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N-dimensional alternate coined quantum walks from a dispersion-relation perspective
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We suggest an alternative definition of N -dimensional coined quantum walk by generalizing a recent proposal
[Di Franco et al., Phys. Rev. Lett. 106, 080502 (2011)]. This N -dimensional alternate quantum walk, AQW(N),
in contrast with the standard definition of the N -dimensional quantum walk, QW(N), requires only a coin qubit.
We discuss the quantum diffusion properties of AQW(2) and AQW(3) by analyzing their dispersion relations
that reveal, in particular, the existence of diabolical points. This allows us to highlight interesting similarities
with other well-known physical phenomena. We also demonstrate that AQW(3) generates considerable genuine
multipartite entanglement. Finally, we discuss the implementability of AQW(N).
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In both its standard forms, the coined [1] and the continuous
one [2], quantum walk is the quantum version of a classical
random process, described by the diffusion and the teleg-
rapher’s equations, respectively [3]. In the coined quantum
walk—the process we consider here—there is a system (the
walker) that undergoes a conditional displacement, to the right
or the left, depending on the output of a coin throw, as in the
random walk. But differently from its classical counterpart,
here both coin and walker are quantum in nature. The one-
dimensional coined quantum walk—QW(1) for short—has
been studied from many different perspectives, especially from
the quantum computational point of view [4]. In the last few
years, quantum walks have also received increasing experi-
mental attention [5–7], including cases with more than one
particle [8].

The situation is quite different when dealing with N -
dimensional quantum walks, QW(N) for short. They were first
discussed by Mackay et al., who introduced them in complete
analogy with QW(1) [9] (see also Ref. [10]). As defined in
Ref. [9], QW(N) requires the use of a 2N -dimensional qudit as
coin, as well as a coin operator represented by a 2N × 2N uni-
tary matrix. This introduces increasing complexity in the pro-
cess as N grows, especially from the experimental viewpoint
[11,12], but also from the theoretical one [13,14]. However, Di
Franco et al. [15] have recently proposed an alternative two-
dimensional quantum walk, namely, the alternate quantum
walk—AQW for short—that is simpler than the standard one.
In AQW the coin is a single qubit, as in QW(1), and each time
step is divided into two halves: in the first one the coin is thrown
(i.e., a Hadamard transformation is applied on the coin qubit)
and the conditional displacement along x is performed; then,
in the second half of the time step, the coin is thrown again and
the conditional displacement along y is performed. Hence, in
AQW, the four-dimensional qudit of QW(2) is replaced by a
single qubit, the price paid for that being to double the number
of substeps per single time step. Quite unexpectedly, AQW
reproduces the same spatial probability distributions of QW(2)
when the Grover coin is used — Grover-QW(2) for short
— for a set of particular initial conditions, precisely those
for which the characteristic localization of Grover-QW(2)
does not occur. In Refs. [15,16] analytical demonstrations of

the (partial) equivalence between Grover-QW(2) and AQW
are given.

Here we generalize AQW to N dimensions: we define the
N -dimensional alternate coined quantum walk — AQW(N) for
short — as a quantum walk in which the time steps are divided
into N substeps. In each of these substeps, the coin throw
is followed by the conditional displacement along one of the
N dimensions. In a single time step of AQW(N), the qubit
coin is therefore thrown N times, but this is clearly simpler
than throwing a single 2N -dimensional coin, from both the
experimental and analytical points of view, in particular for
large N (a more detailed discussion about the possible scaling
of errors strongly depends on the physical setting exploited for
the realization of the scheme). We show below that, besides
a simpler experimental implementability as compared with
QW(N), AQW(N) has a rich dynamics that is also easy to
understand. We provide some analytical results concerning
the evolution of the probability distribution for cases N = 2,3,
paying special attention to the processes’ dispersion relations.
These reveal the existence of diabolical points (DPs in the
following), conical intersections involving a degeneracy [17],
that allow us to highlight interesting similarities with other
well-known physical phenomena. As a striking example, we
present the homogeneous propagation of an initially extended
state with perfect circular symmetry in relation to the ring
shape of the beam exiting a biaxial crystal under conical
refraction conditions [18]. Further physical contexts where
DPs appear are given in the remainder of the paper. An analysis
from this viewpoint has not been performed so far and is
useful to broaden our knowledge of the particular scheme
under investigation. We also demonstrate the generation of
considerable genuine multipartite entanglement in AQW(3).
We conclude this paper with a brief discussion concerning the
experimental implementability of AQW(N).

I. THE MODEL

In order to introduce AQW(N) formally, let |ψ〉t represent
the state of the system at (discrete) time t . The vector |ψ〉t is
defined in the compound Hilbert space HP ⊗ HC , where HP

and HC are the Hilbert spaces for the lattice sites and coin
qubit, respectively. WithHP andHC spanned by {|$x〉,$x ∈ ZN }
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ROLDÁN, DI FRANCO, SILVA, AND DE VALCÁRCEL PHYSICAL REVIEW A 87, 022336 (2013)

and {|c〉,c = u,d}, we can write |ψ〉t =
∑

$x
∑

c=u,d c$x,t |$x; c〉
with |$x; c〉 = |$x〉 ⊗ |c〉, where c$x,t is the probability amplitude
for the walker to be at site $x = (x1, . . . ,xN ) at time t with the
coin in state c. The probability of finding the walker at site $x
at time t is P$x,t = |u$x,t |2 + |d$x,t |2.

The state evolves as |ψ〉t+1 = Û(N)|ψ〉t , with Û(N) =
D̂NĈND̂N−1ĈN−1 . . . D̂1Ĉ1 a unitary operator. Here, oper-
ator Ĉi is the coin operator, acting only in HC , whose
more general form is Ĉi = cos θi(|u〉〈u| − ei(αi+βi )|d〉〈d|) +
sin θi(eiαi |u〉〈d| + eiβi |d〉〈u|), with (αi ,βi ,θi) arbitrary reals
and i = 1, . . . ,N (notice that, for αi = βi = 0 and θi = π/4,
Ĉi is just the Hadamard transformation). D̂i is the conditional
displacement operator along direction xi , which we write as
D̂i =

∑
$x∈ZN [|$x + $ni ; u〉〈$x; u| + |$x − $ni ; d〉〈$x; d|], where $ni

is the unit vector along direction xi .
Equation |ψ〉t+1 = Û(N)|ψ〉t can be expressed as a map

relating probability amplitudes c$x,t+1 with c̃$x ′,t , where c,c̃ =
u,d and $x ′ are nearest neighbors of $x. This map admits
two plane-wave solutions of the form col(u$x,t ,d$x,t )± =
$ϕ$q,± exp[i($q · $x − ω(±)t)], where $ϕ$q,± = col(u$q,±,d$q,±) are
time-independent vectors, $q is the pseudomomentum with
qi ∈ (−π,π ], and ω(±) are two frequencies determined by the
dispersion relation. The dispersion relation is most relevant
because |ψ〉t is entirely determined by it, given |ψ〉t=0.
Moreover, when the initial state extends over a finite set of
points in the lattice, especially when it is modulated by a
smooth function of space, the dispersion relation is particularly
useful for predicting the evolution of the initial wave packet,
due to the relatively well-defined group velocity (given by
the local gradient of the dispersion-relation curve). In this
case, long-wavelength continuous approximations are very
well suited and useful for envisaging the long time behavior
of the probability distribution. This has been discussed in
detail for QW(1) in Ref. [19] (see also Refs. [3,20]). Here,
we will limit ourselves to a qualitative discussion of what the
dispersion relation suggests for cases N = 2,3.

II. DISPERSION RELATION FOR TWO-DIMENSIONAL
ALTERNATE QUANTUM WALK

Let us first consider AQW(2). By proceeding as stated above,
one obtains the following dispersion relation:

cos ( = c1c2 cos(u + v) + s1s2 cos(u − v), (1)

where ci = cos θi , si = sin θi , u = q1 + (β1 + α2)/2, v =
q2 + β2/2, and ( = ω − (β1 + β2 + α2)/2. Notice that phase
α1 does not appear in Eq. (1); hence it is irrelevant. As
for the phases that do appear, they just entail a translation
of the frequency and spatial quasimomentum. Only θ1 and
θ2 are dynamically relevant parameters. Figure 1(a) presents
the dispersion curves for θ1 = θ2 = π/4. The most relevant
features are the existence of a number of saddle points (for
which the group velocity is zero), together with regions
of maximum slope (which equals 0.5, hence the maximum
velocity in AQW(2)) and, most importantly, the existence of
DPs. Interestingly, when θ1 )= θ2, the DPs disappear, as shown
in Fig. 1(b). This suggests that the existence of DPs could
be particularly sensitive to decoherence effects in the coin
mechanism.

FIG. 1. (Color online) 3D views of the two branches of Eq. (1),
for θ1 = θ2 = π/4 (a) and θ1 = π/4 )= θ2 = π/3 (b). Propagation
in AQW(2) after 90 time steps of an initial state with a Gaus-
sian probability distribution of width σHWHM = 7 and coin state
col(1/

√
2,i/

√
2) equal for all populated sites, for θ1 = θ2 = π/4 (c)

and θ1 = π/4 )= θ2 = π/3 (d).

The dynamics around the points of null and maximum slope
can be analyzed as in Ref. [19] for QW(1), i.e., in terms of
known solutions of simple linear wave equations. One can
then envisage more or less straightforward generalizations of
the results there discussed to the two-dimensional case (we
study this elsewhere for Grover-QW(2) [21]). But the existence
of DPs is particularly appealing and constitutes a qualitative
difference with the one-dimensional case. This geometric
object, the DP (that takes its name from the diabolo-like
shape of the conical intersection), appears in physics in quite
different contexts such as, for instance, quantum triangular
billiards [17], conical refraction in crystal optics [18], the
electronic spectrum of polyatomic molecules [22], or the
dispersion relations for massless fermions (Dirac electrons)
in QED and for electrons in graphene [23,24] or optical
lattices [25]. The diabolo is associated with some remarkable
phenomena appearing in those systems. As for a given initial
condition the dispersion relation determines the evolution of
the system (in the absence of dissipation), the existence of DPs
establishes a strong link between the evolution properties in
these contexts. Let us remark the fact that the quantum walk,
differently from the continuous systems mentioned above, is
defined in a discrete Hilbert space.

For what we have stated so far, we can expect to find in
the dynamics of AQW(2) some parallelism with phenomena
present in the aforementioned systems. In this sense, Fig. 1(c)
shows the propagation of an initially extended state [with a
Gaussian probability distribution of σHWHM = 7 and coin state
col(1,i)/

√
2 equal for all populated sites] after 90 time steps.

A homogeneous ballistic propagation from the origin with
perfect circular symmetry is clearly visible, which strongly
recalls the ring shape of the beam exiting a biaxial crystal under
conical refraction conditions [18]. Indeed, a careful analysis
reveals that the fine structure of the probability distribution in
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Fig. 1(c) is very similar to that appearing in conical refraction
(the so-called Pogendorf rings [18]), a result to be reported
elsewhere with full mathematical details [21]. It is interesting
to compare this dynamics with that shown in Fig. 1(d), which
has been obtained for the same initial conditions but with
θ1 = π/4 )= θ2 = π/3. In this case the diabolo is lost and the
branches of the dispersion relation show a parabolic shape
[see Fig. 1(b)] that leads to evolutions typical of linear optical
diffraction [19]. We want to mention that a similar controlled
disappearance of the DP has been experimentally observed in
graphene [23].

Before moving to a higher dimension, let us revisit
the relation between AQW(2) and Grover-QW(2) from the
dispersion-relation perspective. The dispersion relation for
Grover-QW(2) consists of four sheets, because the coin space
is four-dimensional, and can be found in Refs. [14,21]. In our
notation, they read ω1,2 = 0,π and ω3,4 = ± arccos[(cos u +
cos v)/2]. Remarkably, the two sheets ω3,4 coincide with those
of AQW(2) [Eq. (1)] for θ1 = θ2 = π/4 after identifying (u,v)
in Grover-QW(2) with (u + v,u − v) in AQW(2), i.e., the two
dispersion relations coincide for these parameters up to a
π/4 rotation of the pseudomomentum. The two other roots
in Grover-QW(2), ω1,2 = 0,π , are constant, which means that
the projections of the initial state onto the corresponding
eigenvectors will not evolve in time. This is the origin of
localization in Grover-QW(2) for most initial coin states, as
already noticed in Ref. [14]. We conclude that whenever
the initial state in Grover-QW(2) does not project onto the
eigenvectors governed by ω1,2, Grover-QW(2) and AQW(2)
are isomorphous for θ1 = θ2 = π/4. This is our proof of the
(partial) equivalence between the two versions of the process.

III. DISPERSION RELATION FOR THREE-DIMENSIONAL
ALTERNATE QUANTUM WALK

Let us now move to AQW(3). The dispersion relation is
governed by

sin ( = c1[c2c3 sin(u + v + w) + s2s3 sin(u − v + w)]

+ s1[c2s3 sin(u + v − w) − s2c3 sin(u − v − w)],

(2)

with ci = cos θi , si = sin θi , and (u,v,w,() = (q1,q2,q3,ω) +
(δq1,δq2,δq3,δω). Here 2δq1 = α1 + β2, 2δq2 = α2 + β3,
2δq3 = α3 + β1, and δω = −(δq1 + δq2 + δq3). From Eq. (2)
two dispersion relations are obtained, namely, ω(+) = (
and ω(−) = π − ω(+). As in AQW(2), some phases in Ĉi

are absent in the dispersion relation (hence they are ir-
relevant) and the effect of the rest of phases in Ĉi is
just a displacement of the dispersion-relation surfaces in
the {q1,q2,q3,ω} space. Equation (2) is simpler for θi =
π/4, i = 1,2,3. In this case there are eight degeneracies
(occurring when ω(+) = ω(−) = π/2) at (uDP,vDP,wDP) =
{(a,a,a),(−a,−a,b),(−a,b,−a),(b,−a,−a)}, with a,b =
π/4,3π/4, and a )= b. These are the three-dimensional (3D)
equivalents of the DPs discussed for AQW(2). As in AQW(2),
the DPs disappear when phases θi are different. We mention
that several crystallographic structures have recently been
proposed for obtaining 3D DPs (Dirac-semimetal in 3D) [26].

FIG. 2. (Color online) Propagation in AQW(3) after 90 time
steps of (a,b) a localized initial state and (c,d) a spatially extended
initial state with Gaussian probability distribution of width σHWHM =
7, whose pseudomomentum is centered at one of the DPs
[(uDP,vDP,wDP) = (π/4,π/4,−3π/4)]. In both cases θ1 = θ2 = θ3 =
π/4 and the initial coin state is col(0,1). Panel (e) shows the tripartite
negativity N (3) against the number of time steps t in AQW(3), with
the walker starting at the origin and initial coin state col(1,i)/

√
2.

In Figs. 2(a) and 2(b) we present two bidimensional
projections of the probability distribution corresponding to
the propagation of a walker initially localized at the origin.
The width of the distribution grows linearly with time,
along all three spatial dimensions, as it happens for lower
dimensionality. In order to show the effect of the DP, Figs. 2(c)
and 2(d) show the same projections as Figs. 2(a) and 2(b)
when the initial condition of the walker is not localized
but extended. Again we choose a Gaussian distribution with
σHWHM = 7, whose pseudomomentum is centered at one of
the DPs [(uDP,vDP,wDP) = (π/4,π/4, − 3π/4)]. We observe
a symmetric ballistic dynamics in the (x1,x2) plane [Fig. 2(c)]
that resembles that of Fig. 1(c). Notice the existence of two
concentric bright rings, as it occurs in conical refraction [17].
However, the probability is not equally symmetric in the
(x1,x3) plane [Fig. 2(d)], which reveals an intrinsic lack of
symmetry in AQW(3): indeed, it can be shown that it is not
possible to find any initial coin state that leads to a symmetric
propagation in all directions [the chosen initial coin state,
col(0,1) for all populated sites, leads to a symmetric distribu-
tion in the planes with constant x3, but not in those for which
x3 varies, as the figures show]. One could wonder whether
AQW(3) is a process similar to Grover-QW(3) as it happens for
N = 2. The answer is negative: we have derived and compared
the dispersion relations of both processes for N = 3 and they
are different. Hence N = 2 is a singular case in this respect.

IV. GENERATION OF MULTIPARTITE ENTANGLEMENT

Another aspect investigated in the context of two-
dimensional quantum walks is the generation and the effects
of bipartite entanglement during their evolution [27]. Having

022336-3
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a richer and more complex structure than the bipartite case
[28], multipartite entanglement has recently attracted a lot of
interest in the scientific community. Clearly, a feasible system
able to generate a proper amount of genuine multipartite
entanglement could be a valuable benchmark for this rapidly
growing research field. Hence a most relevant question is
whether quantum walks with N > 2 do exhibit consider-
able genuine multipartite entanglement or not. We have
investigated this for N = 3. We have first to trace out the
state of the coin, and we are then left with a density matrix in
the composite Hilbert space Hx1 ⊗ Hx2 ⊗ Hx3 (each subspace
corresponding to a direction of the walk). We evaluate the
multipartite entanglement present in this composite system
by means of the tripartite negativity [29]. This is defined
as the geometric average of the three negativities that are
obtained by considering the three possible bipartitions of the
total system, giving N (3) = 3

√
N1−23N2−13N3−12. Here Ni−jk

is the negativity of the composite system {i,j,k} corresponding
to the bipartition in the subsystem {i} and the subsystem {j,k}.
Each Hilbert direction-subspace has a dimension growing with
the number of time steps, so we use the generalization of
the negativity for higher-dimensional systems (so as to have
0 ! N ! 1) [30]. We have calculated N (3) in AQW(3), with the
walker starting at the origin and initial coin state col(1,i)/

√
2,

for a number of time steps t up to 10, obtaining the plot in
Fig. 2(e). Even if the number of time steps considered here is
not so large (due to the dimension of the total Hilbert space, the
computational power required for the evaluation grows rapidly
with t), it is easy to check that AQW (3) is able to generate a
considerable amount of genuine multipartite entanglement. It
is also interesting to notice that N (3) saturates rather fast.

V. IMPLEMENTABILITY OF N-DIMENSIONAL
ALTERNATE QUANTUM WALK

Let us finally discuss the implementability of AQW(N).
Realizing QW(N) is quite demanding because of the com-
plexity of performing coin operators to transform the needed
2N -dimensional qudit. On the other hand, in AQW(N): (i) a
single coin-qubit is required independently of N ; (ii) two-
dimensional transformations of the qubit are easy to implement
[5–7]; and (iii) the sequential application of operators D̂j Ĉj ,
j = 1, . . . ,N , makes the implementation of AQW(N) similar
to that of QW(1), provided that all N dimensions could be
multiplexed into a single one (similarly to what Schreiber et al.
[12] have recently done in their pioneering implementation of
QW(2)). Indeed, one could even implement AQW(N) with a
constant number of physical elements independently of N if
there is sufficient control on the experimental device.

In order to illustrate this, we generalize the idealized device
already discussed in Refs. [20,31], which is similar to that
actually used in Ref. [5]. Consider a long enough optical cavity
containing two electro-optic modulators (EOMs) whose roles

are (i) EOM1 performs the coin operator Ĉ (i.e., makes a
unitary transformation of the light polarization state, which
plays the role of the coin qubit in this implementation of the
walk); and (ii) EOM2 performs the conditional displacement
D̂, which consists in up/down shifting the carrier frequency
of the light pulse depending on its polarization. The light
pulses entering the cavity are assumed to be much shorter
than the cavity length, and the frequency shifts introduced
by EOM2 must be large enough for avoiding any frequency
overlapping between pulses. With such a device not only QW(1)
can be implemented—see Refs. [5,20,31]—but also AQW(N)
could be implemented for different values of N by properly
programming the operations of the EOMs, without the need
for additional elements. For example, in order to perform
AQW(2), the first half of the time step is implemented within
one cavity round trip of the light pulse (during which EOM1
and EOM2 implement D̂1Ĉ1); then, in the subsequent cavity
round trip, the settings of both EOMs are changed in order
to perform a different coin operator and a different frequency
displacement implementing D̂2Ĉ2. Importantly, the frequency
displacements in Ĉ1 and Ĉ2 must be different enough in order
to multiplex a large number of steps [12]. Only technical limi-
tations seem to restrain the extension of the procedure to higher
N [32]. However, we are not claiming that the device just
outlined is the most appropriate for implementing AQW(N).
Indeed, a suitable modification of the flexible device used by
Schreiber et al. [7,12] would probably be a more promising
option. With our discussion we just want to emphasize that
a single and conceptually simple device could implement
alternate quantum walks with tunable dimensionality.

VI. CONCLUSIONS

In conclusion, we have introduced the N -dimensional
alternate quantum walk and discussed some of its properties
through the analysis of the dispersion relation that reveals,
in particular, the existence of diabolical points. We have
demonstrated that for N = 3, the process generates genuine
multipartite entanglement. We have finally discussed its imple-
mentability, that could be possible with physical resources that
do not necessarily grow with the dimensionality of the walk.
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A. Romanelli, arXiv:1212.3600 [quant-ph].
[22] C. A. Mead and D. G. Truhlar, J. Chem. Phys. 70, 2284 (1979);

L. S. Cederbaum, R. S. Friedman, V. M. Ryaboy, and
N. Moiseyev, Phys. Rev. Lett. 90, 013001 (2003).

[23] A. Bostwick et al., New J. Phys. 9, 385 (2007).
[24] A. H. Castro Neto et al., Rev. Mod. Phys. 81, 109 (2009).
[25] M. Zhang, H. H. Hung, Ch. Zhang, and C. Wu, Phys. Rev. A 83,

023615 (2011).
[26] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and

A. M. Rappe, Phys. Rev. Lett. 108, 140405 (2012).
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