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The origin of the empirically observed enhancement of strangeness changing non-
leptonic weak amplitudes with isospin transfer Al = 1/2 is an old question in particle
physics which, in spite of the great progress made in this field, has not yet been given a
satisfactory explanation within the framework of the Standard Model [1]. A positive step
towards a dynamical explanation of this so called Al = 1/2-rule was the short-distance
enhancement found in the Wilson coefficient of one of the four-quark operators which
appears when, in the presence of gluon exchanges, the heavy W-field is removed from
explicitly appearing in the AS = 1 effective non-leptonic Hamiltonian [2], [3}. The
enhancement thus found represents a factor of 2 to 3, too small to account for the bulk of
the observed effect. Since then , it has been expected that the matrix elements of at least
some of the four-quark operators in the effective Hamiltonian will eventually provide the
required extra enhancement factor. In spite of many efforts, a mechanism of the Al = 1/2
rule has not yet been exhibited.

There are at present three different approaches, within the framework of the Standard
Model, to an understanding of non-leptonic weak amplitudes in general and the Al = 1/2
rule in particular. In order of increasing technological complexity they are :

1. The 1/N - expansion approach [4], [5], [6].

2. The QCD - hadronic duality approach [7].

3. The lattice - QCD approach [8], [9], [10].

The three approaches are based on simple principles and therefore, in our opinion, they
deserve attention.

As emphasized by the authors of ref. [5], the large N-expansion, even with the effect
of the so called Penguin operators [3a] incorporated to lowest non-trivial order, predicts

much too small a rate for AT = 1/2 non-leptonic K-decays. There are however recent efforts



to reformulate this approach [6] with claims in the opposite direction, but only provided
extreme input values of the strange quark mass! and /\QCD are used.

The QCD-hadronic duality approach to non-leptonic weak amplitudes has
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been used to evaluate the B-parameter of KO -KO mixing [7a] with the result? Bl

= 0.33 £ 0.09. The same approach - with no free parameters - has been successfulin
reproducing the observed size of the Al =3/2 amplitude K*— nttn® [7b], but fails -

by an order of magnitude - to reproduce the observed enhancement of the K - mn Al =
1/2 amplitudes [7c].

The lattice QCD approach should be the ultimate test of our capability to understand
the AI = 1/2 rule within the Standard Model, provided of course that the technical
difficulties inherent to the various methods used are well under control. Progress in this
direction has been reported in refs. [9] and [10].

The purpose of this letter is to present a simplified version of the second approach
above. We want to reduce the ingredients which go into the calculations reported in ref.

[7¢] to the strict minimum, and yet show that it is possible to derive a constraining upper

bound to the strength of K—nw amplitudes with Al = 1/2.

The basic tool in our approach is the two-point function Q2= q2)
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associated to that part of the effective non-leptonic Hamiltonian ¥ o¢f (x) which

transforms like a 81 x1R operator and induces strangeness changing transitions with Al =

1/2. In the chiral limit of massless u,d and s quarks, ¥ ef (x) reduces to a sum of four

independent four-quark local operators. We shall choose the diagonal basis of

I For a recent determination of the light quark masses, where earlier references can be
found, see ref.[11].

2 ﬁ refers to the renormalization scale invariant quantity X g(u2) -2 B(u2). For a

comparison with other predictions see e.g. ref. [12]



multiplicatively renormalizable operators proposed in ref. [3f]; i.e., the same we used in

ref.[7c]. The short-distance behaviour of W(Q2) is governed by QCD-perturbation theory
and fixes the number of subtractions required to define the two-point function in (1) :
V(Q2) obeys a dispersion relation in Q2 up to an arbitrary polynomial in Q2 of degree

four. Five derivatives of W (Qz) are thus required to get rid of this arbitrariness, with the

result
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The function F(QZ2), at sufficiently large Qz—valucs ., can then be calculated using
perturbative QCD with leading non-perturbative 1/Q2 power corrections incorporated, if
necessary, a la $.V.Z. [13]. The spectral function 71 ImW (t) in the r.h.s. of eq. (2) is by
construction (see eq.(1)) a positive semidefinite quantity at all t-values. There are two-
extreme regimes where we know something about this spectral function : at sufficiently
high t-values, where (like for F(Q2) at sufficiently high Q2) a perturbative-QCD evaluation
is possible; and at very low t-values, where the hadronic matrix elements which define the

spectral function i.e.,
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are governed by an effective chiral Lagrangean. To leading order in derivatives and light

quark masses, the effect of AS=1 non-leptonic interactions at low energies can be

incorporated as a weak perturbation to the non-linear sigma model Lagrangean ﬁst (x)

which describes the effective chiral realization of QCD at low energies i.e.,



OZA(x} = r! /x} + ff 5,6 G J{[ (xl[/’/x//ﬁ
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Here U(x) is the usual 3x3 special unitary matrix which incorporates the Goldstone octet of

—)
pseudoscalar meson fields {f(x),

s < o </ ) m L= w3y,

where )\ are the Gell-Mann matrices and fy = 93.3 MeV; M denotes the diagonal quark
mass matrix : M=diag (my, mg, mg); G is the Fermi constant; s1c¢1c3 is the product of
Cabibbo-Kobayashi-Maskawa matrix elements Vyd Vys for three generations; and g and h
are dimensionless coupling constants which are finite in the chiral symmetry limit, but

cannot be fixed by chiral symmetry requirements alone. Phenomenologically, from the

observed rate of K—nnt decays one finds 3 that
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Qur aim here is to derive an upper bound for |g| from first principles alone.For this

purpose we split the full domain of integration in the r.h.s. of €q.(2) into three regions : a

very low energy region 0 <t S /\x? ; an intermediate region /\,x2 <t<QZ?;and a very
high energy region Q2 < t < oo, Here /\.,‘2 denotes a chiral cut-off (/\,x2 « Q2) which will
be fixed sufficiently low to justify a chiral perturbation theory evaluation of the spectral
function (3) in the region 0 <t < /\,‘2 , using the chiral effective Lagrangean in (4). We

shall later discuss what we consider to be & reasonable choice for /\'XZ' On the other hand,

> There is no contribution from the term proportional to h in eq. (4) for on-shell transitions
like K— TITL.



the value of Q2 must be fixed sufficiently high so as to justify the perturbative-QCD
evaluation of F(Q2) and x-1 ImV (v) for t = Q2. Here, a criterion for the actual choice

of Q2 is the size of the corrections to the leading asymptotic freedom behaviour
which will be required to be sufficiently small. Since n-1 Im W(t) >0 for 0 <t < oo,

the following inequality follows from eq.(2), 2
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This inequality becomes an identity in the extreme case where the spectral function

vanishes in the intermediate region ; i.e.,
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The evaluation of the Lh.s. of (6) in QCD can be extracted from our work in ref.

[7c]. Up to an overall (Ggsjcica/¥p)2-factor, we find
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where Xj, i=1,2,3,5 are the Wilson coefficients in the diagonal basis we already
mentioned [3f], module their O(S(uz))’f dependence which cancels with factors

Ocs(llz)"}’.‘ "1}- which appear in the evaluation of the two-point functions of the various

four-quark anomalous operators. The actual values of the Xj coefficients and the



anomalous dimensions Y, as well as the numerical values of the matrices a,band Q in the

terms in brackets in eq. (8b) can be found in the tables of ref. [7c]. Strictly speaking the
Wilson coefficients X; have been evaluated in the chiral limit only. The finite strange quark
mass corrections in the r.h.s. of (8b) represent only the leading effect in the various two-
point functions of four-quark operators. In principle, there are other effects like those due
to the mixing of four-quark operators with mass-dependent operators of dimensions three
and five which have not been taken into account. However, at the large Q2-values we shall
be concerned with, these finite quark mass effects are expected to be rather small and will
be neglected.

For simplicity, we shall first derive an upper bound for the coupling constant g in the
chiral limit. To leading order in chiral perturbation theory and in the chiral limit, where
pseudoscalar masses vanish , the spes tral function in (3) goes as t2 and receives

contributions from the K and 7IK intermediate states only. Other intermediate states will

contribute corrections O(t / 161{2fn2 ) to the leading tszchaviour. Up to an overall

(GFps1c1c3/2)2 -factor one easily finds the result
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Inserting eq. (8) and (9) in the inequality (6) and neglecting terms of 0(/\9€2/Q2) with

respect to one we find
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where, for consistency, finite quark mass corrections in (8b) have been neglected.

Obviously, the bound increases as Q2 increases and /\;,‘.2 decreases. Let us examine its

numerical value for reasonable choices of Q2 and /\12_ At Q2 ~ 4GeV2, the leading non-

perturbative QCD corrections are only 3%. We then consider that this is a safe choice. The



natural choice for /\y2 would be Ng? = 161262 = 1.37 GeV2. However, due to the
fact that in the chiral limit all the mass thresholds go to zero, corrections Ot/ lﬁnzfnz }in
the spectral function, which we neglect, when integrated fromt =0 to t = /\.x2 could
become dangerously large. This forces the choice of the chiral limit /\Xz to be sensibly
smaller than 16n2fnz. We suggest /\,x2 = M?.2 =0.59 GeVZ as a safe choice. For
these input values the upper-bound (10) is then lgl < 4.3 at Q? = 4GeV2 and N2 =

0.59 GeV2, already smaller then the empirical determination in eq. (5).

We want to investigate how this bound could change when finite quark mass effects,
and hence finite pseudoscalar masses, are taken into account. To lowest order in chiral
perturbation theory the spectral function in (3) receives now contributions both from the g-
coupling and the h-coupling in the effective Lagrangean of eq. (4). There is a K-pole
contribution from h2 terms and, in particular, interference terms from the two couplings
which can be destructive. The simple spectral function in (9) is then replaced by a quadratic
form in the coupling constants g and h (assumed to be real, since we are neglecting CP-

violation effects throughout) with the result :
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and the same expression for ﬁ‘? with my replaced by MZ Inserting this spectral function
in the r.h.s. of the inequality (6) constrains the coupling constants g and h to lie inside an

ellipse defined by the equation
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where W(Q2) is the QCD-function already defined in eq. (8b), and

/

ﬂ’//lx,c?‘? ”k /_’ , é//)z Q/ /Mx) /’d/}) (12b,c)
&

with o(, § and y funct10ns of /\x2/Q2 and pseudoscalar mass ratios to /\y2 defined by the

following integral of the spectral function in eq. (11) :
2
N
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In the chiral limit where pseudoscalar masses vanish o = 1/3 (1+1/9) ;B = 12

(1+1/9) and y => 1 + 1/9 + 4/3 1672£52//\y2. Then, the ellipse in (12a) degenerates into

two parallel lines to the h-axis and the bound for Igl becomes the one quoted in eq. (10). In
general, with finite pseudoscalar masses and finite coupling constant h, the extremum in g

is reached by the projection of the ellipse on the g-axis which correponds to the value

éj”"/: V/_?’ o )\/ //"5) a4

The ellipse defined by eq. (12) is shown in Fig. 1 for the input value Q2 =

4GeV2 and the choice /\y2 = 16n2f,;2 = 1.37 GeV2. This higher value of /\x2 is now

Jjustified because finite mass threshold effects are taken into account. By contrast, the finite



srange quark mass corrections in the QCD-function W(Q2) of €q. (8b) are now dominant
and, at Q2=4 GeVZ, the total correction of b and Q terms in (8b) with respect to the leadin g
asymptotic freedom a-term representsan effect of 23 %. This explains the difference
between the two ellipses shown in the figure. The dotted line ellipse is the one
corresponding to asymptotic freedom only; the continuous line shows the same ellipse
when the leading 1/Q2 effects of finite strange quark mass corrections and non-
perturbative 1/Q4 power corrections are also incorporated. It can be seen from this

continuous curve that the coupling constant g reaches its maximum when [hl = 1.4 with the

result

<4.0at Q2 =4 Gev2 and 2 = 167212 = 1.37 GeV2 (15)
-~ T

still smaller than the empirical determination in eq.(5)!

What is the significance of this bound ? Admittedly we can find upper bounds for g
compatible with the experimental value in (5) if only we lower /\“2 and/for raise Q2;

for example, at Q2=4 GeV2 but /\‘12 =1.10 GeV2  the maximum of lg! is reached at

Igmax=7.2 compatible with (5). However, we find very striking that for g to reach the

upper bound value it requires an extremely peculiar behaviour of the spectral function
which has to vanish in a large intermediate energy region /\x:’ <t < Q2, where resonznce
production is copious. We are rather inclined to conclude, as we already did in our
previous work [7c], that here we are missing something fundamental : perhaps in the short-
distance formulation of the effective AI = 1/2 Hamiltonian with integrated heavy quarks,
perhaps in its chiral realization at long distances.

It is a pleasure to thank Carlo Becchi for very helpful discussions on this subject.
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FIGURE CAPTIONS

Fig. 1 The coupling constants g and h defined in eq. (4) are required to lie inside of
the ellipse defined by the equality in eq. (12a). The dolted line ellipse corresponds to
the asymptotic freedom expression for W(Q2) in eq. (8b) with only the a-terms;

the continuous line ellipse when the correction terms b and Q are also incorporated.
These figures correspond to the choice/\.‘2 =16n2fx2= 1.37 GeV2 and Q2 = 4 Ge V2,
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