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4Centro de F́ısica Teórica de Part́ıculas,
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Abstract

We discuss how experiments measuring B → ππ and B → ρρ may be used to search for a

∆I = 5/2 amplitude component. This component could be the explanation for a recent (albeit

very tentative) hint from B(B̄) → ρρ decays that the isospin triangles do not close.
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Within the standard model (SM), CP violation is due to a complex phase in the Cabibbo-

Kobayashi-Maskawa (CKM) quark mixing matrix. This phase information can be elegantly

encoded in the unitarity triangle [1, 2], in which the interior CP-violating angles are called

α, β and γ. Independent measurements of the sides and angles of the unitarity triangle

allow tests of the SM explanation of CP violation.

The canonical decay mode for measuring α is B0(t) → π+π−. However, due to the fact

that this decay receives both tree and penguin contributions, α cannot be extracted cleanly –

there is penguin “pollution.” On the other hand, if one uses isospin to combine measurements

of B+ → π+π0, B0(t) → π+π− and B0(t) → π0π0, as well as the CP-conjugate decays, then

the penguin pollution can be removed, and α obtained cleanly [3].

The isospin analysis goes as follows. Due to Bose statistics and the fact that the final-

state pions come from the decay of a spinless state, they must be in a symmetric isospin

configuration. As a result, the final states are

〈π0π0| =

√

2

3
〈2, 0| −

√

1

3
〈0, 0| ,

〈π+π−| =

√

1

3
〈2, 0| +

√

2

3
〈0, 0| ,

〈π+π0| = 〈2, 1| . (1)

In the SM, short-distance diagrams contribute only to the ∆I = 1/2 and ∆I = 3/2 transi-

tions. Thus, the physical decay amplitudes are

A+− ≡ 〈π+π−|T |B0〉 = −
√

1

3
A1/2 +

√

1

6
A3/2 ,

A00 ≡ 〈π0π0|T |B0〉 =

√

1

6
A1/2 +

√

1

3
A3/2 ,

A+0 ≡ 〈π+π0|T |B+〉 =

√
3

2
A3/2 , (2)

where Ak (k = 1/2, 3/2) are the relevant reduced matrix elements. The parametrization for

the CP-conjugate modes is similar, with the isospin amplitudes replaced by Āk. Because

there are two transitions, but three decays, the B decay amplitudes obey a triangle relation:

√
2A+0 = A+− +

√
2A00 . (3)

The measurement of the three decays allows one to extract A3/2, while the CP-conjugate

decays give Ā3/2. However, the penguin amplitude contributes only to A1/2, so that the
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relative phase between A3/2 and (q/p)Ā3/2 is 2α, where q/p describes B–B̄ mixing. Thus,

the penguin pollution has been removed.

Now, a generic B → ππ transition contains ∆I = 1/2, ∆I = 3/2, and ∆I = 5/2 terms,

which contribute to the physical decay amplitudes as

A+− = −
√

1

3
A1/2 +

√

1

6
A3/2 −

√

1

6
A5/2 ,

A00 =

√

1

6
A1/2 +

√

1

3
A3/2 −

√

1

3
A5/2 ,

A+0 =

√
3

2
A3/2 +

√

1

3
A5/2 . (4)

The key point is that, in the presence of a nonzero A5/2, the three B → ππ amplitudes by

themselves no longer obey a triangle relation. That relation is modified as follows:

√
2A+0 (1 − z) = A+− +

√
2A00 , (5)

with

y ≡ A5/2

A3/2

=
z

1 + 2
3
(1 − z)

. (6)

Although isospin symmetry was mentioned above, Eqs. (4) already take into account any

possible isospin-breaking effects in the decay amplitudes, since the three isospin amplitudes

are enough to encode all the information contained in the three experimental amplitudes.

Note also that, although B → ππ decays were described above, the isospin analysis also

holds for each final-state polarization of B → ρρ decays. In addition, it holds for the decay

of any neutral isospin-1/2 meson. In particular, it applies if the initial meson is K or D.

As noted above, the SM contributes only to the ∆I = 1/2 and ∆I = 3/2 transitions

at short distance. The ∆I = 5/2 transitions arise from rescattering effects, such as the

combination of A1/2 with a ∆I = 2 electromagnetic rescattering of the two pions in the

final state. This is naively estimated to be of order |A5/2| ∼ α|A1/2|, where α ∼ 1/127 is

the electromagnetic coupling constant. There are also strong-interaction isospin-violating

effects (mu 6= md).

A ∆I = 5/2 contribution was first identified in K → ππ decays. In this case, |A1/2| ∼
20|A3/2| (known as the ∆I = 1/2 rule), meaning that |A5/2| ∼ 0.1|A3/2|, thus influencing

the decay K+ → π+π0 [4]. A detailed comparison between theory and experiment is rather

involved; a recent analysis within chiral perturbation theory may be found in Ref. [5].
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In contrast, in the B system it is expected that |A1/2| ∼ |A3/2| and A5/2 is normally

discarded (as above, in the isospin analysis). (Recent analyses including electromagnetic

and strong isospin violation can be found in Ref. [6].) Our main purpose is to encourage

experiments to scrutinize this assumption very closely, highlighting the fact that current

data could be interpreted as showing some hints of A5/2 6= 0. This is an important issue

since, if A5/2 6= 0, the isospin triangles do not close, and the extraction of α will be affected.

If the SM is valid and the arguments leading to A5/2 = 0 are correct, then four predictions

can be made:

1. as noted above, the triangle in Eq. (3) and its conjugate version close.

2. all measurements of α will yield the same result. For example, the CP phase β has

already been measured very precisely in B0(t) → J/ψKS: sin 2β = 0.726 ± 0.037 [7],

which determines β up to a four-fold ambiguity. The phase γ can in principle be

cleanly determined through CP violation in decays such as B → DK [8], or from a fit

to a variety of other measurements (the latest analysis gives γ = 58.2+6.7
−5.4

◦

[9]). The

phase α is then given by αUT ≡ π − β − γ. If A5/2 = 0, then αfit = αUT , where αfit is

determined from B → ππ or B → ρρ decays.

3. the direct CP asymmetry in B+ → π+π0 (C+0) vanishes.

4. because there is one more observable than independent parameters in B → ππ, the

interference CP asymmetry parameter in B0 → π0π0 (S00), may be written as a

function of the other observables: F (S00, C00, B00, S+−, C+−, B+−, C+0, B+0) = 0. Here

B, C, and S represent the CP-averaged branching ratio, the direct CP violation and

the interference CP violation, respectively.

Of the four predictions, only the first and fourth are smoking-gun signals of A5/2 6= 0; the

others can be violated in the presence of physics beyond the SM with A5/2 = 0. The situation

is summarized in Table I.

The most obvious test for a nonzero A5/2 is the non-closure of the isospin triangle. In the

following, we examine the present data on B(B̄) → ππ and B(B̄) → ρρ decays with this in

mind. In analyzing the ρρ data we assume that these particles are completely longitudinally

polarized. This is known experimentally to be an excellent approximation [10].
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TABLE I: Strategies to utilize the experimental observables to distinguish three cases: neglect-

ing isospin-violations in the SM (IC-SM); considering isospin-conserving new physics (NP); and

considering ∆I = 5/2 components.

IC-SM NP ∆I = 5/2

triangle closes closes does not close

αfit − αUT = 0 6= 0 6= 0

C+0 = 0 6= 0 6= 0

F (S00, . . .) = 0 = 0 6= 0

Note that, since A5/2 is expected to be small, it can only be seen in those triangles which

are relatively flat. This is the case for the B(B̄) → ρρ triangles, since the branching ratios

for B0 → ρ0ρ0 and B̄0 → ρ0ρ0 are much less than those of the other decay channels. It is

also, by chance, the case for the B → ππ triangle, but not for that of B̄ → ππ.

TABLE II: Branching ratios Bf , direct CP asymmetries Cf , and interference CP asymmetries Sf (if

applicable) for the three B → ππ(ρρ) decay modes. Data comes from Refs. [11, 12, 13, 14, 15, 16];

averages (shown) are taken from Ref. [17].

Bf [10−6] Cf Sf

B+ → π+π0 5.5 ± 0.6 −0.01 ± 0.06

B0 → π+π− 5.0 ± 0.4 −0.37 ± 0.10 −0.50 ± 0.12

B0 → π0π0 1.45 ± 0.29 −0.28 ± 0.40

B+ → ρ+ρ0 26.4 ± 6.4 0.09 ± 0.16

B0 → ρ+ρ− 26.2 ± 3.7 −0.03 ± 0.17 −0.21 ± 0.22

B0 → ρ0ρ0 ≤ 1.1 (−1, 1)

The current B → ππ and B → ρρ experimental measurements are shown in Table II.

This data can be turned into measurements of the B → f (Af) and B̄ → f (Āf) decay

amplitudes through:

|Af |2 ∝ Bf (1 + Cf ) ,

|Āf |2 ∝ Bf (1 − Cf) . (7)
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The proportionality constants involve two ingredients. First, there is the phase-space factor

K(mB, mf ) which is essentially the same for all amplitudes in each channel. The second

factor is the lifetime of the decaying B. Thus, B+ and B− must be multiplied by x =

τ(B0)/τ(B+), 1/x = 1.076 ± 0.008, due to the difference between the charged and neutral

B lifetimes [2]. We present the norms |Af | and |Āf | in Table III in arbitrary units (i.e. we

include the factor x but not K(mB, mf )).

TABLE III: The isospin amplitudes in B(B̄) → ππ and B(B̄) → ρρ (in arbitrary units).

√
2|A+0| |A+−|

√
2|A00|

B → ππ: 3.2 ± 0.3 1.8 ± 0.2 1.4 ± 0.6

B → ρρ: 7.3 ± 1.5 5.0 ± 0.8 < 1.5
√

1 + C00

√
2|Ā+0| |Ā+−|

√
2|Ā00|

B̄ → ππ: 3.2 ± 0.3 2.6 ± 0.2 1.9 ± 0.5

B̄ → ρρ: 6.7 ± 1.4 5.2 ± 0.8 < 1.5
√

1 − C00

We note in passing that, in addition, for the decays of the neutral B mesons in which Sf

is measured, we also have access to the relative phase in

λf ≡ q

p

Āf

Af
=

±
√

1 − C2
f − S2

f + iSf

1 − Cf
, (8)

where q/p arises from B–B̄ mixing. However, we will not use this information.

In order to see if the isospin triangles close, we proceed as follows. In the absence of A5/2,

the triangle relation of Eq. (3) holds. We therefore have

|
√

2A+0| = |A+− +
√

2A00| ≤ |A+−| + |
√

2A00| . (9)

Thus, if |
√

2A+0| is larger than |A+−| + |
√

2A00|, the triangle cannot close. The logic is

siimilar for the CP-conjugate triangle.

For the ππ final state we see from the data that the central values do close both the

B → ππ and B̄ → ππ unitarity triangles (but just barely for B → ππ): |
√

2A+0| = 3.2,

|A+−| + |
√

2A00| = 3.2; |
√

2Ā+0| = 3.2, |Ā+−| + |
√

2Ā00| = 4.5.

However, the same is not true for B → ρρ. Here, the data show that the B(B̄) → ρρ

isospin triangles do not close (we present a detailed analysis below). This is quite tantalizing:
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is it simply a statistical flucturation, or is it a signal of a ∆I = 5/2 component at a level

larger than naive expectations?

Consider B → ρρ. The length
√

2|A00| depends on the value of C00, but for the purposes

of illustration, suppose that C00 = 0. Then the central values give |
√

2A+0| = 7.3, |A+−| +
|
√

2A00| < 6.5, and the triangle does not close. This situation can be rectified by the

inclusion of a ∆I = 5/2 piece. For various values of C00, the data require that

|y| =

∣

∣

∣

∣

∣

A5/2

A3/2

∣

∣

∣

∣

∣

≥



























0.01 ± 0.19 ; C00 = 1

0.04 ± 0.19 ; C00 = 0.5

0.07 ± 0.19 ; C00 = 0

0.11 ± 0.19 ; C00 = −0.5

0.21 ± 0.19 ; C00 = −1



























(10)

For all values of C00, a nonzero A5/2 is required by the central values of the present data.

However, a study of the errors shows that, at present, the effect is not yet statistically

significant – it is at most at the level of 1σ (C00 = −1).

Turning to B̄ → ρρ, the present data give

|y| =

∣

∣

∣

∣

∣

A5/2

A3/2

∣

∣

∣

∣

∣

≥



























0.16 ± 0.21 ; C00 = 1

0.06 ± 0.21 ; C00 = 0.5

0.01 ± 0.20 ; C00 = 0

No Bound ; C00 = −0.5

No Bound ; C00 = −1



























(11)

In this case, a nonzero value of A5/2 is required only for certain values of C00 (and the effect

is not yet statistically significant).

This summarizes the present hint for a ∆I = 5/2 piece in B → ρρ and B̄ → ρρ decays,

separately. However, the signals go in opposite directions in each decay: the size of A5/2 in

B → ρρ decays increases as C00 goes from +1 to −1, while Ā5/2 in B̄ → ρρ decays increases

as C00 goes from −1 to +1. As a result, we may combine information from both sets of

data, using

|
√

2A+0| + |
√

2Ā+0| ≤ |A+−| + |Ā+−| + |
√

2A00| + |
√

2Ā00| . (12)

The presence of a ∆I = 5/2 piece is implied if this inequality is not satisfied. The current
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data imply that

y ∨ y ≥



























0.08 ± 0.13 : C00 = 1

0.04 ± 0.12 : C00 = 0.5

0.04 ± 0.12 : C00 = 0

0.04 ± 0.12 : C00 = −0.5

0.08 ± 0.13 : C00 = −1



























(13)

As above, the present data suggest a nonzero A5/2 piece for all values of C00, but the effect

is not yet statistically significant.

In summary, we have shown that if the usual B(B̄) → ππ or B(B̄) → ρρ isospin triangles

do not close, this may be due to a SM ∆I = 5/2 piece (A5/2) at a level much larger

than expected. This is a crucial question since a A5/2 piece can also mimic new-physics

contributions to other observables, such as C+0 or αfit −αUT (see Table I). We have pointed

out some strategies to disentangle A5/2 from legitimate new physics.

At present, data on B(B̄) → ρρ decays give a hint – not yet statistically significant –

that the isospin triangles do not close. The purpose of this letter is to stress the need for

experimental scrutiny of such a signal (and to continue to look for one in B(B̄) → ππ). [A

probe with F (S00, . . .) is also possible (Table I), particularly for B → ρρ, and advisable once

the data become more precise.] If this signal remains, it may be a sign of a SM ∆I = 5/2

piece.
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