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ABSTRACT

Chiral perturbation theory 1is a very useful framework for
testing the Standard Model 1in processes where long-distance
effects are expected to play an essential rSle. We analyze the
rare K decays K » y2*2~, K* » n*tyy and K, » n’2*21~ in the
effective chiral formulation of the S8tandard Model, These
processes, like the decays K0 » yy, K*¥ > ntate—, KS+-792+1‘
and ¥ » m@yy discussed in previcus work, have the property
that the corresponding amplitudes vanish to lowest order in
chiral perturbation theory. Precise predictions for decay
rates and spectra are made in terms of a few coupling constants
not restricted by softly broken chiral symmetry alone. Special
consideration is given te various possible tests of CP non-—
invariance in these decays, in particular to effects due to
tntrinsic CP violating obs%yvabggs such as the charge asym-
metries in K~ » 7~ yy and K~ + n~2%*L{", the one-photon exchange
contribution to K, » m'e*te” and the transverse polarization in
KL-+ ﬁop k7. Detailed numerical results are shown.
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1. INTRODUCTION

There is a revival of theoretical interest in the subject of rare kaon decays,
This is mostly due to the prospect of significantly improved experiments, some
of them already under way [1], but also to recent theoretical developments.
Theorists are becoming aware of the fact that an effective chiral perturbation
theory formulation of the Standard Model [2] is an ideal framework to describe
K decays. This is because in K decays the only physical states which appear
are pseudoscalar mesons, photons and leptons and because the characteristic
mormenta involved are small compared to the natural scale (4w f, ~ 1.2 GeV)
of chiral symmetry breaking.

Chiral perturbation theory is a systematic expansion in momenta and pseu-
doscalar meson masses within a specific, albeit non-renormalizable, Lagrangian
quantum field theory. It was developed in the 60’s, first as an effective dynam-
ical realization of Current Algebra {3]|, and later formulated as a non-linear
sigma model field theory [4] whose configurations are maps from Minkowski
space to the homogeneous space SU{(3);, x SU(3)r/SU(3)y. With the advent of
Quantum Chromodynamics (QCD) [5] and subsequent progress in the under-
standing of the realization of its chiral symmetry at low energies, it has become
apparent that an effective Lagrangian of the non-linear sigma model type (with
Wess-Zumino (WZ) terms [6] incorporated, as required by the global anomaly
structure of QCD [7]) gives an explicit dynamical formulation of the strong
interactions among the octet of pseudoscalar mesons when both gluonic and
quark degrees of freedom are integrated out. Qur ignorance of the details of the
latter step is reflected by the appearance of coupling constants in the effective
Lagrangian which are not fixed by symmetry requirements alone and which,
although determined in principle by the confinement dynamics of QCD, are not
yet calculable. Only in a few cases some of these constants have been deter-
mined semi-phenomenologically using QCD duality sum rules [8] which relate
the long-distance hadronic realization of two-point functions to their calculable
short-distance behaviour [9].

The explicit structure of the effective chiral Lagrangian for strong and elec-
tromagnetic interactions to fourth order in derivatives and masses is now com-
pletely known through the work of Gasser and Leutwyler [10]. Some progress in
including weak perturbations was discussed in Ref. [11]. Recent applications of
the effective chiral Lagrangian approach to rare K decays include K 5 — vy
[12], K+ — 7t e~ and Kg — n%¢*¢~ 111, K — #%7¢7 [13] and Kp 5 — 7%y
[14,15]. Some aspects of the phenomenology of CP violation have also been dis-



cussed within the effective chiral Lagrangian framework, sometimes combined
with 1/Nc-expansion techniques [16].

The main purpose of this paper is to continue the investigation of K decays
involving two either real or virtual photons. In Sect. 2, we review the treat-
ment of electroweak perturbations to the strong effective chiral Lagrangian.
The counterterms relevant for a one-loop calculation of the processes under
consideration are presented. The simultaneous diagonalization of the covariant
kinetic and mass terms quadratic in pseudoscalar fields is performed explicitly
to O(Gr). The use of this diagonal basis leads to a considerable simplifica-
tion in the calculation of one-loop diagrams compared to the standard basis.
In Sect. 3, we calculate the one-loop amplitude for the transition K? — ~v*y
with one photon off-shell. This amplitude is needed to obtain the spectrum and
the rate of the decays K] — £¥£~. A comparison with an earlier dispersion
theoretic analysis of Sehgal [17] shows that a precision experiment for the muon
channel will provide a test of the constraints of softly broken chiral symmetry.
The decays K] -+ 4€%£~ proceed via the WZ term. The problems involved in
a systematic calculation of CP violating effects in KO(FO) — vy decays are
emphasized. The decays K* — 7%+ are considered in Sect. 4. The one-loop
amplitude is finite, but there are in addition tree level contributions involv-
ing the WZ term on the one hand and dimension-four counterterms on the
other hand. Because of the appearance of a previously undetermined countert-
erm coupling constant, chiral perturbation theory does not predict the absolute
rate but only a lower bound. There is, however, a correlation between the to-
tal rate and the corresponding spectrum in the yy-tnvariant mass. The charge
asymmetry I'(Kt — wtyy) — (K~ — m yv) is derived and an estimate of
its numerical value is made by relating the octet counterterm in the chiral La-
grangian to the electromagnetic penguin operator of Gilman and Wise [18] to
leading order in 1/N;. The decay Ky — mw%+£¢~ is discussed in Sect. 5. There
are both a CP violating one-photon exchange amplitude and a CP conserving
contribution from two-photon exchange. From a calculation of the two-photon
absorptive part we confirm the expected dominance [13] of the CP violating am-
plitude for K — n%e*e™ although our results are rather different from those of
Ref. [13]. The one-photon exchange amplitude with intrinsic CP violation can
be related to the charge asymmetry T(K* — ntete™) — (K~ — nete).
For K — w°utpu~, the CP conserving and the CP forbidden amplitudes are
roughly comparable leading to a non-vanishing transverse muon polarization.
Sect. 6 contains a summary of our results. The kinematics of K — ~v and
K — wyy decays is compiled in an appendix.



2. ELECTROWEAK PERTURBATIONS TO THE STRONG
EFFECTIVE CHIRAL LAGRANGIAN

The effective chiral Lagrangian we shall be concerned with has the following
structure

Gr
E 4FuyFﬂV + Eem + ﬁ 31(!1(:3(.635 1 + e‘:;;:l) (21)

where L£,; describes the strong interactions among the octet of pseudoscalar
mesons, F,, is the electromagnetic tensor, L., denotes the hadronic electro-
magnetic interaction Lagrangian, Las.; the non-leptonic strangeness changing
weak interactions and £%%_, the same weak perturbation in the presence of
electromagnetic interactions. The weak perturbation is modulated by an over-
all coupling where Gr denotes the Fermi constant and s;cyc3 the product of
Kobayashi-Maskawa (KM) [19] matrix elements V,,V. for three generations.
The specific form of the various terms in (2.1) has already been discussed in
Ref. [11], but we reproduce them here for the sake of completeness.
With
Ulz) = exp(— Z Aipi(= (2.2)
™ i=1

the 3 x 3 special unitary matrix which incorporates the eight pseudoscalar
mesons appearing as Goldstone coordinate fields in the matrix representation

s m/V2+n/v6 wt K*
b = —\/—_Z ey = T (V24 q/v6  K° , (2.3)
i=1 K- K’ ~2n/6

we have

2

L, = -ii tr{8,U8*U") + vtc(MU + Ut M) + higher order terms, (2.4)

where fr =93.3 MeV (to lowest order in chiral perturbation theory), M denotes

the diagonal quark mass matrix M = diag(m,,,ma, m,) and
fami,  fME. fIMR

2y +mq)  2my +m,)  2mg+m,)’

(2.5)

v =

In (2.4) and more generally in what follows, higher order terms involve more
dérivatives, quark masses or the electromagnetlc potential 4, (F,, = 8,4, —



0,4,). For obvious reasons, the terms explicitly written in (2.4) will be referred
to as terms O(p?). The complete list of terms O{p*) relevant for the effective
Lagrangian £, to one-loop accuracy can be found in Ref. [10].

With the matrix representation of the electric charge operator

Q: ;(A‘g#‘)\s/\/g)YQ“ ;17 Q:dla’g(l1070)! (26)

the hadronic electromagnetic interaction to lowest order O(p?) has the form

A 22
Lom = —¢ A tr(QVH#) + & 5 Au AM(L — U2 ]7) (2.7)
where V,, denotes the vector current
v, = %f,f[U, 8,U" = i(® 8, &) — 61?5[‘1” @, 8, &)+ ... (2.8)

The explicit form of the weak perturbation is most conveniently expressed
in terms of the 3 x 3-matrix L, representing the octet of V-A Noether currents,
i.e.,

L,=iffU0,U". (2.9)

To lowest order, Las-1 is dominated by a term transforming as 8, ® 1g under
chiral SU(3) rotations (octet or Al = 1/2 enhancement). It has the general
structure

Las=y = ga(L,L*)2z + h.c. + non-octet terms + higher order terms (2.10)
where g5 is a dimensionless coupling constant. From K — 7 decays, one finds
|ga|25.1. (2.11)

In the following, we shall often use the short-hand notation

GFr
—81C1C .
ﬁ11398

Throughout this paper, we shall neglect the non-octet part of the AS = 1

Gs = (2.12)

non-leptonic weak interactions.
With the matnx
A=U|Q,UM (2.13)



the electromagnetically induced AS = 1 non-leptonic Lagrangian from the octet
term in (2.10) has the following form to lowest order O(p?}):

eAn;:l = egsngu{L”, A}23 + Ezgsf:AﬂAu(Az)zs +' h.C. . (2.14)

It is a common feature of non-leptonic K decays with at most one pion
in the final state that the corresponding amplitudes vanish to lowest order in
chiral perturbation theory, i.e. to order Q(p?). This is obviously the case for K°
decays because the photon does not couple directly to neutral particles. At first
sight, it is much less obvious for K* — wtf+¢~ [11] and for K* — m¥yy to be
discussed in Sect. 4. As emphasized in Refs. [11,14], the vanishing of amplitudes
in lowest order is due to a mismatch between the minimum number of powers of
external momenta required by gauge invariance and the powers of momenta that
the lowest order effective chiral Lagrangian can provide. The same mechanism
is operative at the one-loop level for K? — x%yv [14] and for K* — n¥yy in
eliminating the invariant amplitude B defined in (A.8) of the appendix.

The assertion contained in the first sentence of the preceding paragraph can
be proven most directly by performing a simultaneous diagonalization of the
covariant kinetic and mass terms quadratic in the pseudoscalar fields. To order
Gr, this diagonalization is achieved through the following transformations of
pseudoscalar fields

ST +_2Jiﬁ(f§GgK+

Mz — m?

2m? f2G;
Kt — Kt + ﬂg{«_f—wmzz xt

V2ME f? .
™ — 7’4 Mf(ﬂKm2 (G3K0+G8KU) {2.15)
Ko Ko_ Y2mifiGi o \ﬁ MIfGs

M —m? 3 MZ— M}

2 MELf? 0 L e 0
n - n\/j—”—(GSK + GyK)
3 M2 - My ?

with the transformations for #=, K7, K° implied by hermitian conjugation. In
this basis, there are no off-diagonal propagators like K — 7 nor vertices of the



type Ky because the covariant kinetic terms have been diagonalized. All weak
vertices involve at least three pseudoscalar fields which proves our assertion.
In addition to its intrinsic interest, the diagonal basis Just introduced leads to
a considerable simplification in calculating loop diagrams. A rather instructive
example is provided by the onre-loop calculation of K — 7%y~ which involves
four Feynman diagrams in the diagonal basis [14], but some additional twenty
diagrams in the standard basis [15].

In order to make quantitative predictions for the processes under consider-
ation, we must therefore go to the one-loop level in chiral perturbation theory
including the appropriate terms O(p*) in the effective Lagrangian. This has
the important physical implication that one should expect in general a chi-
ral suppression factor of order M} /1672 f2 ~ .18 for such amplitudes, which
may compensate the underlying non-leptonic A7 = 1/2 enhancement. Such a
suppression is indeed observed in the measured rate for K* — n*ete [11].

The complete list of O(p*) terms in L., can be found in Ref. [10]. Two of
those counterterms are relevant for our purposes which in the notation of Gasser
and Leutwyler read

L) = —ieLyF* 4(QD,UD, Ut + QDU D, U) + e’ Lo F, t(UQU'Q)
(2.16)

with the covariant derivative
DU = 0,U —1ed,(Q,U]. (2.17)

When combined with the lowest order AS = 1 Lagrangian (2.10} the coun-
terterm Lagrangian (2.16) gives rise to physical contributions to the various K
decays we are concerned with.
Another source of O(p*) contributions are the possible counterterms in
as5-1- Those with one explicit factor Fj,, which survive all the symmetry
constraints of the underlying Standard Model Lagrangian, are [11]

e
ﬁ(.;.)Szl,em = 2 gzs F”V{wl tr(QAﬁ—i?[:u‘Cy) + Wy tr(Q’C,u Aﬁui7‘cu)+
Tk (2.18)

+ Wa€pnpr tr(QLY) tr(Ae—ivL7)} + h.c.

where £, denotes the V-A current L, in (2.9) with the ordinary derivative
replaced by the covariant derivative (2.17). In addition to the constraints of
chiral symmetry, a discrete symmetry of the AS = 1 Lagrangian at the quark
level called CPS [20] is essential in eliminating [11] the counterterms of opposite



parity to (2.18). The term proportional to s does not contribute to processes
K — my* because there are only two independent momenta available. It does
not contribute to K® — 4y or K — myy, either, because the leading terms
(linear in pseudoscalar fields) for both tr(QL£?) and tr(As 7£7) do not contain
the photon field. It will contribute, however, to processes like K — wmy which
will be discussed elsewhere.

The Lagrangian (2.18) contains in particular the leading effective chiral re-
alization of the so-called electromagnetic penguin operator appearing at the
fundamental quark level. The leading diagram contributing to the electromag-
netic penguin operator [18]

Qr = ady*(1 - v5)dly,L (2.19)

is shown in Fig. 1. The corresponding local counterterm in the chiral realization
must iransform as an SU(3) octet and is therefore given by the term in (2.18)
proportional to w; (the w; term transforms as a mixture of 10 and i0). The
Wilson coefficient C7(u*) pertaining to ¢; is complex because of the CP violat-
ing phase in the KM matrix. This in turn implies a complex coupling ggw; with
important implications for the phenomenology of CP violation as we shall see.

To the terms in (2.18) we have to add possible O(p*) terms with two explicit
factors F,,. As discussed in Ref. [14], a single term

2 r2
o) _ekh gaws P F, tr(Ae_inQUQUY + hc. (2.20)

AS=1,em? 9

survives the constraints of chiral and CPS symmetry. This completes the struc-
ture of the effective chiral Lagrangian at the O(p*) level necessary for a consis-
tent one-loop calculation.

In the diagonal basis of pseudoscalar fields implemented by the transforma-
tions (2.15), the weak cubic vertices are as usual given by the lowest order
term in {2.10). A little more care is required for the weak quartic vertices. The
quartic terms relevant for the one-loop calculation of K — n%y+y can be found
in Ref. [14]. Here, we give the corresponding terms which are needed for the
one-loop calculation of K* — 7%~ transitions in the form

e &
L, = ?S(c1 + Ly + L3) + hec. (2.21)

Li contains the relevant quartic terms of the usual AS = 1 Lagrangian (2.10)



replacing L, by £,:
Ly = 7" DFKH(r Dynt = 3x*Dymr~ + KD, Kt + K*D, K~ )+

+ KD~ (nt Dyr” 4" Dywt + KYD, K~ -~ 3K D, K*)+

+ terms with neutral fields.
(2.22)
The component £, is generated by the transformations (2.15) applied to the
terms with two derivatives in (2.4) again replacing ordinary derivatives by co-
variant ones:

Ly=-2K* D# 7 (K* JDH,Jl K~ +x* E,L 7 )+terms with neutral fields. {2.23)
In the same way, L3 is obtained from the lowest order mass terms in (2.4):
L3=—-K'n (MK K™ 4+ m2ntn7) + terms with neutral fields.  (2.24)

Finally, to calculate the amplitudes for K - my+y transitions to O(p*) we
also need the anomalous WZ terms linear in meson fields wilh the familiar form

21]

o
8 f, U
This completes the description of the explicit form of the effective La-

grangian required to perform the calculation of the various K decays discussed
in this paper to order p*.

Lwz = Fo Fo(x® 1 /4/3). (2.25)

3. KL,S - ’y£+£_ DECAYS

A study of the decays K; s — 7 + Dalitz pair was made by Sehgal some
time ago [17]. He emphasized in particular the fact that these processes may
act as probes of the dynamical structure that underlies the K; s — vy vertices.
The purpose of this section is to spell out the particular structure implied by
chiral perturbation theory and thus by QCD. Unless otherwise stated, we shall
assume CP invariance in this section.

3a. The K? — v¢'¢  Transition
The relevant Feynman diagram is shown in Fig. 2. The {ransilion amplitude
reads

e I
A(K? - 'Y€+€_) e ﬂ/[“”(ql,qz)eu(qi)ﬁ(k)'y,,v(k) (3.1)
g3 + €



where M*(q,q;) is the amplitude defined in Equ. (A.5) of the appendix. For
the K? — 4£*£~ transition, only the invariant amplitude b(0,¢2) contributes.
To lowest non-trivial order O(p*), this amplitude is uniquely determined by
a one-loop calculation of the K? — 4"y transition with one photon off-shell.
Referring to Ref. [12] for the relevant diagrams, we only give the final result in

the form
b0,03) = 2290 sy (3:2)
where ) -
1) = [ dv [ Wor (0 my eyl y)’ (3.3)
= @ Tow = [im Ty = e
Mg’ My’ My’
47‘? <z <1,

The differential decay rate in terms of the normalized invariant mass squared
of the Dalitz pair can then be written most conveniently as

dU(K? — v€+€7) B H(z)

i = TUR = o) = ey P

(3.4)

where Im 1I(z)/7 is the electromagnetic spectral function associated to the
lepton pair

%ImH(z} - %(1 +208/2) /1~ 4r2 /2 002 — Ard). (3.5)

The specific dynamical behaviour predicted by chiral perturbation theory is
contained in the structure function H(z). The other factors in (3.4) are of
kinematical origin. The value of H(z) at z = 0 governs the amplitude for K7 —
77 in chiral perturbation theory [12]. The corresponding decay rate is

|G37?|2f72r_

DY =)= 5"

ME(1 — 2 LH(0) (3.6)

The function H(z) can be written in the form

HE) =5 P - FGp) - 2065 - ok @

r

Kis ko



with [14]}
1 — 4[arcsin(+/z/2)]?/2 z <4
F(z) =
2 1—-4/1-4/z 24 1-4/1-4/z
1—-1r—+(1n—————/)2/z+—1—7-rln—~—~*-——~—/—- 2> 4
z 1+ 4/1—-4/z z 1+ /1 —4/z
(3.8)
and )
+4/z — 1 arcsin(4/z/2) z<4
G = 3.9
(2) j 1\/1_4_/__[11+ 1_4/s . (3.9)
— —4fz[ln —FH——— —in] =z
? 1-/1-4/2
Numerically, using |Gg| =~ 9.1 - 107% GeV 2, one finds
|H(0)| = 0.67 (3.10)
leading to a decay rate
T{K} > vy)=1.4-107°GeV, (3.11)
which corresponds to a branching ratio
T(K} —77) 106
o=20-1 12
['(Ks — all) 0 (3.12)

to be compared with a recent measurement by the NA31 collaboration at CERN
[22]:
B(Ks —»vy)=(244+£1.2)-107°. (3.13)

The decay rates for the Dalitz pair modes normalized to T(K] — ~vv) are
compared in Table 1 with the phase space predictions and with the results of the
dispersion model of Sehgal [17]. In Fig. 3 we also show the normalized spectrum
for the u* u~ case. In the case of ete” there is practically no difference between
the spectrum predicted by chiral dynamics and phase space [H(z) = H(0)]
because the spectrum is very much peaked towards small z. This can also be seen
from the rates in Table 1 which are practically identical in all three cases. There
is, however, a non-negligible difference for the muon pair spectrum between
chiral perturbation theory, phase space and the model of Sehgal which should be
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distinguishable by high-precision experiments. The dispersion model of Ref. [17],
which is inconsistent with softly broken chiral symmetry, has an even sharper
spectrum than the one shown in Fig. 3 corresponding to a smaller total rate
compared to the chiral prediction.

3b. The K] — y£*{~ Transition

The relevant Feynman diagram is shown in Fig. 4. The amplitude structure
is the same as given in (3.1) except that now the invariant amplitude ¢(0, ¢2)
defined in the appendix contributes to KJ — v"y. The coupling of the two
photons to 7° and % is governed by the WZ term (2.25). To lowest order in
chiral perturbation theory, ¢(0, ¢3) vanishes because the 7® and % contributions
cancel exactly because of the Gell-Mann-Okubo relation for the pseudoscalar
meson masses squared. A leading log calculation [23] has found the K} — 7%
amplitude to be rather sensitive to SU(3) breaking. There are also contributions
from 7 — n' mixing [24] and from possible O(p*) counterterms with unknown
couplings which have not been considered so far. However, it is obvious that the
same problems appear in trying to evaluate the rate for K — y£*£~. Therefore,
if we normalize to the KJ — v+ decay rate we find

dU(Ky > v€Te7)
dz

2(1 B z)aImH(z)

Z m

= D(K3 — 77) (3.14)
which is, of course, identical to the phase space spectrum. Possible form factor
effects in g} are still higher order in chiral perturbation theory. To lowest non-
trivial order, the normalized rates I'(K; — v£*¢7)/T(KJ — yv) are therefore
predicted to be identical to the phase space values for I'(K] — v£167)/T'(K? —
v¥7v) given in Table 1.

Possible CP violation effects in Kz s — v£t£~ are most likely governed by
the CP behaviour of the K, s — v transition. There are several phenomenolog-
ical analyses of CP violation in Ky g — v decays [25]. The authors of Ref. {25b]
emphasized in particular the interest of measuring the asymmetry of intensities

P(K® - 47) = T(K° = v7)
P(K® — yy) + T(K® — y7)

(3.15)

as a function of the K-proper time. This is precisely the type of experiment
which twenty years later may become feasible with the LEAR facility at CERN
[26]. Unfortunately, it is difficult to make a precise prediction of this asymmetry
in the Standard Model. In the effective chiral Lagrangian approach, the prob-
lems in calculating the Kj — ~v amplitude were discussed in the first paragraph
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of this subsection. In particular, the coupling constants of the so far neglected
O(p*) counterterms contributing to the K — v transition could be complex
giving rise to an intrinsic CP violation different from the usual mixing effect. It
is not at all obvious how to relate the imaginary parts of those coupling con-
stants to the underlying quark flavour mixing pattern. Several predictions of
the asymmetry (3.15) have nevertheless been attempted in the literature [25¢].

4. K* - mfyy TRANSITIONS AND CP VIOLATION

The general structure of this process in terms of invariant amplitudes is given
in the appendix. To lowest non-trivial order O(p*) in chiral perturbation theory
only the invariant amplitudes 4 and C contribute. The dominant amplitude A is
calculated from the loop diagrams in Fig. 5 and from the tree level counterterms
discussed in Sect. 2 with the result

Gea z .
Az, zy) = A(2) = 2::'z [(r2 — 1 — z)F(T?:) + (1~ 2z r2)F(z) +éz)  (4.1)
(g1 + g2)° 1 My
Z:W:2($1+$2—§)+Ti, T‘-,,-:A:[K
with ,
& = 327T2[4(L9 + Ll(}) — g(wl —+ 2102 + 211?4)] f (42)

The function F was defined in {3.8) and its behaviour in the physical region
for K — wvyy decays can be seen in Fig. 6. It is evident that the pion loop
contribution (r2 —~ 1 - 2)F(z/r2) dominates by far over the kaon loop amplitude
(1 — z — r2)F(z). 1t is for this reason that in a process like K] — 7%y where
¢ = 00 [14] the prediction of chiral perturbation theory comes very close to the
result of a dispersion theoretic model using the pion loop contribution only [27].
The analytic form of the amplitude is, however, different in the two approaches
because only chiral perturbation theory incorporates the restrictions dictated
by softly broken chiral symmetry.

It may be instructive to discuss the loop contributions to the amplitude (4.1)
in terms of the Feynman diagrams of Fig. 5. Of all these diagrams only 5a and
5b give a contribution to the absorptive part of A:

2
_T_IrImA(z) _ C;;Z_‘[(rz _1_ Z)Im F(z/r3) +(1—2— Ti)ImF(z)] . (4.3)

™ ki)



13

Since for z — o> |
Im A(z) = O( 082

), (4.4)

the corresponding unsubtracted dispersive amplitude

- oo dz ImﬂA(z")

A(z) =P (4.5)

arz 2! — 2 T

converges. In full generality, the physical amplitude A(z), to the order O(p*) we
are working, will be

A(z) = A(z) +iIm A(z) + GZiraé (4.6)

where ¢ is a possible constant arising from contact terms without discontinuities.
It is now rather straighiforward to convince oneself that ¢ does not receive any
contributions from the loop diagrams of Fig. 5. The reason is that only diagrams
5a and 5b can produce the tensor structures gauqi, and qi - g2 g, necessary
for amplitude A [cf. Equ. (A.8)]. The diagram 5c¢ gives a divergent constant of
dimension mass® times g, which cancels with similar non-gauge invariant pieces
from the other diagrams. Diagrams 5d and 5e, on the other hand, produce a
structure proportional to p,p], which is again cancelled by the tadpole diagrams
not shown in Fig. 5, because the invariant amplitude B(z,z;) of (A.8) vanishes
at the one-loop level. Thus, ¢ can only be due to the local counterterms of
Sect. 2 as explicitly demonstrated in (4.2). Furthermore, since the dispersive
amplitude A(z) in (4.5) is convergent the constant ¢ must be renormalization
scale invariant.

What do we know theoretically about the value of the constant ¢? The
combination Lg + L,y is a renormalization scale invariant coupling constant
which is rather well determined from the so-called structure term in # — evy
[10]:

Lo+ Lo =(1.39+0.38) - 1072. (4.7)

If we could neglect in é the genuinely weak contribution wy + 2w, + 2w,, which
is, of course, also renormalization scale invariant, we would obtain é ~ 2. Thus,
we may expect ¢ = O(1} as a reasonable order of magnitude guess.
There is, in fact, another combination of counterterm coupling constants
contained in (4.2) which we have already determined previously {11], i.e.,
1 M}('m,,r 1671’2

TI):_ =Wy + § log A{g - == T[wl — Ws + 3(UJ2 — 4L9” . (4.8)
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From the measured rate T(K* — #n7ete™) [28] we obtained two possible solu-
tions [11] renormalized at M,

. { 0.66 + 0.08

Y+ 7Y 107008 ¢ (4.9)

which are again consistent with the estimate ¢ = O(1). Unfortunately, however,
the coupling constant w, is unknown and we can only discuss physical quantities
in terms of the parameter é.

We next describe the calculation of the amplitude C(z;, z;) defined in (A.8).
To O(p"), this amplitude is due to the Feynman diagram shown in Fig. 7involv-
ing the anomalous couplings (2.25). There are in principle two different weak
vertices in Fig. 7. Since on-shell the decay K+ — 7+ 7% can only proceed via the
27-plet part of the non-leptonic weak interactions, the dominant contribution
to the amplitude €' actually comes from this 27-plet which we have always been
neglecting. However, although the corresponding branching ratio

B(K* — ntn® » ntyy) = B(K' - ntx%). B(m® — 2y) = 0.21 (4.10)

is huge, the contribution to the spectrum is very much concentrated at z =
r2 ~ 0.08 and can therefore easily be cut away. For larger z where the loop
amplitude 4 will be concentrated, as we shall soon discuss, the contribution of
the 27-plet is as usually negligible.

There is nevertheless a small, but non-negligible contribution from the octet
vertex in Fig. 7:

2

Gga z— 7t z — HTa
— _ s 3
Clon,2:) = Oz) = ™ [z — 12 4 ir Lo /Mg 2 12 I (4.11)
aT s o™ 1

’n"’q s Affn/ﬂfIK .

The first contribution in (4.11), due to the pion pole, can serve as an instructive
example of the relevance of chiral symmetry for the off-shell behaviour of weak
vertices. Because of the derivative couplings in the chiral vertices there is a
non-vanishing octet contribution when the 7° is off-shell. This term is essentially
constant for almost all 2 except at z = r2. It would not be present in a dispersive
approach where vertices are usually constiructed without derivatives.

From (4.1) and (4.11) we find for the differential decay rate in terms of the
normalized invariant mass? z of the photon pair

di'{K* — Tt yy) ﬂffﬁ

dz = amp N Lar)P AP ORI, (112)
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0<z<(1~rg)?

with
A(a,b,c) = a® + b* + ¢ — 2(ab + bc + ca). (4.13)

Writing the integrated rate in the form
T(K* - m¥y7) = Tioop + Tz (4.14)

we obtain

Tioop = (2.80+0.87¢+0.17é2) - 102 GeV

4.15
I'wz = 0.26. 10722 GeV ( )

showing the dominance of the loop over the anomalous contribution. The total
rate as a function of ¢ and the absorptive part are shown in Fig. 8. From (4.14)
and (4.15) one derives the lower bound

L(K* — ntyy) > 21072 GeV

or

B(KT —watyy)>4.1077, (4.16}

well below the present experimental upper limit {29]
B(Kt — 'IrJ“}”y) < 8-107°. (4.17)

The predicted spectrum (4.12) is very characteristic. It is shown in Fig. 9
for three values of ¢ which cover a reasonable range for this parameter together
with the phase space prediction. The peaking of the distribution at large z is due
to the rapidly rising absorptive part of the 77 intermediate state (see also Fig.
6). Although, unlike I'( K7 — n%y+) [14,15], chiral perturbation theory cannot
predict the rate (Kt — m¥v7), it gives, up to a twofold ambiguity, a precise
correlation between the rate and the spectrum.

So far, we have discussed the decay K" — mv+ only. The amplitude for
K~ — m7yv can be obtained from (4.1} and {4.11) by replacing Gg and ¢é
by their complex conjugates. The interference of Im é with the CP invariant
absorptive amplitude (4.3) generates a charge asymmetry

DKY s atyy) = T(K™ —» 7 yy) =

R |G8a[2ﬂ/f§}+

(1-r=)?
= Imé (an); / dzA3 (1, 2,72)(r2 — 1 — 2)z Im F(
m 4

2
Tr

ﬂ‘gwl N
e
il
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=1.5Imé- 107 GeV. (4.18)

In order to obtain an estimate of Im ¢ we have to investigate the various
counterterm coupling constants entering & as given in (4.2). It is obvious that
Lp and Lio must be real because they derive from the strong + electromagnetic
sector of the Standard Model. The genuinely weak O(p*} coupling constants w,,
wy, wy will in general receive both long-distance and short-distance contribu-
tions. The long-distance contributions originate in amplitudes where the weak
octet vertices governed by the constant gs are embedded in diagrams with addi-
tional strong and electromagnetic vertices. Clearly, such amplitudes will require
counterterms with a phase determined by gg, the only weak coupling constant
in these diagrams.

Short distance contributions, on the other hand, correspond to diagrams at
the quark level where the weak interactions appear through operators different
from the non-leptonic weak four-quark operators. The only such operator rele-
vant for us is the Gilman-Wise operator (2.19) in the Lagrangian form (u is a
renormalization scale)

G
Low = \/g s1c1eaCr(p?)asy (1 — v5)dly,ul (4.19)

corresponding to the electromagnetic penguin diagram of Fig. 1 in zeroth order

QCD with (18]

2 m? m?

. o2 —16
T = 32 + Sa2Ca83 € /C1C3

in terms of the conventional KM parameters.

As already alluded to in Sect. 2, there must be a relation between the octet
(4.19) at the fundamental quark level and the chiral counterterm in (2.18) pro-
portional to w; which also transforms as an octet. This relation can be made
precise in the large N¢ approach because to leading order in 1/Ng

5791 — v5)d =i fAU U )pg . (4.21)

Using the field equations
0" F,, = elvy, L (4.22)

and partial integration in the action

(U8 UN)230"F, = — F 0" (U8 U )ys = F,,(U8°UUE*U) (4.23)
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the chiral realization of (4.19) to leading order in 1/N, can be written as

- 2
Lihisal — 3”22};"" ) ?/2' syercs F* tr(Qo—irLuL) (4.24)
which has precisely the form of the w; term in {2.18)} to first order in the
electromagnetic field.

One may be tempted 1o equate the coefficients of (4.24) and of the octet
term in (2.18). There is, however, no justification a priori for such an equality
because the long-distance contributions to C7(g?) and to w; may very well be
completely different. On the other hand, it is reasonable to relate the imaginary
parts of the two coeflicients to each other because they are obviously short-
distance effects!. In this way we obtain the relation
3 Cy5953siné

Im(gsw;) = — i ImCy =

Ty

(4.25)

lo .
3mlcicy & .
In order to estimate the charge asymmetry (4.18) we need I'm ¢. Since of all the
coupling constants in ¢ only w, gets a short-distance contribution, we have

. 3272
Imé= - 7 Tmw, . (4.26)
From the recent precision experiment of €'/e [30] we can estimate Im gg/Re gs.
Although not really negligible, it suffices for an order of magnitude estimate of

Im w; to neglect Im gg in (4.25). With m,/m,. = 60 and with [31]

Cy8983 Sin 6

~1-107° (4.27)

Ci1€C3
one arrives at the final estimate

Imw,| ~ 3-107°

4.28
Imé  ~ 31073, (4.28)

In view of all the approximations made (in particular the neglect of QCD cor-
rections) the result (4.28) should be considered as a rough order of magnitude
estimate only. With (4.28) we can estimate the charge asymmetry (4.18) as

(K = wtyy) —I(K~ — 7797)| ~4-107%° GeV (4.29)

!Note that Im Cr(u?) is independent of p?. |
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and therefore

IF(K+ -t 7r+77) 7 F(KA - wk‘y’}/)'(l . 10—3 (430)
LK — wtyy) + DK™ — 7moyy) ©

because of the lower bound (4.16). A sensitivity of 107'° in branching ratio is
necessary Lo measure the asymmetry (4.29).

5. K; — 7%t¢{~ AND CP VIOLATION
In the one-photon exchange approximation, the decay
K) - n%y" s 2%t (5.1)
was calculated in chiral perturbation theory [11}, while
KY — 7% = %0t (5.2)

is forbidden in the limit of CP conservation. Experimentally, we have at present
[29]
B(Kj — mete”) < 2.3-107°
(5.3)
B(Ky, —»mputp) < 1.2.10°°
but these upper limits on the branching ratios will be considerably improved
in the near future [1]. It is then worthwhile to examine possible signals of CP
violation in the Ky — 7%'¢  channels [13]|. Here, the crucial question is the
size of the CP violating one-photon exchange transition Ky — w0y — m¢+¢-
as compared to the CP allowed transition K — #%y*y* — #%*{" via two
photons. Before examining this question in some detail, we note that thereis a
"trivial” background
K — 7%7% = nlete (5.4)

with a comparatively big branching ratio
B(Ky — 7" e ) |direct = 3- 1077, (5.5)

Since this background is strongly peaked in the invariant mass of the electron-
positron pair around the pion mass, we shall disregard the amplitude for {5.4)
in the following assuming an appropriate cut has been applied.
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5a. The K; — 7%y — 7%*{- Transition

The transitions K° — 7%y — 7%%£~ have recently been studied [11] to
lowest non-trivial order in chiral perturbation theory. The one-photon exchange
amplitude has the form

A(K®(p) — 7°(p)e* (K (k) = = S22 dio(2Ji(R)( 6+ £olk)  (5.6)
where .
dgo(z) = \E(Q(P(Z) + ws) (5.7)
_(E+E)

The function ¢(z) is given by [11]

o(z) = fidal} ~o(1—2)loglt — za(1 — )] =

(5.8)
= - Z o)
6 10
and wg is the renormalization scale invariant combination
1672 2. Mg
= — — — —log — 5.9
ws (w1~ wa) - 7 log i (5.9)
if wy, w, are renormalized at M, [11]. With CPT assumed, we have
T70 0 g4 p— Gga — ! !
A(K® >t e7) = i di(z)a (k) p+ P )v(k") (5.10)
T
where .
diw(z) = ﬁ[zw(z) +ws| = dgo(2) (5.11)
since ©(z) is a real function in the kinematic region of interest
dr] <z < (1 —r,)? (5.12)
e My
ry = —— Ty = .
T My My

From these equations and with

Kps) = |K21) + p|lKi2) {5.13)
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one obtains

_ ReGya

ARy = 7 0) = = O g (gt k) (5.14)
di,(2z) = edg(2) + ilmwsg (5.15)
dro{z) >~ dg,(2) = 2¢(z) + Rews (5.16)
where

is the standard CP violation parameter in  — 7w decays and CP violation
effects of higher order have been neglected in (5.15). We observe the usual
appearance of two different sources of CP violation in (5.15): the first term
proportional to e is induced by CP violation in the K° - K° mass matrix
whereas the second term is due to an intrinsic or amplitude CP violation.

If there were no intrinsic CP violation {(Im ws = 0) we would get [11]

B(Kyp — %2 )~ 3-10 °B(Ks — =»%*'¢") (5.18)
or -
1.5-107
. L ~
B(Kp —»7nlete ) ~ { L5 10-1! (5.19)

for the two possible values? of wg [11] with the p*~ branching ratios roughly
a factor five smaller (see, however, Sect. 5d}. In order to estimale the effect of
amplitude CP violation we recall from Equs. {4.2), (4.8) and (4.26)

Imws = Imwy; = Ilmé/2. (5.20)

Since ¢ has a phase ~ 7 /4, the two terms in (5.15) will interfere and the rates
will also depend on the sign of Im wg. To get an idea of the relative importance
of the two sources of CP violation we shall content ourselves to estimate the
ratio of ahsolute values

Im w|

= d2e(z) + Rews)

(5.21)

In (5.21) a certain average over the possible range (5.12) in z should be taken.
However, the function ¢(z) varies very little over this range as evident from

Z(ctet dominance for both K+ — 7t~ and K" — #'v* implies the relation ws = w, +

1 1.
'310g J;M'K [ll}
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(5.8). Thus, setting (2¢(z)) ~ —~1/3 and using again the two possible solutions
for Re wg, we find
| v

R ~ { 0.5 (5.22)
from the estimate (4.28) and (5.20). Thus, we may expect a sizable contribution
from amplitude CP violation [13] especially in the case of the smaller branching
ratio in (5.19). In view of the approximations that have gone into the estimate
(4.28) for Im ¢, it does not seem meaningful at this point to make more de-
tailed predictions including the interference of mass matrix and amplitude CP
violation.

Quite independently of these numerical estimates, it is important to notice
that in view of (5.20) the same coupling constant responsible for the charge
asymmetry (4.18) appears as a source of intrinsic CP violation (an €'-like term)
in the K, — n%" — 7%*¢~ amplitude. Moreover, the same coupling is also
at the origin of a charge asymmetry in the K* — x%f+f~ decays. With the
amplitudes given in Ref. [11], one finds

27505
DKt - nate ) —T(K™ - o £ ) =Imw, IG—Bal Mpes :
3m(4m)?
(1-rx)?

f , dz X3 (1, 2,72)(1 — ar? [+ 202/ 2) Tmop(z/r2) (5.23)

4ry

where the function ¢ is defined in (5.8) with

Imp(z/r2) = %(1 — 472 /2329 (z — 4r?). (5.24)

Specializing to £ == e where the rate is larger, we get
F(KY 5> a0 )~ T(K~ - nete”) = 1.6Ikmw, - 1072° GeV (5.25)

and therefore, in view of {5.20), an asymmetry more than two orders of magni-
tude smaller than for K* — 7%~y as given in (4.18). With the estimate (4.28)
for Im é = 2 Tm w_., one obtains

(Kt —» wtete™) —T{K~ — wete )|
'Kt - 7atete )+ (K- — mete)

~8-10"° (5.26)

which does not seem very promising even for the forthcoming high-precision
experiments. Nevertheless, we want to emphasize again that chiral perturbation
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theory yields a definite relation between the intrinsic CP violation signals in
Kt o ptyy, K* - w20t and Ky — 700+,

So far, we have only considered the one-photon exchange amplitude for
Ky — w%*£" . In order to estimate the size of the two-photon exchange ampli-
tude, we now turn to a discussion of the transition K? — 7%y~.

5b. The K — n%~ Transition

With CP invariance assumed, the most general form of the amplitude for
K37 — 7%y with both photons on-shell depends on two invariant amplitudes A
and B defined in the appendix. Because of the tensor structure of the amplitude
M*(p,qy,qz2) in (A.8), only the amplitude A is non-vanishing to lowest non-
trivial order O(p*) in chiral perturbation theory. From our previous work [14]
we know that the order O(p*) contribulion comes exclusively from one-loop
Feynman graphs with the result

Aler,2) = A=) = Tz~ 2)F(2/r2) - (2= 1= 2)F()] (5.27)
Z = (QIA—Z;Z)z — 2(331 + -’132) -1+ T‘fr

with the function F' defined in (3.8).
To order O(p*), we have

B(zy,z,) = 0. (5.28)

This has an interesting implication. Because of the tensor structure of
M*"(p, ¢, 42}, the contribution from A4 in (5.27) to the absorptive part of the
K — «%*{~ amplitude vanishes in the limit where the lepton mass goes to
zero (13]. Actually, it can be shown that to lowest non-trivial order in chi-
ral perturbation theory the complete two-photon exchange contribution to the
K7 — n%%e” amplitude including the dispersive part is suppressed by a factor
O(m./Mg) suggesting the dominance of the CP violating one-photon exchange
amplitude discussed in the previous subsection.

However, contrary to a recent conjecture [13], the m,-suppression factor
1s not a general property of the two-photon exchange contribution to KJ —
n’ete”. In general, the amplitude B(z;,z;) in (A.8) does not have to vanish
and it contributes to KJ — n%te~ even in the limit m, — 0.

We conclude this subsection by presenting an explicit O(p®) term in the
effective chiral Lagrangian which contributes to the amplitude B and hence to
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the two-photon exchange amplitude for K7 -» n%*te” even in the limit m, — 0.
A possible O(p®) term satisfying all the symmetry constraints is

Gs  w

g2t
where w denotes a new unknown coupling constant, presumably of the same
order of magnitude as the couplings w,, wy, W,, wy in (2.18) and (2.20). The
two extra powers in derivatives are compensated hy the chiral symmetry break-

ing scale factor 167%f2 in the denominator. The effective Lagrangian (5.29)
contributes to both amplitudes A and B with the result

e F* FY t0(QAe—in{ £, LIUQUY) + huc. (5.29)

2Gsa M} )
Alzy,zy) = G Tom2/? (dm)w(zy + zy) (5.30a)
4Gga ME
B(zy,x3) = — o 16sz£(47r)2w. (5.3006)

This proves our claim that B(z,,z,) arises at the order O(p®) corresponding
to the two-loop level in chiral perturbation theory. The amplitude (5.30a) is a
higher order correction to (5.27) and will be disregarded in what follows.

5¢. The KJ — 7%y — n%*e” Amplitude

We are now in a position to make a realistic estimate of the two-photon
exchange contribution to K —» n%%e™. We can calculate unambiguously the
absorptive part of A(K? — n%%te™) due to the two-photon discontinuity. We
shall consider the result of this calculation as an educated guess of the actual
size of the complete amplitude [13].

The contribution from the two-photon intermediate state to the absorptive
part of A(K; — n°¢*e ) shown in Fig. 10 can be written as

A(K; = et ) [y = flz"f (va)1 +(q )(d 25, (@2)(2m) 6D (D - 7' — 1 — )

)?

k—m+m.
{—1e") M (p, a1, @2 Ju(k)r" (b )2 l_mz o YR (5.31)
where M,.(p,q1,q;) denotes the amplitude (A.8) for the transition Kj — n%yy
with both photons on-shell. We shall take for A(z;, ;) the explicit calculation
of lowest non-trivial order Q(p*) in chiral perturbation theory given in (5.27)

and for B(z,,z;) the order O(pf) expression (5.30b). In the limit m. — 0,
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only the term proportional to ¢, - gap.p, in M, (p, 9:,92) gives a non-vanishing
contribution of the form

Bp-(k — k)a(k) po(k'). (5.32)

Neglecting the other contributions from the amplitude B which are proportional
to m., we find after integration over the two-photon phase space the following

result
A(KY — mte) |2 = icjlira u(k)[m.E(z)+ /f)Kuj—i}é—kQ]v(k') (5.33)
where
_ L ﬂ 77 2/ri) - (2 -1 —r2)F(z
E(z) = ﬁ2108(1+_ﬂ)[( DE(/r) - (21— ) F(2)] (5.34)

8=1-dr2/z

and K is a constant

4 ME ,
The Dalitz plot density associated to (5.33) is given by [13]
o’r 2 32 ) ) , ) , , ,
be Be. ™~ m (¢*—4Am)| E(2)|°+(e_ —€; ) (de_ey —q°)|K{*—dm?(e_ —¢, ) K Re E(z)
-U€y
(5.36)
¢ = Mgz =2Mg(ep +e_) — My + m?
with e_ and €, the electron and positron energies in the K rest frame:
Bk Pk
€ = ﬂi{K 4 €y — AIK . (537)

To estimate the decay rate associated to the two-photon exchange amplitude
(5.33) we neglect the interference term in (5.36) and compare the rates induced
by the amplitudes A (proportional to m?2) and B (non-zero for m, — 0). The
decay rate associated to m.FE(z) is

DK — 7y —» 7l%te ) 4=

 2|Gsa’PMEmE  pO-ra)

16375 4r2

dzAV2 (1, 2,72)z(1 - 4r2/2)¥ 2 E(2)]? =
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=1-107% GeV (5.38)

which corresponds to a branching ratio

F(KZU — 7r°'y'y-+ 7Pete™) |a

T y o — . _15 L) v
U(Ky — all) 810 (5.39)

The branching ratio (5.39) is considerably smaller than the estimate of
Donoghue et al. [13] and at least two orders of magnitude smaller than the
estimates (5.19}) corresponding to the one-photon exchange amplitude for Im
ws = 0. Thus, the contribution of the amplitude m.E(z) in (5.33} is indeed
negligible.

The decay rate associated to the K-term in (5.33) is

DK - 7%y = n%ete) |p=

_ |Gea®)" KT

51275 My fde,dnq(e, — e, ) [de_er — 2Mg(e. + € )+ My —ml] =

=5-(4m)tw]* - 107* GeV . (5.40)

For reasonable values of the coupling constant w [(47)*w = O(1)] the rates
(5.38) and (5.40) are cormparable.

We conclude from this analysis that an order of magnitude estimate of the
CP allowed K? — 7%%e™ transition via two-photon exchange gives a signifi-
cantly smaller rate than the CP violating contribution (5.14) via one-photon
exchange. The decay amplitude for K — m%%e™ is dominantly CP violating.
5d. Transverse Muon Polarization in K; — m°u"u~ Decay

The situation for the p* ¢~ mode is completely different. Although we may
safely neglect the contribution of the amplitude B arising to order O(p®) in
chiral perturbation theory, the CP allowed two-photon exchange amplitude to
order O(p*) (proportional to m,) can now be comparable to the CP violating
one-photon exchange.

A distinctive signal of the interference between the two amplitudes and thus
of CP violation is the existence of a transverse polarization of the muons. As
the last topic of this section, we proceed to a calculation of this polarization
within the framework of the effective chiral realization of the Standard Model.

The transition amplitude for K; — #%u*u~ can be written in the form

ReGga

A(Ky — m'ptpm) = 5 alk)limuh — (p+ #)glu(k') (5-41)
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where & and g are the CP conserving and CP violating amplitudes, respec-
tively. Comparing with {5.14), we find immediately the one-photon exchange
amplitude

9(z) = €[2¢(2} + Rews] + iImws . (5.42)

As an estimate of the amplitude h induced by the two-photon exchange mech-
anism, we use the same two-photon absorptive contribution as in the previous
subsection for K2 — %y — 7%*e". To leading order O(p?),

h(z) = a E(z) (5.43)

where E{z) is given in (5.34) with m, replaced by m,,.

Denoting with N'(z) and N!(z) the event densities for given z with the two
possible muon spin orientations orthogonal to the decay plane, the z-dependence
of the up-down asymmetry is computed as

N1(z) — Ni(2) _ - Tr A1, 2,02 ) (2 — 4r2)'2[Re h(z) Re g(z) + Im h(z)Im g(z))
Ni(z) + Ni(2) rilz —Ar2)R(2) + S A(L, 2, 72)(1 + 272/ 2)ig(2)?
(5.44)

The average transverse muon polarization (¢) is given by

{€) =
—Ir, fq(:ﬁ“"")z dz/zX(1, z,72)(1 - 4ri/z)[Re h(z)Re g(z) + Im h(z) Im g(z)]

Jarg " dzXV2(1, 2,02 )(1 = 412/ 2)1 (12 (2 — 4r2)|A(2) + 3 ML, 2,72)(1 + 202/ 2)|g(2)1?]
(5.45)

and the integrated decay rate is calculated 1o be

_ |Gsal? Mg, f(l—’")”
4

MKy — nutp ) = 2(4mys dzAVA(1, 2,72 )(1 — 472 /2)V2

T2
2
ridz — 4rD) ()" + 5 A1, 2,2 )(1 + 27/ 2)lg(2) ] (5.46)
In Fig. 11, we show the up-down asymmetry (5.44) as a function of z for the
two possible values [11] of Re wg
Rewl) = 0734008

: (5.47)
Rewl” = —1.0040.08

and for three different values of Im wgs which cover the expected range for this
parameter. Positive (negative) values of Re ws lead to destructive (constructive)
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interference between the loop and counterterm contributionsin (5.16) and (5.42)
and, consequently, to smaller (larger) rates, as shown explicitly in (5.19) for
K; — 7%Te™. For the same choice of values for wgs, the average transverse
muon polarization (£}, the integrated decay rate and the branching ratio are
given in Table 2. From both Fig. 11 and Table 2 it is evident that the CP
violating asymmetries are large. Because of the influence of the two-photon
amplitude (5.43) the branching ratios are bigger than could be expected from
the corresponding et e~ branching ratios (5.19) and phase space.

From Table 2 we infer that the decay K; — 7%u*u~ could be within reach
of experiments currently under way [1]. Including the full two-photon exchange
amplitude instead of the absorptive part (5.43) may be expected to yield still
higher rates. A complete calculation of the two-photon amplitude h in (5.41)
will be necessary to make really quantitative predictions, but even the estimates
presented here strongly suggest the existence of a large CP violating signal in
this decay mode.

6. CONCLUSIONS

Rare K decays have been the subject of many theoretical investigations [32].
More often than not, it is difficult in many treatments to distinguish between
genuine aspects of the Standard Model and additional assumptions of variable
credibility usually related to the problem of long-distance dynamics. Chiral
perturbation theory, on the other hand, allows for a clear distinction. The low-
energy amplitudes of the Standard Model are calculable in chiral perturbation
theory except [or some coupling constants which are not restricted by the sym-
metries of the underlying Lagrangian at the quark level. Those constants reflect
our lack of understanding of the QCD confinement mechanism and must be
determined experimentally for the time being. Further theoretical progress in
QCD can only improve our knowledge of those constants, but it cannot modify
the low energy structure of amplitudes.

K decays are ideally suited for the effective chiral Lagrangian approach
because the characteristic momenta are small compared to the scale of chiral
symmetry breaking and because the only particles involved are pseudoscalar
mesons, photons and leptons. We have shown that all non-leptonic radiative
K decays with at most one plon in the final state have vanishing amplitudes
to lowest order O(p?) in chiral perturbation theory. The proof makes use of a
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transformation to the diagonal basis of pseudoscalar fields which in addition
entails a substantial simplification in the calculation of loop diagrams. At the
order O{p*) corresponding to the one-loop level, we may distinguish three dif-
ferent cases. In the first class of decay amplitudes (K? — vy, K? — n%yv,
K? — ~£%£7) chiral symmetry forbids all possible counterterms of order O(p")
and thus the loop amplitudes are necessarily finite. Both the rates and the spec-
tra are unambiguously predicted in terms of the single octet coupling constant
gs if we neglect the 27-plet piece of the non-leptonic weak interactions. In the
second case (K* — w¥vyy), the loop amplitude is still finite but chiral symme-
try permits a renormalization scale invariant counterterm amplitude. Finally,
if the loop amplitude is divergent, chiral symmetry must allow for a coun-
terterm amplitude which needs to be renormalized (K* —» 7ty* — gt A
K® — 7%* — #%*£"). In general, the coupling constants of the effective chiral
Lagrangian receive both long-distance and short-distance contributions. Long-
distance contributions are related to the non-renormalizability of the effective
theory and they include effects of higher mass states which are not explicitly
represented in the chiral Lagrangian. We have set up the complete list of elec-
troweak counterterms to order O(p*) with at least one photon field, restricted
to the dominant octet part of non-leptonic weak interactions.

The off-shell amplitude K? — ~v*v* shares with the on-shell transition the
property of being uniquely given by the finite loop amplitude. The off-shell
structure of chiral vertices predicted by QCD can be tested in K} — yutu~
where both the rate and the spectrum can be distinguished from phase space
or dispersion models with constant off-shell vertices. In K} — yete™, on the
other hand, the spectrum is so much peaked towards small invariant masses of
the lepton pair that QCD effects cannot be seen in the relevant ratio dI'(K) —
vete™ )/T(K] — v7). To lowest non-trivial order in chiral perturbation theory,
also dI'(K7 — v£Y€7)/I'(KY — vv) is given by phase space.

Asin the case of K) — 7%, the loop amplitude for K* — mEyy is finite but
chiral symmetry allows nevertheless for a tree level counterterm coniribution.
‘Therefore, we can only derive a one-parameter relation between the rate amd
the spectrum and a lower bound for the branching ratio B(K* — aiyy) >
4 - 10°7. We have also calculated the charge asymmetry D{(K* — ntyy) -
I'(K~ — 7 v7) as a measure of intrinsic or amplitude CP violation in terms of
the imaginary part of a certain counterterm coupling constant. Employing an
approximate relation between the short-distance part of chiral counterterms and
the semi-leptonic electromagnetic penguin operator, an estimate of the charge
asymmetry was given suggesting a sensitivity of order 107'° in the branching
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ratio necessary for its experimental detection.

Quite independently of specific numerical estimates, it is important to em-
phasize that chiral perturbation theory yields a precise relation between dif-
ferent signals of CP violation. In particular, it predicts the charge asymmetry
(Kt — ntete™) —I'(K~ — 7 ee”) to be more than two orders of magni-
tude smaller than for K* — n%y+. Moreover, these charge asymmetries can be
related unambiguously to the size of the Ky — n%£7£~ amplitude with intrin-
sic CP violation. A similar numerical estimate as for the charge asymrnetries
suggests that the intrinsic CP violation in Ky — 7°£*£~ is non-negligible and
may even dominate over the usual e-like CP violation from the K° — K° mass
matrix.

We have carefully estimated the CP conserving amplitude K; — 7% y* —
7%+ ¢~ by calculating the two-photon absorptive part. Although in detail our
results differ considerably from those of Donoghue et al. [13], we confirm their
conjecture that the CP violating one-photon exchange dominates by far in the
ete” mode. The situation is, however, rather different for the u* 1~ mode where
the CP violating and CP conserving amplitudes are comparable. In addition to
yielding a larger rate for K;, — n%utu~ than expected from the ete™ rate
and phase space, the interference between the two amplitudes produces a large
transverse muon polarization as a spectacular signal of CP violation. With only
the two-photon absorptive part in the CP conserving amplitude, we find a very
pronounced dependence of the up-down asymmetry on the invariant mass of the
lepton pair and an average transverse muon polarization in the range hetween
20 and 60%. A sensitivity of several 107 '? will be necessary to detect this decay
mode, which could be within reach of ongoing experiments.

The effective chiral Lagrangian approach to rare K decays offers many pos-
sibilities for crucial tests of the Standard Model. Measuring the decay rates will
shed light on the unsolved problem of whether the Standard Model can account
for the AT = 1/2 rule (octet enhancement). The chiral structure of weak ver-
tices predicted by QUD with its softly broken chiral symmetry will be apparent
in the spectra of the various decay channels. Finally, in the purely weak sector,
chiral perturbation theory relates different observables sensitive to the elusive
intrinsic CP violation of the Standard Model.
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APPENDIX: KINEMATICS

In this appendix we review the general kinematic features of decays of the
type
M(p) — vl@)+v(e)
M(p) — M'(p)+v(a) + 7(g2)

where M, M’ denote (pseudo)scalar particles which in our case will always be
on-shell:

(A.1a,b)

pP=M*, p?=M". (4.2)

The amplitude for M — vy transitions, with both photons off-shell, has the
general {form compatible with gauge invariance

FEN 7 Mo v
v y W9 424 q1° G2 o
M™(qr,q2) = (g* — "5 — 200 + 2 i M2 a(q?, )+
N 93 41492

Mo [

" 41 4 g9 q1 - q2 v

Tl — @ a( 75 + 252 — 3 e)b(e?, ¢2)+
'£] g2 q1 9>

+ fww?lpfhac(‘ﬁ: QS) (A3)

where a, b, ¢ are invariant amplitudes free of kinematic singularities. Bose sym-
metry implies that all three amplitudes are symmetric functions of q, ¢2. The
amplitudes a, b on the one hand, and ¢ on the other hand, have opposite parity
iransformation properties. In M — ~+ transitions, the final cigenstates of P are
also eigenstates of CP. Hence, with CP invariance assumed, the amplitudes a, b
will contribute to K7 — 474" transitions only while ¢ contributes to K2 —» 4y
only.

When one of the photons is on-shell, say ¢? = 0,
ﬂ,fza,((), QZZ) +aq - qz b(O,qg‘) = () (A4)

and M*(q;, g} reduces to two invariant amplitudes

€a(q)M™ (g1, 92) = eul@){(—q1 - 029" + 45 ¢7)b(0, 03) + "7 q1,q2,¢(0, 42)} .
(A.5)
With both photons on-shell, two invariant amplitudes remain.
The general amplitude structure for M(p) — M'(p') + ¥(q1) + v(q2) transi-
tions, with all particles on-shell

pz = M? s pfz - JMﬂz7 q12 = (I§ =0 (Aﬁ)
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18
6#(‘11)£u(?2)ﬂ{w(17,41=Q2) (A~7)

where gauge invariance restricts M**(p, ¢1,¢:) to depend on four invariant am-
plitudes:

MY (p,q1, @2) = A(z1, z2)[—q1 - 029" + g5 ¢+
+ Bz, za) [~ Mz 209" — q}ld',fz P*p” + 21g5p” + xopMey |+
+ C(z1,22)e" g ,q95 +

+ D(r, 22) [ (2241, + ®1929)ps + (P07 4 preresmPadisday 4 gy

M2
where
- q; } i M2
:L’,':Eﬂd_—g (1:1,2)’ ql-qzzﬂdz(ml—{-mg"—"i)-‘!‘“i—. (Ag)
Bose symmetry yields the relations
Az, z3) = Az, zy), B(zi,29) = B(zq, 1) (4.10)
C(Z’l,mg) E= C(mz,ml), D(T.;l,.'l?z) = —D(I.Cz,ml). )

The invariant amplitudes 4, B have opposite parity transformation properties
to C', D. In the limit where CP is conserved, the amplitudes 4, B contribute
only to K; — m%yy whereas K7 — 7%y involves only the other two amplitudes
C, D. Of course, such a distinction does not apply to the charged decay modes
Kt — ghoyy.
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TABLE 1

D(K? — v£4)

T(K? = v7)
f=c¢e f=p
chiral dynamics [Equs. (3.4), (3.7)] | 1.60-107% | 3.75.10*
dispersion model [17] 1.59-107% | 3.30- 104
phase space [H(z) = H(0)] 1.59-107% | 4.09-10"* |

Normalized rates

TABLE 2

Average transverse muon polarization (£), decay rate I'(K;, — x%utpu”) and
branching ratio B{Ky — mu*p™)

Re wg | Im ws | (f} T(Ky — 7utp)/107%% GeV B(KL — 7r°p,+,u_"_)
~10-3 | —0.05 | ©0.68 5.4-10"12
0.73 0 ~0.24 0.69 5.5. 10712
1073 | —0.37 0.80 6.3-10"12
~10 3| 0.52 T .29 ' 10.2- 10712
—~1.00 0 0.51 1.06 8.4 . 10712
1073 | 0.45 0.92 7.2.10712
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Fig. 1
Fig. 2
Fig. 3

Fig. 6

Fig. 8

I'ig. 9

Fig. 10

Fig. 11

FIGURE CAPTIONS
Leading diagram contributing to the electromagnetic penguin operator.

Feynman diagram for the K? - v£*{~ transition.

Normalized g2-distribution for K5 — yut g~ in the limit of CP conserva-
tion (full curve). Also shown for comparison is the phase space distribution
(dashed curve). ¢2 is the invariant mass squared of the lepton pair.

Tree level diagram for K — y£7{~ involving the WZ term of the chiral
Lagrangian. The open box denotes the AS = 1 weak vertex.

One loop diagrams for K* — 7wty in the diagonal basis described in
Sect. 2. The weak (and weak + electromagnetic) vertices denoted by an
open (full) box are given by the Lagrangian (2.21). There are in addition
tadpole diagrams not shown in the figure.

Behaviour of the one-loop function F(z) defined in (3.8) in the physical
region for K — myvy decays. The real and imaginary parts of F(z/r2) are
also shown.

Tree level diagram for K+ -+ n* v+ involving the anomalous WZ term.

Total rate for K+ — 7ty (full curve) as a function of the renormalization
scale invariant é defined in (4.2). The absorptive contribution is indicated

by the dashed line.

Normalized ¢*-distribution for Kt — ntyy for ¢ = —4 (dotted curve),
¢ = 0 (full curve) and é = 4 (dashed curve). Also shown is the pure phase
space prediction (dash-dotted curve).

Contribution from the two-photon intermediate state to the absorptive
part of A(K] — 7%ete ).

Up-down asymmetry (5.44) as a function of z for the two possible values
of Re ws given in (5.47) and for three different values of lm wgs covering
the expecled range for this parameter. The different curves correspond to
the following values of (Re wg, Im wg):

(0.73, —1073) ~ [ —=s o—], (0.73,0) ~ [— ——1,
(0.73, +107%) ~ [=me——], (—1.00, —10°) ~ [ — —=]
(—100,0)’\’[——‘] and (—100,+10_2)N[ + o . ]
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