+π−).

(ii) If the ∆I = 3/2 piece of the hamiltonian is exactly the SM one (the
tree level piece 5) we have

λ+0 = e−i2βe−i2γ = e+i2α . (12)

It is important to stress that the extraction of λ+0 is valid in any model of
NP that fulfills assumption (i), therefore the extraction of α from equation
(12) is valid in any model where the NP in the decay amplitudes only appears
in the ∆I = 1/2 piece. If full isospin analysis is not done, because the usual
bounds are obtained assuming (i), the result is also valid. The B → ρρ case
is similar to the B → ππ case.

In the Dalitz plot analysis of B → ρπ, the moduli and the relative phases
of A+− = A(B0 → ρ+π−), A−+ = A(B0 → ρ−π+) and A00 = A(B0 →
ρ0π0), are measured, together with the CP-conjugate channels, and a global
relative phase weighted by q/p. With a general weak hamiltonian Hw with
∆I = 1/2, 3/2 pieces one obtains from isospin

e−i2β A3/2,2

A3/2,2

= e−i2β A
+−

+ A
−+

+ 2A
00

A+− + A−+ + 2A00
, (13)

where A3/2,2 is the reduced matrix element of Hw(∆I = 3/2) with a I = 2
final state. Assuming that Hw(∆I = 3/2) is the SM one, we have

e−i2β A3/2,2

A3/2,2

= e−i2(β+γ) = ei2α . (14)

So the extraction of α from the Dalitz plot analysis in B → ρπ is completely
valid in the presence of any NP in the ∆I = 1/2 hamiltonian.

5Inclusion of EWP gives a shift of 1.5◦ in α that we will neglect, although it can be
included.
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