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ABSTRACT

Using finite energy sum rules, the
hadronic matrix element of the
AB = 2 operator governing the mixing
between the B! and BY mesons is
evaluated., The result is very sen-
sitive to the input value of the
bottem quark mass. Allowing it to
vary in the range mb=(4.7UiO.IA}GeV,
one finds gB = | f_| /TE;T = (0.13+
0.05)GeV.
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Important experimental progress in our knowledge of flavour changing phenomena
has been achieved during the 1last year. Together with previous electroweak
measurements, the new experimental results provide useful constraints on the para-
meters of the standard model, However, in order to completely pin down the remain-
ing uncertainties in these parameters (or perhaps even to disprove the model), it
is first necessary to reduce the size of the theoretical errors entering the
analysis of weak transitions. With the expected increasing accuracy of forthcoming
experiments, the improvement of our theoretical ability to make definite predic-

tions for these processes 1s even more strongly called for.

The B’ -B® system is a good example of this situation. While it is clear that
the recent observation of a relatively large amount of B%—E% mixing {1] seems to
require [2] a rather heavy top quark, m > 50-100 GeV, the actual value of the
extracted m lower bound is quite uncertain. The biggest source of error origi-

nates from the matrix element of the AB = 2 operator

Oﬁ = ‘-Ea.b;. d.) (ELerI-) (1)

B=21

between the B’ and BY states, which is usually parametrized as

B° o = (2 {* M2 (2)
<B°l 0y, 18> = (3 {; Mg) B
Here, fB is the decay constant of the B -meson (the normalization corresponds to
f = 93,3 MeV) and the factor BB takes into account the discrepancy between the
L
true matrix element and the result (4/3)5%M% obtained by imserting the vacuum in

all possible ways.

At present, the best evaluation of the B -meson decay constant EB comes from
QCD sum rules. Although calculations by different groups gave initially quite
different results [3], the situation seems to be clarified by recent analyses [4,5]

showing that various versions of QCD-duality sum rules lead to a unique prediction

[5]

‘:B ~ (429 £ 43) Mev (3)

The error bar appears to be dominated by the {input value of the bottom quark mass

*
(EB decreases for increasing values of mb) which has been taken to be m, =

(4.71£0.13) GeV.



Concerning the BB— factor, one would naively expect that the vacuum insertion
approximation becomes more accurate with the increase of the meson mass, so BB =1
is usually assumed. However, a quantitative analysis of this stalemenl is still

lacking.

The purpose of this letter is to present a direct calculation of the B -5
matrix element, without relying on the vacuum insertion approximation [6]. This

can be done by studying the two-point function

VAR ot L (dx e T(0.¢ t (4)
= X o X3 (o) 0
AB=2 <el sa=i' Opgle V10>

constructed with the AB = 2 operator of Eq. (1), and writing a system of finite
energy sum rules relating integrals of the corresponding hadronic spectral function

te their QCD counterparts.

A similar correlator was used in Ref. [7] to compute the BK parameter
governing the K0 -¥® mixing. However, due to the higher mass scale invoived, the

analysis of ¢ (g2) requires a somewhat different approach. Unlike the kaon

AB=2
case, the onset of the asymptotic continuum can be taken here very near the
physical threshold 5k = AM%. One can Lhen approximate the hadronic spectral

function (1/m)Im¢ {s) by the lowest intermediate state contribution, which is

AB=2
obviously related to the matrix element of Eq. (2). The effect of higher mass

intermediate states is taken into account by the QCD continuum.

Using for convenience the effective realization

eff _ 2 o Mt
OABS?- = 3 968.':2 ’%,,B "B {5)

where
2
Jpe=: = fz Bs (6)

one immediately gets

<
eff 21 ..l
4 ImW¥V " 51 = ps-umty 28822 o2 g amtio)t Vo gne
— /5
T ag:=1 ®" a (emty 8 8 (7)

The short distance calculation of ¢AB=2(q2) is rather involved. As shown in
Fig. 1, the lowest order contribution contains four internal quark lines. Working
in the my = 0 limit, we have still to take care of the exact mb—dependence coming
from the two heavy quark propagators. Nevertheless, it is possible to do analyti-
cally all the momentum integrations in order to gel a compact expression in

parametric form:



alm‘f’ = B(s-vm;) A s (8)
46:2 (46 1)
where
2 <
4-V5 )0 fA-VE ]
e 2 2
A(s; = < (4+—;-) dz du A(J,z,ur (4-8/2] (A-5/u)
& 5
2 2
. {'(4-2«1 (1+325/2) (4438fu) + B8R U ~28Cz2+u1 -4 & } (9)

Here, & = mﬁ/s and M(x,y,2z) = x2+y2+22—2xy*2xz—2yz.

The leading non-perturbative corrections come from dimension four operators
appearing in the operator product expansion of the T-product of Eq. (4). The heavy
quark condensate contribution, mb<01bEIO>, is already taken intc account by the
Wilson coefficient of the <0|G2}0> term, and a possible ™y <0{dd|0> correction is
absent because of the helicity projectors appearing in the 0AB=2 operator. The

AB = 2 gpectral function can then be written, to this order, as

Qco 4 %
4 (51 = Bls-ymd ) 2 ¥ g2 4
b Im %B:{ 6ts "mb’“maf { Acsi 4 T < 6> Besi + 0O 53) (10)

The gluon coundensate coefficient B{s) is more easily computed by writing the
quark propagators in an external background gluonic field and using the standard

fixed-point gauge techniques [8]. The result one finds 1s

1 Ys a
B(51 = j fo dy {- 2yt FA~Y{(4-¥}] E2XY + H-x;“c-{-w]
fa Y.

Sx

3y?

u-v3 )* it an

_..J dz = Ca-8121° (‘(4,2.8!
&

+ (4-x)F ca¥¥ [28-Yt-v1] }



where
A= §(L+1-v) - vurn G

and the parametric integration limits are given by

A= ——
(4-V5)
(13)
43
A
Yo = e840 2 s, 600
Let us consider now the integrals
Se -
4 s
Gy (5o ajb ds s A Im ‘}38;{' (14)
for different values of n, and write the duality constraints
eff Qcp
G, (5o} = G, (Se) (15)

which relate the Gn(so) moments computed with the hadronic¢ parametrization of
ff . . .

Eq. (77, Gn(s;))e , Lo the corresponding short-distance calculation, Gn(SO)QCD,

using Egq. (10).

The ratio

R,“(Sol E G.'H-OA(‘OJ / G'hfSUI (16)

does not depend on Bpp=2 and therefore can be used to fix the optimal duality

region on the s; variable. For numerical convenience, we normalize it to the
. . AF . . .

asymptotic freedom behaviour Rn(SO) , obtained with the spectral function of

Eq. (8),

AF
K, 500 =2 Rotser/ R sl (17)

and use the eigenvalue condition

n, tsoJeH- == ?fn (SDIQCD (18)

Inserting the value of s0 thus obtained in Eq. (15) results then in a prediclion

for 1gAB=2] and hence for the matrix element {2) that we are looking for.



With the input value Mo = 5.275 GeV, the functions xn(so) are plotted in

Fig. 2, for n = =8 and using three different values of the bottom quark mass which

cover the range (9]

- v
my, = (4302 0.44) Ge (19)
In view of the recent claims [10] that the gluon condensate has been usually under-
estimated in the literature, we have allowed it to vary within a factor of two,

i.e., we have taken

< G’z,\. = (0.043 GquJ x W {w=+4-2) (20

2R

where w = 1 corresponds to the so-called standard value.

In the absence of QCD corrections xn(so) would be one (the dashed lines in
Fig. 2). With inclusion of the calculated <aS/n G2> coutributions, these lines
become the continuous (w=1) and dot-dashed (w=2) curves which approach asymptoti-
cally the value one at large sg. The curves corresponding to the hadronic parame-
trization of the spectral function, given in Eq. (7), are the lines of dots shown

in the figure.

The duality test of Eq. (18) turns out to be quite sensitive to the actual
value of the gluon condensate. With the standard value w=l, the eigenvalue solu-
tions are found to be around r = 50/4M% ~ 1.15, 1.10 and 1.05, for m = 4.56, 4.70
and 4.84 GeV respectively. Taking w = 2 and the same values of ™o the best
duality regions move te t© ~ 1,13, 1.05 and 1.10. Note that for the biggest value
of m, the duality behaviour is better with w = 1, while smaller quark masses seem
to prefer higher values of the gluon condensate. The central mass value Moo=

4.70 GeV shows indeed quite a good matching between the hadronic and QCD curves for

w = 2.

From Eq. (13) one can obtain

as function of r. With n = -8, this is shown in Fig. 3 for w = 1 (continuous
curves) and w = 2 (dot-dashed ones). When r approaches the value one, the QCD
calculation is unable to reproduce the physical threshold Siy T AM%D and lgB] grows
to infinity. On the other hand, if one chooses too high values for Lhe onset of
the asymptotic continuum sj, the resulting £g starts growing because the effect of

higher mass intermediate states, nol contained in the parametrization of Eq. (73,

becomes important.



To study the stability of gB versus the election of the power n, we have
solved the eigenvalue equation (18) and inserted the value of sy Lhus obtaimed in
Eq. (15) for differeant values for n. The resulting predictions for gB are plotted
in Fig. 4, which shows a remarkable stability for the central value of Lhe bottom

guark mass. The cases (mb = 4,56 GeV, w = 1) and (mb = 4.84 GeV, w = 2) look

however worse.

From Figs. 2 to 4 one then gets the results

047 -048 GeV (My = 4.56 GeV)

042 - 043 GeV LM = 4930 GeV) (22)

Srr
®
i

0.035 -~ 0.085 fGeV (Mpz= 4.84 GeV]

The allowed changes on the value of <as/n G2> have produced an effect of no more

than 10% in these numbers.

Due to the anomalous dimension of the AB = 2 operator, the parameter &_ is
renormalization scale dependent. The numbers given in Eq. (22) correspond to the
scale u? = g = 4M%. Since the Wilson coefficient of 04 =2
pl = mg, the results {22} should be rescaled by a factor [as(m%)/as(sG)]

1s usually computed at
3/23

.

However, this amounts to a 3% effect only which is negligible.

The largest source of uncertainty in our results is by far the input value of
the bottom quark mass. Allowing it to vary in the range mo= (4.70+0.14) GeV, we

can give as a final result

Ezg = (0431 0051 GeV (23)

Comparing our prediction for §B with the fB—values given in Eq. (3), one finds a
good agreement for the central value of the quark mass m = 4.70 GeV, which could
give some support to the validity of the vacuum saturation approximation in this
case. However, the BB parameter resulting from this comparisen is strongly m, —

b
dependent and therefore no firm conclusion can be extracted.

Qur analysis could obviously be improved by computing o corrections and
higher order condensate contributions to the twe—poini function (4). However, the

expected effect of these additional terms is smaller than the m uncertalnty



already reflected in the error bar of Eq. (23). In order to reduce this large

error, a better determination of the bottom quark mass is then mandatory.
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FIGURE CAPTIONS

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Lowest order contributions to the AR = 2 correlator of Eq. (4).

The ratio xn(SU) defined in Eq. (17} is plotted versus r = sq /uM2, for
n = -8 and three different wvalues of the bottom quark mass. The
continuous (dot-dashed) curves represeat the QCD predictions obtained
with the parametrization of Eq. (10) and taking the value w = 1 (w=2)
for the strength of the gluon condensate. They approach asymptoti-
cally the value one - the dashed lines in the figure - at large r.
The lines of dots are the values obtained using the hadronic spectral

function given in Eq. (7).

The quantity §B = IfB|/T§;T obtained from Eg. (15) is plotted versus
r = 80/4M% for n = -8 and three different values of the bottom quark
mass. The continuous and dot-dashed curves correspond to the values
w =1 and w = 2 respectively, for the strength of the gluon conden—

sate.

Behaviour of the gB—value, obtained at the optimal duality sp-point,
versus n, for different bottom quark masses. The continuous and dot-
dashed curves correspond to the values w = L and w = 2 respectively,

for the strength of the gluon condensate.
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