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Prof. Carlos Muñoz, IFT (UAM-CSIC) — Spain.

Prof. Sergio Pastor, IFIC (UV-CSIC) — Spain.
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Professor José Valle, for being so inspiring with his passion for physics, and
so generous with his time. His ability to guide a work toward something more
interesting without being overbearing, and to subtly drift me away from vari-
ous intellectual pitfalls without being discouraging, created an environment of
support and creative freedom which I have enjoyed tremendously. I owe this
thesis to his mentorship.

To my co-advisor and friend Stefano Morisi, I am deeply grateful for his con-
stant support, and for the hours and hours of discussions. Thanks for introduc-
ing me to the world of model building. With time, I have learned to embrace
and tolerate the inherent messiness that accompany such an activity.

It is with great pleasure that I utter my gratitude to Martin Hirsch, for his
constant availability to discuss and answer my questions —from the down to
earth experimental ones up to the ‘philosophical’ ones. I have greatly bene-
fited from such discussions. My warm thanks go also to Sergio Pastor for his
pragmatic recommendations, and specially for his precious help and assistance
during difficult bureaucratic situations.

I am indebted to the members of the committee of my thesis for generously
accepting to review the manuscript.

I wish to thank the co-authors of all the papers that are listed below for the
excellent collaborations. And to be fair, I have also to mention the co-authors
of the unwritten papers. Whether the model had been mercilessly ruled out
by data, or because of some particular life circumstance∗, I thank Diego Aris-
tizabal, Lotfi Boubeker, David Cerdeño, Nicolao Fornengo, Massi Lattanzi,
Stefano Morisi, Daniel Schmidt, Marco Taoso, José Valle, Andrea Vittino, and
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Resumen

Neutrinos y Materia Oscura

El descubrimiento de las oscilaciones de neutrinos y la eviden-
cia de la existencia de materia oscura, demuenstran la necesidad de
una nueva f́ısica más allá del modelo estándar (SM). Sin embargo, la naturaleza
detallada de la nueva f́ısica sigue siendo dif́ıcil de alcanzar. Por un lado, se
desconoce el mecanismo responsable de generación de masa de los neutrinos y
su estructura de sabor. Por lo tanto, la naturaleza de los neutrinos, su masa y
parámetros de mezcla son todos impredichos en el SM. Por otro, la naturaleza
de la materia oscura (DM) constituye uno de los problemas mas endémicos en
la cosmoloǵıa desde décadas, aunque recientemente algunos experimentos de
detección directa e indirecta de DM están mostrando indicios que dan esper-
anza de una detección inminente.

La vinculación entre la generación de masa del neutrino y la naturaleza de la
materia oscura, en un único marco, es teóricamente atractivo, y puede generar
nuevas ideas sobre ambas cuestiones. La idea de la unificación en śı, o como
Feynman soĺıa llamarla amalgamación, es fundamental para la f́ısica, y en gen-
eral para cualquier disciplina cient́ıfica. Unificar es obtener nuevos conocimien-
tos mediante la śıntesis y generalización de los conocimientos.

Esta tesis está dedicada a la interacción entre la f́ısica de neutrinos y la ma-
teria oscura. Especialmente en el desarrollo y la comprensión de los modelos
en los que la dinámica de la materia oscura y los neutrinos están relacionados.
Mediante la conexión de la materia oscura con los neutrinos, es posible obtener
información directa e indirecta sobre la nueva f́ısica. De hecho, los neutrinos
ofrecen una manifestación notable de esta nueva f́ısica y varios experimentos
nos proporcionan datos precisos sobre sus mezclas y masas. Estos datos rev-
elan un fuerte contraste con el caso conocido de los quarks. Por las escalas
de enerǵıa involucradas en el problema y la precisión de estas mediciones, la
f́ısica de neutrinos ofrece una visión tentadora de uno de los problemas más
profundos y duraderos del SM, a saber, el problema de sabor.
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Plan de la tesis: Comenzaremos con una breve introducción del Modelo
Estándar de la f́ısica de part́ıculas y la notación que utilizaremos a lo largo
de la tesis en el Caṕıtulo (1). A continuación se presenta una introducción
y una visión general de la f́ısica de la materia oscura y de los neutrinos en
el Caṕıtulo (2) y el Caṕıtulo (3), respectivamente, y la revisión intentos de
unificar su descripción en el Caṕıtulo (4).

Empezamos la parte original de esta tesis en el Caṕıtulo (5), donde se vincu-
lan la materia oscura y los neutrinos a través de una simetŕıa de sabor. Las
simetŕıas de sabor, especialmente las basadas en grupos discretos no abelianos,
proporcionan un motivo para abordar el problema de sabor a partir de primeros
principios. La descripción unificada se consigue mediante la asignación de la
DM a una representación irreducible del grupo de sabor. La ruptura de este
grupo, que se requiere a fin de generar las masas y los patrones de mezcla,
vincula la fenomenoloǵıa de la DM con los neutrinos y estabiliza la DM al
mismo tiempo. Presentaremos en detalle la fenomenoloǵıa de un modelo que
utiliza este mecanismo. El candidato de DM en el modelo emerge del triplete
del grupo de sabor y se estabiliza por medio de una simetŕıa remanente.

El Caṕıtulo (6) está dedicado a un modelo más complejo, con una conexión
aún más profunda entre los neutrinos y la materia oscura, siguiendo la misma
filosof́ıa de ‘materia oscura discreta’ del Caṕıtulo (5). El modelo construido es
compatible con los últimos resultados de Daya-Bay y su medición del último
ángulo de mezcla desconocido, es decir, el ángulo de reactor.

Finalmente en el Caṕıtulo (7), exploramos otra posible relación entre los neu-
trinos y la materia oscura: el majoron. El modelo mı́nimo, basado sobre el
mecanismo de seesaw, tiene todos los ingredientes necesarios para tener en
cuenta la posible observación directa de las ondas gravitatorias primordiales
por BICEP2 y la confirmación del paradigma inflacionario. Si los resultados
de BICEP2 se confirman despues del escrutinio de la comunidad cient́ıfica,
el impacto que tendrá en la cosmoloǵıa y en general en la f́ısica, va a ser
revolucionario.
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Introduction and outline

The discovery of neutrino oscillations and the growing evidence for the exis-

tence of dark matter (DM) provide strong indications for the need of physics

beyond the Standard Model. However the detailed nature of the new physics

remains elusive. On the one hand, the mechanism responsible for neutrino mass

generation and its flavor structure, as well as the nature of the associated mes-

senger particle(s) are unknown. Consequently the nature of neutrinos, their

mass and mixing parameters are all unpredicted. On the other, the nature of

dark matter constitutes one of the most challenging questions in cosmology,

though recently some direct and indirect DM detection experiments are show-

ing tantalizing hints favoring a light WIMP-like DM candidate [11, 12] or keV

dark matter [13] opening hopes for an imminent detection.

Linking neutrino mass generation to dark matter, two seemingly unrelated

problems into a single framework, is theoretically appealing, and may bring us

new insights on both issues. The idea of unification itself, or as Feynman used

to call it amalgamation, is central to physics, and in general to any scientific

discipline. To unify is to gain new insights by synthesizing and generalizing

knowledge.

This thesis is dedicated to the interplay between neutrino physics and dark

matter. Notably the development and understanding of models where the dy-

namics of dark matter and neutrinos are related to one another. By connecting

dark matter to neutrinos, it is possible to obtain direct and indirect informa-

tion on new physics beyond the Standard Model (bSM). Indeed, neutrinos offer

1



a striking manifestation of bSM physics and various experiments provide us

with precise data about their mixing and mass splittings. These data reveal

a strong contrast with the known case of the quarks. By the scales of the

problem and the precision of these measurements, neutrino physics offers a

tantalizing insight into one of the deepest and most enduring problems of the

SM, namely the flavor problem.

Outline

We will start by briefly introducing the Standard Model of particle physics

and the notation we will use throughout the thesis in Chapter (1). Then we

present a general introduction and overview of dark matter in Chapter (2).

After giving an overview of neutrino physics in the next chapter, Chapter (3),

the possible relation between dark matter and neutrinos will be the subject

of the rest of this thesis, starting from Chapter (4), where we will review at-

tempts to unify their description.

We start the original part of this thesis in Chapter (5) by linking dark mat-

ter to neutrinos via flavor symmetries. Flavor symmetries, particularly those

based on non-Abelian discrete groups, provide a rationale to address the flavor

problem from first principles. The unified description is achieved by assigning

the DM to an irreducible representation (irrep) of the flavor group. The break-

ing of this group, which is required in order to generate the masses and mixing

patterns, links the DM phenomenology to neutrinos and stabilizes the DM at

the same time. We will present the phenomenology of a model realizing this

mechanism in detail. The DM candidate in the model emerges from the triplet

irrep of the flavor group and is stabilized by means of its remnant symmetry.

Chapter (6) is devoted to more complex, yet deeper links between neutrinos

and dark matter following the same philosophy of “discrete dark matter” of

Chapter (5). The constructed model is compatible with the findings of the

Daya-Bay experiment and its landmark measurement of the last unkown

2



mixing angle, namely the reactor angle (θ13).

Finally in Chapter (7), we will explore another possible link between neutri-

nos and dark matter: the majoron. The minimal model, based on the seesaw

mechanism has all the necessary ingredients to account for the possible direct

observation of primordial gravitational waves by BICEP2 and the confirma-

tion of the inflationary paradigm. If these results hold up to scrutiny, the

impact on cosmology, and physics in general, will be quite revolutionary.
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1
Preludio — the Standard Model and

beyond

Never underestimate the joy people derive from hearing something they already know.

Enrico Fermi

A series of experiments at high-energy particle colliders and a

long process of accretion and synthesis of many theoretical ideas have estab-

lished the Standard Model as a precise theory of particle interactions up to

energies Op100qGeV, or in terms of length, down to distances Op10´16q cm.

The SM includes the electroweak theory, formulated by S. Weinberg [14] and

5



1. PRELUDIO — THE STANDARD MODEL AND BEYOND

A. Salam [15] in 1967, based on a model proposed earlier by S.L. Glashow in

1961 [16]; and quantum chromodynamics [17–21]. The model incorporates the

Brout-Englert-Higgs (BEH) mechanism [22–24] at its core to provide masses

to the matter and interaction fields. The edifice of the Standard Model as

designed by its architects has been completed in 2012 after the discovery of

the long-awaited Higgs boson by ATLAS [25] and CMS [26] collaborations

(see Figure (1.1)) at the Large Hadron Collider (LHC)∗.

Of all the ideas upon which the SM is built, the gauge principle [29] is with-

out any doubt the most important insight gained in quantum field theory.

Quantum Electrodynamics (QED), the very prototype of a successful physical

theory since the end of the 40s, follows from the principle of invariance under

local gauge transformations of the Up1q group. This principle has been gener-

alized to any compact Lie group to serve as the conceptual basis to construct

quantum field theory models [30]†.

For a historical account of the genesis of modern particle physics, we refer

to [32]. The history of the rise of the Standard Model has been discussed in

these proceedings [33] and S. Weinberg’s account of the making of the SM can

be found in [34].

The rest of the chapter is devoted to a brief presentation of the SM and its

shortcomings.

1.1 Bird’s eye view of the Standard Model

Here we present a short overview of the Standard Model, as an excuse to in-

troduce some notation and concepts that we will make use of in subsequent

chapters. For more details we refer to the excellent books which describe the

∗A nice account of the rise of colliders in particle physics can be found in [27] and [28].
†It is worth emphasizing also that while gauge theories offer extremely good description

of Nature at its most fundamental level, as well as a guiding principle to constructing new
theories, we still do not know why they work so well, although see [31] for a compelling
explanation.

6



100 110 120 130 140 150 160

E
ve

nt
s 

/ 2
 G

eV

500

1000

1500

2000

2500

3000

3500

γγ→H

Data

Sig+Bkg Fit

Bkg (4th order polynomial)

-1Ldt=4.8fb∫=7 TeV, s

-1Ldt=5.9fb∫=8 TeV, s

ATLAS
=126.5 GeV)

H
(m

 [GeV]γγm
100 110 120 130 140 150 160

E
ve

nt
s 

- 
B

kg

-200
-100

0
100
200

 (GeV)γγm
110 120 130 140 150S

/(S
+B

) W
ei

gh
te

d 
E

ve
nt

s 
/ 1

.5
 G

eV

0

500

1000

1500

Data
S+B Fit
B Fit Component

σ1±
σ2±

-1 = 8 TeV, L = 5.3 fbs-1 = 7 TeV, L = 5.1 fbsCMS

 (GeV)γγm
120 130

E
ve

nt
s 

/ 1
.5

 G
eV

1000

1500
Unweighted

Figure 1.1: Higgs discovery in the γγ channel by ATLAS [25] and CMS [26] collaborations.
mγγ is the diphoton invariant mass distribution.

SM in great detail, for instance [35, 36].

The Standard Model is a renormalizable∗ gauge theory based on the SUp3qcb

SUp2qL b Up1qY group†. SUp3qc describes the strong interactions, quantum

chromodynamics [17–21], and SUp2qL b Up1qY describes electroweak interac-

tions [14–16]. The SM contains three copies or families of fermions. Each

family contains 15 chiral fermions: 2 charged leptons, 1 neutrino, and 12

quarks. Table (1.1) lists the fermions of the SM. Experiments in late 1950s

established that (charged-current) weak interactions are left-handed, and this

is understood by having only left-handed fermions transforming as doublets

under SUp2qL local group. In addition to fermions, the model contains a spin

zero scalar particle and 12 vector fields. Table (1.2) summarizes the particle

∗The renormalizability of the SM was proved by G. ’t Hooft and M. Veltman in 1971 [37].
†This is true at the local level, i.e., the Lie algebra is sup3q ‘ sup2q ‘ up1q. In principle,

the gauge group of the SM can be written as SUp3qc b SUp2qL b Up1qY {Z where Z “ Z6

or one of its subgroups (Z2 and Z3). In general, we do not lose anything by representing
the group G{N , where N is the kernel of G, instead of G — locally. One can even argue,
in fact, that the ‘true’ group is G{N since it’s the minimal choice. This issue is less of an
academic exercise when we consider the global properties of the group, that is the group itself
instead of its Lie algebra. The topological properties of the group can be seen for instance
when the SM is embedded into a GUT group. Topological defects in the form of stable
monopoles depend on the exact definition of the group and arise from the spontaneously
broken symmetry of the unified model [38]. Such monopoles, if observed (or excluded by
observation), could help us distinguish between the different version of the SM group [39].
See also [40–42].
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1. PRELUDIO — THE STANDARD MODEL AND BEYOND

1st Family 2nd Family 3rd Family

Leptons
νe
e

νµ
µ

ντ
τ

Quarks
u
d

c
s

t
b

Table 1.1: The Standard Model fermions.

content and representations of all the fields of the model.

The Lagrangian of the Standard Model embodies all our knowledge of strong

and electroweak interactions. It can be decomposed into four conceptually

distinct pieces: Dirac, Gauge (Yang-Mills), Yukawa, and Higgs interactions∗:

LSM “ LDirac ` LGauge ` LY uk ` LHiggs . (1.1)

The gauge part controls the interactions of the vector bosons of the theory

among themselves, namely the eight gluons of the strong interaction and the

four electroweak bosons. It is given by:

LGauge “ ´
1

2
TrpGµνG

µν
q ´

1

2
TrpWµνW

µν
q ´

1

4
BµνB

µν , (1.2)

where Gµν , Wµν and Bµν are the field strengths of SUp3qc, SUp2qL and Up1qY ,

respectively. The Dirac Lagrangian encodes the kinetic term and the fermion-

gauge bosons interactions in the covariant derivative:

LDirac “ ΣψiγµDµψ , (1.3)

where the sum runs over all the chiral fermions of the model. The covariant

derivative is defined as Dµ “ Bµ´igsG
a
µλa´igW

a
µσa´iY g

1Bµ, where λa and σa

are the generators of SUp3qc and SUp2qL, respectively, in the representation

of ψ, and Y is the hypercharge of ψ.

∗We omit the gauge fixing terms and the ghosts interactions for simplicity.
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The now-famous Higgs particle stems from the following Lagrangian:

LHiggs “ DµH
:DµH ` µ2H:H ´ λpH:Hq2 , (1.4)

with the prescription µ2 ą 0 so that H acquires a vacuum expectation value

(vev) and breaks the electroweak group, SUp2qL b Up1qY , down to the elec-

tromagnetic Up1qem. The Higgs doublet can be written as:

H “

˜

H`

pvSM ` h` iAq{
?

2

¸

. (1.5)

After electroweak symmetry breaking[22–24], H˘ and A are identified with the

three Nambu-Goldsone [43–45] bosons corresponding to the broken generators

of SUp2qL b Up1qY . They are consequently eaten up by the gauge bosons,

which acquire the masses

MW “
g

2
vSM « 80.39 GeV , MZ “

MW

cos θW
« 91.19 GeV . (1.6)

Where vSM “ 246 GeV is the vev of the Higgs (at 0 temperature) and θW

is the (Weinberg’s) weak mixing angle. The photon is of course massless, as

a consequence of the preserved residual Up1qem symmetry. h is the recently

discovered Higgs boson, whose mass is not predicted by the theory but is mea-

sured experimentally to be Mh « 125.5 GeV [25, 26], see Figure (1.1).

The interactions fermions-scalars are controlled by the Yukawa part of the

Lagrangian:

LY uk “ Γeij L̄iH `jR ` Γdij Q̄iH djR ` Γuij Q̄i Ȟ ujR ` h.c. (1.7)

The indices i, j are generation labels. The couplings Γij are 3 ˆ 3 matrices.

We denote the recurrent iτ2H (with τ2 being the second Pauli matrix) as:

Ȟ ” iτ2H (1.8)

Ȟ is pronounced ‘H check’. We will use this notation throughout this thesis.

9



1. PRELUDIO — THE STANDARD MODEL AND BEYOND

Fields SUp2qL Up1qY SUp3qc

La “

ˆ

νaL
`a

˙

2 ´1
2

1

`aR ´1 `1 1

QaL “

ˆ

uaL
daL

˙

2 `1
6

3

uaR 1 `2
3

3

daR 1 ´1
3

3

H 2 `1
2

1

B 1 0 1

W “

¨

˝

W1

W2

W3

˛

‚ 3 0 1

g 1 0 8

Table 1.2: The Standard Model of particle physics: charge assignments of the SM fermions,
scalars and gauge bosons under the SUp3qc b SUp2qL b Up1qY local symmetries. The index
a “ e, µ, τ labels the three observed generations of fermions, see Table (1.1). We defined the
electric charge as Q “ T 3

L ` Y .

The Yukawa matrices can be diagonalized by means of bi-unitary transforma-

tions:

Γa “ Ua
L Y

a Ua
R
: . (1.9)

Because neutrinos are massless, we can consider Γe to be diagonal without

loss of generality (we perform a simple redefinition of the fields L and `R).

However, this is not possible for the quarks because the Higgs couples to both

u and d types. This gives rise to a mismatch between flavor and mass bases and

consequently to nontrivial mixing patterns among the quarks, best represented

with the celebrated CKM, for Cabibbo-Kobayashi-Maskawa, matrix [46, 47]:

UCKM “ Uu
L
: Ud

L . (1.10)

The CKM matrix has 4 free parameters: 3 angles and a complex phase allowing

10



for CP violation in the quark sector∗. It can be parametrized as [50]

UCKM “

¨

˚

˚

˝

1 0 0

0 c23 ´s23

0 s23 c23

˛

‹

‹

‚

¨

˚

˚

˝

c13 0 ´e´iδs13

0 1 0

eiδs13 0 c13

˛

‹

‹

‚

¨

˚

˚

˝

c12 ´s12 0

s12 c12 0

0 0 1

˛

‹

‹

‚

. (1.11)

Here, sij “ sin θij and cij “ cos θij. The angles and the phase of the CKM

matrix are found to be:

θ12 « 130 , θ23 « 2.40 , θ13 « 0.20 , δ « 59.70 . (1.12)

The masses of the fermions cannot be written explicitly because they violate

the SUp2qL bUp1qY symmetry. They emerge as a consequence of electroweak

symmetry breaking triggered by the Higgs doublet — The BEH mechanism.

For instance, from Equation (1.7) the electron’s mass is given by

me “ Y e
11 xHy “

1
?

2
Y e

11 vSM « 0.511 MeV . (1.13)

That’s essentially all we need to know about the architecture of the SM. The

most precise physical model ever built is also a model of simplicity. A small

number of clever theoretical insights joined together (Gauge principle, GIM

mechanism, BEH mechanism, to cite but three examples) describe with aston-

ishing accuracy the interactions of elementary particles. There are only 18 free

parameters†: 3 gauge couplings, the Higgs quadratic mass coefficient and self-

coupling, 9 quark and lepton masses, and 4 parameters in the CKM matrix.

The model accounts for all collider experiments done at the Stanford Linear

Collider (SLC), the Large Electron-Positron collider (LEP)‡, the Tevatron,

and so far the LHC. It predicts or fits all the experimental data acquired in

∗This was pointed out in 1972 by Kobayashi and Maskawa [46], building on previous
work by Cabibbo where it had been shown that flavor mixing matrix for two generation
models of the weak interactions is governed by a single angle, now known as the Cabibbo
angle. Kobayashi and Maskawa were awarded the physics Nobel prize in 2008 following the
confirmation of CP violation in the quark sector by BELL [48] and BaBar [49] experiments.
†19 if we include the QCD vacuum angle.
‡See [51] for a summary of SLC and LEP achievements.
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1. PRELUDIO — THE STANDARD MODEL AND BEYOND

the last 50 years — all but neutrino oscillations experiments and cosmological

observations.

1.2 Going beyond

The SM description of Nature cannot account for three experimental facts:

neutrino masses, the existence of dark matter and matter-anti-matter asym-

metry∗. These constitute striking experimental manifestations of new physics.

But perhaps the biggest drawback of the SM is that it is but an effective the-

ory. A phenomenological model necessarily leaves some questions unanswered.

In the case of the SM, we do not know the answers to the following conceptual

issues:

§ Why is the gauge group SUp3qcbSUp2qLbUp1qY and why is it a product

of 3 different groups?

§ Why are there three replicas of each family?

§ How can we understand Electroweak universality (both left-handed lep-

tons and quarks transform as SUp2qL doublets)?

§ How are quarks and leptons related to each other (anomaly cancellation

requires quarks and leptons)?

§ Why don’t the couplings unify at high energy?

§ Why is charge quantized?

§ What explains the hierarchy of fermion masses and their mixing?

On top of these questions, more ‘aesthetic’ considerations lead to the ‘hierar-

chy problem’ and the ‘strong CP problem’. Thus the SM suffers from a series

of conceptual problems and fails to account for some observations†. Numerous

extensions of the SM have been put forward in the last decades to answer one

∗We leave aside the problems of quantum gravity and dark energy.
†Or as B. Richter put it: “The experiments and theory of the 1960s and 1970s gave us

today’s Standard Model [...] a beautiful manuscript with some unfortunate Post-it notes
stuck here and there with unanswered questions written on them.”[52].
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or more of these questions. None of these models has been as successful or

satisfying as the SM, even if we did gain some new theoretical insights such

as the idea of Grand Unified theories (GUT) [53–56], supersymmetry [57–60],

or extra-dimensions [61, 62]. Hopefully, the next run of the LHC will give us

some hints to point us in the right direction.

Among the problems listed above, the so-called ‘flavor problem’, namely why

we have three families of fermions with the same Standard Model quantum

numbers, but with very different masses, constitutes one of the most challeng-

ing open problems in particle physics. It is also phenomenologically interesting

as it is directly testable. The mystery of the smallness of neutrino masses is

the most pressing aspect of the problem. Indeed, the SM neither includes a

mechanism that generates masses for the neutrinos, nor does it forbid them

from acquiring one. While the discovery of the Higgs at LHC[25, 26] sheds

light on the nature of electroweak symmetry breaking, the origin of neutrino

masses remains elusive.

In the next two chapters we review the dark matter and neutrino mass prob-

lems in more details.
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2
The dark Universe

L’anormal, logiquement second, est existentiellement premier.

Georges Canguilhem

A little more than 80 years ago, F. Zwicky studied the gravitational

irregularities in the Coma cluster of galaxies [63]. What he found was surpris-

ing! There seemed to be a hidden mass that outnumbers the directly visible

one nearly 400–to–1. He dubbed the mysterious mass dunkle materie: dark

matter. His bold speculation, though, was largely ignored until the 1970’s

when V. Rubin pioneered the study of rotation curves of spiral galaxies [64].

Rotation curves remain until today a very strong evidence for the existence of
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2. THE DARK UNIVERSE

dark matter.

By now we know that DM fills the Universe, accounting for most of its matter

content, promotes structure formation, and explains the discrepancy between

the visible and dynamical astronomical observations. Yet, barring a few obser-

vational and theoretical bounds we still know very little about its nature. After

the spectacular discovery of the Higgs at LHC, the last piece of the Standard

Model has been found. But as successful as it has been, the SM describes only

a tiny fraction of the content of the Universe; stars, dust, galaxies, clusters

of galaxies, black holes (including primordial ones), and even the Universe’s

graveyard (dead stars, brown dwarfs, etc.) represent but 5% of the energy

content of the Universe. The remaining 95% is in the form of dark energy

and dark matter, whose fundamental natures are completely unknown. How-

ever, the recent theoretical and experimental developments foreshadow that

the next few years are going to be decisive for DM.

Here we will review the basics of the DM physics. In Section (2.1) we will

review the evidence for DM. Next, the main candidates believed to solve the

problem are described in Section (2.2). In Section (2.3) we describe the ther-

mal production mechanism of DM particles in the early Universe. We will

summarize the different possibilities of DM searches in Section (2.4). The link

between DM and the baryon asymmetry of the Universe is briefly commented

in Section (2.5). Finally, we will summarize the chapter and conclude in Sec-

tion (2.6).

Since there’s a significant number of excellent reviews and textbooks that are

available, we will content ourselves by presenting the main ideas and results.

For more details, we refer the reader to [65–68].

2.1 Evidence and requirements

There exists a wide variety of evidence in support of dark matter’s existence.

From sub-galactic scales up to cosmological scales. At sub-galactic and galactic
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Component 68% CL limits

Symbol Description

ΩDMh
2 Dark matter 0.1199 ˘ 0.0027

ΩBh
2 Baryonic matter 0.02205˘ 0.00028

ΩM Total matter 0.315`0.016
´0.018

ΩΛ Dark energy 0.685`0.018
´0.016

Table 2.1: Density values for matter and dark matter in ΛCDM model from combined data
of PLANCK and WMAP [77]. h is the Hubble parameter in units of 100 km{sec{Mpc,
h « 0.67 (The exact value of the Hubble parameter is model dependent).

scales, this evidence comes from galactic rotation curves [69], weak [70], and

strong gravitational lensing [71, 72]. Moreover, observations of the velocity

dispersion of individual stars in dwarf galaxies indicate a mass–to–light ratio

(that is, the amount of dark matter with respect to visible matter) that can be

as large as « 103. Galactic surveys (through observations of radial velocities

of galaxies, weak lensing, and X-ray emission) indicate that at the scale of

clusters of galaxies, the matter density is [73, 74]:

Ωclusters
M « 0.2´ 0.3 , (2.1)

far more important than the luminous matter density (baryons) ΩB « 0.022 [75].

At the scale of cluster of galaxies, the “Bullet cluster” [76] gives perhaps the

strongest evidence for the existence of DM. Finally, at the cosmological scale,

the robust observations of the anisotropies of the cosmic microwave background

(CMB) lead to the precise determination of the total matter content of the Uni-

verse, both in the form of baryons and dark matter. We summarize the latest

data from CMB observations in Table (2.1). In short, the dark matter hy-

pothesis is so robust that it is a pillar of the Standard Model of cosmology,

ΛCDM (where Λ denotes dark energy) or concordance model [78]. Figure (2.1)

summarizes the matter and energy contents of the Universe.

Although the nature of DM is unknown, the various astronomical and cosmo-

logical observations that are available (including those which offer evidence for

17



2. THE DARK UNIVERSE

Figure 2.1: Visualization of the energy and matter content of the Universe. Gray, black and
yellow areas represent respectively dark energy, dark matter and visible matter. Left: Total
energy and matter budget of the Universe (« 68% dark energy, « 27% dark matter, « 5%
baryonic matter). Right: Matter content only (« 85% dark matter, « 15% baryonic mat-
ter). Normalizations were fixed from combined PLANCK and WMAP data [77] — c.f. Ta-
ble (2.1).

its existence) reveal some aspects of its identity, or at least what it should not

be like [79]. For instance, we know that an acceptable DM candidate should

be:

§ neutral : searches for heavy Hydrogen-like atoms and limits on strongly

interacting DM [80–82] place very stringent limits on the (electric and

color) charge of DM. As a result, dark matter must be neutral although

there still exists open windows for milli-charged DM. For instance, for

mDM ă
„ me the range 10´15 ă

„ QDM ă 1 is excluded [83] (QDM here is the

electric charge of DM in units of e). But heavier DM masses see this con-

straint relaxed a bit and the allowed range is roughlyQDM ă
„ 10´7 Mχ

GeV
[84];

§ cold-ish: the observed structure in the Universe [85] compared to re-

sults of dark matter simulations are in excellent agreement when DM is

cold [86, 87], meaning it was non-relativistic well before the matter dom-

ination era (epoch of formation of galaxies, at T « 1 eV). Warm dark

matter gives also a good fit [88, 89]. The main difference with cold dark
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matter appears only at small scale, where warm dark matter is actu-

ally favored because its shorter free-streaming length suppresses galaxy

formation (current cold dark matter simulations predict more satellite

galaxies for the Milky Way than what is seen);

§ stable or very long lived : since we see its effect today. In the case of

decaying DM, the lifetime must be at least equal to the Hubble time

(« 1017s) in principle. In practice though, it must be several orders of

magnitude larger than that if its decay products include ‘visible’ SM

particles, for instance cosmic and gamma rays analysis constrain the

lifetime of a DM candidate to be τDM ą 1026 s [90–93];

§ consistent with Big Bang Nucleosynthesis (BBN): BBN [94] predicts the

abundances of light elements produced in the first 3 minutes after the

Big Bang with great accuracy. Since the energy scale of BBN is OpMeVq,

DM in the mass range MeV is severely constrained in order not to spoil

BBN;

§ collisionless : in case the DM candidate has self-interactions [95], it must

comply with several astronomical limits. For instance, the observed

galactic halos in clusters would quickly evaporate if the cross section

of self–interaction is too strong (0.3 ă„ σ{mDM ă
„ 104 cm2g´1) [96].

And of course, it should account for the observed abundance ΩDMh
2 « 0.2

and be compatible with exclusion limits set by DM search experiments.

A Universe without darkness?

All the evidence for dark matter accumulated thus far are based on its grav-

itational influence. There’s no evidence of a particle dark matter interacting

non-gravitationally. It would certainly be reasonable to contemplate the pos-

sibility that all these gravitational anomalies are in fact signaling a departure

from Newton’s law (or general relativity in the case of lensing) instead of
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2. THE DARK UNIVERSE

pointing toward the existence of a new form of matter. In 1983 Milgrom [97]

proposed a phenomenological model known as modified Newtonian dynamics

(MOND) to explain the observed galactic rotation curves without dark mat-

ter. The basic assumptions underlying MOND is that Newton’s second law,

F “ ma, is modified to F “ ma ˆ µpaq, where µ behaves as µ “ a{a0 for

very small accelerations and is almost unity otherwise (to recover Newton’s

limit). a0 is a constant that is fitted from observations. MOND has been very

successful in explaining the rotation curves of galaxies, however it fails with

the other observations of dark matter, in particular CMB anisotropies.

Even the relativist formulation of MOND, known as Tensor-Vector-Scalar grav-

ity, or TeVeS [98] cannot explain cluster-scale observations without the intro-

duction of dark matter [99]. Finally, the observation of a collision between

two clusters (the ‘bullet cluster’) gave the coup de grâce to modified grav-

ity models by giving a strong direct empirical evidence in favor of DM∗[76].

Indeed the bullet cluster reveals a clear separation between baryonic matter

(seen by X-ray observations) and the gravitational potential of the system (de-

termined using weak lensing). The existence of dark matter is an inescapable

consequence of cosmological and astronomical observations.

2.2 Dark matter candidates

There have been many particles proposed as dark matter candidates through-

out the years. The list of candidates is so long now that it is commonly referred

to as a zoo. This includes: axions, gravitinos, superWIMPS, non-thermal dark

matter, neutralinos, sterile neutrinos, Q-balls, WIMPzillas, sneutrinos, ma-

jorons, etc. From the most ‘exotic’ to the most ‘natural’ candidate, the mass

of the particle and its interactions vary widely. Indeed, the proposed masses

range from 10´6 eV to up to 104 Md (where Md is a solar mass). That’s 75

orders of magnitude! We sketch some of these DM candidates in Figure (2.2).

Here we will briefly present some of the most popular and well motivated can-

∗The title of the paper announcing the discovery even calls it a proof : “A Direct Empirical
Proof of the Existence of Dark Matter”.
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Figure 2.2: A schematic representation of some dark matter candidates. σint represents a
typical order of magnitude of interaction strength with ordinary matter. The neutrino is shown
for comparison purposes. Figure reproduced and updated from original sketch in [100].

didates:

§ Axions: Axions were fist proposed to solve the so-called strong CP prob-

lem [101–104]. The latter is essentially a fine-tuning problem. In the quark

sector of the SM, there’s a parameter θ related to the vacuum topology of the

theory that must be put to values smaller than 10´9 by hand. This is seen

as unnatural for a dimensionless parameter. Peccei and Quinn proposed to

solve the problem by postulating a new symmetry, Up1qPQ. The axion is the

pseudo-Goldstone boson associated with this symmetry. The fact that axions

emerge from a theory that solves a problem of the SM that is unrelated to DM

makes them particularly attractive and well motivated DM candidates.

Axions are stable and cold (non-relativistic at production) dark matter parti-
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2. THE DARK UNIVERSE

cles that satisfy the conditions listed in Section (2.1). There are a number of

axion production mechanisms, but the easiest and more natural way to pro-

duce them is through non-thermal coherent oscillations of the axion field near

the QCD phase transition [105]. Their mass is then given by [106–108]:

ma « 6ˆ 10´6
p
1012 GeV

fa
q eV , (2.2)

where 109 GeV ă
„ fa ă„ 1012 GeV is the axion decay constant and ma its mass.

Axions are also a testable hypothesis, experiments such like ADMX and

CAST are currently searching for them. For a review, see [109] for instance.

§ Gravitinos: The gravitino is the fermionic partner of the graviton in su-

persymmetric theories [110]. It is one of the first proposed candidates for

DM [111]. Its couplings to ordinary particle are strongly suppressed, by a fac-

tor OpMW {MP q (where MP is Planck’s constant), making it extremely weakly

interacting, which renders its direct detection completely hopeless although it

can be seen indirectly [112–114]. The gravitino can be produced from ther-

mal as well as non-thermal processes (or both at the same time). The mass

of gravitino DM is strongly model depends on how supersymmetry is bro-

ken [115–117].

§ Weakly-interacting massive particles (WIMPs): The name of this

class of candidates [118] is self-explanatory, massive particles with interac-

tions around the weak scale MW . These candidates are remarkable for several

reasons: (i) they appear naturally in various extension of the SM, notably su-

persymmetric extensions (neutralinos and sneutrinos are typical WIMPs) [66];

(ii) weak scale interactions naturally lead to the correct abundance via ther-

mal production (insensitive to initial conditions); and last but not least (iii)

they are testable by laboratory and satellite experiments [119]. WIMPs are

cold dark matter with masses ranging in general from few MeV to OpTeVq
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Figure 2.3: Time line of the hot thermal phase of the early Universe (from [121]).

(unitarity constrains the mass of a WIMP to be ă
„ 130 TeV [120]), although

for a strict interpretation of ‘weakly’ (i.e., for interactions mediated by W˘

and Z bosons only) the mass scale is of Op100 GeVq.

Because of their importance and the fact that they are central to this thesis

(the candidate of Chapter (5) is a WIMP), we look into the WIMP class of

particles in more details, particularly the production mechanism.

2.3 Thermal genesis of dark matter

The theoretical paradigm in cosmology —the Big Bang— provides a histori-

cal account of the evolution of the Universe. According to this paradigm, the

Universe began from an isotropic and quasi-homogeneous (homogeneous up to

a degree of « 10´5) hot plasma some fifteen billion years ago, then started

expanding rapidly. The expansion cools down the Universe and provides the

necessary conditions for structure formation. Figure (2.3) summarizes the his-

tory of the Universe. It is in the hot phase of the Universe that the DM was

produced.

The question “How is dark matter produced?” is one of the first ones to be ad-

dressed when proposing a DM candidate. In general, production mechanisms
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2. THE DARK UNIVERSE

can be divided in two categories: thermal and non-thermal. Non-thermal

mechanisms include for instance the direct production from inflaton decay or

from coherent oscillations [122] (for a review, see e.g., [123]). They are model-

dependent and usually fine-tuned to reproduce the correct abundance. In con-

trast, thermal production offers a simple, calculable, and model-independent

mechanism to create DM from thermal processes alone. In general, there are

four principal ways of creating DM from SM fields through a portal [124]. Here,

we will summarize the key ingredients and results of the thermal production

of DM via the freeze-out mechanism.

WIMP candidates offer the advantage of having a well defined production

mechanism in the early Universe. Indeed, the hot primordial soup of SM

particles gives as a byproduct a DM relic abundance that closely matches ob-

servations without any fine-tuning [125, 126].

Let χ denote a generic particle of massMχ interacting with SM fields ψ through

an unidentified process χχ̄Ø ψψ̄ ∗. In the very early Universe, T "Mχ (T is

the temperature of the Universe), the processes of creation and annihilation of

χχ̄ were in equilibrium with SM processes, and the number of χ particles was

as large as that of SM species. However, as the temperature falls below the

DM mass, T ă„Mχ, the processes of creation become exponentially suppressed

while the annihilation should in principle continue. If that was the case, the

number density of χ particles would be given by:

nχ, eq “ gχ

ˆ

MχT

2π

˙3{2

e´Mχ{T , (2.3)

where gχ is the number of internal degrees of freedom of χ. It is clear that χ

would quickly become irrelevant. Fortunately, there’s an ingredient that can

save χ from disappearing: the expansion of the Universe. Indeed, the Hubble

expansion acts as a friction term for annihilation processes and helps con-

taining it. We can understand the mechanism in the following way: when the

expansion starts dominating over the annihilation rate, it becomes increasingly

∗This is just illustrative. Of course, any 2-to-N (with N ą 1) process is possible.

24



hard for χ particles to find each other to annihilate. Their comoving density

then freezes and survives until today. More formally, the opposed effects of

expansion and annihilation are described by the Boltzmann equation:

dnχ
dt

` 3Hnχ “ ´xσχχ̄|v|y pn
2
χ ´ n

2
χ, eqq , (2.4)

where nχ is the number density of WIMPs, H « T 2{MP is the expansion

rate of the Universe, and xσχχ̄|v|y is the thermally averaged χχ̄ annihilation

cross section multiplied by the relative velocity. The cross section encodes the

creation process of DM. For WIMPs this usually proceeds through a portal

between the SM and the hidden DM sector, like the so-called ‘Higgs por-

tal’ [127]. The two previously discussed limits (T " Mχ and T ă„Mχ) are

easy to identify in Equation (2.4). Indeed, at high temperatures (relativistic

regime) the density of WIMPs is given by the equilibrium value, nχ, eq « T 3,

whereas in the opposite limit (T !Mχ), the equilibrium density is very small,

given by Equation (2.3), due to the depletion caused by the terms 3Hnχ and

xσχχ̄|v|yn
2
χ. The condition of freeze–out, that is the temperature at which the

density of DM freezes, can be expressed roughly as H « nχ, eq xσχχ̄|v|y, that is

when the expansion rate is comparable to the annihilation rate. In Figure (2.4)

we depict the evolution of the comoving number density of a stable species as

it evolves with temperature for various values of xσχχ̄|v|y. The exact tempera-

ture of freeze-out is found by solving the Boltzmann equation numerically. An

analytic approximation of the solution is given by (we define x ”Mχ{T ) [67]:

xFO ”
Mχ

TFO

« ln

„

cpc` 2q

c

45

8

gχ
2π3

MχMP pa` 6b{xFOq

g
1{2
‹ x

1{2
FO



. (2.5)

Here c « 0.5 is a numerical factor, g‹ is the number of external degrees of

freedom available∗, and a and b are terms in the non-relativistic expansion,

xσχχ̄|v|y “ a` b xv2y`Opv4q. The term a comes from the s-wave annihilation,

whereas b xv2y comes from both s- and p-wave annihilations. The appearance

of the Planck mass MP can be traced back to the definition of the Hubble rate

H ” 9R{R “ p8π3ρ{3MP q
1{2. The ensuing relic density of WIMPs today is

∗For example, in the SM, g‹ « 120 at T « 1 TeV and g‹ « 65 at T « 1 GeV.
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2. THE DARK UNIVERSE

Figure 2.4: Thermal freeze-out: a schematic of the comoving number density of a stable
species as it evolves with temperature and for various values of xσχχ̄|v|y.

approximately given by:

Ωχh
2
«

1.04ˆ 109 GeV´1

MP

xFO

g
1{2
‹ pa` 3b{xFOq

. (2.6)

For Mχ « GeV´ TeV and an annihilation cross section around the weak-scale,

freeze-out occurs at xFO « 17´ 25, and the resulting relic abundance is:

Ωχh
2
« 0.1

ˆ

xFO

20

˙ˆ

g‹
80

˙´1{2ˆ
a` 3b{xFO

3ˆ 10´26 cm3s´1

˙´1

, (2.7)

leading to the often-quoted “WIMP Miracle” relation:

Ωχh
2
« 0.1

3ˆ 10´26 cm3s´1

xσχχ̄|v|y
(2.8)

The miracle consists of the remarkable coincidence between the annihilation

cross section giving the correct dark matter density and the typical cross sec-

tion of a weak scale interaction, α2{p100 GeVq2 « pb « 3ˆ10´26 cm3s´1. More-
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over, being at the weak scale, WIMPs offer rich detection prospects. They can

be searched for in laboratories through recoil off nuclei (N) via processes of

type χN Ñ χN (direct detection), in the sky by detecting their annihilation

byproducts, χ χ̄ Ñ ψ̄ ψ (indirect detection), and with colliders, for instance

p̄p Ñ χ̄χψ (p is the proton, and as before ψ represents any SM particle). We

summarize these three possibilities in Figure (2.5). These considerations make

WIMPs the front-runners in the zoo of DM candidates.

The standard thermal story discussed above is not free from caveats and at

least three exceptional situation occur in the calculations of relic density. These

are [128]:

§ Resonances;

§ Thresholds;

§ Co-annihilations.

Resonant annihilation occurs when the cross section is near a pole, for instance

when the mass of the dark matter candidate is nearly twice the mass of the

s-channel propagator. In this case, either Mχ ą„Mpropagator{2 and the cross

section at freeze-out epoch (T “ TFO) is much larger than the annihilation

cross section now (T « 0) because the velocity effects in the early Universe

put the cross section at its pole, which greatly enhances it. This situations

makes indirect detection rates potentially tiny even if the relic density is good

(unless a decay channel compensates for the lack of signal from annihilation

as will be explained in Section (6.6)). Or Mχ ă„Mpropagator{2, in which case

the cross section is maximal at T “ 0, boosting indirect detection rates with

respect to the standard scenario∗.

The other way to alter the relation between the cross section at freeze-out

epoch and at T “ 0 is by means of thresholds, i.e., when new channels open

up thanks to velocity effects in the early Universe. In this case xσχχ̄|v|yFO ą

∗As long as the cross section is not velocity suppressed as in the case of Majorana DM.
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2. THE DARK UNIVERSE

xσχχ̄|v|y0.

Finally co-annihilation happens when there exist other species, χ1,...,N , in the

bath whose mass is close to that of the DM candidate at freeze-out, that is

Mχi ´Mχ « TFO. In this case, the annihilation cross section becomes [129]:

xσχχ̄|v|y Ñ xσeff |v|y “
ΣN
i,j“1 σij exp

´

´
∆Mi`∆Mj

T

¯

ΣN
i“1 gi exp

`

´
∆Mi

T

˘ , (2.9)

where ∆Mi ” Mχi ´ Mχ, gi counts the number of degrees of freedom as-

sociated with χi and σij ” σχiχj . The presence of co-annihilation usually

leads to an enhanced annihilation cross section, but not always. Indeed, if

the co-annihilating particles bring significant additional degrees of freedom for

instance, then the effective cross section is smaller. This typically happens in

models of universal extra-dimensions (UED) [130].

Other exceptions to the calculation of the relic density may happen when in-

stead of changing the physics of the annihilation cross section one modifies

the left-hand side of Equation (2.4), the Hubble expansion rate, see for in-

stance [131, 132].

2.4 Dark matter searches

Dark matter can be searched for ‘directly’, through nuclear recoil in laboratory

experiments or ‘indirectly’ through its annihilation byproducts. Additionally,

colliders such as the LHCcan be used to constrain some properties of DM —

see Figure (2.5) for an illustration in the particular case of WIMP dark matter.

These strategies are in general complementary to each other. Next, we briefly

summarize the different DM search strategies.

2.4.1 WIMP direct detection searches

Observations of rotation curves of galaxies suggest that our galaxy is sur-

rounded by a DM halo that extends far beyond the radius of luminous matter.
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Figure 2.5: Schematic of WIMP interactions in the early Universe and now. The star repre-
sents a model-dependent physical interaction.

The local (i.e., at « 8.5 kpc from the Galactic center) density of dark matter is

estimated (from galactic rotation curves and cosmological simulations among

other considerations) to be [133]:

ρlocal
DM “ p0.39˘ 0.03q

GeV

cm3
. (2.10)

Since the sun (and us!) move through this halo, we experience a flux of dark

matter particles moving with a velocity v0 « 220 km{s. WIMP dark mat-

ter can be searched for in underground detectors (low-background detectors)

looking for nuclear recoils induced by the local dark matter scattering against

the target material. It is easy to see that the recoil energy is OpkeVq, from

the naive estimate of the kinetic energy of DM particles 1
2
MDM v2

0 « 27 keV

for MDM “ 100 GeV. The experiments look for anomalous nuclear recoils in

a low-background detector (this is satisfied by putting the detector deep un-

derground). The rate scales as R9NρDMσv0, with σ around 10´45 cm2 and

N is the number of target nuclei. In general, the rate is of few events per

year [134, 135] so detectors must have a large mass and long exposure time.

A list of selected dark matter experiments, including their fiducial mass, and

type of readout is given in Table (2.2).

A statistically significant positive signal of dark matter detection has been
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Experiment Location Readout Target mass [kg] Target Dates

DAMA/NaI Gran Sasso γ 87 NaI 1995–2002
DAMA/LIBRA Gran Sasso γ 233 NaI 2003–
ANAIS Canfranc γ 11 NaI 2000–2005

100 2011–
KIMS Yangyang γ 35 CsI 2006–2007

104 2008–
CDMS II Soudan φ, q 1 Si 2001–2008

3 Ge 2001–2008
SuperCDMS Soudan φ, q 12 Ge 2010–2012

SNOLAB 2013–2016
EDELWEISS I Modane φ, q 1 Ge 2000–2004
EDELWEISS II Modane φ, q 4 Ge 2005–
CRESST II Gran Sasso φ, γ 1 CaWO4 2000–
SIMPLE Rustrel d 0.2 Freon 1999–
PICASSO Sudbury d 2 Freon 2001–
COUPP Fermilab d 2 Freon 2004–2009

60 2010–
CoGeNT Chicago q 0.3 Ge 2005–

Soudan q 0.3 Ge 2008–
ZEPLIN III Boulby γ, q 7 LXe 2004–
LUX Sanford γ, q 100 LXe 2010–
XENON10 Gran Sasso γ, q 5 LXe 2005–2007
XENON100 Gran Sasso γ, q 50 LXe 2009–

Table 2.2: Some characteristics of selected dark matter experiments, including fiducial mass,
and readout (scintillation light (γ), phonons (φ), ionization (q), or super-heated droplets (d)).
Adapted from [145, 146].

claimed by the DAMA collaboration [136] for years. DAMA has reported a

high statistical evidence for annual modulation of the event rate over 13 year

cycles [136, 137]. These results have prompted many attempts to interpret

the data in terms of dark matter interactions with nuclei. Assuming an elastic

WIMP interactions off nuclei and for ‘standard’ astrophysical assumption on

the local DM density and velocity distribution, the DAMA signal is in con-

flict with the null results reported by other experiments [138–140]. However

astrophysical inputs are subject to large uncertainties (see e.g., [141–143]) and

the detectors’ responses are not completely known, especially in the low mass

region [144].

The latest results in direct detection experiments, particularly LUX [147] (the
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first to reach the ‘zeptobarn’ world, or 10´45 cm2!) and CDMSlite experi-

ments [148], severely challenge a possible interpretation of DAMA in terms

of recoil of WIMP DM off nuclei. It also seems to definitely rule out other

anomalies seen in COGENT [149], CDMS-II [148, 150] and CRESST [151],

although these have never been statistically significant anyway. Considering

isospin-violating couplings no longer helps alleviating the tension between these

experiments [152]. More recently, the excess seen in CRESST from 2009 to

2011 has not been confirmed in their latest analysis [153].

The status of WIMP direct detection results is summarized in Figure (2.6). By

the year 2020, direct detection experiments are expected to have a sensitivity

« 10´48 cm2 [154].

A final remark: direct detection experiments are reaching their limits due to

the neutrino background as can be seen in Figure (2.6). An amusing relation

between DM and neutrinos emerges: experiments designed to look for DM

end up being used for neutrino physics (for a possible application, see [155] for

instance). But, hopefully, DM will be found before that happens.

2.4.2 Indirect detection

Dark matter indirect detection experiments look for signatures of DM annihila-

tion into photons (Fermi-LAT, EGRET), neutrinos (IceCUBE, ANTARES)

and (anti-) matter (AMS, PAMELA). The expected DM signals depend on

the astrophysical details related to the DM density distribution in the region

of observation. Particle physics enters in the determination of the DM mass,

annihilation cross section σv and the specific branching ratios of the various

annihilation channels.

2.4.3 Dark matter at LHC

Since WIMPs are tied to the weak scale, they can be probed at colliders,

including the LHC (see [158] and references therein). For colliders, dark mat-

ter is missing energy. The branching ratio of Higgs decays to invisible, for

instance, provides a very strong constraint on DM models for masses below
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6Figure 2.6: WIMP dark matter direct detection status, circa 2014, from [156] (based on fig-

ure from [157]).

Mh{2 and proceeding via the Higgs portal [159, 160]. Moreover, it is possi-

ble to relate the pair production rate of DM at colliders to the annihilation

and scattering at indirect and direct detection experiments, making colliders

a complementary probe in the search for the nature of DM [161].

Model independent analyses based on effective field theories (EFT)∗ or sim-

plified models have been carried out with LEP [163], Tevatron [164] and

LHC [159, 160, 165] data. In general, collider limits are very strong for spin-

dependent interactions but are rather poor for spin-independent interactions

where direct detection searches excel.

2.5 Dark matter and baryon asymmetry

The CMB data reveal that the dark matter content of the Universe is about

five times that of the baryonic matter, ΩDM « 5 ΩB — see Table (2.1). More-

over, the visible matter density does not include anti-baryons i.e., the visible

∗For an effective guide in constructing such operators, see [162].
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Figure 2.7: Schematic representing the different pathways to related dark matter to baryon
asymmetry, for more details about the figure see [6].

Universe is asymmetric with an initial excess of baryons over anti-baryons

parametrized by ηpbq “ pnb ´ nbq{s « 10´10, where n denotes the number

density and s the entropy density.

While the solutions to these two problems might well be unrelated to each

other, it is nevertheless tempting to assume the new physics to be minimal

and unifying enough so that it solves both of them with the same ingredients.

Moreover if we discard simple numerical coincidence as an explanation to the

intriguing vicinity of matter densities, we are left with the task to construct

theories relating them or unifying their genesis. In Figure (2.7) we provide

a depiction of the different possibilities invoked to relate DM to the baryon

asymmetry of the Universe (BAU).

Indeed, numerous models have been proposed in the recent years to achieve

this end. Broadly speaking, there are three approaches that are followed to

relate dark matter to baryons:

§ The WIMP paradigm is used as a framework to relate the abundances;

§ There is a sector connecting DM and baryons in the early Universe.

The connecting sector acts either as a parent sector, generating DM and

baryons through decay for instance, or as a mediator mechanism trans-
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ferring the asymmetry from the dark to the baryonic sector or vice versa.

Asymmetric DM models (see below) used this approach extensively;

§ The DM sector is an auxiliary to a successful baryogenesis scenario. The

strength of the phase transition in electroweak baryogenesis may for in-

stance be enhanced by the presence of DM.

The first two approaches are the most interesting and we will give two examples

to show how they can be implemented.

2.5.1 WIMPy baryogenesis

It has been noted in Section (2.3) that thermal relics provide in a miracu-

lous way the correct relic density of DM. Without any doubt, maintaining the

success of the WIMP paradigm and extending it to relate DM to the baryon

asymmetry is an attractive possibility. WIMPy baryogenesis [166] is among

the most elegant theories tying the WIMP paradigm to baryogenesis. Other

models preserving the WIMP miracle and attempting to relate DM to BAU

can be found in [167–169], see [6] for a review.

In WIMPy baryogenesis, the baryon asymmetry arises from WIMP annihila-

tion instead of the decay of some heavy state. Indeed, the annihilation of DM

in the early Universe can satisfy the Sakharov conditions [170]∗ and leads to a

net baryon asymmetry and the observed WIMP relic density.

The baryon asymmetry generated with the WIMP annihilation can be washed

out by two kinds of processes: inverse annihilation of baryons to DM, and

baryon to anti-baryon processes. Therefore the main requirement for any viable

WIMPy baryogenesis scenario is that washout processes must freeze-out before

WIMP freeze-out. Inverse annihilations are Boltzmann suppressed for T ăMχ

but baryon to anti-baryon washout can be relevant also for T !Mχ. One way

∗A successful baryogenesis mechanism must satisfy the three Sakharov condition: B
violation, C and CP violation and departure from thermal equilibrium. In this particular
case the departure from equilibrium ensues from the non-relativistic decoupling of DM at
freeze-out.
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to suppress such a process is by introducing an exotic heavy anti-baryon X

to which WIMPs annihilate through the process χχ Ñ BX where B is a

SM baryon and X is an exotic anti-baryon. If X has mass mX ą Mχ, for

T ă Mχ its abundance is Boltzmann suppressed and therefore the baryon to

anti-baryon washout processes are suppressed. Therefore the condition:

Mχ ÀMX À 2Mχ , (2.11)

must be satisfied (the second inequality is due to kinematics). Baryon number

violation is achieved by annihilating the DM to two sectors: baryons and

exotic anti-baryons. It is important that the decays of the exotic particles

do not erase the baryon asymmetry generated in the SM sector. For this

end, an extra symmetry is required to decouple the exotic fields from the SM.

After solving the Boltzmann equations, the comoving number density (yield)

of baryons is given by:

YB «
ε

2
rY washout
χ ´ Yχs , (2.12)

where YB,χ ” nB,χ{s are the observed baryon and DM yields, and ε is the

baryon-anti-baryon asymmetry. It is required that ε ă 1. The observed baryon

asymmetry is YB « 9ˆ 10´11 [77]. From Equation (2.12) and the relation that

DM must satisfy at late time, we obtain:

Yχ «
p5 GeVq

Mχ

YB . (2.13)

It follows that Y washout
χ " Yχ, namely it is crucial to freeze-out the washout

processes before the WIMP (χχ annihilation) freeze-out temperature other-

wise any generated asymmetry would be quickly erased. This is how the cru-

cial out-of-equilibrium requirement of the Sakharov conditions is realized in

WIMPy baryogenesis. Finally, the detection prospects are varied in this sce-

nario and include direct detection (for models with annihilation to quarks),

indirect detection (anti-deuteron) and collider signals. See [171, 172] for a

general phenomenological study of this class of models.
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2.5.2 Asymmetric dark matter models

Asymmetric dark matter (ADM) [173–180] (for reviews see [6, 181–183]) is a

class of DM models often seen as an alternative to the WIMP paradigm. The

rationale of ADM is based on the hypothesis that DM abundance is, similarly

to baryons, only the surviving asymmetric part of the initial density and is of

the same order as the baryon asymmetry, that is:

nχ ´ nχ « nb ´ nb . (2.14)

The motivation comes from the fact that the observed DM and visible matter

abundances are remarkably close to each other. These models usually lead to a

relation between DM mass and proton mass: Mχ « 5mp (where mp is proton’s

mass) in contrast with WIMP dark matter models where the scale of reference

is the weak scale. The relation between the DM mass and the proton mass

is however not explained except in some models based on hidden sectors such

as in mirror worlds [184–186], models with a dark QCD [187], or composite

models.

ADM can be implemented in many ways leading to a wide theoretical and

phenomenological landscape. While it is difficult to classify these models in a

straightforward way, it is nevertheless enriching to highlight the key principles

they usually rely on. Essentially, two main approaches are followed: (i) dark

and visible matter asymmetries are generated at the same time. This is usually

achieved with the decay of a heavy particle; (ii) the asymmetry is generated in

the dark sector then is transferred (via sphaleron processes, higher dimension

operators or renormalizable interactions) to the visible sector, or the other way

around. It is also necessary to pass at some point by a thermalization phase

either to get rid or to avoid the production of the symmetric part of DM (a less

extreme cancellation of the asymmetric part leads to mixed scenarios between

WIMP and ADM [188]).

One of the first models of ADM and a prototype of ADM theories is the one of
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Ref. [179]. It is based on a mechanism originally proposed in [176] to unify in

an elegant way the abundances of DM and baryons. In [179], a new symmetry

is postulated, namely a Z2 parity, under which the SM particles are even and

the new particles are odd, forming a dark or hidden sector. The lightest of the

hidden particle is stable and is a DM candidate. A generalized B ´L number

is unbroken and is shared between the SM and the dark sector, thus any excess

of B ´ L that is generated in one of the two sectors is compensated by the

same excess in the other sector. After baryogenesis, the interactions between

the visible and the dark sectors become negligible, and the B´L excesses are

separately conserved in the two sectors giving a relation between the visible

and dark relic densities.

A simple model realizing the idea consists of a heavy particle P , a messenger

particle X which carries a color charge, and the DM candidate χ, all odd under

the Z2 while the SM is even. The mechanism proceeds through 3 stages. In

the first stage P has CP-violating out of equilibrium decays to SM fields and

to a lighter messenger X generating an excess in both sectors but preserving

the generalized B ´ L globally. Then, it is assumed that below the baryoge-

nesis temperature the two sector are decoupled and the two asymmetries are

conserved such that we have:

nSM
B´L “ ´n

X
B´L « nX ´ nX̄ . (2.15)

In the second stage the dark X messenger annihilate away its symmetric part

with X through gauge interactions and we are left with its asymmetric part

only. In the third and final stage, X decays to DM particles, χ, and we obtain:

nχ9n
X
B´L , (2.16)

which gives a tight relation between the visible (baryonic) and DM number

densities. To ensure that such a relation exists, it is important that X is long

lived enough such that it decays after its symmetric part cancels out.
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An interesting possibility is to consider X itself as the DM particle. This is

not feasable here because of the charge assignment of X (colored particle).

However, ‘hylogenesis’ [189] realizes this idea with a simple modification of

the model. Note that the original asymmetry can be generated through the

Affleck-Dine [190, 191] mechanism in a SUSY framework [192–195] or through

leptogenesis as in [196].

2.6 Summary

Observations at different scales indicate that the bulk of the Universe’s matter

content must be in some as-yet-undetected form of dark matter. Although

the nature of dark matter remains unknown, the case for its existence is quite

compelling as we have seen. Inferences from what DM should not be like, al-

low us to gain some insights on its identity. This allowed theorists to propose

well motivated candidates to solve the DM puzzle. Among them, axions and

WIMPs are particularly attractive. Striving to find relations between DM and

other problems of the SM such like the CP problem or baryogenesis is a driving

force in DM model-building that usually leads to new candidates.

Dark matter is currently actively searched for by direct, indirect and collider

experiments. There are reasons to be optimistic that such an intense and broad

research program will shed light on the nature of dark matter. Specifically for

WIMPs, the next few years are going to be decisive — for the better or for

the worse. Much has been achieved since the 1930’s when Zwicky first noticed

the dark matter problem. But there still remains much to learn about it!
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3
The lightness of being — massive

neutrinos

I have done something very bad today by proposing a particle that cannot be detected;

it is something no theorist should ever do.

Wolfgang Pauli

Ever since W. Pauli first proposed their existence in 1930, neutri-

nos have fascinated theorists and experimentalists alike. After years of heroic

experimental efforts, we have amassed considerable knowledge about these

elusive particles. In particular we know that neutrinos oscillate, and that at

least two of them are not massless. The mass splittings and oscillation pa-
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rameters are now known with great accuracy, however it seems that we’ve

barely scratched the surface of this physics — neutrinos still have a lot to

reveal! Indeed, we still do not know whether neutrinos are Dirac or Majorana

fermions, and many issues remain open regarding the nature of the associated

mass-giving operator, for example,

§ its underlying symmetries;

§ its flavor structure;

§ its dimensionality;

§ its characteristic scale;

§ its underlying mechanism or theory.

This leads to considerable theoretical freedom which makes model building a

particularly hard task, a difficulty which to a large extent persists despite the

tremendous experimental progress of the last fifteen years.

This chapter is organized as follows: after a short detour on preliminaries and

notation in the next section, we will review the basics of neutrino mixings in

Section (3.2). The status of neutrino oscillations is presented in Section (3.3).

In Section (3.4) we will present the celebrated tri-bimaximal mixing ansatz

before introducing the bi-large ansatz in Section (3.5) to account for the latest

developments in the field. Then we review neutrino mass mechanisms (Sec-

tion (3.6)): high and low scale seesaw models are reviewed in Section (3.6.1)

and Section (3.6.2) respectively, and radiative neutrino mass models are pre-

sented in Section (3.6.3). Finally, we summarize the chapter in Section (3.7).
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3.1 Preliminaries & notation

An adequate notation should be understood by at least two people,

one of whom may be the author.

Abdus Salam

We will now introduce the necessary definitions and formalism we will use in

the following chapters∗. In particular we will introduce the notion of Dirac

and Majorana masses.

The proper orthochronous Lorentz group SO`p1, 3q, augmented with Parity

(P) and Time-reversal (T ) symmetries, is reducible to its double cover group

SLp2,Cq (the set of complex 2ˆ 2 matrices with unit determinant). The irre-

ducible representations (irrep.) of SLp2,Cq are labeled as pm,nq, where m,n

are non-negative half-integers. The spinorial representation is p1
2
, 0q or p0, 1

2
q,

and is also a fundamental representation of the Lorentz group. p1
2
, 0q represen-

tations act on two component objects called left-handed Weyl spinors. However

the complex conjugate of these matrices is another inequivalent representa-

tion of SLp2,Cq (but equivalent in Lorentz, in pure analogy to SOp3q{SUp2q)

called p0, 1
2
q. Objects that are acted upon in this representation are now called

right-handed Weyl spinors. These two representations are thus seen to be

2-dimensional. By taking the direct sum p1
2
, 0q ‘ p0, 1

2
q of the two represen-

tations, we obtain a 4-dimensional (reducible) representation of the Lorentz

group which acts upon 4-component objects called Dirac spinors.

Any Dirac spinor ψ can be decomposed into two independent components, i.e.,

chiralities, by means of the projection operators PR{L “ p1˘ γ5q{2:

PR{L : ψ Ñ ψR{L ” PR{Lψ . (3.1)

∗This section is inspired from [197–200].

41
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For convenience, we will use exclusively 4-spinors throughout. This formalism

is rigorously equivalent to two-components spinors. In order to be able to write

mass terms, we have to define the charge conjugation operation∗:

C : ψ Ñ ψc ” Cpψ:γ0q
T
“ Cψ̄T . (3.2)

The appearance of the γ0 matrix in Equation (3.2) is just a standard convention

to make the bilinears manifestly Lorentz invariant†. The hermitian matrix C

is defined by the relation C´1γiC “ ´γ
T
i , where γi are the Dirac matrices. In

both the Weyl and the Dirac bases only γ2 is complex so that C “ γ2γ0, up to

an overall phase. We fix:

C “ iγ2γ0 . (3.3)

In this case, C satisfies the following useful relations:

CT
“ C: “ C´1

“ ´C . (3.4)

Which implies in particular that:

pψcqc “ ψ , ψ̄c ” ψTC . (3.5)

Although C has nothing to do with Lorentz symmetries, under C transforma-

tion chiral fields see their chirality flipped. The transformation of a left handed

field for instance reads:

C : ψL Ñ pψLq
c
” pψcqR. (3.6)

For fermions, the mass term must be a bilinear formed by the contraction of

both chiralities: ψRηL, for any chiral spinors ψR and ηL. For a Dirac spinor ψ

∗Note that charge conjugation and particle-anti-particle conjugation are identical for
massive fermions but not for chiral fermions.
†The Dirac bilinears formed with ψ: and ψ are not Lorentz invariant. One must use

ψ̄ “ ψ:γ0 instead. This fact can be traced back to the p`,´,´,´q signature of the flat
space-time metric.
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with the two chiralities, ψ “ ψL ` ψR, we have the following mass:

´ LDirac “MDirac
ν ψ̄ψ “MDirac

ν ψLψR ` h.c. (3.7)

This is the Dirac mass term. In the presence of only one chirality, we can

use Equation (3.6) and Equation (3.4) to construct the other one and form a

Majorana mass term∗:

´LMaj “
1

2
MMaj

ν pψcLψL`h.c.q “
1

2
MMaj

ν ψTLCψL`h.c. ”
1

2
MMaj

ν
ĂψLψL`h.c.

(3.8)

In this case, ψL is necessarily invariant under any complex or pseudoreal trans-

formation. In particular, it cannot carry an unbroken Up1q charge (local and

global alike) because the mass term would break it by two units. Notice that

we have introduced the notation:

rψ “ ψTC (3.9)

In general, MDirac
ν and MMaj

ν are matrices whose dimension depends on the

particle content of the model. While MDirac
ν is an arbitrary complex matrix,

the Majorana mass matrix satisfies MMaj
ν “ MMaj

ν
T

, i.e., it is a symmetric

complex matrix.

To summarize, using a Dirac spinor we can construct two types of masses:

Dirac Ñ ψRψL

Majorana Ñ ĂψLψL pĂψRψRq

3.1.1 Majorana masses in the Standard Model

In the SM, the only particle eligible to have a Majorana type of mass is the

electrically neutral neutrino. All the other fermions have Dirac-type masses

through the Higgs mechanism (see for instance Equation (1.13)). However,

writing a Majorana mass for neutrinos is not possible because of the SUp2qLb

∗The factor 1
2 is necessary in order to normalize the mass with respect to the Dirac

equation.
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3. THE LIGHTNESS OF BEING — MASSIVE NEUTRINOS

Up1qY gauge symmetry (at the renormalizable level). Indeed, such a term

would require two lepton doublets and a Higgs doublet, schematically rLLH,

and this contraction is not allowed by SUp2qL. And even if it were, it would

violate electric charge by two units because of the presence of charged leptons

in L. Clearly, we need to go beyond the SM to provide Majorana masses to the

neutrinos. For instance, adding a Higgs SUp2qL triplet ∆, with hypercharge

Y “ 1, endows the SM with terms of the form rL∆L, which lead to Majorana

masses for neutrinos and full consistency with SUp2qL b Up1qY at a minimal

price. Note that any Majorana-type mass for neutrinos implies a violation of

lepton number by two units. This is not a problem since lepton number is

purely accidental in the SM (the same applies to baryon number) and impos-

ing its conservation would be questionable anyway [201].

Of course, one can mimic the charged fermions and give a Dirac mass to the

neutrinos. This would require the introduction of a new chiral fermion: the

right-handed neutrino. This is a perfectly viable thing to do, though (i) given

the smallness of neutrino masses, the Yukawa coupling would need to be ex-

tremely small, Op10´12q — not very appealing; (ii) an exact symmetry has to

be imposed on the Lagrangian to forbid Majorana terms (for instance, lepton

number symmetry).

We conclude that, either Dirac or Majorana, the fact that neutrinos are massive

implies the existence of new physics beyond the SM. The rest of the chapter

will expand more on this by giving the possible pathways of new physics, as

hinted to by the problem of neutrino masses.

In all what follows we make the natural assumptions that neutrinos are Majo-

rana particles, i.e., Mν ”MMaj
ν .

3.2 Neutrino mixings

With massive neutrinos, we are lead to reproduce the scenario of the quarks

mixings — see Equation (1.10). Namely, we cannot redefine the fields without

introducing mixings in the leptons sector. Therefore, we have the equivalent of
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the CKM matrix for the leptons: the lepton mixing matrix, sometimes called

PMNS, for Pontecorvo-Maki-Nakagawa-Sakata matrix [202]:

Ulep “ U e
L
: Uν

L (3.10)

where U e
L is the matrix that diagonalizes the charged leptons, Equation (1.9).

In the case where charged leptons are diagonal, the mixing angles can be

directly read off the neutrino mixing matrix. Contrary to quarks, the fact that

the neutrino mass matrix is in general complex symmetric implies the existence

of only one unitary matrix to diagonalize it, so that the neutrino masses are

derived through:

Uν
L
T Mν Uν

L,“ Dν , (3.11)

or Mν “ Uν
L
˚Dν Uν

L
:, where Dν ” diagpm1,m2,m3q is the diagonal neutrino

mass matrix, and Uν
L is the neutrino mixing matrix:

¨

˚

˚

˝

νe

νµ

ντ

˛

‹

‹

‚

“ Uν
L

¨

˚

˚

˝

ν1

ν2

ν3

˛

‹

‹

‚

. (3.12)

Here, ν1,2,3 denote the neutrino mass eigenstates. In general two additional

phases appear in Dν on top of the Dirac phase, as opposed to only one in the

quark sector. This is due to the Majorana nature of the neutrino mass term.

After rotating away the unphysical phases, we have:

Uν
L “

¨

˚

˚

˝

1 0 0

0 c23 s23

0 ´s23 c23

˛

‹

‹

‚

¨

˚

˚

˝

c13 0 e´iδs13

0 1 0

´eiδs13 0 c13

˛

‹

‹

‚

¨

˚

˚

˝

c12 s12 0

´s12 c12 0

0 0 1

˛

‹

‹

‚

T

“

¨

˚

˚

˝

c12c13 s12c13 s13e
´iδ

´s12c23 ´ c12s13s23e
iδ c12c23 ´ s12s13s23e

iδ c13s23

s12s23 ´ c12s13c23e
iδ ´c12s23 ´ s12s13c23e

iδ c13c23

˛

‹

‹

‚

T .

(3.13)

45



3. THE LIGHTNESS OF BEING — MASSIVE NEUTRINOS

Figure 3.1: Flavor content of the neutrino mass eigenstates ν1, ν2 and ν3. Angles taken
from [203].

Here, δ is the Dirac CP-violating phase and the matrix T ” diagp1, eiβ, eiβ
1

q

contains the Majorana phases. The three mixing angles are denoted by θ12,

θ23, and θ13 (sij “ sin θij, cij “ cos θij).

In contrast with the quarks, Equation (1.12), the neutrino mixing angles are

found to be quite large (see Table (3.1) for precise values and error estimates):

θ12 « 34.60 , θ23 « 490 , θ13 « 90 . (3.14)

The composition of the neutrino mass eigenstates in terms of their interaction

counterparts is depicted in Figure (3.1).

In summary there are nine physical parameters to describe neutrino masses

and mixing: three masses, three angles and three phases. Before presenting

the different proposed mechanisms to elucidate neutrino masses, we first review

what the data tell us.

3.3 Experimental status

By now (2014), we have observed:

§ Solar νe convert to νµ{ντ : Super-Kamiokande [204], SNO [205] and

BOREXINO [206];

§ Reactor ν̄e disappear at L « 200 km: KamLAND [207];

§ Atmospheric νµ and ν̄µ disappear to ντ : Super-Kamiokande [208] and
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MINOS [209];

§ Accelerator νµ and ν̄µ disappear at L « 250 km: T2K [210] and MI-

NOS [209];

§ Reactor νe disappear at L « 1 km: Double-Chooz[211], Daya-Bay [212],

RENO [213].

These observations confirm neutrino oscillations in vacuum and in matter at

different scales and with different techniques. Table (3.1) summarizes the

known neutrino properties, obtained from a global fit of the available exper-

imental data [203] (other global fits are available in [214, 215]). We know

from the data that at least two out of the three neutrinos are massive. That

is because neutrino oscillation experiments are sensitive to the squared mass

differences only; ∆m2
ij “ m2

i ´ m2
j . Solar and atmospheric oscillations tell

us that ∆m2
12 « 7.5 10´5 eV2 and |∆m2

31| « 2.5 10´3 eV2 respectively. With

these two mass splittings, the ordering (or hierarchy) of the masses cannot be

determined. Depending on the sign of ∆m2
13 we distinguish:

Normal ordering Ñ m1 ă m2 ă m3 ,

Inverted ordering Ñ m3 ă m1 ă m2 .

The absolute mass of neutrinos is unknown. We only have upper limits on

the neutrino masses or their sum, which only show that the neutrino masses

are very small, OpeVq at most. Only two types of laboratory experiments

are sensitive to the absolute scale of neutrinos: beta decay and neutrinoless

double beta decay (0νββ). Tritium β decay sets the limit mβ ă 2.05 eV at

95% CL [216] while from 0νββ we have mββ ă„ p0.2´ 0.4q eV [217] at 90% CL

(mβ and mββ are a combination of neutrino parameters). Additionally, the

sum of (quasi-) stable neutrino masses is tightly constrained by cosmology:

Σmi ă p0.23 ´ 1.08q eV , (3.15)

at 95% CL [77] (for more details about neutrinos in cosmology, see [218, 219]).
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The current and future experimental programs are mostly devoted to resolve

the following points:

§ Are neutrinos Majorana particles? Neutrinoless double beta decay ex-

periments (e.g., EXO and ZEN) are still testing the nature of neutrino

masses. Detecting 0νββ would offer decisive evidence for the Majo-

rananess of the neutrinos;

§ Is there leptonic CP violation? Since θ13 ‰ 0, one expects CP violation

in the leptonic sector. Measuring the CP phase is one of the main goals

of experiments like MINOS, NOVA and LBNE;

§ What is the correct octant? To know if the atmospheric neutrino angle

in the first or second octant (cf. Table (3.1)) we need more precision in

data from long baseline experiments;

§ What is the neutrino mass hierarchy? Very long baseline experiments

such as PINGU or a medium baseline reactor experiment like JUNO will

strive to determine the hierarchy of neutrino masses. Also, Cosmology

(PLANCK observations for instance) can provide information on the

absolute scale of neutrino masses;

§ Are there sterile neutrinos? By comparing the fits with and without the

presence of light sterile neutrino states. Cosmology here is a powerful

tool too (BICEP and PLANCK).

3.4 Tri-bimaximal mixing ansatz

In 2002, Harrison, Perkins and Scott remarked that the mixing of νµ and ντ at

the atmospheric scale is almost bimaximal, while at the solar scale the mixing

of νe with νµ is nearly trimaximal. This led them to suggest that the lepton

mixing angles follow the tri-bimaximal (TBM) ansatz [220], defined by the
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Parameter Best Fit ˘ 1σ 3σ interval

NH IH NH IH

∆m2
21 r10´5 eV2

s 7.60`0.19
´0.18 r7.11, 8.18s

|∆m2
31| r10´3 eV2

s 2.48`0.05
´0.07 2.38`0.05

´0.06 r2.30, 2.65s r2.20, 2.54s

sin2 θ12 ˆ 10 3.23˘ 0.16 r2.78, 3.75s

sin2 θ23 ˆ 10 5.67`0.32
´1.15 5.73`0.25

´0.38 r3.95, 6.42s r4.05, 6.39s

sin2 θ13 ˆ 102 2.10`0.14
´0.09 2.16`0.10

´0.12 r1.79, 2.47s r1.82, 2.50s

δ{π 1.48`0.43
´0.39 1.48`0.28

´0.29 r0, 2s

Table 3.1: Neutrino oscillation data circa 2014 [203]. It is also important to say that for nor-
mal hierarchy there is also another (local) minimum at sin2 θ23 “ 0.467, in the first octant.

matrix∗:

UTBM “

¨

˚

˚

˝

2{
?

6 1{
?

3 0

´1{
?

6 1{
?

3 1{
?

2

1{
?

6 ´1{
?

3 1{
?

2

˛

‹

‹

‚

. (3.16)

Implying sin2 θ12 “ 1{3, sin θ13 “ 0 and sin2 θ23 “ 1{2, as the data was sug-

gesting until 2012 — charged leptons are assumed to be diagonal here. The

ansatz became very popular and widely used by the neutrino model-builders

community. Mixing parameters turn out to be simple numbers and such strik-

ing features point towards an underlying symmetry. Although the TBM ansatz

requires the neutrino mass matrix to take a very special form in order to be di-

agonalized by Equation (3.16), models based on (mostly discrete) non-Abelian

flavor symmetries were successful in reproducing it, notably the Ma-Babu-Valle

model [223], and the Altarelli-Feruglio model [224].

TBM is a particular case of the µ´ τ symmetry, which is a matrix of the form

∗The same matrix had been used by Wolfenstein back in the 70s [221]. Note also that
the bimaximal ansatz [222] has also been widely used, although less than TBM.
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(with the free parameters, x, y, z, w):

Mν “

¨

˚

˚

˝

x y y

y z w

y w z

˛

‹

‹

‚

. (3.17)

Such a matrix predicts a maximal θ23 and vanishing θ13. It can be easily

obtained from discrete groups such as S3, A4 or D4 (for a review, see for ex-

ample [225–227]), and this explains to a large extent the successful predictions

of TBM from flavor models based on discrete symmetries.

However the results published by the Double-Chooz [211], Daya-Bay [212],

and RENO [213] collaborations, indicate that the reactor angle is relatively

large so that corrections to the TBM pattern should be, in fact, quite large,

casting doubt on its validity as a good first approximation reproducing the

neutrino mixing pattern. To be more precise, on theoretical grounds a small

deviation of order of the square of the Cabibbo angle was expected for the

reactor angle, while recent observations indicate a much larger value of about

the order of the Cabibbo angle. The TBM pattern may still be tenable if the

underlying theory is capable of providing sufficiently large corrections to θ13

without affecting too much the solar angle, which is in principle possible albeit

difficult to achieve.

To evade this problem, different ansatz have been considered like the ‘bimax-

imal’ mixing [228] or the ‘tri-bimaximal-Cabibbo’ mixing [229], see [230] for a

review. However, most of these models assume a µ ´ τ -invariant structure in

order to predict a maximal atmospheric mixing angle. In the next section we

review a proposal of a new ansatz, where the reactor angle plays a central role.

3.5 Bi-large mixing ansatz

As we saw in the last section, the recent measurements of the neutrino mixing

angles cast doubt on the validity of the so-far popular tri-bimaximal mixing

ansatz. The bi-large (BL) ansatz is a different approach from TBM where we
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take the reactor mixing angle as the fundamental parameter, seeding the large

solar and atmospheric mixing angles. The resulting parametrization does not

reproduce the TBM pattern as a limiting case.

The main idea is that, since the reactor angle is the only small mixing pa-

rameter for the leptons, we can use it to seed both the solar and atmospheric

mixing angles, as follows:

sin θ13 “ λ ;

sin θ12 “ s λ ;

sin θ23 “ a λ ,

(3.18)

where the small parameter λ is the reactor angle, while s « a are free param-

eters of order a few. Solar and atmospheric mixings are expressed in terms of

a linear dependence on the reactor angle. In the limit where λÑ 0 neutrinos

are unmixed.

Using the general symmetric parametrization of the neutrino mixing matrix

one can trivially obtain a simple approximate description by expanding only

in the small parameter λ. For example, the Jarlskog invariant describing CP
violation in neutrino oscillations is then given by:

JCP « a s λ3
?

1´ a2λ2
?

1´ s2λ2 sinpφ13 ´ φ12 ´ φ23q (3.19)

given explicitly in terms of the rephase-invariant Dirac combination. Likewise,

the effective mass parameter describing the amplitude for neutrinoless double-

beta decay is given in terms of the two Majorana CP phases.

From the data (Table (3.1)) we can directly read that sin θ12 “ Opsin θ23q.

Now we go a step further and assume that sin θ12 “ sin θ23, which in our

parametrization implies:

s “ a. (3.20)

Since both solar and atmospheric angles are large we call this case BL mixing

ansatz.
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Figure 3.2: Deviation from the BL ansatz versus the expansion parameter λ at two and three
sigma in the neutrino oscillation parameters. The solid and dashed lines indicate the best fits
of Refs. [231] and [232], respectively. The strict BL ansatz holds when λ « λC (vertical line).

Suppose now that we are given some model predicting BL mixing at leading

order. Next-to-leading order operators in the Lagrangian in general induce

deviations from the reference values in Equation (3.18) which may be reliably

determined within a given model. Here we present a simple model-independent

estimate of such corrections, obtained as follows. Typically it is expected that

the corrections to the three mixing angles from next to leading order terms

are of the same order, that is sin θij Ñ sin θij ˘ ε where we have introduced a

new parameter ε to characterize the magnitude of the correction. In this case

our BL mixing gets corrections of the same order for the three mixing angles

(given by ε) and which may either increase or decrease the starting BL values

of the mixing angles. For definiteness let us consider an example where BL

mixing is corrected as:

sin θ13 “ λ´ ε ;

sin θ12 “ sλ´ ε ;

sin θ23 “ aλ` ε .

(3.21)

where we take s “ a as in Equation (3.20). Since we have three free parame-

ters, we can fix them using the best fit values.

In order to quantitatively clarify the role of the relation in Equation (3.20)
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Figure 3.3: Average of solar and atmospheric angles versus the expansion parameter λ at two
and three sigma in the neutrino oscillation parameters. The solid and dashed lines indicate the
best fits of Refs. [231] and [232], respectively.

with respect to the reactor mixing angle, we consider here the most generic

case given by Equation (3.21) where the three angles are given in terms of four

parameters instead of three. Three of these parameters can be fixed from the

three measured mixing angles, leaving one free parameter that we choose to be

λ. In order to quantify the deviation from our exact BL mixing ansatz defined

in Equation (3.20) we plot the combination pa´ sq{pa` sq as a function of the

expansion parameter λ in Figure (3.2). The colored/shaded bands are calcu-

lated from the two and three sigma allowed ranges for the neutrino oscillation

parameters obtained in the global fits. The solid and dashed lines indicate the

best fits of [231] and [232], respectively. It is remarkable that the strict BL

ansatz in Equation (3.20) holds when λ « λC where λC « 0.22. This means

that λC is the leading order value of sin θ13. It has been shown that a similar

relation can emerge in GUTs via charged lepton corrections [233].

In Figure (3.3) we show the average value of a and s, that is pa ` sq{2, as a

function of λ. The correlation is such that pa ` sq{2 « 3 when λ « λC , the

Cabibbo parameter. It follows that one possible form of our BL ansatz, which
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can be useful for model building, is:

sin θ13 “ λ ;

sin θ12 “ 3λ ;

sin θ23 “ 3λ .

(3.22)

It is remarkable to see how such a simple form is nearly consistent with current

global neutrino oscillation data. This appears to be an important numerolog-

ical “coincidence” which may drastically change our theoretical approach for

constructing neutrino mass models, by moving from a geometrical interpreta-

tion of the neutrino mixing angles to one in which these are no longer associated

to Clebsch-Gordan coefficients of any symmetry, in sharp contrast to the pre-

vious (TBM) paradigm.

We conclude with a few words on model building. For the sake of illustration,

we consider in the BL mixing ansatz, Equation (3.22), a normal and strongly

hierarchical spectrum (mν1 “ 0) for neutrino masses and fix the squared mass

differences at their best fit values, as given in [231]. We find that the resulting

weak-basis neutrino mass matrix mν has the form:

mν «

¨

˚

˚

˝

0.20 0.32 0.15

0.75 0.70

1

˛

‹

‹

‚

«

¨

˚

˚

˝

λC λC λC

1 1

1

˛

‹

‹

‚

(3.23)

where in the last step the Cabibbo angle is used as the expansion parameter

and we do not specify numerical coefficients of order one.

From the form obtained in Equation (3.23) one sees that the parameter λC

appears only in the first row. On the other hand in the “atmospheric sector”

there seems to be “democracy” in the choice of the neutrino mass entries.

Altogether the above hints toward two general features regarding the neutrino

mass generation mechanism:

§ a Frogatt-Nielsen-like flavor symmetry [234] that could generate the re-

quired pattern given in Equation (3.23). This has been done in [235] for

instance;
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ν ν

Figure 3.4: Depiction of Weinberg’s dimension-5 LLHH operator for generating Majorana
neutrino masses. The vev insertions are from SUp2qL doublets.

§ some gravity-like [236] “flavor-blind” mechanism operating within the

“atmospheric sector”. The problem in this case is that, for reasonable

values of the coefficients of the dimension five operator, the induced neu-

trino masses are too small. However there may be other well-motivated

“anarchy”-type schemes [237–240].

Still, a geometric interpretation of the mixing angles and derivation of the

BL ansatz is still possible as was shown, for instance, in [241, 242]. Finally,

interestingly enough the BL mixing can arise from F-theory (see for instance,

Sec.(7), Eq.(7.13) of [243]).

3.6 Neutrino masses

In full generality, with Standard Model fields one can induce Majorana neutrino

masses through the non-renormalizable dimension-5 operator:

Odim“5 “
λij
Λ

rLiHLjȞ ` h.c. , (3.24)

introduced by Weinberg [201]∗. λij is a dimensionless coupling and Λ denotes

some unknown effective scale. Following the notation introduced in Equa-

tion (1.8), Ȟ “ iτ2H. Mechanisms inducing neutrino mass may be broadly

divided on the basis of whether the associated messengers lie at the high en-

ergy scale (related say, to some unification scheme), or in contrast they involve

new physics at the TeV scale, potentially accessible at the LHC.

∗Higher order operators, e.g., of the type LLHHpH:Hqm [244–248] are also possible, at
the price of minimality.
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ν νNR NR

∆

νν

Figure 3.5: Neutrino mass generation in the type-I seesaw (left) and type-II seesaw (right).
The small black disks show where lepton number violation takes place.

For simplicity here we tacitly assume neutrino masses to come from Weinberg’s

operator in Equation (3.24). This operator can arise in a rich variety of dif-

ferent pathways [249]. The seesaw mechanism, that we will review in the next

section, is perhaps the most elegant and well motivated theory for neutrino

masses. It can be realized at high (Section (3.6.1)) or low (Section (3.6.2))

scale. Neutrino masses can also have a radiative origin, with possible rich low

scale phenomenology. We will review radiative models in Section (3.6.3).

3.6.1 The seesaw variations

In general, neutrino masses via tree level exchange of high scale messengers

leads to neutrino masses of Opv2
SM{Mmessengerq. This suppression can be real-

ized in three different ways:

§ Type I seesaw requires at least two neutral iso-singlet fermions;

§ Type II seesaw employs an SUp2qL scalar triplet;

§ Type III seesaw requires at least two SUp2qL fermion triplets.

Seesaw Type-I

The seesaw mechanism [250–255], with a GUT-scale Majorana matrixMN " vSM ,

and the Dirac Yukawa matrix YD, is based on the Lagrangian:

´ L “ YDL̄ȞN `
1

2
MN

ĂNRNR ` h.c. . (3.25)
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The mechanism generates small neutrino masses, as well as mixing of the

neutrino flavors through the “seesaw relation”:

M seesaw´I
ν “ ´mDM

´1
R mT

D , (3.26)

where mD ” YD vSM and MR is the mass of the right handed neutrino NR.

This leads to the well-known type-I seesaw relation:

mν « m2
D{Mmessenger , (3.27)

where the messenger here is the right handed neutrino NR. The mechanism is

depicted in Figure (3.5) (left). In general, the 6ˆ6 matrix U that diagonalizes

the neutrino mass is unitarity and is given by:

U “

˜

`

I ´ 1
2
m˚
DpM

˚
Rq
´1M´1

R mT
D

˘

V1 m˚
DpM

˚
Rq
´1 V2

´M´1
R mT

D V1

`

I ´ 1
2
M´1

R mT
Dm

˚
D pM

˚
Rq
´1
˘

V2

¸

`Opε3q,

(3.28)

where V1 and V2 are the unitary matrices that diagonalize the light and heavy

sub-block respectively. From Equation (3.28) one sees that the active 3ˆ3 sub-

block is no longer unitary and the deviation is of the order of ε2 « pmD{MRq
2.

The expansion parameter ε is very small if the scale of new physics is at

the GUT scale so the induced lepton flavor violation (LFV) processes are

suppressed. In this case there are no detectable direct production signatures

at colliders nor LFV processes. Equation (3.27) implies that:

ε2 « mν{MR , (3.29)

is suppressed by the neutrino mass, hence negligible regardless of whether the

messenger scale MR lies at the TeV scale∗. As a result there is a decoupling

of the effects of the messengers at low energy, other than providing neutrino

masses. This includes for example lepton flavor violation effects†. Regarding

∗Weak universality tests as well as searches at LEP and previous colliders rule out lower
messenger mass scales [216, 256].
†Although, if lepton number is approximately conserved [257], the strength of the charged

and neutral current weak interactions may be large enough to allow the production of the
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direct signatures at collider experiments these require TeV scale messengers

which can be artificially implemented here by assuming the Dirac-type Yukawa

couplings to be tiny. This makes messenger production at colliders hopeless

for this scenario.

Seesaw Type-II

Instead of the right-handed neutrino, a Y “ 1 scalar triplet ∆ is considered in

this case a messenger field [253, 259–262]. The relevant coupling is:

L “ Y ij
∆
rLi τ2 ∆Lj ` h.c. , (3.30)

leading to (see Figure (3.5) (right)):

M seesaw´II
ν “ Y∆ x∆y , with x∆y “

µ v2
SM

M2
∆

, (3.31)

The vev of ∆ results from the scalar potential:

V “ µHT τ2∆˚H `M2
∆Trp∆:∆q ` h.c. (3.32)

Assuming Y∆ of order one, in order to have light neutrino mass there are two

possibilities: either M∆ is large or µ is small. The first case is the standard

type-II seesaw where all the parameters of the model are naturally of order

one.

In contrast, if type-II seesaw schemes are chosen to lie at the TeV scale, then

lepton flavor violation effects as well as same-sign di-lepton signatures at col-

liders remain [263]. Obviously supersymmetrized “low-scale” type-II seesaw

have an even richer phenomenology [264, 265].

latter at the LHC [258].
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Seesaw Type-III

Type III see-saw [266] employs at least two SUp2qL fermion triplets, with null

hypercharge. The relevant terms in the Lagrangian are:

´ L “ YDrL τ2 T H `MTTrprTT q ` h.c. . (3.33)

In a manner similar to type-I seesaw, we get neutrino masses for Mmessenger ”

MT " vSM :

M seesaw´III
ν “ ´Y T

D M´1
T YDv

2
SM . (3.34)

Type-III seesaw suffers the same drawbacks as type-I seesaw for LFV signa-

tures. However, because ∆ transforms under the SUp2qL b Up1qY group, the

mechanism can lead to new signals in collider experiments. The LHC phe-

nomenology has been studied, for example in [267].

3.6.2 Low scale seesaw

The seesaw schemes presented in the previous section are bona fide high-scale

seesaw in the sense that, to account for the observed neutrino masses with rea-

sonable strength for the relevant neutrino Yukawa couplings, one needs very

large scales for the messenger mass, hence inaccessible to collider experiments.

Of course within such scenarios one may artificially take TeV scales for the

messenger mass by assuming tiny Yukawas, so as to account for the small-

ness of neutrino mass∗. However by doing so one erases a number of potential

phenomenological implications. Within the framework of the standard model

SUp3qc b SUp2qL b Up1qY gauge structure, the models can be labeled by an

integer, m, the number of singlets [253]†. For example, to account for current

neutrino oscillation data, a type-I seesaw model with two right-handed neutri-

nos is sufficient (m “ 2). Likewise for models with m “ 1 in which another

mechanism such as radiative corrections (see below) generates the remaining

scale. Especially interesting are models with m ą 3, where one can exploit the

∗One can avoid this in schemes where ad hoc cancellations [268] or symmetries [269, 270]
prevent seesaw-produced masses.
†It has long ago been realized that, carrying no anomalies, singlets can be added in an

arbitrary number to any gauge theory.
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3. THE LIGHTNESS OF BEING — MASSIVE NEUTRINOS

extra freedom to realize symmetries, such as lepton number (L), so as to avoid

seesaw-induced neutrino masses, naturally allowing for TeV-scale messengers.

This is the idea behind the inverse [271] and linear seesaw schemes [272–274]

described in the next section. We call such schemes as genuine low scale seesaw

constructions.

Inverse seesaw

In its simplest realization the inverse seesaw extends the standard model by

means of two sets of electroweak two-component singlet fermions NRi and

SLj [271]. The lepton number of the two sets of fields NR and SL can be

assigned as LpNRq “ `1 and LpSLq “ `1. One assumes that the fermion pairs

are added sequentially, i.e., i, j “ 1, 2, 3, though other variants are possible.

After electroweak symmetry breaking the Lagrangian is given by:

L “ mDνLNR `M NRSL ` µ rSLSL ` h.c. , (3.35)

where mD and M are arbitrary 3ˆ3 Dirac mass matrices and µ is a Majorana

3ˆ 3 matrix. We note that the lepton number is violated by the µ mass term

here. The full neutrino mass matrix can be written as a 9 ˆ 9 matrix instead

of 6 ˆ 6 as in the typical type-I seesaw and is given by (in the basis νL, NR

and SL):

Mν “

¨

˚

˚

˝

0 mT
D 0

mD 0 MT

0 M µ

˛

‹

‹

‚

(3.36)

The entry µ may be generated from the spontaneous breaking of lepton number

through the vacuum expectation value of a gauge singlet scalar boson carrying

L “ 2 [257].

It is easy to see that in the limit where µ Ñ 0 the exact Up1qL symmetry

associated to total lepton number conservation holds, so the light neutrinos

are strictly massless. However individual symmetries are broken hence flavor

is violated, despite neutrinos being massless [275, 276]. For complex couplings,

one can also show that CP is violated despite the fact that light neutrinos
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Figure 3.6: Neutrino mass generation in the type-I inverse seesaw.

are strictly degenerate [277, 278]. The fact that flavor and CP are violated

in the massless limit implies that the attainable rates for the corresponding

processes are unconstrained by the observed smallness of neutrino masses, and

are potentially large.

This feature makes this scenario conceptually and phenomenologically inter-

esting and is a consequence of the fact that the lepton number is conserved.

However when µ ‰ 0 light neutrino masses are generated, see Figure (3.6). In

particular in the limit where µ,mD ă„M ∗ the light neutrino 3ˆ3 mass matrix

is given by:

minv.seesaw
ν « mD

1

M
µ

1

MT
mT
D . (3.37)

It is clear from this formula that for “reasonable” Yukawa strength or mD val-

ues, M of the order of TeV, and suitably small µ values one can account for the

required light neutrino mass scale at the eV scale. There are two new physics

scales, M and µ, the last of which is very small. Therefore it constitutes an

extension of the standard model from below, rather than from above. For this

reason, it has been called inverse seesaw : in contrast with the standard type-I

seesaw mechanism, neutrino masses are suppressed by a small parameter, in-

stead of the inverse of a large one. The smallness of the scale µ is natural in

’t Hooft’s sense, namely in the limit µ Ñ 0, the symmetry is enhanced since

lepton number is recovered†.

∗On the other hand, the opposite limit µ "M is called double seesaw. In contrast to the
inverse seesaw, the double seesaw brings no qualitative differences with respect to standard
seesaw and will not be considered here.
†There are realizations where the low scale of µ is radiatively calculable. As examples

see the supersymmetry framework given in [279], or the standard model extension suggested
in [280].

61



3. THE LIGHTNESS OF BEING — MASSIVE NEUTRINOS

In this case the seesaw expansion parameter ε « mD{M also characterizes the

strength of unitarity and universality violation and can be of order of percent

or so [281, 282], leading to sizable lepton flavor violation rates, close to future

experimental sensitivities. For example, with mD “ 30 GeV, M “ 300 GeV

and µ “ 10 eV we have that ε2 « 10´2. The deviation from the unitary

is typically of order ε2. As mentioned above, typical expected lepton flavor

violation rates in the inverse seesaw model can be potentially large (e.g., µÑ

eγ). Regarding direct production at colliders, although kinematically possible,

the associated signatures are not easy to catch given the low rates as the right

handed neutrinos are gauge singlets and due to the expected backgrounds (see

for instance [283]).

One way out is by embedding the model within an extended gauge structure

that can hold at TeV energies, such as an extra Up1q coupled to B ´ L which

may arise from SOp10q [274].

Linear type-I seesaw

This variant of low-scale seesaw was first studied in the context of SUp2qL b

SUp2qR b Up1q theories [272, 273] and subsequently demonstrated to arise

naturally within the SOp10q framework in the presence of gauge singlets [274].

The lepton number assignment is as follows: LpνLiq “ `1, LpNRiq “ `1 and

LpSLiq “ `1 so that, after electroweak symmetry breaking the Lagrangian is

given by:

L “ mDνLNR `MRNRSL `MLνL rSL ` h.c., (3.38)

Notice that the lepton number is broken by the mass term proportional to

ML. This corresponds to the neutrino mass matrix in the basis νL, NR and SL

given as:

Mν “

¨

˚

˚

˝

0 mT
D ML

mD 0 MR

ML MR 0

˛

‹

‹

‚

(3.39)

If mD !ML,R then the effective light neutrino mass matrix is given by:

mlin.seesaw
ν “ mDML

1

MR

` Transpose. (3.40)
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Model Scalars Fermions LFV LHC

Type-I p1,1, 0q`1 7 7

Type-II p1,3, 1q`2 3 3

Type-III p1,3, 0q`1 7 3

Inverse p1,1, 0q`1 3 7

Linear p1,1, 0q`1 3 7

Table 3.2: Phenomenological implications of SUp3qc b SUp2qL b Up1qY seesaw models
together with their particle content. The subscript in the representations is lepton number.
“7” would change to “3” in the presence of new gauge bosons or supersymmetry for instance.

Note that, in contrast with other seesaw varieties which lead to mν9m
2
D, this

relation is linear in the Dirac mass entry, hence the origin of the name “linear

seesaw”. Clearly neutrino masses will be suppressed by the small value of ML

irrespective of how low is the MR scale characterizing the heavy messengers.

For example, if one takes the SO(10) unification framework [274], natural in

this context, one finds that the scale of ML, i.e., vL, is related to the scale of

MR, i.e., vR, through:

vL «
vR vSM
MGUT

, (3.41)

where MGUT is the unification scale of the order of Op1016 GeVq and vSM is

the electroweak breaking scale of the order of Op100 GeVq. Replacing the re-

lation (3.41) in Equation (3.40) the new physics scale drops out and can be

very light, of the order of TeV.

Neutrino mass messengers are naturally accessible at colliders, like the LHC,

since the right handed neutrinos can be produced through the Z 1 “portal”, as

light as few TeV. The scenario has been shown to be fully consistent with the

required smallness of neutrino mass as well as with the requirement of gauge

coupling unification [274].

Similarly to the inverse type-I seesaw scheme, we also have here potentially

large unitarity violation in the effective lepton mixing matrix governing the

couplings of the light neutrinos. This gives rise to lepton flavor violation effects

similar to the inverse seesaw case. Finally we note that, in general, a left-right

symmetric linear seesaw construction also contains the lepton number violating

Majorana mass term rSLSL considered previously.
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3.6.3 Radiative neutrino masses

In the previous sections we reviewed mechanisms ascribing the smallness of

neutrino masses to the small coefficient in front of Weinberg’s dimension-five

operator. This was generated either through tree-level exchange of super-

heavy messengers, with mass associated to high-scale symmetry breaking, or

conversely, because of symmetry breaking at low scale. In what follows we

turn to radiatively induced neutrino masses, a phenomenologically attractive

way to account for neutrino masses. In such scenarios, the smallness of the

neutrino mass follows from loop factor(s) suppression. From a purely phe-

nomenological perspective, radiative models are quite interesting as they rely

on new particles that typically lie around the TeV scale, hence accessible in

principle to collider searches.

Unlike seesaw models, radiative mechanisms can go beyond the effective ∆L “

2 dimension-five operator in Equation (3.24) and generate the neutrino masses

at higher order. This leads to new operators and to further mass suppression.

Such an approach has been reviewed in [284–288]. In what follows we will

survey some representative underlying models up to the third loop level.

One-loop schemes

A general survey of one-loop neutrino mass operators leading to neutrino

mass has been performed in [245]. Neutrino mass models in extensions of

the SM with singlet right-handed neutrinos have been systematically analyzed

in [289, 290] and for higher representations in [291]. Here we review the most

representative model realizations.

§ Zee Model

The Zee Model [292] extends the standard SUp3qc b SUp2qL b Up1qY model

with the following fields

h` „ p1,1,`1q´2 , φ1,2 „ p1,2,`1{2q0 , (3.42)
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Figure 3.7: Neutrino mass generation in the Zee model.

where the subscript denotes lepton number. Given this particle content neu-

trino mass are one-loop calculable. The relevant terms are given by:

L “ yabi Laφi`bR ` f
ab
rLa iτ2 Lb h

`
´ µφ:1 φ̌2 h

`
` h.c. , (3.43)

where a, b indicate the flavor indices, i.e., a, b “ e, µ, τ and τ2 is the second

Pauli matrix. Notice that the matrix f must be anti-symmetric in generation

indices. The violation of lepton number, required to generate a Majorana mass

term for neutrinos, resides in the coexistence of the two Higgs doublets in the

µ term. The model has been extensively studied in the literature [293–316],

particularly in the Zee-Wolfenstein limit where only φ1 couples to leptons due

to a Z2 symmetry [317].

This particular simplification forbids tree-level Higgs-mediated flavor-changing

neutral currents (FCNC), although it is now disfavored by neutrino oscillation

data [305, 318]. However the general Zee model is still valid phenomeno-

logically [302] and is in testable with FCNC experiments. For instance the

exchange of the Higgs bosons leads to tree level decays of the form `i Ñ `j`k ¯̀
k,

in particular τ Ñ µµµ̄, µeē (see for instance [319]). Collider phenomenology

has been studied in [320, 321].

Recently, a variant of the Zee model have been considered in [322] by impos-

ing a family-dependent Z4 symmetry acting on the leptons, thereby reducing

the number of effective free parameters to four. The model predicts inverse
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Ni νbνa

ηη

Ni

Figure 3.8: Neutrino mass generation in the radiative seesaw model. The blue color repre-
sents the potential dark matter candidates.

hierarchy spectrum in addition to correlations among the mixing angles.

§ Radiative seesaw: The scotogenic model

Another one-loop scenario was suggested by Ma [323]. Besides the standard

model fields, three right-handed Majorana fermions Ni (i “ 1, 2, 3) and a Higgs

doublet are added to the SUp3qc b SUp2qL b Up1qY model,

Ni „ p1,1, 0q`1 , η „ p1,2,`1{2q0 . (3.44)

In addition, a parity symmetry acting only on the new fields is postulated.

This Z2 is imposed in order to forbid Dirac neutrino mass terms. The relevant

interactions of this model are given by:

L “ yab La η̌Nb ´
MNi

2
ĂNiNi ` h.c. (3.45)

In the scalar potential a quartic scalar term of the form pH:ηq2 is allowed. The

one-loop radiative diagram is shown in Figure (3.8) and generates calculable

Mν if xηy “ 0, which follows from the assumed symmetry. The neutrino

masses are given by:

pMνqab “
ÿ

i

yaiybiMNi

16π2

„

m2
R

m2
R ´M

2
Ni

ln
m2
R

M2
Ni

´
m2
I

m2
I ´M

2
Ni

ln
m2
I

M2
i



, (3.46)
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where mR (mI) is the mass of the real (imaginary) part of the neutral compo-

nent of η.

Thanks to its simplicity and rich array of predictions, the model has become

very popular and an extensive literature has been devoted to its phenomeno-

logical consequences. As is generally the case with multi-Higgs standard model

extensions, the induced lepton flavor violation effects such as µ Ñ eγ provide

a way to probe the model parameters. In particular the lepton flavor viola-

tion phenomenology has been studied in [324–329]. The effect of corrections

induced by renormalization group running have also been considered [330],

showing that highly symmetric patterns such as the bimaximal lepton mix-

ing structure can still be valid at high-energy but modified by the running to

correctly account for the parameters required by the neutrino oscillation mea-

surements [231]. Collider signatures have also been investigated in [331–334].

A remarkable feature of this model is the natural inclusion of a WIMP dark

matter candidate. Indeed, the same parity that makes the neutrino mass

calculable, also stabilizes Ni and the neutral component of η. The lightest

Z2-odd particle, either a boson or a fermion, can play the role of WIMP cold

dark matter candidate [324, 326, 329, 335, 335–339].

Two-loop schemes

As a prototype two-loop scheme we consider the model proposed by Zee [340]

and Babu [341] (which first appeared in [259]), that leads to neutrino masses

at two-loop level by extending the standard model with two complex singly

and doubly [342] charged SU(2)L singlet scalars,

h` „ p1,1,`1q´2 , k`` „ p1,1,`2q´2 . (3.47)

The relevant terms in the Lagrangian are therefore:

L “ fab ĂLa iτ2 Lbh
`
` gabĂ`aR `bRk

``
´ µh´h´k`` ` h.c. (3.48)
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Figure 3.9: Neutrino mass generation in the Zee-Babu model.

The trilinear µ term in the scalar potential∗ provides lepton number violation

and leads to a calculable Majorana neutrino mass generated at the second loop

order, as shown in Figure (3.9) and given by:

pMνqab « µ
1

p16πq2
1

M

16π2

3
facmcg

˚
cdmdfbd , (3.49)

where M “ maxpMk`` ,Mh`q and ma are charged lepton masses [344]. As in

the Zee model, the matrix f is anti-symmetric. Therefore the determinant of

mν vanishes and, as a result, one of the light neutrinos must be massless.

The Zee-Babu model is constrained by a variety of lepton flavor violation

processes among which the tree-level lepton flavor violation `i Ñ `j`k ¯̀
l decays

induced by k`` exchange and the radiative decays `i Ñ `jγ mediated by the

charged scalars h` and k``. Weak universality is also violated since the h`

exchange induces new contributions for muon decay [344–347]. Both lepton

flavor violation and weak universality tests constrain the model parameters.

Combining lepton flavor violation and universality constraints [345] pushes

the mass of h` and k`` above the TeV scale, for both inverted and normal

hierarchies, making it a challenge to probe the model at the LHC. The collider

phenomenology of the model has been considered in [344, 345, 348].

∗This term can arise spontaneously through the vev of an extra gauge singlet scalar
boson [343].
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Figure 3.10: Neutrino mass generation in the KNT model.

Three-loop schemes

Of the possible three-loop schemes we will focus on the one suggested by

Krauss-Nasri-Trodden (KNT) [349]. These authors considered an extension

of the standard model with two charged scalar singlets h1 and h2 and one

right-handed neutrino N ,

h`1,2 „ p1,1,`1q´2 , N „ p1,1, 0q`1 . (3.50)

As usual in radiative neutrino mass models that include gauge singlet Majorana

fermions, an additional Z2 symmetry is imposed, under which the SM fields

as well as h1 transform trivially, while N and h2 are odd. The most general

renormalizable terms that may be added to the SM fermion Lagrangian are:

L “ fabrLa iτ2Lb h
`
1 ` gaNh

`
2 `aR ´

1

2
MN

rNN ` h.c. (3.51)

Note that the scalar potential contains a term of the form ph1h
˚
2q

2, which makes

possible the diagram of Figure (3.10) possible. Hence neutrinos acquire Majo-

rana masses induced only at the 3-loop level. Such strong suppression allows

for sizable couplings of the TeV scale singlet messenger states.

In addition to neutrino masses, the model also includes a WIMP dark matter

candidate. Indeed for the choice of parameters Mh2 ąMN , N is stable and can

be thermally produced in the early universe, leading naturally to the correct

dark matter abundance.

69



3. THE LIGHTNESS OF BEING — MASSIVE NEUTRINOS

A very similar model with the same loop topology has been proposed in [350],

replacing the neutral gauge singlets by new colored fields and the charged

leptons by quarks and in [351] the triplet variant of the model has been in-

troduced. These variations makes the model potentially testable at hadron

colliders. Other three loop mass models have also been considered more re-

cently, for instance in [351–354]. A systematic study generalizing the KNT

model was presented in [355].

Model Scalars Fermions LFV DM LHC

1-Loop Zee p1,1,`1q´2 , p1,2,`1{2q0 3 7 3

Ma p1,2,`1{2q0 p1,1, 0q`1 3 3 3

2-Loops Zee-Babu p1,1,`1q´2 , p1,1,`2q´2 3 7 3

3-Loops KNT p1,1,`1q´2 p1,1, 0q`1 3 3 7

Table 3.3: Phenomenological implications of radiative SUp3qc b SUp2qL b Up1qY neutrino
mass models discussed in this thesis. Representations are labeled as in the rest of the paper.

3.7 Summary and outlook

We have given a brief overview of neutrino physics, from the experimental

status and theoretical models. Both high and low-scale approach to neutrino

mass generation were reviewed. The different mass mechanisms and their phe-

nomenological impacts are summarized in Table (3.2) for seesaw models and

Table (3.3) for radiative mechanisms. We stressed the phenomenological in-

terest of low scale models, in particular radiative models.

In conclusion if the messengers responsible for the light neutrino masses lie at

a very high scale, like in type-I seesaw, it will be very difficult if not impos-

sible to have any detectable signal within the non-supersymmetric SM seesaw

framework. In contrast, within the low scale approach to neutrino mass we

can have very interesting phenomenological implications. They can give rise

to signatures at high energy collider experiments, as well as lepton flavor vi-

olation rates close to the sensitivity of planned experiments. In short, these

scenarios may help reconstructing the neutrino mass from a variety of poten-

tially over-constrained set of observables.
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Additionally, we pointed out that some of the neutrino mass schemes naturally

include a WIMP dark matter candidate. We will comment more on this latter

point in the next chapter.
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4
Intermezzo — the dark side of neutrinos

In the previous chapters we reviewed the status of neutrinos

and dark matter; two compelling cases for new physics. Both neutrinos

and dark matter enigmas stem from genuine experimental data. And, as we

have seen, for both of them there are numerous ideas and insights as to how

to amend the SM to accommodate them. Certainly, a unified description of

dark matter and neutrinos is tempting and appealing. Hence the question:

Do dark matter and neutrinos share the same origin?

The first answer to the question was contemplated already in the 1970’s. The

audacious proposal was to identify SM neutrinos with dark matter [356]. Un-

fortunately, this does not work. The proposal is ruled out for two reasons:
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abundance and temperature. Indeed, while being the second most abundant

particles species after the photons∗, neutrinos fail to accommodate the ob-

served abundance of dark matter. The cosmological density of light neutrinos

is [356]:

Ωνh
2
«

Σimνi

93.2 eV
. (4.1)

Applying the bound in Equation (3.15), we see that neutrinos cannot con-

tribute for more than « 2% to the content of the Universe. In addition to

being sub-abundant, neutrinos decouple while relativistic, when the tempera-

ture is OpMeVq, and are thus hot relics. Thus neutrinos are not suitable DM

candidates.

In light of the available data and theoretical ideas summarized in the previous

chapters, we can distinguish —broadly speaking— two main approaches that

are followed in order to positively answer the question above:

(i) Dark matter is identified with one of the new particles needed in order

to give mass to neutrinos;

(ii) Dark matter is associated to the symmetries of the neutrino sector.

Approach I: mass mechanism

In Section (3.6) we distinguished between tree-level ‘seesaw’ mechanisms and

radiative mechanisms to generate neutrino masses. These two possibilities are

conceptually different and consequently the approach (i) is realized differently

in one or the other. In seesaw schemes we can have for instance sterile neu-

trino keV warm dark matter or MeV dark matter [280], while in the radiative

schemes we can have (either fermionic or bosonic) WIMPs. We briefly review

the proposal of the sterile neutrino as a DM candidate and that of the WIMP

in the radiative seesaw model:

∗nν “
3
11 nγ “

6ζp3q
11π2 T

3
CMB, per flavour.
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§ Sterile neutrinos

Sterile neutrinos are neutrinos that are singlets under SUp3qc b SUp2qL b

Up1qY . They have been invoked to generate masses for light neutrinos, see Sec-

tion (3.6.1), or explain certain neutrino-experiment anomalies such as LSND.

Since sterile neutrinos mix with light neutrinos, they can be produced via

oscillations [357]. With this mechanism, their relic density is estimated to be:

ΩN « 0.2

ˆ

sin2 θ

3ˆ 10´9

˙ ˆ

MN

3 keV

˙1.8

. (4.2)

Here, θ is the mixing angle between the sterile neutrino N (of mass MN) and

the active ones. We see that a viable sterile neutrino DM requires keV masses

and a very small mixing angle. With this mass, the sterile neutrino is a warm

DM candidate. We note that the original oscillation mechanism is in conflict

with Lyman-α bounds [358] at present. To remedy this, we can either amend

the original mechanism (for instance by including lepton asymmetry [359]),

or invoke a new contribution from a different mechanism (for instance, non-

thermal production from inflaton decay [360]).

Recently, the detection of an unidentified emission line at energy « 3.5 keV [13,

361] sparkled strong interest in sterile neutrino DM. It is remarkable that this

line falls in the bulk of the allowed range of sterile neutrino DM, but further

data and scrutiny are needed to assess the validity of this signal. A review on

sterile neutrino as dark matter candidates can be found in [362]. Sterile neu-

trinos offer an economical solutions to the dark matter problem as well as an

attractive link with neutrinos, however, they are not theoretically very appeal-

ing because they rely on a tuning of the parameters that does not seem natural.

§ WIMPs in neutrino loops

We saw in Section (3.6.3) that neutrino masses can be generated radiatively.

In particular, the ‘scotogenic’ model, presented in Equation (3.44) and Fig-

ure (3.8) has the remarkable feature of naturally including a WIMP dark mat-

75



4. INTERMEZZO — THE DARK SIDE OF NEUTRINOS

ter candidate. Indeed, the parity symmetry introduced to forbid the seesaw

contribution, stabilizes the lightest Z2-odd particle by the same token. The

stable particle can be either a boson or a fermion, and can play the role of

WIMP cold dark matter candidate thanks to its interactions with the Higgs

or the neutrinos [324, 326, 329, 335, 335–339].

The most interesting possibility is to consider the singlet fermion as DM be-

cause it has interactions that are limited to the neutrino sector. Indeed, N1
∗

couples to the SM only via the Yukawa interaction with the lepton doublet

and therefore it is a leptophilic DM. Annihilation proceeds via the t-channel

N1N1 Ñ νν with η exchange. However, there is a severe discrepancy between

the magnitude of Yukawa couplings required by the dark matter relic abun-

dance and the one needed to get neutrino masses and suppress lepton flavor

violating processes. This is solved by assuming two things: (i) the CP-odd

and CP-even parts of the scalar doublet (η) have to be degenerate to a high

degree — the coupling responsible for this degeneracy has to be tiny, Op10´11q;

(ii) N1 and N2 have to be almost degenerate in mass in order to use their co-

annihilation to obtain the correct relic abundance and agreement with lepton

flavor violation limits. These unfortunate prescriptions render the N1 candi-

date of the scotogenic model less attractive than what seems at first glance.

There is also the interesting possibility of the dark matter being warm in

this setup [325, 363]. Various extensions of the model have also been con-

sidered, for e.g., [364, 365]. The scotogenic model is the simplest radiative

mechanism for neutrinos that includes WIMPs, but it is by no means unique.

In fact, we already pointed out that the three-loop mechanism introduced in

Equation (3.50) offers as well a DM candidate. For a review on models with

one–loop radiative neutrino masses and viable dark matter candidates we refer

the reader to the complete classification given in [366, 367].

∗We assume the hierarchy N1 ă N2 ă N3.
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The two models that we reviewed offer strong conceptual links between dark

matter and neutrinos. However, they both rely on tunings of their parameters

in order to work. More complex models are of course possible, but in that

case the eventual correlations between the dark sector and neutrino physics

are lost, buried in the high number of parameters. So we can see sterile neutri-

nos and the radiative seesaw as archetypes of models relating dark matter to

neutrinos through the neutrino mass mechanism. We conclude that although

this approach is theoretically viable and appealing, in practice the unpleasant

tuning of the parameters renders it less attractive.

Approach II: lepton symmetries

The second approach links neutrinos to DM through the symmetries of the

neutrino sector, i.e., the mixing patterns and/or lepton number. As noted in

Section (2.1), one of the key requirements of any viable dark matter candidate

is stability. From a particle physics point of view this is understood by having

a symmetry that stabilizes the DM. On the other hand, neutrino masses are

tightly linked to the accidental lepton number symmetry and its breakdown.

Furthermore, the data suggest some underlying symmetry controlling leptons

mixing patterns, see Section (3.4).

The lepton number offers an attractive portal to link DM and neutrinos. An

interesting possibility is to apply an axion-like scheme to neutrinos. Namely,

to promote the symmetry of neutrinos —lepton number— to a dynamical sym-

metry and identify its Nambu-Goldstone boson with a physical state playing

the role of dark matter. This is the majoron. In Chapter (7) we will consider

majoron DM in an inflationary scenario. Another approach using lepton num-

ber can be motivated by a gauged Up1qB´L symmetry, see for instance [368].

Finally, the link between neutrinos and dark matter through the leptons mixing

patterns is an attractive possibility that will be the focus of the next two

chapters, Chapter (5) and Chapter (6).
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5
Discrete dark matter

Remember that all models are wrong;

the practical question is how wrong do they have to be to not be useful.

G. E. P. Box

Among the most important requirements a DM candidate has to

satisfy are neutrality, stability over cosmological time scales, and agreement

with the observed relic density, see Section (2.1) for more details. From a

model building point of view, the conditions listed in Section (2.1) are not

difficult to arrange, except for: (i) stability, that is in general assumed in an

ad-hoc fashion; (ii) agreement with relic density, that depends on the details
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of the production mechanism.

From a particle physics viewpoint, the stability suggests the existence of a sym-

metry that forbids the couplings that would otherwise induce decay. Typically,

the most common way to stabilize the DM particle is to invoke a Z2 parity

and impose it by hand, an example of which is R parity in supersymmetry.

It would certainly be more appealing to motivate such a symmetry from

a top-down perspective. This is what motivated attempts such gauged as

Up1qB´L [369], discrete gauged symmetries [370–372], or accidental symme-

tries [373–375]. For a review on the possible origins of dark matter stability,

see [376].

A new mechanism of stabilizing the DM has been proposed in [377] in which

DM stability originates from the flavor structure of the SM. Indeed the same

discrete flavor symmetry which explains the pattern of neutrino mixing can

also stabilize the dark matter∗. This opens an attractive link between neutrino

physics and DM; two sectors that show a clear need for physics beyond the

SM. Note that since the publication of [1, 377], other flavor models with DM

candidates have been proposed, for e.g., [338, 378–384], and more recently [385]

where the mechanism has been applied to asymmetric DM (Section (2.5.2)).

The model proposed in [377] is based on an A4 symmetry extending the Higgs

sector of the SM with three scalar doublets. After electroweak symmetry

breaking two of the scalars of the model acquire vacuum expectation values

which spontaneously break A4 leaving a residual Z2. The lightest Z2 neutral

odd scalar is then automatically stable and will be our DM candidate.

On the other hand, the fermion sector is extended by four right handed neu-

trinos which are singlets of SUp3qc b SUp2qL b Up1qY . Light neutrino masses

are generated via a type I seesaw mechanism, obey an inverted hierarchy with

mν3 “ 0 and vanishing reactor neutrino angle. For pioneer studies on the use

of A4 in neutrino physics see [223, 224].

∗Models based on non-Abelian discrete symmetries but with a decaying dark matter
candidate can be found for example in [378].
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We study the regions in parameter space of the model where the correct dark

matter relic density is reproduced and the various experimental and theoret-

ical constraints are fulfilled. We then consider the prospects for direct dark

matter detection in underground experiments. Indirect dark matter searches

through astrophysical observations are not currently probing the model apart

from some small regions of the parameter space where the dark matter anni-

hilation cross section is enhanced via a Breit-Wigner resonance.

The objective of this chapter is to show to which extent DM and neutrinos

can be related within a flavor model. This chapter is a significantly extended

and updated presentation of the results obtained in [1]. The discovery of the

Higgs and its tremendous consequences on Higgs portal DM models, WIMP

in particular, are reflected in this revised version. Also PLANCK and direct

detection experiments such as LUX, which significantly reduced the experi-

mentally allowed regions of WIMP dark matter, were included for complete-

ness. The main result of this updated analysis is that the model in its minimal

realization cannot account for the entire abundance of dark matter. It is still

enlightening nevertheless to present the DM phenomenology of the model be-

cause its conceptual and physical results are quite general. In other words,

while the model is clearly wrong in its original form, it is still useful.

The chapter is organized as follows: in Section (5.1) we introduce the model,

followed by its neutrino phenomenology in Section (5.2). A closer look to

the origin of the stabilizing symmetry is given in Section (5.3). After a short

interlude on Inert doublet models (Section (5.4)), we proceed with the DM

phenomenological study by: (i) deriving the mass spectrum of the model (Sec-

tion (5.5)); (ii) imposing the various experimental and theoretical constraints

on the model (Section (5.6.1)), followed by a calculation of the relic density

(Section (5.6.2)) and an evaluation of the impact of direct (Section (5.6.3)) and

indirect (Section (5.6.4)) detection experiments on the model (Section (5.6)).

Finally, in Section (5.7) we impose the limits derived from LHC and we con-

clude the chapter in Section (5.9).
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tIu tT u tT 2u tSu

1 1 1 1 1
11 1 ω ω2 1
12 1 ω2 ω 1
3 3 0 0 ´1

pabq1 “ a1b1 ` a2b2 ` a3b3

pabq11 “ a1b1 ` ωa2b2 ` ω
2a3b3

pabq12 “ a1b1 ` ω
2a2b2 ` ωa3b3

pabq31 “ pa2b3, a3b1, a1b2q
T

pabq32 “ pa3b2, a1b3, a2b1q
T

Figure 5.1: A4 basics – Character table of the group (left), and rules for contractions of two
triplets a “ pa1, a2, a3q

T and b “ pb1, b2, b3q
T (right). We use the (complex) basis where the

generator S is diagonal. See Appendix (A.1) for more details.

5.1 Simple discrete dark matter model

We now provide a concrete realization of the discrete dark matter (DDM)

mechanism based on the A4 flavor symmetry in a type-I seesaw [250–255]

framework introduced in Section (3.6.1). The matter fields are assigned to

irreducible representations of the group of even permutations of four objects,

∆p12q ” A4. Geometrically, A4 is isomorphic to the symmetry group of the

tetrahedron (see Figure (A.1)). It has twelve elements and four irreducible

representations: three singlet representations 1, 11 and 12, and one triplet

representation 3. The basic properties of A4 are summarized in Figure (5.1).

with ω3 “ 1. We refer the reader to Appendix (A.1) for more details about

the mathematical properties of this group. The Higgs sector consists of three

Higgs doublets η ” pη1, η2, η3q
T transforming as a triplet, namely η „ 3 and an

iso-doublet H that is singlet of A4. The model has in total four Higgs doublets,

implying the existence of four CP even neutral scalars, three physical CP-odd

scalars∗ (three of the scalars are ‘eaten’ to give mass to the W˘ and Z gauge

bosons). In the fermion sector, we have four right-handed neutrinos; three

transforming as an A4 triplet, NT ” pN1, N2, N3q
T „ 3, and one singlet N4.

For simplicity, quarks are trivially left blind to A4 (although see [379, 387] for

a variation of the model including quarks). The lepton and Higgs assignments

∗Although the imaginary part of the neutral component of Higgs doublets, A, is generally
referred to as pseudo-scalar, this is not rigorously correct. In the absence of fermions C and
P are separately conserved and PpAq “ `1. However CpAq “ ´1 with or without fermions,
therefore we find it preferable throughout the text to refer to A as CP-odd scalar instead of
pseudo-scalar [386].
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are summarized in Table (5.1). The resulting Yukawa Lagrangian for leptons

reads as

LY “ yeLel
c
e
Ĥ ` yµLµl

c
µ
Ĥ ` yτLτ l

c
τ
Ĥ

` yν1LeNTη ` y
ν
2LµrNTηs12 ` y

ν
3Lτ rNTηs11

` yν4LeN4Ĥ ´
M1

2
ĂNTNT ´

M2

2
ĂN4N4 ` h.c. (5.1)

with Ñ ” NTC. The field Ĥ is the only one that couples to charged leptons

and to quarks.

The scalar potential is:

V “ µ2
η η

:η ` µ2
Ĥ
Ĥ:Ĥ ` λ1pĤ

:Ĥq2 ` λ2rη
:ηs21 ` λ3rη

:ηs11rη
:ηs12

`λ4rη
:η:s11rηηs12 ` λ41rη

:η:s12rηηs11 ` λ5rη
:η:s1rηηs1

`λ6prη
:ηs31rη

:ηs31 ` h.c.q ` λ7rη
:ηs31rη

:ηs32 ` λ8rη
:η:s31rηηs32

`λ9rη
:ηs11Ĥ

:Ĥ ` λ10rη
:Ĥs31rĤ

:ηs31 ` λ11prη
:η:s1ĤĤ ` h.c.q

`λ12prη
:η:s31rηĤs31 ` h.c.q ` λ13prη

:η:s32rηĤs31 ` h.c.q

`λ14prη
:ηs31η

:Ĥ ` h.c.q ` λ15prη
:ηs32η

:Ĥ ` h.c.q , (5.2)

where r...s31,2 (r...s1,11,12) is the product of two triplets contracted into a triplet

(singlet) representation of A4, following the rules stated in Figure (5.1). For

the sake of simplicity, we assume CP conservation so that all the couplings

and vevs are real, and consequently we can distinguish between scalars and

CP-odd scalars. For convenience we also assume λ4 “ λ14 in order to have

manifest CP conservation in our chosen A4 basis∗.

The minimization of the scalar potential leads to the following vev alignment:

A

Ĥ0
E

“ vH ‰ 0,
@

η0
1

D

“ vη ‰ 0,
@

η0
2,3

D

“ 0 . (5.3)

This particular vev alignment breaks the group A4 to its subgroup Z2. In

∗To see this, consider for instance the coupling pωλ4 ` ω2λ14qpη
:
1η2q

2 ` h.c. arising from
the terms proportional to λ4 and λ14 in Equation (5.2). Since ω ` ω2 “ ´1 this coupling is
real if λ4 “ λ14.
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Group Le Lµ Lτ lce lcµ lcτ NT N4 Ĥ η

SUp2qL 2 2 2 1 1 1 1 1 2 2
A4 1 11 12 1 12 11 3 1 1 3

Table 5.1: Summary of the particle content of the model.

the next sections we show how this remnant symmetry emerges from A4 and

stabilizes some fields of the model. To fix the notation, after electroweak

symmetry breaking and the minimization of the potential we write:

Ĥ “

˜

H 1`

pvH `H
1 ` iA1q{

?
2

¸

; (5.4)

η1 “

˜

H 1`
1

pvη `H
1
1 ` iA

1
1q{
?

2

¸

; (5.5)

η2 “

˜

H 1`
2

pH 1
2 ` iA

1
2q{
?

2

¸

; η3 “

˜

H 1`
3

pH 1
3 ` iA

1
3q{
?

2

¸

. (5.6)

5.2 Neutrino phenomenology

Before anything, the model presented in the previous section is neutrino flavor

model. It is thus mandatory before moving the DM phenomenology, to start

with neutrino phenomenology. The model contains four heavy right-handed

neutrinos. It is a special case of the general type-I seesaw mechanism (see

Section (3.6.1)). After electroweak symmetry breaking, it is characterized by

the following Dirac and Majorana mass matrices:

mD “

¨

˚

˚

˝

x1 0 0 x4

x2 0 0 0

x3 0 0 0

˛

‹

‹

‚

, MR “

¨

˚

˚

˚

˚

˝

M1 0 0 0

0 M1 0 0

0 0 M1 0

0 0 0 M2

˛

‹

‹

‹

‹

‚

. (5.7)

where x1, x2, x3 and x4 are respectively proportional to yν1 , yν2 , yν3 and yν4 of

Equation (5.1) and are of the order of the electroweak scale, while M1,2 are

assumed to be close to the unification scale. Light neutrinos get Majorana
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masses by means of the type-I seesaw relation so that the light neutrinos mass

matrix is of the form:

mν “ ´mD3ˆ4M
´1
R4ˆ4

mT
D3ˆ4

”

¨

˚

˚

˝

y2 ab ac

ab b2 bc

ac bc c2

˛

‹

‹

‚

. (5.8)

Such a matrix texture has a null eigenvalue m3 “ 0 corresponding to the eigen-

vector p0, ´b{c, 1qT ∗ implying a vanishing reactor mixing angle θ13 “ 0 and

inverse hierarchy. The atmospheric angle; the solar angle; and the two squared

mass differences can be fitted. The model implies a neutrinoless double beta

decay effective mass parameter in the range 0.03 to 0.05 eV at 3σ, within reach

of upcoming experiments.

Now that Daya-Bay has discovered that θ13 is actually quite large, an amend-

ment is necessary. However, this will not affect the DM phenomenology or the

general principle of discrete dark matter. In the next chapter we will present

a model that is compatible with large θ13 based on [2], see also [388, 389] for

other variations.

5.3 Origin of dark matter stability

The group A4 has two generators, S and T , which satisfy the relations S2 “

T 3 “ pST q3 “ I (see Appendix (A.1) for the mathematical properties of A4).

In the three dimensional real basis, S is given by

S “

¨

˚

˚

˝

1 0 0

0 ´1 0

0 0 ´1

˛

‹

‹

‚

. (5.9)

∗Note that if we were to stick to the minimal type-I seesaw scheme with just three SUp2qL
singlet states, one would find a projective nature of the effective tree-level light neutrino mass
matrix with two zero eigenvalues, hence phenomenologically inconsistent. That is why we
adopted the scheme with 4 singlets instead.
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In this basis, S is manifestly the generator of a Z2 symmetry that is a subgroup

of A4. Indeed, for a generic triplet irreducible representation of A4, Ψ “

pa1, a2, a3q
T , we have:

SΨ “

¨

˚

˚

˝

1 0 0

0 ´1 0

0 0 ´1

˛

‹

‹

‚

¨

˚

˚

˝

a1

a2

a3

˛

‹

‹

‚

“

¨

˚

˚

˝

a1

´a2

´a3

˛

‹

‹

‚

. (5.10)

So that the second and third component of A4 triplets are odd under a Z2

subgroup. The particular alignment found in Equation (5.3), xηy „ p1, 0, 0q,

breaks spontaneously A4 to Z2 because p1, 0, 0q is invariant under the S gen-

erator; S xηy “ xηy. Consequently, the Z2 residual symmetry is defined as

N1 Ñ `N1 , η1 Ñ `η1,

N2 Ñ ´N2 , η2 Ñ ´η2,

N3 Ñ ´N3 , η3 Ñ ´η3,

(5.11)

and the rest of the matter fields are Z2-even, because the singlet representation

transforms trivially under S. We summarize in Table (5.2) the transformation

of the fields of the model under the remnant parity symmetry.

One of the key requirements a DM candidate must fulfill is stability over cos-

mological scales. However, the existence of a Z2 symmetry in the Lagrangian,

while stabilizing the neutral fields it acts on, does not guarantee per se the

existence of a viable WIMP DM candidate. Indeed, one needs to make sure

that:

(i) the mass of the lightest Z2-odd particle lies around the electroweak scale;

(ii) there exists a “portal” to efficiently thermally produce the DM candidate

in the early Universe;

(iii) the protecting symmetry is stable under radiative corrections;

(iv) the WIMP candidate can account for the observed dark matter density

and successfully evades current experimental bounds.
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Z2 ` ` ` ` ` ` p`,´,´q ` ` p`,´,´q

Table 5.2: Transformation of the fields under the remnant Z2 symmetry.

The first point is satisfied in the following way: since there are no couplings

with charged fermions nor quarks because of theA4 symmetry, the only Yukawa

interactions of the lightest neutral component of η2,3 are with the heavy sin-

glet right-handed neutrinos N2,3. In other words, the “dark sector” is com-

posed of N2,3 and η2,3, the lightest of which is the DM candidate. The right

handed neutrinos are constrained by neutrino physics to lie at the seesaw scale,

« 1012 GeV, and η2,3, being SUp2qL doublets have naturally masses around the

electroweak scale (in fact, they are forced by A4 and SM gauge group to be

close to the electroweak scale. See next section, Equation (5.40)). Notice that

we want a link with the electroweak scale because we interpret ”Weakly” in

WIMP as related to the SM weak interaction — see Equation (2.8). Indeed,

this is where the so-called ‘WIMP miracle’ makes sense∗. The second require-

ment is then readily satisfied, η2,3 has quartic couplings with the Higgses. Such

couplings constitute a production portal for the DM. Finally, the Z2 symmetry

is exact because it comes from an exact symmetry of the Lagrangian, A4, i.e.,

it is not accidental.

Thus the lightest neutral component of η2,3, stabilized by the remnant parity

symmetry, constitutes our (bosonic) DM candidate. To assess the last point

pivq of the WIMP DM requirements, we need to undertake a dedicated DM

phenomenological study. For the sake of definiteness, we consider the DM to

be the CP-even state H2.

We now turn to the explicit description of the mass spectrum of the scalars

in the model. The particular mixing patterns and masses of the scalars reveal

the underlying symmetries of the potential and the interactions between the

∗Although, in full generality, a generic WIMP where production in the early Universe
proceeds via physics that is unrelated to the weak scale is possible and is commonly used in
the literature.
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different fields of the model, in particular they show how A4 constrains the DM

properties. But before that, we remind the reader of some general features of

the simplest extension of the SM with a Higgs: the Inert Higgs Doublet model

(IDM). This will help us to highlight the features that are particular to the

model we have under scrutiny.

5.4 Interlude: Inert Doublet Model(s)

The model presented in Section (5.1) consists of two “active” Higgs fields ie

taking part in electroweak symmetry breaking, H and η1, augmented with two

inert higgses, η2 and η3. Two Higgs models (2HDM) are perhaps the sim-

plest alternative to the Standard Model. They constitute a minimal extension

that offers a wide array of new phenomena: CP non-conservation, flavor vi-

olating processes (FCNC), new charged scalar particles, etc. Their historical

importance resides mostly in the fact that they are essential to low-energy

supersymmetry, though they appear in other models that allow a broader pa-

rameter range. Multi-Higgs models are now more important than ever after

LHC confirmed the existence of (most likely fundamental) scalars in nature.

For a recent review on 2HDM, see [390].

If we call multi-Higgs models with N active higgses and M inert ones: (N `

M)IDM, then the model of Section (5.1) is of type (2 ` 2). Models of type

(2`M)IDM would be similar to 2HDM as long as the active higgses are con-

cerned but offer in addition to that a DM candidate and new phenomenological

signatures thanks, for instance, to the presence of new inert charged particles

in the spectrum. (N `M)IDM differ in their DM phenomenology in a number

of ways, for instance:

§ the number of DM production portals and direct detection channels in-

creases with N ;

§ the number of possible co-annihilation channels depends on M (e.g.,

there are 2 possible co-annihilation diagrams forM “ 1 and 5 forM “ 2);

§ the facility with which the DM candidate could evade experimental
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bounds (LEP, LHC, direct and indirect detection experiments) depends

also on the interplay between N and M . Clearly, now that LHC confirms

the existence of the Higgs boson and finds spectacular agreement with

SM predictions, the case N ą 1 is more favored for phenomenological

studies as it provides more freedom. The particularly minimal case with

N “ 2 is, perhaps, the most attractive for phenomenology since it’s just

a step further from the SM.

The simplest (N `M)IDM model is the (1` 1)IDM, or IDM for short. Given

its historic importance, rich phenomenology and extensive use in DM studies

it is particularly enlightening to compare DM models based on multi-Higgs

extension of the SM with IDM. In this section we remind the reader of its

basic features. The Inert Doublet Model consists of the extension of the SM

by a Higgs doublet, H1, that is odd under a Z2 symmetry. It has been orig-

inally introduced three decades ago in [391] in order to study electroweak

symmetry breaking patterns. It has been later advocated to address the nat-

uralness problem [392]. The model was later on extended with right-handed

neutrinos to radiatively generate neutrino masses, in the so-called “scotogenic”

model [323], presented in Equation (3.44) and Section (4). It has become an

“archetype” [393] of WIMP dark matter offering a simple and phenomenolog-

ically rich model. Although the recent data from direct detection experiments

combined with LHC bounds strongly constrain the parameter space of the

model, it is nevertheless an interesting case of study and it is generally illumi-

nating to compare properties of scalar DM with IDM.

Because of the Z2, the Yukawa sector of the SM is unchanged. However, the

scalar potential becomes:

V “ ´µ2
pH:H ` µ2

1H
:

1H1 ` λ1pH
:Hq2 ` λ2pH

:

1H1q
2

`λ3pH
:HqpH:

1H1q ` λ4pH
:H1qpH

:

1Hq

`λ5ppH
:H1q

2
` h.c.q, (5.12)

where H is the Higgs doublet of the SM. The minimization of the potential
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results in the usual SM relation:

xHy “
vSM
?

2
” µ2

?
2λ1 , (5.13)

with vSM “ 246 GeV. In order to preserve the Z2 symmetry, H1 is forbidden

from taking vev, xH1y “ 0, i.e., µ2
1 ą ´vSM

2. After electroweak symmetry

breaking we can write:

H “

˜

0

pvSM ` hq{
?

2

¸

, H1 “

˜

H`
1

pH1 ` iA1q{
?

2

¸

, (5.14)

with h being the SM Higgs boson. Notice that we use the letter h to refer

exclusively to the SM Higgs as observed by ATLAS [25] and CMS [26] at the

LHC. The spectrum of the model is then given by:

M2
h “ 2λ1vSM ” 2µ2 ; (5.15)

M2
H1 “ µ2

2 ` λLv
2
SM ; (5.16)

M2
A1 “ µ2

2 ` λSv
2
SM ; (5.17)

M2
H`1

“ µ2
2 ` λ3v

2
SM{2 . (5.18)

We used the usual definition: λL,S “ λ3 ` λ4 ˘ λ5. We understand better the

utility of these definitions if we point out that λL (λS) is the coupling of a pair

of H1 (A1) particles to the Higgs; the Higgs portal couplings.

Because of the requirement of preservation of Z2 symmetry (xH1y “ 0), the µ1

parameter is not constrained by any tadpole equation, contrary to µ (Equa-

tion (5.13)). The mass scale of the fields of the doublet H1 is then essentially

free∗ and a priori unrelated to the electroweak scale, even if λ3,4,5 are con-

strained by perturbativity considerations. This is generally common to multi-

Higgs models based on unbroken symmetries: to preserve the symmetry, the

quadratic (“µ”) terms of the Higgs fields charged under this symmetry, are

forced to be positive and contribute to the mass spectrum in an unconstrained

fashion.

∗They are free in principle. As commented in Section (2.2), unitarity constrains the mass
of a WIMP to be ă

„ 130 TeV [120].
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The DM is the lightest particle between H1 and A1 depending on the sign of

λ5. The phenomenology of this DM candidate can be summarized as follows:

Low masses: MDM ăMW

Production in the early Universe is achieved through Higgs portals.Gauge

bosons portals are inefficient (Z) or inoperative (W`, because of LEP bounds

on charged scalars) so that the Higgs is the only production portal. There’s a

possibility of co-annihilation allowed by LEP in the mass range r45, 80sGeV

[394]. Now that the mass of the Higgs boson is fixed, there’s little room left

to control the abundance of DM. Moreover, the branching ratio of invisible

Higgs decays constrains the low mass region (MDM ă Mh{2 « 60 GeV) so

well that the model is essentially ruled out in the relevant range [395]. This is

generally the problem of models of type p1`Mq. An available regions remains

open though, albeit fine-tuned, when we approach the kinematic threshold

MDM «Mh{2.

High masses: MDM ą
„MW

For large masses the annihilations to gauge bosons (and the 2 Higgs final states

from the quartic coupling, when the channels are opened) are so efficient that

any DM abundance is rapidly diluted away. Although, three-body decays and

cancellations among diagrams push this lower limit a little bit further than

MW , to « 120 GeV [396]. The abundance remains negligible until the DM

mass reaches « 600 GeV [393] and the gauge interactions reach a critical value.

Indeed, in this case the cross section into gauge bosons scales as αW {M
2
DM and

gives the correct relic density for MDM « 600 GeV. Of course, the higgs portal

couplings should be switched off (λL,S « 0) in order to preserve the correct

relic density. Unfortunately, there’s no WIMP DM experiment that is sensitive

to this parameter space.

To conclude this section, some of the general lessons that can be extracted

from the IDM are:
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§ Because of the Z2 symmetry, there’s no tadpole equation constraining

the quadratic term (µ) of the inert Higgs. As a result the mass scale of

dark matter and its coannihilation partners is free;

§ Production and annihilation proceed via a single Higgs portal and are

strongly constrained by LHC and direct detection experiments in the

low mass region;

§ There is a viable region at MDM « 600 GeV.

We now go back to our model to explicitly derive the masses of the scalars

before proceeding to the phenomenological analysis of the model.

5.5 The hidden tetrahedron

This section deals with hidden manifestations of A4 as revealed by the mass

spectrum. As in the case of IDM, the expressions of the masses already say a

lot about the ensuing DM phenomenology. The neutral scalars mass matrix

in the basis H 1´H 1
1´A

1´A11´H
1
2´H

1
3´A

1
2´A

1
3 is found to reproduce the

following structure:

M2
neutrals “

¨

˚

˚

˚

˚

˝

M2
HH1

0 0 0

0 M2
GA1

0 0

0 0 M2
H2H3

0

0 0 0 M2
A2A3

˛

‹

‹

‹

‹

‚

, (5.19)

whereas the charged scalars mass matrix in the basis H 1`
1 ´H 1`

1 ´H 1`
2 ´H 1`

3

is of the form:

M2
charged “

¨

˝

M2
G`H`1

0

0 M2
H`2 H

`
3

˛

‚ , (5.20)

where M2
HH1

,M2
GA1

,M2
H2H3

,M2
A2A3

,M2
G`H`1

,M2
H`2 H

`
3

are 2ˆ2 symmetric matri-

ces. MGA1 and MG`H`1
have vanishing eigenvalues corresponding respectively

to the neutral and charged Goldstone bosons being eaten by the Z and W˘

gauge bosons.
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What is important to notice here is that Equation (5.20) and Equation (5.19)

are block-diagonal matrices. The fact that the CP-odd scalars (A1) do not mix

with the scalars (H 1) follows from the conservation of CP , however the absence

of mixing between η2,3 and the two Higgs scalars that take vev ; H and H1 is

a direct consequence of the remnant Z2 symmetry, Table (5.2).

From this point on, we will leave off the primes on particles’ names to denote

the mass eigenstates in order to distinguish the physical states from the non-

physical ones. The Z2-odd sector contains two real CP even scalars; H2 and

H3, two real CP odd scalars; A2 and A3, and four charged scalars; H˘
2 and

H˘
3 . The Z2 even scalars consist of two real CP even scalars; H and H1, that

we generically call ‘higgses’, a CP-odd scalar A1 and two charged scalars; H˘
0 .

The masses of the W˘ and Z gauge bosons impose the relation:

v2
H ` v

2
η “ v2

SM , (5.21)

where vSM “ 246 GeV. We call tan β the ratio of the two vevs and following

the convention used in 2HDM, we define it as:

tan β “ vH{vη . (5.22)

The passage from gauge eigenstates to mass eigenstates proceeds via the fol-

lowing rotation matrices:

U12 “

˜

cos β ´ sin β

sin β cos β

¸

; U23 “

˜

´1{
?

2 1{
?

2

1{
?

2 1{
?

2

¸

;

UHH1 “

˜

´ sinα cosα

cosα sinα

¸

. (5.23)

U23 diagonalizes the mass-squared matrices in the Z2 odd sector, i.e., M2
H2H3

,

M2
A2A3

, and M2
H`2 H

`
3

. The mixing angle is maximal, equal to π{4. The rotation

that diagonalizes the neutral scalars H and H1 is controlled by the angle α.

Without loss of generality, α is considered to vary from r´π{2, π{2s. The angle

β (commonly referred to by its tangent, tan β) is perhaps the most important

93



5. DISCRETE DARK MATTER

parameter in 2HDM analyses. It characterizes the rotation which diagonalizes

the mass-squared matrices of the charged scalars and of the CP-odd scalars in

the Z2 even sector. The angles α and β both contribute in the characterization

of the SM Higgs boson. Indeed, using the rotation matrix UHH1 , the physical

scalars are:

H “ ´ sinαH 1
` cosαH 1

1 ; (5.24)

H1 “ cosαH 1
` sinαH 1

1 . (5.25)

Therefore the SM Higgs boson, h, defined by its couplings to vector bosons is:

h “ cos β H 1
` sin β H 1

1 (5.26)

“ sinpβ ´ αqH ` cospβ ´ αqH1 . (5.27)

The results of LHC show no departure from an SM Higgs boson, therefore

sinpβ ´ αq has to be close to unity. How close depends on the specificity of

the model. The particular case sinpβ´αq “ 1 constitutes the so-called decou-

pling limit, when H behaves exactly like the SM h. We will come back to this

point when we implement the LHC bounds for the DM analysis, Section (5.7).

Before giving the expressions of the scalars’ masses, we find it useful and sim-

plifying to define the following combinations of the couplings of the potential,

Equation (5.2),

L “ λ9 ` λ10 ` 2λ11 ; (5.28)

Q “ λ12 ` λ13 ` λ14 ` λ15 ; (5.29)

P “ λ2 ` λ3 ` 2λ4 ` λ5 ; (5.30)

R1 “ ´3λ3 ´ 6λ4 ` 2λ6 ` λ7 ` λ8 ; (5.31)

R2 “ ´3λ3 ´ 2λ4 ´ 2λ6 ` λ7 ` λ8 ´ 4λ5 ; (5.32)

R3 “ ´3λ3 ´ 4λ4 ´ 2λ5 ` λ8 . (5.33)
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With these variables, the nontrivial matrix M2
HH1

is given by:

M2
HH1

“

˜

2vH λ1 LvHvη

LvHvη 2P v2
H

¸

. (5.34)

And therefore:

tan 2α “
2LvHvη

2vH λ1 ´ 2P v2
H

. (5.35)

Finally, the mass spectrum of the Z2-odd states, i.e., the Higgses, reads as:

M2
H “ λ1vH

2
` Pvη

2

´

b

vη2vH2pL2 ´ 4Pλ1q ` pPvη2 ` λ1vH2q2 ; (5.36)

M2
H1

“ λ1vH
2
` Pvη

2

`

b

vη2vH2pL2 ´ 4Pλ1q ` pPvη2 ` λ1vH2q2 ; (5.37)

M2
H`1

“ ´
1

2
pλ10 ` 2λ11q v

2
SM ; (5.38)

M2
A1

“ ´2 v2
SM λ11 , (5.39)

and for the “dark sector” we have:

M2
H2

“ p´3QvH `R1vηqvη{2 ; (5.40)

M2
H3

“ M2
H2
` 3QvH vη ; (5.41)

M2
A2

“ p´4λ11vH
2
`QvηvH `R2vη

2
q{2 ; (5.42)

M2
A3

“ M2
A2
`QvH vη ; (5.43)

M2
H`2

“ ppλ10 ` 2λ11qvH
2
´QvηvH `R3vη

2
q{2 ; (5.44)

M2
H`3

“ M2
H`2
`QvH vη . (5.45)

We notice the following from this mass spectrum:

§ The masses of inert particles are not free. Contrary to IDM (see Equa-

tion (5.15)), here the quadratic mass term does not appear;

§ The splitting between CP-even scalars and CP-odd scalars, M2
H2,3
´M2

A2,3
,

depends on the couplings Q, λ6, λ11 and λ5
∗. These are analogous to λ5

∗In general, the splitting scalar-CP-odd scalar of the inert doublet H2 originates from
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of IDM in Equation (5.15) and likewise putting them to zero enhances

the symmetry of the potential with an extra Up1q. They are particu-

larly important for direct detection (a quasi-null splitting is ruled out for

instance) and co-annihilation;

§ The splitting between the first inert doublet particles and those of the

second inert doublet is fixed and is proportional to QvHvη: M
2
H3
´M2

H2
“

3pM2
A3
´M2

A2
q “ 3pM2

H`3
´M2

H`2
q “ 3QvHvη.

All these features are manifestations of A4 symmetry and can be of particular

interest in collider searches. Finding any one of these relations hints to an

underlying symmetry. They also have important consequences on the dark

matter phenomenology, as we will see next.

5.6 Dark matter phenomenology

We now have everything we need to tackle the phenomenological study of

the DM candidate of the model, H2. We remind the reader that the free

parameters of the model are the 15 λi couplings appearing in the scalar po-

tential, Equation (5.2), and the ratio of the vacuum expectation values tan β.

The µ parameters are related to the couplings and vevs via the minimization

equations and the couplings appearing in the leptonic Yukawa Lagrangian,

Equation (5.1), are not relevant for the dark matter phenomenology given the

high scale of the right-handed neutrinos masses.

The expressions of the mass spectrum, Equation (5.36), and redefinition of the

couplings expressed in Equation (5.28) allow us, without loss of generality, to

trade the free parameters of the model with the following set:

tMH2 ”MDM ,MH ,MH`1
,MA1 ,MA2 ,MH`2

, Q, L, P, λ3,6,8, tan βu. (5.46)

H is set to be the lightest active Higgs of the model and is the would-be SM

Higgs boson. Q,L, P have been defined in Equation (5.28). However, not all

terms of the form: H2H2H
:H:1 ` h.c., where xHy ‰ 0 and xH1y ‰ 0. pH2H

:q2 ` h.c. is a
particular case corresponding to H1 ” H as in the IDM model, Equation (5.12).

96



these parameters are relevant for determining the DM properties. For instance,

MH`1
is important only in cases of co-annihilation H2´H

`
2 which are accessible

for MH2
ą
„ 100 GeV only, because of LEP bounds. As for the IDM, such a

range of masses for DM is not viable in this model because for MDM ą
„MW

the gauge bosons interactions become so efficient that they dilute all the relic

abundance. The couplings λ3,6,8 play a minor role in all the parameter space of

the model. MA2 and MH`2
are important only when they are close to MH2 , ie.

in the co-annihilation regime. However, from what we know about IDM, we

expect the bulk of the viable parameter space of the model to lie at low masses

(«MW ). Therefore co-annihilations will be very limited. At the end, from the

previous set of free parameters, the most relevant ones for DM phenomenology

are:

tMH2 ”MDM , Q, L, P, tan βu (5.47)

Here, P is just a handy way to parametrize the mixing angle α between the ac-

tive higgses, see Equation (5.35). Q and L control the Higgs portals. It is easier

to see this analytically if we impose some tuning in the free couplings λ3,6,8
∗.

In this case, the couplings of the vertices vSM λH H
2
2H and vSM λH1 H

2
2H1 take

the simple form:

λH «
3

4
Q cospα ` βq `

1

2
L sinpα ´ βq ; (5.48)

λH1 «
3

4
Q sinpα ` βq `

1

2
L cospα ´ βq . (5.49)

Q is also responsible for the splitting between the first and second generation

of inert higgses (Equation (5.40)): ∆H3H2 “ 3 ∆A3A2 “ 3 ∆H`2 H
`
3
“ 3QvHvη,

with ∆AB “M2
A ´M

2
B.

Before moving to the calculation of the relic abundance we list in the next

section the phenomenological constraints that we have to impose on the model.

∗namely ´λ3 ` 2λ6 ` λ8 “ ´λ2 ` 2λ4 ´ 2λ5 ´ λ7.
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5.6.1 Phenomenological constraints on the model

In order to find the viable regions in parameter space where to perform our

study of dark matter, we must impose various theoretical and experimental

constraints on the model. We remark that flavor physics (µ Ñ eγ, b Ñ sγ,

etc.) does not constrain the scalar sector because only one Higgs couples to

fermions, i.e., we have a type-I 2HDM so that FCNC are naturally absent.

Moreover lepton flavor violating processes are suppressed by the large right-

handed neutrino scale.

In order to illustrate the phenomenological interplays and characteristics of

the model, we leave the discussion of the (severe) LHC constraints for a sep-

arate section (Section (5.7)). In addition to positivity requirement of mass

eigenstates, which is automatically encoded in the parameter set we chose as

input variables, we impose the following constraints on the model:

§ Positive definiteness of the Hessian

For the alignment xηy “ p vη?
2
, 0, 0q and xHy “ vH?

2
to be the minimum of

the potential, the Hessian matrix must have a positive definite determi-

nant. This requirement translates as the following inequalities:

L2
´ 4P λ1 ă 0 ; (5.50)

R2
1 ´ 9Q2 tan2 β ą 0 . (5.51)

§ Perturbativity

The requirement of perturbativity imposes the following generic bound

on the Yukawa couplings of the model:

|λi| ă 4π , i “ 1, .., 15 . (5.52)

This leads to an upper bound on the masses of the scalars, including the

inert doublets, of the order of the “naturalness” scale « 1.2 TeV (the

exact upper limit is determined by the perturbativity constraint applied

to each mass expression specifically). This is a particular feature of the

98



model, as noticed in the end of Section (5.5). The DM candidate is

therefore tightly linked to the electroweak scale.

A well motivated WIMP dark matter particle, as the acronym suggests,

has to be related to the weak scale and this is enforced by A4 in this

instance. The reason for this is that albeit the inert higgses do not de-

velop vev, they belong to a multiplet, namely A4 triplet, in which the

first component does take a vev. The flavor symmetry imposes the same

quadratic mass term for all the components of the multiplet who will

therefore inherit the constraints obtained by the minimization of the po-

tential. As we noticed before, in the case of the IDM such a bound is

absent for the inert Higgs because its mass receives a direct contribution

from the quadratic mass term — see Equation (5.15) and subsequent

discussion.

§ Vacuum stability

We require that the potential in Equation (5.2) is bounded from below,

which means that the vacuum is stable (at tree level). These conditions

are obtained by studying the behavior of the potential along specific field

directions, for instance |H1| Ñ 8 and all the other directions set to 0.

The sufficient conditions ensuring stability read:

0 ă λ1 ; (5.53)

0 ă λ2 ` λ3 ` 2λ4 ` λ5 ; (5.54)

0 ă λ1 ` 3P ` 3pλ9 `M1q ` 3p2λ2 ´ λ3 ` λ8 `M2q ´ 6Q1.(5.55)

(5.56)

Here, we have defined:

M1 “ Minpλ10 ´ 2|λ11|, 0q ; (5.57)

M2 “ Minpλ7 ´ 2|λ4 ´ λ5 ´ λ6|, 0q ; (5.58)

Q1 “ |λ12| ` |λ13| ` |λ14| ` |λ15| . (5.59)
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§ Electroweak precision tests

The oblique parameters S, T, U provide stringent constraints on theories

beyond the Standard Model [397]. In general, S and U parameters receive

negligible contributions from the scalars of the model [392, 398], hence

we focus on the T parameter. We compute the effect on T induced by

the scalars following [399] and we impose the bounds from electroweak

measurements [400],

´ 0.08 ď T ď 0.14 (5.60)

The expression of T involves the differences of all the bosons masses of

the model. For every point of the calculation, we explicitly verify that we

can choose the mass spectrum of the model, by modifying MH`1
, in such

a way that this constraint is always respected. We refer to Appendix (B)

for more detail about the derivation of the expression of T in this model.

§ LEP bounds

Searches for charginos at LEP put the generic lower bound on charged

particles: MH` ą„ 70 ´ 90 GeV. The non-deviation of the Z and W˘

widths from SM predictions imposes the following constraints on the

neutral members of SUp2qL doublets: MA `MH ą MZ , as well as the

charged state MH` `MH,A ą MW and 2MH˘ ą MZ . LEP II searches

for neutralinos and charginos, adapted to the IDM, allow for a small

window MA ´ MH ą„ 8 GeV for 45 GeV ă
„MH2

ă
„ 80 GeV [394]. This

window applies directly to the Z2-odd scalar sector of our model and

is of particular interest for DM phenomenology as the small splitting

between H2 and A2 implies strong co-annihilation effects. We take this

into account in the scan. Note that in the degenerate case, MA “ MH ,

the diagram relevant for direct detection involving Z exchange is greatly

enhanced and excludes such a case immediately. A small splitting of

Op100q keV is enough to avoid this catastrophic end.

To be conservative we fix the lower bound of the masses of the charged

scalars of our model to 100 GeV, lowering this bound might still be con-

sistent with LEP data [401] though it leads to no substantial differences
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Figure 5.2: Left: Tree level Feynman diagrams for the H2 annihilation into fermions. Center
and right: diagrams for H2 co-annihilation with the pseudscalar A2 into fermions.

Figure 5.3: Tree level Feynman diagrams for the H2 annihilation into W˘ and Z Z.

in the ensuing phenomenology.

5.6.2 Relic density

The phenomenologically viable points in the parameter space of the model

have to satisfy all the constraints listed in the previous section. After having

assured that, the points have to pass the specifically DM-related tests: relic

abundance and (in)direct detection limits. We start with the relic density

requirement and leave the WIMP experimental exclusion limits for the next

section. As we said before, LHC limits are not yet implemented here so the

mass of the lightest Higgs is left free to vary. This would allow us to present

the DM phenomenology of the model in full generality, for a generic portal,

before applying the LHC cuts in a subsequent section (Section (5.7)).

The thermal relic abundance of H2 is controlled by its annihilation cross section

into SM particles. In Figure (5.2) and Figure (5.3) we show the Feynman

diagrams for the most relevant processes. In order to study the viable regions

of the model we perform a random linear sampling over the input parameters

as chosen in Equation (5.46) within their allowed ranges and compute the

dark matter relic abundance using the micrOMEGAs package [402, 403]. At

each iteration, we keep only the points which satisfy the constraints listed
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Figure 5.4: Regions in the plane DM mass (MDM ) - lightest Higgs boson MH allowed
by collider constraints and leading to a DM relic abundance compatible with combined
PLANCK and WMAP measurements.

in the previous section (Section (5.6.1)). Finally, we apply the relic density

constraints which with the combined WMAP and PLANCK measurements

translate as [77]:

0.09 ď ΩDMh
2
ď 0.13. (5.61)

The range is a bit more enlarged than the precise 3σ statistical significance

range r0.018, 0.128s. The best fit being at ΩDMh
2 “ 0.1199 ˘ 0.0027, see

Table (2.1). In Figure (5.4) we show the regions with a correct relic abundance

in the plane DM mass (MDM) versus the lightest Higgs boson mass MH . We

distinguish five distinct regions:

§ MDM ă 45 GeV

For dark matter masses well below the W˘ threshold, dark matter anni-

hilations into fermions are driven by the s-channel exchange of the Higgs
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scalars of the model with interactions of the type H2H2 Ñ H˚ Ñ ff̄ ,

where f is an SM fermion. The relevant diagrams are shown in Fig-

ure (5.2). The gauge bosons interactions play no role here.

§ 45 GeV ăMDM ăMW

For MH À 400 GeV the annihilation cross sections are large enough

to obtain the correct relic density for all DM masses up to the the

W˘ threshold. At larger Higgs boson masses, annihilations into light

fermions are suppressed so that the relic abundance is typically too large

unless efficient co-annihilations with the CP-odd scalars A2,3 or with

H˘
2,3 occur. These processes are shown in Figure (5.2) for A2. Note

that the possibility to co-annihilate with the charged scalar is ruled out

since LEP data requires MH˘2
ą
„ 100 GeV. However, as commented in

the LEP constraints, there exists a narrow window in the MA2 ´MH2

plane with MH2 ă 100 GeV that is still allowed by LEP II. The al-

lowed region is defined roughly by the condition MA2 ´ MH2
ă
„ 8 GeV

and 45 GeV ă
„MH2

ă
„ 80 GeV. This is the origin of the increase in the

region of allowed MH above 400 GeV.

§ MDM «MH{2

The absence of points on the strip corresponding to the line MDM «

MH{2 is associated to the presence of the H resonance, which would

enhance the DM annihilation cross section giving a too small dark matter

abundance.

§ MW ăMDM ă
„ 120 GeV

For dark matter masses larger than MW , the annihilation cross section

into gauge bosons is typically too large so that H2 can only be a sub-

dominant component of the dark matter budget of the Universe. How-

ever, for certain combinations of masses and parameters, the annihila-

tions into gauge bosons may be suppressed by a cancellation between the

Feynman diagrams (Figure (5.3)), leading to an acceptable relic density.

Indeed, this happens for some points in Figure (5.4)∗. Ref. [404] shows

∗For the Inert Doublet model, these cancellations have been noted in [394] and have been
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that these processes allow for dark matter masses up to 160 GeV, just

below the threshold for annihilations into top pairs. In our scan, the vi-

able region of the parameter space extends only up to MDM « 100 GeV.

Solutions at higher masses cannot be excluded, though their scrutiny is

rather involved due to the large number of parameters of the model.

§ MDM « 600 GeV

We now turn to the region MDM « 600 GeV. As noted in [373], a

scalar dark matter candidate annihilating into massive vector bosons

inherits the correct relic abundance for this value of the mass if all other

annihilation processes are absent. At first glance, it might seem that this

scenario could be realized in our model by tuning the couplings in order to

suppress the dark matter annihilation, i.e., the couplings with the higgses

λH and λH1 (Equation (5.48)). This is indeed possible but the value of

Q would have to be necessarily vanishing. This in turn would introduce

a strong degeneracy in the spectrum, namely MDM “ MA2,3 “ MH`2,3

(see Equation (5.40)), and opens efficient co-annihilation interactions

that would essentially nullify the relic density obtained from the gauge

bosons interactions only. Contrary to IDM, the masses and the couplings

controlling the portals and co-annihilations are not independent from

each other. We conclude that the region around 600 GeV is not accessible

in our setup because of the constraints imposed by the A4 symmetry.

In the next two sections we study the prospects for direct and indirect dark

matter detection.

5.6.3 Direct detection

The scalar dark matter candidate we are considering couples to quarks via

Higgs boson exchange, leading therefore to pure spin independent (SI) interac-

tions with the nucleons. In Figure (5.5) we show the SI scattering cross section

off proton for the models with a correct dark matter abundance. We note that

a large region of the parameter space is ruled out by the constrained imposed

studied in detail in [404].
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Figure 5.5: Spin-independent DM scattering cross section off-protons as a function of
the dark matter mass. The orange regions delimited by the dashed (solid) line show the
DAMA/LIBRA annual modulation regions including (neglecting) the channeling ef-
fect [405]. The green region corresponds to the COGENT data [138]. Dashed and dotted
red lines correspond to the upper bound from CDMS (respectively from [150] and [406]).
XENON100 bounds [407] are shown as a solid red line. For completeness, we added the limit
from LUX [147] (solid green line), which are the strongest to date.

by current dark matter direct detection experiments.

We find that the model albeit being based on two extended Higgs sectors is

strongly constrained by direct detection experiments. We witness here the

limits of the WIMP “miracle”. The null results of various and varied probes of

DM recoils off nuclei severely limit the available parameter space of WIMPs. In

our specific setup, the bulk of the points passing direct detection tests is due al-

most entirely to the co-annihilation region between 45 GeV ăMDM ă 80 GeV.

Including the constraints from the discovery of the Higgs boson at the LHC

will further reduce the parameter space of the model. Before implementing
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Figure 5.6: annihilation cross section times velocity as a function of the dark matter mass.
The solid and dashed red lines show respectively the upper bound inferred by Fermi-LAT
observations of the Draco dwarf galaxy [408] and Fermi-LAT measurements of the isotropic
diffuse gamma-ray emission [409]. Projected 5 years sensitivity from measurements of the
isotropic diffuse gamma-ray emission are shown as a dotted red line [410].

them though, we consider the impact of indirect detection experiments.

5.6.4 Dark matter indirect detection

In Figure (5.6) we show xσvy at small velocity, relevant for DM annihilations

inside our galaxy, as a function of MDM . For MDM À 40 GeV, xσvy remains

close to the thermal value at freeze-out, « 3 ˆ 10´26 cm3s´1, as expected for

the s-wave DM annihilation into light fermions. At larger DM masses, the

presence of co-annihilations allows for much smaller values of xσvy. That is

because the relic density is accounted for by processes of the type H2A2 Ñ ff̄

in the early Universe (close to freeze-out) which are no longer active now be-

cause A2 decayed already.
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The solutions at xσvy « 10´25 cm3s´1 correspond to DM masses just below the

Higgs resonance. In this case the annihilation cross section at small velocities

is boosted with respects to its values at the DM freeze-out. This behavior of

xσvy close to a narrow Breit-Wigner resonance has been recently widely ex-

ploited in order to boost the annihilation signal so to explain the cosmic-rays

anomalies reported by the PAMELA collaboration [411–414].

In order to sketch the prospects for indirect DM detection we show in Fig-

ure (5.6) the constraints on xσvy imposed by the Fermi-LAT observations of

the Draco dwarf spheroidal galaxy [408] and the Fermi-LAT measurements

of the isotropic diffuse gamma-ray emission [409]. We caution that these upper

bounds have been computed assuming DM annihilations into bb̄, therefore they

would directly apply only for parameter choices in our model where this anni-

hilation channel dominates. Still, this happens in large part of the parameter

space, and in particular at low dark matter masses, where the Fermi-LAT

constraints are close to the predictions of the model. For a comparison of

these bounds with those obtained for different annihilation channels we refer

the reader to the original references. Further constraints for different targets

of observations are obtained in Ref. [415–419]

One sees from Figure (5.6) that current bounds are not yet able to signifi-

cantly constrain the model. However, the Fermi-LAT sensitivity is expected

to improve considerably with larger statistics and for different targets of ob-

servations, see e.g., [410, 418–420]). For example, in Figure (5.6) we show the

forecasted 5 years Fermi-LAT sensitivities from the isotropic diffuse gamma-

ray emission [410]. Fermi-LAT measurements should be able to test the

model for low dark matter masses.

We now pass to implementation of the LHC results.
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5.7 The return of the ring: LHC limits

The wealth of data that followed the discovery of the Higgs, and the spec-

tacular agreement with SM predictions in all the probed regions puts strong

constraints on multi-Higgs models. It is time to include these results in the

analysis of the model. It may seem, at first sight at least, that the model offers

a lot of freedom given its quite extended scalar sector. If so, then all what

the Higgs discovery does is fixing the mass of MH in the previous analysis.

However, we will see that this is not the case.

In general, the Higgs data constrain DM models in two ways:

§ Through the identification of the SM Higgs boson: the identification of

the SM Higgs is mandatory to make sure that the model can reproduce

the LHC data. As shown in Equation (5.26), the lightest Higgs of the

model (H) couples to vector bosons with a strength normalized to the

SM value equal to sinpβ ´ αq. This coupling is usually denoted as CV .

For what is known as type-II 2HDM, like the Higgs sector of the MSSM,

CV is required to be very close to unity meaning that the heavy Higgs is

almost entirely decoupled [395]. In type-I 2HDM such the model we are

considering, a single Higgs couples to both up and down types quarks,

thus the normalized couplings of the Higgs-like particle to up- and down-

quarks satisfy CU ” CD “ cosα{ sin β (Using Equation (5.23)). Type-I

2HDM allows for non-negligible departures from unity [395]. We sum-

marized the couplings of the higgses of the model in Table (5.3).

Global fits of LHC data constrain the plane CD´CV . Roughly speaking,

although the two couplings are correlated, CD is found to be in the range

0.5 to 1.4 at 95% CL, whereas CV has to be larger than 0.65 at the same

CL. More precisely, we consider in this analysis the region derived in the

global fit [395] for type I 2HDM in the plane β ´ cospβ ´ αq at 95% CL.

The models lying within this region ensure us that the light Higgs H
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behaves like the SM Higgs and the heavy one successfully eludes direct

detection. Note that the only sector that is constrained by the identifi-

cation of the Higgs is the active one. LHC exclusions for the SM Higgs

do not apply to the neutral members of the inert doublets because they

do not couple to fermions, and they do not decay to gauge bosons thanks

to the stabilizing symmetry. The constraints derived on β and α have

a direct consequence on DM phenomenology in that they play a major

role in the couplings of DM with its portals: H and H1, as can be seen

in Equation (5.48).

On the other hand, the extra charged scalars (H˘
1,2,3) could affect radia-

tive Higgs decays, in particular µγγ; the parameter that quantifies the

SM Higgs deviations in the diphoton channel (the ‘signal strength’ of the

channel). In particular a light (H˘
2,3) can enhance the signal by entering

in radiative decays of the Higgs (triangle-loops for instance). Now that

ATLAS and CMS show no or statistically insignificant enhancement for

µγγ, we consider that the SM prediction is valid and do not aim at re-

producing any excess in this analysis. In fact, this assumption has been

implicitly done when we considered the CV and CD bounds. A deviation

in the diphoton channel would introduce a new coefficient, Cγ, that af-

fects the global fit.

Higgs CV CU CD CL

H sinpβ ´ αq cosα{ sin β cosα{ sin β cosα{ sin β
H1 cospβ ´ αq sinα{ sin β sinα{ sin β sinα{ sin β
A1 0 cot β ´ cot β ´ cot β

Table 5.3: Summary of tree level couplings of the higgses of the model to gauge bosons CV ,
up- and down-quarks (CU and CD respectively) and leptons (CL). The couplings are normal-
ized to their SM values.

§ Through the limit on unseen Higgs decays: The characterization of the

branching ratio of the Higgs to invisible products, i.e., to particles eluding
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detection, constitutes one of the main consequences of its discovery for

DM searches. ATLAS [421] (CMS [422]) gives the following upper limits

on such decays: BRph Ñ inv.q ă 37% p58%q. Global fits for a Higgs

boson with SM couplings and additional invisible decay modes reduce

the bound to a more stringent [395]:

BRphÑ inv.q ă 29% , (5.62)

at 95% CL. In our model, the SM Higgs can decay to any pair of H2,

H3, A2 or A3 as long as their masses are below MH{2 « 62 GeV:

BRphÑ inv.q “
ΣΓphÑ XXq

ΓSMh ` ΣΓphÑ XXq
; (5.63)

ΓphÑ XXq “
λHv

2
SM

32πMh

d

1´
4M2

X

M2
h

, (5.64)

with X “ H2, H3, A2, A3, and ΓSMh is the width of the Higgs as predicted

by the SM. Of course, BRph Ñ inv.q ceases to be constraining as soon

as the DM mass is larger than Mh{2.

In addition to Higgs data, the LHC can constrain DM models through events

with large missing transverse energy where pairs of dark matter particles are

produced in association with hard SM radiation. These searches are typically

called ”mono-X” channels, where X can be a jet; a photon; a W or Z boson;

or even a Higgs.

Results

We distinguish two distinct regions:

§ MDM ăMh{2

For low masses, getting a good relic density implies sizable couplings

with the portals. If we identify the SM Higgs with H, then this would

imply the usual drawback: significant branching ratio of h Ñ 2DM and

tension with direct detection limits. However, we can couple the DM

preferentially to the second Higgs, H1, and pass the Brph Ñ inv.q test
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in a fairly easy way. However, the strength of the coupling to H1 depends

on the actual value of α and the latter is correlated with β for the correct

identification of the SM Higgs.

§ MDM ąMh{2

In this region, Brph Ñ inv.q plays no role. However we have to make

sure that α and β can account for the SM Higgs. For MDM ą
„ 62 GeV the

gauge bosons interactions are already open due the non-negligible kinetic

energy of DM at freeze-out epoch. Since these processes are efficient, we

want to suppress the scalar portals in this region if we want to repro-

duce the observed relic density and avoid a strong dilution of the DM

density. Qualitatively, using the simplified expression of couplings with

the portals, Equation (5.48), this amounts at setting the parameters Q

and L to zero. But L « 0 implies α “ ˘π{2, see Equation (5.35). So we

expect the region compatible with relic density to be on the curve sin β

in the plane β ´ cospβ ´ αq. That means that the Higgs identification

requirement is incompatible with the relic density constraint. A more

precise treatment of these considerations using the precise (lengthy) ex-

pression confirms our conclusion. However, in order to make sure there’s

no subtle cancellation that is taking place somewhere, we implemented

a numerical scan using latest version of micrOMEGAs [423]. The results

are displayed in Figure (5.7) in the plane β ´ cospβ ´ αq. The figure

shows a scatter plot of models passing all the constraints discussed in

Section (5.6.1) plus the Brph Ñ inv.q limit. The points that have the

correct relic abundance are shown in blue (diamond shape) and those

which provide sub-dominant contributions are in green. They all lie on

the curve corresponding to α “ ˘π{2 as expected.

We conclude that after taking into account the latest results of LHC, the model

presented in this chapter is not able to provide a viable DM candidate. This is

due to the fact that the flavor symmetry tightly constrains the scalar potential,

and thus the DM sector: by relating the inert sector of the model to the active

one, we are able to constrain the DM with LHC in a way that goes beyond

the Brph Ñ inv.q observable. The result is seen as positive because it shows
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Figure 5.7: LHC Limits: The orange (solid) regions correspond to 95% CL bounds obtained
in the global fit [395] for type I 2HDM. Dashed line correspond to α “ ˘π{2. Blue (Diamond)
points satisfy the constraints listed in Section (5.6.1) plus relic density and BRph Ñ inv.q.
Green points have Ωh2 ! 0.1.

that the link neutrino–dark matter through the flavor symmetry is not only

conceptual but it actually does have strong impact on the viability of the DM

candidate of the model. Of course, even though the simple(est) “discrete dark

matter” model presented here is ruled out, the idea per se, is still viable and

less minimal models could accommodate all the existing constraints including

LHC-related ones.

Can we save the model?

From Figure (5.7), we see that the only viable point seems to be the particular

limit cospβ ´ αq “ β “ 0. In this case the group A4 is not broken, because

tanpβq “ 0. The neutrino phenomenology and motivation are of course lost

and the group serves merely as an imposed Z2-like symmetry on the potential,

with the difference that is much more constraining than a simple parity. For

the sake of illustration, let us see what happens in the case cospβ´αq “ β “ 0

in more details (assuming the Higgs H1 is decoupled from the theory). In this

case the mass spectrum is highly degenerate due to the unbroken A4 symmetry.
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It reads:

M2
h

“ 2λ1 v
2
SM ; (5.65)

M2
Ai

“ µ2
η `

1

2
pλ9 ` λ10 ´ 2λ11q v

2
SM ; (5.66)

M2
Hi

“ µ2
η `

1

2
pλ9 ` λ10 ` 2λ11q v

2
SM ; (5.67)

M2
H˘i

“ µ2
η `

1

2
λ9 v

2
SM , (5.68)

with i “ 1, 2, 3. Such expressions for the masses are reminiscent of the IDM.

Indeed the spectrum is very similar to the one derived in Equation (5.15)

except that we have three copies of the inert Higgs here. The Higgs portal

couplings become:

λh “ `
1

2
L ; (5.69)

λH1 “ ´
3

4
Q , (5.70)

and L ” λ9 ` λ10 ` 2λ11 plays the role of λL in IDM. We see that in this

case, the masses are essentially decoupled from the couplings and we recover

the same phenomenological features of IDM, including the high mass region

at « 600 GeV.

Of course, imposing a flavor symmetry without breaking has no sense. It

would be more interesting to contemplate the possibility of changing the par-

ticle content of the model instead. It turns out, it is not difficult to imagine

modifications of the models that preserve the original motivation of the mech-

anism and the neutrino phenomenology. Indeed, it is enough to add another

A4 triplet of SUp2qL scalar doublets η2, analogue to η, that will couple to

the right handed neutrinos just like η in the original model. Of course, to

preserve a remnant Z2, η2 should take vev in the p1, 0, 0q direction. Granted

the alignments xηy “ p0, 0, 0q ∗ and xη2y “ pvη, 0, 0q are indeed solutions of

∗The alignment xηy “ p1, 0, 0q is possible too! In this case the active Higgs sector is
comprised of three higgses and a dedicated LHC global fit is required in order to assess its
viability, though such an extended Higgs sector may give enough freedom for the DM to be
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the vacuum of the theory, we have then a variant of the model that has a

less constrained Higgs sector. In particular, the relevant DM couplings will be

decoupled from its mass and from the mixing of the 2HDM sector in contrast

with the model considered here, but just like the IDM. That is because the

alignment xηy “ p0, 0, 0q keeps the quadratic ‘µ’ term free to contribute to the

masses. Note that in this case, the components of η need not be SUp2qL dou-

blets: η can well be composed of scalar iso-singlets. The singlet DM parameter

space is usually bigger than its inert higgs counterpart because of the absence

of gauge bosons interactions. For instance, a good relic density can be found

for masses well beyond the MW threshold since the DM has no gauge couplings.

5.8 Completion of the model

So far, the quark sector has not been studied and it was assumed that quarks

are generically singlets of A4 in order to preclude catastrophic DM decays.

However, it is possible to extend such a model to the quarks by embedding it

into the grand unified group SUp5q. It is beyond our scope to give a complete

grand unified model and we merely sketch here a way to embed the model into

a GUT group.

We consider the following matter assignment:

T1 T2 T3 F1 F2 F3 NT N4

SUp5q 10 10 10 5̄ 5̄ 5̄ 1 1

A4 1 11 12 1 12 11 3 1

where we have assumed three copies of ten-multiplets and three of five-multiplets

of SUp5q to describe the three flavors. On the other hand, the assignments of

the scalars read:

SUp5q 5H 5̄H 5η 45H

A4 1 1 3 1

viable.
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Then the Lagrangians for the up- and down-quarks and neutrinos are given

by:

Ld “ yl,d1 T1F15̄H ` y
l,d
2 T2F25̄H ` y

l,d
3 T3F35̄H

` y1l,d1 T1F145H ` y1l,d2 T2F245H ` y
1l,d
3 T3F345H , (5.71)

Lu “ yu1T1T15H ` y
u
2T2T35H ` y

1u
1 T1T145H ` y

1u
2 T2T345H , (5.72)

Lν “ yν1T1N45H ` y
ν
2T2N45H ` y

ν
3T3N45H ` y

ν
1T1NT5η

`M1NTNT `M2N4N4. (5.73)

The charged lepton and down quark mass matrix are diagonal with eigenvalues:

me “ yl,d1 x5Hy ´ 3y1l,d1 x45Hy ;

mµ “ yl,d2 x5Hy ´ 3y1l,d2 x45Hy ;

mτ “ yl,d3 x5Hy ´ 3y1l,d3 x45Hy ;

md “ yl,d1 x5Hy ` y
1l,d
1 x45Hy ;

ms “ yl,d2 x5Hy ` y
1l,d
2 x45Hy ;

mb “ yl,d3 x5Hy ` y
1l,d
3 x45Hy .

The three charged lepton masses as well as the three down-quark masses can

be easily reproduced. The up-quark mass matrix is:

Mu
“

¨

˚

˚

˝

mu 0 0

0 0 mc

0 mt 0

˛

‹

‹

‚

, MuMu:
“

¨

˚

˚

˝

m2
u 0 0

0 m2
c 0

0 0 m2
t

˛

‹

‹

‚

, (5.74)

where:

mu “ yu1 x5Hy ;

mc “ yu2 x5Hy ´ y
1u
2 x45Hy ;

mt “ yu2 x5Hy ` y
1u
2 x45Hy . (5.75)

Given the structure of the up- and down-quark mass matrices, the quark mix-

ing matrix is diagonal. While this may be regarded as a good first approxima-
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tion, since quark mixing angles are small, clearly another ingredient is needed

such as, possibly, radiative corrections or extra vector-like quark states. A full

fit of the quark sector observables within a unified extension incorporating the

flavor symmetry is beyond the scope of this study, however we see that such

an extension is possible.

5.9 Conclusions and discussion

We have studied a model where the stability of the dark matter particle arises

from a flavor symmetry. The A4 non-Abelian discrete group accounts both

for the observed pattern of neutrino mixing as well as for DM stability. We

have analyzed the constraints that follow from theoretical bounds, electroweak

precision tests and collider searches. We have also analyzed the prospects for

direct and indirect dark matter detection and found that, although the former

already excludes a large region in parameter space, we cannot constrain the

mass of the DM candidate. In contrast, indirect DM detection is not yet sen-

sitive enough to probe our predictions.

All of the above relies mainly on the properties of the scalar sector responsi-

ble for the breaking of the gauge and flavor symmetry. A basic idea of our

approach is to link the origin of dark matter to the origin of neutrino mass

and the understanding of the pattern of neutrino mixing, two of the most out-

standing challenges in particle physics today. For the neutrinos, one finds an

inverted neutrino mass hierarchy, hence a neutrinoless double beta decay rate

accessible to upcoming searches, while θ13 “ 0.

In this updated DM analysis we have included the latest constraints on the

model, in particular the Higgs bounds. We find that the tight constraints im-

posed by the flavor symmetry A4 on the properties of the WIMP candidates

cannot fit the LHC results. That is mostly due to the fact that the mass of the

dark matter and its production portals couplings and relevant co-annihilations

splittings are not independent from each other because of A4. We have also

discussed possible modifications of the model to solve this problem.
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The simplicity of this A4-based discrete dark matter while making the DM

phenomenology and interplay with the flavor symmetry transparent, has the

drawback of providing rather poor neutrino physics predictions and does not

include the quark sector. In the next chapter we will present a predictive

discrete dark matter scenario, incorporating quarks and providing a 3-Higgs

doublet model sector allowing for more freedom for the dark matter candidate.
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6
Discrete dark matter meets θ13

We have to be economical in principles rather than in structures.

Abdus Salam

In its minimal realization, the DDM scenario presented in Chapter (5)

links the DM to neutrino phenomenology through the stability issue. While

such a link tightly constrains the phenomenology of the DM candidate, because

of the flavor symmetry it does not provide a strong neutrino phenomenology.

That is because: (i) the lepton doublets transform as singlets under the flavor

group; (ii) the right-handed neutrinos transform as A4 triplets N „ 3, the

contraction rules imply that the DM, η „ 3, couples only to higgses and heavy
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right-handed neutrinos L̄iN η̃.

What if leptons are assigned to a triplet representation instead? This does not

work because it implies that the would-be DM candidate would decay too fast

to light leptons, through the contraction of the triplet representations. This

problem has been considered by Ref. [424] using a T 1 flavor symmetry. While

the suggested model has the merit of incorporating quarks non-trivially, it re-

quires an “external” Z2 asymmetry in order to stabilize dark matter. In fact,

the problem of putting both the would-be DM candidate and the leptons in

nontrivial representations of the same group seemed so problematic that it led

Ref. [425] to claim that a successful realization of the DDM scenario requires

the lepton doublets to be in three inequivalent singlet representations of the

flavor group.

In addition to all these theoretical, and perhaps aesthetic considerations, sim-

ple schemes of this type lead to θ13 “ 0 as a first-order prediction. This is at

variance with recent reactor results [212, 213, 426, 427] which find that θ13 is

actually quite large.

The aim of this chapter is to address these point specifically. Following the

same motivation and philosophy of the A4-based discrete dark matter model,

we will construct a model that is able to connect the two sectors in a deeper

way and account for the recently discovered values of the mixing angles. The

explicit example we will present in this chapter is based on a unique symmetry

group; ∆p54q, in which: (i) left-handed leptons are assigned to nontrivial rep-

resentations; (ii) there exist a viable stable dark matter particle; and (iii) the

quarks are included in a nontrivial way. In contrast to the simplest “flavor-

blind” inert dark matter scheme (Section (5.4)), the model predicts correlations

among the neutrino oscillation parameters, consistent with the recent reactor

angle measurements [212, 213, 426, 427].

The chapter is organized as follows: in the next section, Section (6.1), we will

list the requirements a group has to satisfy to have a non-trivial embedding
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2k ˆ 2k “ 1` ` 1´ ` 2k

21 ˆ 22 “ 23 ` 24 pand cyclic permutationsq

2k ˆ 1˘ “ 2k

Figure 6.1: ∆p54q basics — rules for doublet contractions. See Appendix (A.2) for more
details.

of dark matter, and introduce the ∆p54q discrete group. Then we construct a

mode based on this group in Section (6.2), and study its neutrino phenomenol-

ogy in Section (6.3). The quark sector is described in Section (6.4). The dark

matter candidate is introduced in the following section, Section (6.5). Mo-

tivated by the ‘gravity breaks all global symmetries’ conjecture, we attempt

to quantify the effect of non-renormalizable, Planck-suppressed, operators on

the stability of WIMP dark matter in Section (6.6). Finally, we conclude in

Section (6.7).

6.1 Beyond A4 discrete dark matter

It is clear that A4 is too small to address all the points discussed in the in-

troduction, so we have to consider a larger group. More precisely, we search

for a group G that contains at least two irreducible representations of dimen-

sion larger than one, namely ra and rb with dimpra,bq ą 1. We also require

that all the components of ra transform trivially under an Abelian subgroup

of G Ą ZN (with N “ 2, 3) while at least one component of rb is charged with

respect to ZN . The stability of the lightest component of rb is guaranteed by

ZN giving a potential DM candidate.

The simplest group we have found with this feature is ∆p54q [428], that is

isomorphic to pZ3 ˆ Z3q ¸ S3. ∆p54q is part of the ∆p6N2q series, it comes

after ∆p24q ” S3 and ∆p6N2q ” S4. In addition to two irreducible triplet rep-

resentations, ∆p54q contains four different doublets 21,2,3,4 and two irreducible

singlet representations, 1˘. The product rules for the doublets are (k runs

from 1 to 4) shown in Figure (6.1). More details about ∆p54q can be found in
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Appendix (A.2). Of the four doublets, 21 is the only irrep that is left invariant

under the subgroup P ” pZ3ˆZ3q. The other doublets transform nontrivially.

That is because the generators of P on each doublet irrep, a and a1 ” a are

given by [429, 430]:

a21 “

˜

1 0

0 1

¸

; (6.1)

a22 “

˜

ω2 0

0 ω

¸

; (6.2)

a23,4 “

˜

ω 0

0 ω2

¸

. (6.3)

Here ω3 “ 1. We can see that by taking ra “ 21 and rb “ 23 that ∆p54q is

a perfect choice for our purpose. In the next section, we construct a model

based on this group.

6.2 The model

Let us now turn to the explicit model, described in Table (6.1), where LD ”

pLµ, Lτ q and lD ” pµR, τRq. We have five SUp2qL doublets of Higgs scalars,

four of them paired as ∆p54q doublets: H is a singlet of ∆p54q, while η “

pη1, η2q „ 23 and χ “ pχ1, χ2q „ 21 are the doublets. In order to preserve a

remnant P symmetry, the doublet η is not allowed to take a vev. This is equiv-

alent to the prescription xη2,3y “ 0 in the model based on A4 (Section (5.3)).

Such a prescription is not necessary for H, χ1 and χ2 since these are all invari-

ant under P . We also need to introduce an SULp2q Higgs triplet scalar field

∆ „ 21 whose vev will induce neutrino masses through the type-II seesaw

mechanism [253, 259–262] presented in Section (3.6.1).

Regarding dark matter, note that the lightest P -charged particle in η1,2 can

play the role of inert DM, as it has no direct couplings to matter. The link

between dark matter and neutrino phenomenology arises from the fact that

the DM stabilizing symmetry is a remnant of the underlying flavor symmetry

122



Group Le LD eR lD H χ η ∆

SUp2qL 2 2 1 1 2 2 2 3
∆p54q 1` 21 1` 21 1` 21 23 21

Table 6.1: Summary of the quantum numbers of the model.

which accounts for the observed pattern of oscillations.

The lepton part of the Yukawa Lagrangian is given by LY “ L` ` Lν , where:

L` “ y1L̄eeRH ` y2L̄elDχ` y3L̄DeR χ (6.4)

` y4L̄DlDH ` y5L̄DlDχ ;

Lν “ ybL̄DL̄D∆` yaL̄DL̄e∆ . (6.5)

After electroweak symmetry breaking L` gives the following charged lepton

mass matrix:

M` “

¨

˚

˚

˝

a br b

cr d e

c e dr

˛

‹

‹

‚

, (6.6)

where a “ y1 xHy, b “ y2 xχ1y, c “ y3 xχ1y, d “ y5 xχ1y, e “ y4 xHy, and

r “
xχ2y

xχ1y
. (6.7)

Note that all these parameters are in general complex. On the other hand, Lν
is responsible for generating the neutrino mass matrix. Choosing the solution

x∆y „ p1, 1q and xχ1y ‰ xχ2y, one finds that:

Mν9

¨

˚

˚

˝

0 δ δ

δ α 0

δ 0 α

˛

‹

‹

‚

, (6.8)

where the complex parameters δ and α are defined as δ “ ya x∆y, α “ yb x∆y.

Such a vev alignment is consistent with the minimization of the scalar poten-

tial.

Our model corresponds to a “flavored” realization of the inert dark matter
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Figure 6.2: Effective neutrinoless double beta decay parameter mee versus the lightest neu-
trino mass. The thick upper and lower branches correspond the “flavor-generic” inverse (yel-
low) and normal (gray) hierarchy neutrino spectra, respectively. The model predictions are
indicated by the green and red (darker-shaded) regions, respectively. They were obtained
by taking the 3σ band on the mass squared differences. Only these sub-bands are allowed
by the ∆p54q model. For comparison we give the current limit and future sensitivities on
mee [431, 432] and mν [433, 434], respectively.

scenario [391, 392], Section (5.4). As such, it has nontrivial consequences for

neutrino phenomenology, which we now study in detail.

6.3 Neutrino phenomenology

As seen in Equation (6.8) the neutrino mass matrix depends only on two

parameters, δ and α, which can be expressed as a function of the measured

squared mass differences as follows:

mν
1,3 “

α ¯
?

8δ2 ` α2

2
mν

2 “ α. (6.9)

The number of predictions can be readily obtained from parameter counting

considerations. Indeed, restricting to the lepton sector we have 7 parameters

in total if CP is conserved, a; b; c; d; e; α; δ, plus the ratio r nearly fixed

from the quark sector (see below). This is to be compared with the measured

observables, namely 3 charged lepton masses, plus the solar and atmospheric
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mass splittings. To sum up, we have 2 “ 7 ´ 5 predictions, as illustrated in

Figure (6.2), Figure (6.3) and Figure (6.4). The parameters of the neutrino

mass matrix are fixed by the neutrino squared mass differences (within the

2σ range). The two free parameters are in the charged lepton sector and are

taken to be random variables in the scans.

As for the first prediction, notice that the masses in Equation (6.9) obey a

neutrino mass sum rule of the form mν
1 `m

ν
2 “ mν

3 which has implications for

neutrinoless double beta decay [435], as seen in Figure (6.2). We now turn to

the second prediction. For simplicity, we consider in what follows only real pa-

rameters and we fix the intrinsic neutrino CP–signs [436] as η “ diagp´,`,`q,

where η is defined so that the CP conservation condition in the charged current

weak interaction reads U‹ “ Uη, with U being the lepton mixing matrix. It

is easy to check that in this case only a normal hierarchy spectrum is allowed.

In contrast, a different permutation of the eigenvalues corresponding to the η

matrix, namely p1, 2, 3q Ñ p1, 3, 2q in Equation (6.9), gives only inverse hier-

archy spectrum.

Although in our scheme neutrino mixing parameters in the lepton mixing ma-

trix are not strictly predicted, there are correlations between the reactor and

the atmospheric angle, as illustrated in Figure (6.3)∗ and Figure (6.4) for the

cases of normal and inverse mass hierarchies, respectively. While the solar

angle is clearly unconstrained and can take all the values within in the exper-

imental limits, correlations exist with the reactor mixing angle, indicated by

the curved yellow bands in Figure (6.3) and Figure (6.4). These correspond

to 2σ regions of θ23 as determined in Ref. [437]. The horizontal lines give the

best global fit value and the recent best fit values obtained in Daya-Bay and

RENO reactors [212, 213, 426, 427] (see also results from T2K [438]). One

sees that for the IH case the agreement between model prediction and angle

determinations is not as good as in the NH case.

∗There is also a second band allowed in this case which is, however, experimentally ruled
out by the measurements of θ12 and θ13.
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Figure 6.3: The shaded (yellow) curved band gives the predicted correlation between solar
and reactor angles when θ23 is varied within 2σ for the normal hierarchy spectrum. The solid
(black) line gives the global best fit values for θ12 and θ13, along with the corresponding two-
sigma bands, from Ref. [437]. The dashed lines correspond to the central values of the re-
cently published reactor measurements [212, 213, 426, 427].

Figure 6.4: Same as above for the inverse hierarchy case.

We now turn our attention to the mixing angles. In previous models of discrete

dark matter, including the original one discussed in Chapter (5) [1, 377, 379,

383] quarks were singlets of the flavor symmetry. That is because A4 was

too small a group to accommodate both DM stability and CKM predictions.

Consequently the generation of quark mixing was difficult [387]. This problem

has been recently considered in [424] using T 1 flavor symmetry.
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Group Q1,2 Q3 puR, cRq tR dR sR bR

SUp2qL 2 2 1 1 1 1 1
∆p54q 21 1` 21 1` 1´ 1` 1`

Table 6.2: Gauge and flavor representation assignments for quarks.

6.4 The quark sector

A nice feature of our current model is that with ∆p54q, given the specific

number and characteristics of the doublet irrep, we can assign quarks to the

nontrivial doublet irrep even though the DM is also a doublet of ∆p54q. This

opens new possibilities to fit the CKM mixing parameters. Indeed, as shown

in Table (6.2) quarks transforming nontrivially under the flavor symmetry can

be consistently added in our picture. The resulting up- and down-type quark

mass matrices in our model are given by:

Md “

¨

˚

˚

˝

rad rbd rdd

´ad bd dd

0 cd ed

˛

‹

‹

‚

, Mu “

¨

˚

˚

˝

rau bu du

bu au rdu

cu rcu eu

˛

‹

‹

‚

. (6.10)

Note that the Higgs fieldsH and χ are common to the lepton and the quark sec-

tors and in particular the parameter r. Assuming for simplicity real couplings

we have 11 free parameters characterizing this sector, 10 Yukawa couplings

plus the ratio of the the isodoublet vevs, r, introduced earlier in the neutrino

sector (Equation (6.7)). We have verified that we can make a fit of all quark

masses and mixings provided r lies in the range of about 0.1 ă r ă 0.2. We

do not extend further the discussion on the quark interactions which can be

easily obtained from Table (6.2).

6.5 The dark matter candidate

The (scalar) Dark Matter candidate of the model is the lightest neutral com-

ponents of η. It is stabilized by the P symmetry that is left intact after the

breaking of ∆p54q. For definiteness, let us say that the DM is η1.
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The active Higgs sector is composed of three scalars whereas the dark sector is

constituted by two SUp2qL doublets. η1 has quartic couplings with the higgses

of the model, such as η:η H:H and η:η χ:χ. These weak-strength couplings

provide a Higgs portal DM production mechanism, and ensure an adequate

cosmological relic abundance. The general phenomenology of such a candidate

is very similar to the one we have studied in the previous chapter and we do

not find it useful to redo the study here. The only difference resides in the fact

that the active sector is a 3HDM instead of a 2HDM. While this does not add

anything conceptually relevant for DM phenomenology, it might help evade

the strict LHC limits and constraints that apply to 2HDM as we have seen

in the case of the A4-based discrete dark matter model. Direct and indirect

detection prospects are similar to those of a generic WIMPs as provided by

multi-Higgs extensions of the SM.

6.6 The ‘Gravity breaks them all’ issue

Dealing with global symmetries usually raises the question: “What about grav-

ity?”. That is because it has been conjectured and argued for years that

non-perturbative gravitational effects break all global symmetries (continuous

and discrete alike) [439, 440]. The original motivation was based on black hole

physics arguments, but since then perturbative string theory has confirmed this

conjecture in various cases [440]. Such gravitational effects have already been

considered in a number of scenarios and models invoked to solve fundamen-

tal theoretical problems, such as axions [441–443] and majorons [236, 444–447].

Here we turn our attention to the implications of such a claim on WIMP dark

matter phenomenology. WIMPs are generally assumed to be stable particles.

This is achieved in most models by imposing in an ad hoc way a global sym-

metry (usually a Z2) that forbids the decay of the DM candidate to lighter

states. More theoretically motivated models such as those based on the dis-

crete DM mechanism achieve the stability in a dynamic way as a result of the

breaking of a flavor symmetry group, as discussed in this thesis. However, if

the flavor group is global or is not itself originating from a local group, then
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the conjecture “Gravity breaks global symmetries” holds. It is our goal here

to quantify the effect of this claim on WIMP dark matter candidates.

In full generality, unless the symmetry responsible for the DM stability is local,

or comes from a local symmetry (a ‘gauged’ Z2 for instance), it is expected

to be broken at short distances by gravitational effects leading to a decaying

WIMP DM. From the phenomenological point of view absolute stability is not a

necessary condition for DM candidates. Instead, what is required is a lifetime

larger than the current age of the Universe H´1 « 1017 s, where H is the

Hubble constant. Cosmic and gamma rays analysis constrain the lifetime of a

DM candidate even further to be τDM ą 1026 s [90–93]. An important question

to be addressed is then what are the requirements on the gravity-induced decay

lifetimes in order to preserve the validity of the DM candidate?

Prototype model

In order to illustrate the discussion, let us consider a very simple prototype

scheme, exhibiting generic WIMP dark matter features over a broad phe-

nomenological range [448, 449]. The SM is extended by Si (i “ 1 . . . N) real

gauge-singlets under an imposed parity symmetry to which the SM particles

are blind. Note that the stabilizing symmetry need not be a Z2; any global

(discrete or continuous) symmetry that forbids the decay of the lightest Si is

a valid choice. This scenario provides a production and thermalization mech-

anism via Higgs boson exchange. For small enough the mass splittings [128],

co-annihilations between the LSP (lightest singlet particle), which is the DM

candidate S1, and the remaining Sią1 are potentially important, as discussed

in Section (2.3). In a conventional WIMP dark matter scenario our LSP would

be stable and the scalar potential would read as (summation over indexes is

understood):

Vsym “ ´µ2
hH

:H ` µ2
ijSiSj ` λijSiSjH

:H ` λ1ijklSiSjSkSl . (6.11)

For the sake of simplicity, we consider the case N “ 2 and µ2
ii ą 0. The

latter precludes spontaneous breaking of the Z2 symmetry, and the associated
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domain walls.

We now assume that the global symmetry responsible for the stability of dark

matter is violated due to the presence of gravitational effects. To this end, we

add to Vsym (Equation (6.11)) an effective potential that breaks explicitly the

stabilizing symmetry through non–renormalizable terms suppressed by powers

of the Planck mass Mpl « 1019 GeV:

Vnon´sym “
ÿ

ną4

κn

Mn´4
pl

Ôn , (6.12)

where Ôn are operators of dimension n that explicitly break the stabilizing

symmetry and κn are in general complex parameters. This potential clearly

leads to the decay of S1. Note that we can always arrange the model such that

there is an accidental symmetry stabilizing the DM at the level of renormaliz-

able operators, leaving the Planck-mass suppressed dimension five and higher

operators responsible of the decay.

In order to illustrate the interplay between decay and annihilation we consider

the following dimension five operators

Ôffh
5 “ Yf F̄LHfRS1,

where FL is an isodoublet SM fermion, fR the corresponding right-handed

isosinglet partner and Yf its Yukawa coupling. Lacking deeper motivation we

model the gravitational effects by parametrizing them as a scaling factor times

the corresponding Yukawa coupling. These operators lead to a decay lifetime

τDM “ ~{Γff where:

Γff pMDMq “
ÿ

f

Nc

8π2

ˆ

κ5Yfv

Mpl

˙2

MDM

ˆ

1´
4m2

f

M2
DM

˙

3
2

, (6.13)

is the dark matter decay width into a fermions of mass mf , v is the vacuum

expectation value of the Higgs boson and Nc is the color number (3 for quarks

and 1 for leptons).
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WIMP dark matter annihilation

The dark matter phenomenology in our prototype model is essentially deter-

mined by 5 parameters ∗: MS1 , MS2 , λ11, λ12 and λ22. The strength of co-

annihilations is controlled by λ12. In the no co-annihilations limit (λ12 Ñ 0),

λ11 is responsible for DM abundance as well as direct (σSI) and indirect de-

tection (σA) cross sections. The coupling λ22 is the Higgs coupling of S2 (the

next-to-LSP) to the Higgs scalar and has direct impact on the relic abundance

of S1 in regions of the parameter space where the mass splitting is small and

both annihilations and co-annihilations are inefficient to reproduce a good relic

abundance. In this case the latter could arise partly from the early decays of

S2 Ñ S1.

We present in Figure (6.5) the attainable values of the thermal average of

the annihilation cross–section times velocity at present time, σA, compatible

with DM relic abundance when the couplings are varied within the limits of

perturbativity, and the Higgs mass is fixed to 126 GeV [25, 26]. The results

were obtained using the MicrOMEGAS code [403, 450]. In the presence of pure

annihilations, σA reproduces the thermal value xσvyf.o. « 3ˆ 10´26 cm3{s.

Deviations from the thermal value exist in regions where the cross section

is velocity-dependent as in the case of the Breit–Wigner enhancement at the

threshold of the Higgs pole [411]. The expected indirect detection signal in

this case is at the edge of FERMI’s [451] sensitivity. Substantial deviations

occur at mH{2 and at the Higgs boson mass mH and are associated with the

Higgs boson pole and contact interaction term, respectively.

In regions where xσvyf.o. is dominated by co-annihilation pS1S2 Ñ SM` SM

and/or S2S2 Ñ SM` SM) processes, the annihilation cross–section is sup-

pressed well below the expected thermal value. Such “inhibited annihilation”

regions can arise in various ways. Co-annihilation is just a possible mechanism,

common to many dark matter models, such as the minimal supersymmetric

standard model or two-Higgs-doublet dark matter models as in Chapter (5),

∗Choosing, for simplicity, a null mixing between S1 and S2.
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Figure 6.5: Annihilation cross section σA compatible with DM relic abundance versus DM
mass. The line shown in black corresponds to the simplest case of unsuppressed annihilation.
The case of where annihilations at freeze–out are inhibited (see text) above 90 and 99 % is
illustrated by the green and red shaded regions, respectively. The thermal cross section xσvy “
3ˆ 10´26cm2{s and FERMI’s constraints for annihilation into bb̄ are also shown.

whose generic features are mimicked by our illustrative prototype model.

Inhibition mechanisms are often required in order to obtain (or to extend)

an allowed region in the parameters space of the considered model [129, 452].

The general drawback, however, is that the WIMP’s indirect detection signal

becomes much fainter.

Effect of Planck-induced dark matter decays

As mentioned above, the dark matter stabilizing global symmetry is likely to be

broken due to the presence of gravitational effects [439, 440]. We will see now

that the mere fact of considering the global symmetry leading to dark matter

stability as an approximate one, leads to new observational signals which allow

for potentially detectable WIMP-like decaying dark matter signals even when

annihilations are suppressed.

In Figure (6.6), display the expected gamma–ray fluxes arising from dark mat-

ter annihilation and decay, assuming that the signal comes only from the pro-
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Figure 6.6: The flux associated with dark matter decay versus DM mass (see text for de-
tails). We give estimates for the annihilation flux for the cases of 90%, 99%, and no suppres-
sion (solid green, red, and black lines respectively). Purple lines correspond to decay signal
induced by the operator Ôbbh

5 for fixed κ5 values. A combined signal annihilation and decay is
in red doted–dashed line assuming κ5 “ 3 ˆ 10´8 and 99% inhibited annihilation. The bound
from Fermi-LAT on annihilation into bb̄ [451] is also shown.

duction of bb̄ through the operator Ôbbh
5 . We compare with the constraints

from Fermi-LAT on annihilation into bb̄ [451]. In order to compare the decay

and annihilation signals we define the flux:

ηpMDMq “

$

’

’

’

’

&

’

’

’

’

%

1

4π

σAJ
ann
∆Ω

2M2
DM

for annihilations

1

4π

Jdec
∆Ω

2τDMMDM

for decays

, (6.14)

where J∆Ω is the angular averaged line of sight integral of the DM density

(squared) for decaying (annihilating) WIMP. In order to estimate the fluxes

we use the J∆Ω given in Ref. [92]. The observable gamma–rays flux is directly
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related to the flux as:

ΦγpE,MDMq “ ηpMDMq ˆ
dnγ
dE
pEq , (6.15)

where dnγ{dE is the photon spectrum per single annihilation (or decay) event.

This quantity allows us to compare on the same footing both annihilation and

decay signals withFermi-LATconstraints. In our particular case, we compare

the signal related to the production of bb̄ pairs.

We notice that fluxes coming only from decays rise with the dark matter

mass starting at restively low masses for large enough κ5 values, and quickly

exceed theFermi-LATsensitivity. For instance, for a 50 GeV DM mass, we

would require κ5 to be smaller than « 10´7 in order to fulfill the observational

constraints.

In contrast, inhibited annihilations (same regions as in Figure (6.5)) lead to

signals that are faint and well below observational sensitivities of indirect dark

matter searches.

6.7 Conclusions and discussion

We have described how the spontaneous breaking of a ∆p54q flavor symme-

try can stabilize the dark matter by means of a residual unbroken symmetry

and provide rich neutrino phenomenology at the same time. In our scheme

left-handed leptons as well as quarks transform non-trivially under the flavor

group, with neutrino masses arising from a type-II seesaw mechanism. We

have found lower bounds for neutrinoless double beta decay, even in the case

of normal hierarchy, as seen in Figure (6.2). In addition, we have correlations

between solar and reactor angles consistent with the recent Daya-Bay and

RENO reactor measurements, see Figure (6.3) and Figure (6.4), interesting in

their own right. Moreover, the model has a conceptual link between DM and

neutrino physics. The dark matter candidate is a WIMP similar to the one

analyzed in Chapter (5), but with the difference that here the higgs sector is

3-HDM instead of 2-HDM which, in principle, gives more freedom to accom-
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modate LHC limits.

Since we are dealing with global symmetries, we took seriously the conjecture

“gravity breaks global symmetries”. We have also considered the effect of

explicit gravitational breaking of the global symmetry protecting WIMP dark

matter stability. Using a generic toy model and an effective parametrization

of Planck–scale effects, we find that the WIMP paradigm is safe as long as

dimension 5 operators are absent. Indeed, higher dimensional operators lead

to very long DM lifetimes and faint signals, rendering their effect invisible.

Assuming that these breaking effects are small enough to yield sufficiently long

dark matter decay lifetimes, there appears a genuine new signal in regions that

were previously dark.

Finally, an unambiguous detection of a mixed decay and annihilation signal

may offer a very interesting window into Planck scale physics, offering an

unexpected phenomenological ramification of the WIMP paradigm.
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7
Neutrinos and the inflationary Universe

Un chant mystérieux tombe des astres d’or.

Arthur Rimbaud

Much has been said since the announcement of the discovery of primor-

dial gravitational waves by BICEP2 collaboration earlier this year. From ex-

citement to confusion, for many cosmologists the reported results passed from

being 5σ major discovery to being a good map of dust. Recently PLANCK

published on the Arxiv their findings on dust emission at intermediate and

high Galactic latitudes [453]. These include parts of the sky being observed

by the BICEP2 experiment. Although they cannot be conclusive yet, they
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find that in the region explored by BICEP2 there is more dust than what the

collaboration had previously assumed in their analysis. This certainly down-

grades the significance of the results reported by BICEP2 and casts doubt on

their validity. Still, a genuine signal of gravitational waves is possible and only

a joint analysis between the two teams may definitely settle the issue. The two

collaborations are currently working on a joint assessment of the primordial

waves detection claim [454]. We will assume that the BICEP2 measurements

are correct. Although the model we will present can account for PLANCK’s

favored small values for the spectral index as well as for the large value found

by BICEP2.

Apart from the intrinsic significance of the (eventual) discovery made by BI-

CEP2, the measurement of nonzero r implies important constraints on infla-

tionary models of the Universe [455–457]. This caused tremendous interest in

the community, see for instance [458–463] and references therein.

Previously, we have considered the symmetries suggested by the mixing pat-

terns. Here, we will consider the lepton number symmetry. That is, the

defining symmetry of neutrinos. We consider the simplest type-I seesaw sce-

nario [250–255] of neutrino mass generation, introduced in Section (3.6.1), and

we promote lepton number to a spontaneously broken symmetry [255, 464].

As we will see, this model incorporates inflation quite naturally.

In order to consistently formulate the spontaneous violation of lepton num-

ber within the SUp3qc b SUp2qL b Up1qY model, one requires the presence

of a lepton-number-carrying complex scalar singlet, σ, coupled to the singlet

“right-handed” neutrinos N . The real part of σ drives inflation through a

Higgs potential [462, 465–468] while the imaginary part, which is the associated

Nambu-Goldstone boson, is assumed to pick up a mass due to the presence of

small explicit soft lepton number violation terms in the scalar potential, whose

origin we need not specify at this stage. For suitable masses such a majoron can

account for the dark matter [445], consistent with the CMB observations [469].
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We show how, for reasonable parameter choices, this simple scheme for neu-

trino masses provides an acceptable inflationary scenario. The model has also

the potential to account for baryogenesis through leptogenesis. A previous

attempt relating inflation to neutrinos can be found in [470] where a super-

symmetric model was suggested in which the right-handed sneutrino drives

chaotic inflation.

The chapter is organized as follows: the majoron is introduced in Section (7.1),

followed by its related inflationary potential in Section (7.2). Then present

three inflationary scenario available in the model: ‘higgs’ inflation in Sec-

tion (7.3), quartic inflation in Section (7.4), and the non-minimally coupled

scalar to gravity in Section (7.5). We conclude the chapter in Section (7.6).

7.1 Introducing the majoron

The majoron (J) is the pseudo-Nambu-Goldstone (pNGB) associated to lepton

number symmetry. In the simplest model [255, 464], lepton number is sponta-

neously broken by the vev of a singlet complex scalar σ through its coupling

to right-handed neutrinos, Equation (3.25) becomes:

´ L “ YDL̄ȞN `
1

2
YN σ rNN ` h.c. (7.1)

Where, the symmetric matrix YN characterizes the coupling of σ to the right-

handed neutrinos. After symmetry breaking, we can write:

σ “
1
?

2
pxσy ` ρ` iJq . (7.2)

The term YN xσy is identified with MN in Equation (3.25). We have the usual

seesaw Lagrangian (Section (3.6.1)) plus two particles: the CP-even scalar ρ

mixing with the Higgs and the CP-odd scalar J , the majoron, that is the

Nambu-Goldstone boson. More formally, after symmetry breaking character-

ized by the lepton number violation scale vL “ xσy [255, 464], and the elec-

troweak scale vSM the resulting seesaw scheme is characterized by singlet and

doublet neutrino mass terms, described by:
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Mν “

¨

˝

0 YDvSM

YD
TvSM YNvL

˛

‚ , (7.3)

in the basis (νL, N). The Yukawa coupling matrix YD generates the Dirac

neutrino mass term, while YN gives the right-handed Majorana mass term.

While the former is in principle arbitrary, the matrix YN characterizing the

coupling of σ to the right-handed neutrinos is symmetric and can be taken

diagonal and with real positive entries without loss of generality. The effective

light neutrino mass, obtained by perturbative diagonalization of Equation (7.3)

is of the form:

mν « YDYN
´1YD

T vSM
2

vL

. (7.4)

Assuming YD of Op1q, one needs vL ą„ 1014 GeV,

YN «
1014 GeV

vL

. (7.5)

As a Goldstone boson, the majoron is strictly massless. However soft explicit

lepton number violation may arise from a variety of sources, including quantum

gravity effects [444, 471] leading to a massive majoron. A massive majoron

can always decay to two neutrinos:

ΓJÑνν “
mJ

32π

Σpmνq
2

2 xσy2
, (7.6)

where mJ is the mass of the majoron and the sum runs over the light neutrino

masses. Though generally sub-leading, there’s also the possibility of decaying

to two photons through charged fermions loops. However, the latter is model-

dependent. For instance, J Ñ γγ is boosted in models where the majoron

arises from non-singlets of SUp2qL b Up1qY since it would be accompanied

with new charged fermions. νν and γγ are the two main channels of (indirect)

detection of majoron DM. For suitable masses the majoron can account for

the dark matter [445], consistent with the CMB observations [469, 472]. The

existence of this two–neutrino decay mode modifies the power spectrum of the

cosmic microwave background temperature anisotropies [469]. One can deter-
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Figure 7.1: Majoron inflation: YN vs. vL for various YD. Dashed lines show some values of
the coefficient a of the Coleman-Weinberg term in the potential. Solid black lines are upper
bounds on YN for the corresponding Dirac neutrino Yukawa coupling YD.

mine the majoron lifetime and mass values required by the CMB observations

in order for the majoron dark matter picture of the Universe to be consis-

tent. It has been shown that the majoron provides an acceptable decaying

dark matter scenario for suitably chosen mass values [472] which depend on

whether or not the majorons are thermal or not. If the majoron production

cannot be thermal, as it may be the case in the first inflationary scenario we

considered, due to the smallness of the YN and λmix couplings, one can still

consider non-thermal mechanisms such as freeze-in [124, 473] or scalar field

oscillations [122, 474]. Moreover, in such non-thermal case, the mass of the

majoron is not constrained to be of OpkeVq and can lie in a large range de-

pending on the details of the mechanism under consideration.

It is interesting to note that the model includes leptogenesis [475] as a baryoge-

nesis scenario: After spontaneous lepton number violation occurs at the scale

vL, the type I seesaw mechanism is generated and the Universe reheats at the

same time. The presence of right-handed neutrinos with direct couplings to

the inflaton field is an important ingredient for leptogenesis [476]. See [477]

for an analysis of leptogenesis in the presence of majorons.
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Solutions above the vev (ρ ą vL)

vLpMP q log10pλq ns r α p10´4q V 1{4 p1016 GeVq ρ0 pMP q ρe pMP q

1. -12.8521 0.951168 0.260263 -7.96468 2.30678 22.2218 3.14626
5. -13.0093 0.954908 0.237136 -7.05625 2.25373 24.2634 6.61037
10 -13.2351 0.958581 0.211972 -6.37463 2.1914 28.1285 11.5137
20. -13.599 0.962148 0.184081 -5.89025 2.11546 37.1396 21.4642
50. -14.2262 0.964453 0.159253 -5.80242 2.04021 66.1458 48.6058
100 -14.7789 0.965456 0.147557 -5.72255 2.00167 115.805 98.5958
500. -16.1392 0.966211 0.137189 -5.66368 1.96554 515.506 498.588
1000. -16.7367 0.9663 0.135828 -5.6565 1.96065 1015.47 998.587

Solutions below the vev (ρ ă vL)

vLpMP q log10pλq ns r α p10´4q V 1{4 p1016 GeVq ρ0 pMP q ρe pMP q

8. -13.9086 0.87488 0.000385304 -0.150585 0.452484 0.111018 6.70982
9. -13.5255 0.900769 0.00148882 -0.460638 0.6344 0.27599 7.69622
10. -13.3033 0.918822 0.00377031 -0.949789 0.800289 0.541141 8.68529
15. -13.1004 0.95579 0.0279442 -3.49461 1.32046 3.17548 13.6523
20. -13.2562 0.964198 0.0518562 -4.54129 1.54118 7.05055 18.6357
30. -13.5959 0.967596 0.0798131 -5.09597 1.71661 16.0451 28.6191
50. -14.0675 0.96807 0.102141 -5.30133 1.8258 35.3404 48.6058
500. -16.1213 0.966555 0.131662 -5.63496 1.94544 484.653 501.416
1000. -16.7278 0.966472 0.133065 -5.64214 1.9506 984.613 1001.42

Table 7.1: Higgs inflation scenario (no radiative corrections): The values of parameters for
number of e-folds N “ 60. Solutions above vev favor the BICEP2 claims whereas solutions
below vev are compatible with PLANCK sensitivity and hint.

7.2 The inflationary potential

We now turn to the dynamical justification of this scenario∗, starting from

the scalar potential. The tree level Higgs potential associated with the singlet

and doublet scalar multiplets σ and H is a simple extension of that which

characterizes the standard model,

Vtree “ λ
´

σ:σ ´
vL2

2

¯2

` λmixpσ
:σqpH:Hq ` VH , (7.7)

where VH is the SM potential. As will become clear later, inflation and neutrino

masses require that xσy " xHy. We also consider λmix to be negligible in order

to use the small decay width approximation [468]. The inflaton is identified

with the real part of σ:

ρ ”
?

2 <rσs , (7.8)

∗For simplicity, we take a one-generation neutrino seesaw scheme with 0.1 eV mass scale
in the analysis of our proposed inflationary scenario.
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Figure 7.2: Majoron Inflation: The tensor-to-scalar ratio r is shown versus the spectral index
ns. Black line is the majoron inflation scenario with vL ą MP . The small black points on
each branch, from left to right, indicate the values vL{MP “ 12, 14, 20 and 100. The dashed
branch corresponds to σ ă vL and the solid one to σ ą vL. The point and the triangle are the
quartic and quadratic inflation predictions, respectively. The blue (gray) line is for vL ! MP .
The contours are the 68% and 95% CL allowed region, combining PLANCK, WP, highL and
BICEP2, given in [479] and N is taken to be 60.

and we parametrize the effective potential in the leading-log approximation,

with the renormalization scale fixed at vL, as [478]:

V “ λ

„

1

4

`

ρ2
´ v2

L

˘2
` a log

„

ρ

vL



ρ4
` V0



, (7.9)

where a “ βλ
16π2λ

and the coefficient βλ is given as:

βλ “ 20λ2
` 2λ

˜

ÿ

i

pY i
Nq

2

¸

´
ÿ

i

pY i
Nq

4

« ´
ÿ

i

pY i
Nq

4 . (7.10)

The last approximation λ ! YN will be justified later. An analysis of the po-

tential reveals that a ą„ ´ 0.2 ensures a consistent local minimum.

The slow-roll paradigm

Here we consider the radiatively corrected ρ4 potential. Inflation takes places
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as the inflaton slowly rolls down to the potential minimum either from above

(σ ą vL) or from below (σ ă vL). The inflationary slow-roll parameters are

given by:

εpρq “
1

2
M2

P

ˆ

V 1

V

˙2

;

ηpρq “ M2
P

ˆ

V 2

V

˙

;

ζ2
pρq “ M4

P

ˆ

V 1V 3

V 2

˙

, (7.11)

where prime denotes a derivative with respect to ρ and MP “ 2.4 ˆ 1018 is

the (reduced) Planck mass. The slow-roll approximation is valid as long as

the conditions ε, |η|, ζ2 ! 1 hold. In this case, the scalar spectral index ns, the

tensor-to-scalar ratio r, and the running of the spectral index α are given by:

ns « 1´ 6ε` 2 ;

r « 16ε ;

α ”
dns
d ln k

« 16εη ´ 24ε2 ´ 2ζ2 . (7.12)

The amplitude of the curvature perturbation ∆R is:

∆2
R “

V

24π2 ,M4
P ε

ˇ

ˇ

ˇ

ˇ

k0

, (7.13)

and is taken as ∆2
R “ 2.215 ˆ 10´9 to fit PLANCK CMB anisotropy mea-

surements [480], with the pivot scale chosen at k0 “ 0.05 Mpc´1. Finally, the

number of e-folds realized during inflation is:

N “
1

?
2MP

ż ρ0

ρe

dρ
a

εpρq
, (7.14)

where ρ0 is the field value that corresponds to k0 and ρe denotes the value of

ρ at the end of inflation, i.e., when εpρeq « 1.

At this stage we have four parameters (YD, a, vL and λ) for five observables

(mν , r, ns, α and ∆2
R). Once we calculate ρe and ρ0, λ is fixed from the
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constrain on ∆2
R and we find that λ « 10´17´ 10´12 in the parameter space of

the model, which justifies the approximation made in Equation (7.10). We are

then left with a (i.e., YN), YD and vL and neutrino masses further constrain the

relation between YN and YD. The predicted values of r, ns and α are therefore

predicted for fixed values of a and vBL.

We will consider two limits: vL ą MP , the so-called Higgs inflation as well as

vL ! MP when the scalar potential considered in Equation (7.9) reduces to

the radiatively corrected quartic inflation [481].

7.3 Higgs inflation

This scenario requires trans-Planckian vevs. The seesaw relation, Equation (3.26)

imposes YN ! 1 in order to suppress the right handed neutrino mass. For in-

stance for vL “ 103 MP, one gets YN « 10´6, a value similar to the electron

Yukawa coupling. The Coleman-Weinberg radiative corrections are negligible

in this case and we consider only the tree level potential. Black lines in Fig-

ure (7.2) show the predicted values of r and ns obtained by varying vL and

taking the number of e-foldings N “ 60. The allowed 68% and 95% CL con-

tours are indicated. The dashed line is when the inflaton rolls from “below”

(ρ ă vBL) while the solid one is for the opposite case. Both branches converge

toward quadratic (indicated by a triangle) inflation in the limit ρ Ñ 8, (ns,

r)=(0.967, 0.132). We show various values of vL as small circles. The small

vev limit, depicted by a big circle corresponds to the textbook quartic infla-

tion potential, (ns, r)=(0.951, 0.262). The running of the spectral index, α,

is depicted in Figure (7.3). In Figure (7.1) we show the connection between

inflation and neutrino masses, in the plane YN vs. vL. The black lines are

upper bounds on YN for a given Dirac coupling YD. We also show some values

of a corresponding to each YN and vL for completeness. The numerical results

for this case are displayed in Table (7.1).

7.4 Quartic inflation

The sub-Planckian inflationary scenario vL !MP , in principle physically more

attractive, is well approximated by the quartic potential. In this case, YN

145



7. NEUTRINOS AND THE INFLATIONARY UNIVERSE

-10

-8

-6

-4

-2

 0

0.94 0.95 0.96 0.97 0.98

α
×

1
0

4

ns

-10

-8

-6

-4

-2

 0

0.94 0.95 0.96 0.97 0.98

α
×

1
0

4

ns

-10

-8

-6

-4

-2

 0

0.94 0.95 0.96 0.97 0.98

α
×

1
0

4

ns

-10

-8

-6

-4

-2

 0

0.94 0.95 0.96 0.97 0.98

α
×

1
0

4

ns

-10

-8

-6

-4

-2

 0

0.94 0.95 0.96 0.97 0.98

α
×

1
0

4

ns

-10

-8

-6

-4

-2

 0

0.94 0.95 0.96 0.97 0.98

α
×

1
0

4

ns

-10

-8

-6

-4

-2

 0

0.94 0.95 0.96 0.97 0.98

α
×

1
0

4

ns

-10

-8

-6

-4

-2

 0

0.94 0.95 0.96 0.97 0.98

α
×

1
0

4

ns

-10

-8

-6

-4

-2

 0

0.94 0.95 0.96 0.97 0.98

α
×

1
0

4

ns

-10

-8

-6

-4

-2

 0

0.94 0.95 0.96 0.97 0.98

α
×

1
0

4

ns

-10

-8

-6

-4

-2

 0

0.94 0.95 0.96 0.97 0.98

α
×

1
0

4

ns

-10

-8

-6

-4

-2

 0

0.94 0.95 0.96 0.97 0.98

α
×

1
0

4

ns

-10

-8

-6

-4

-2

 0

0.94 0.95 0.96 0.97 0.98

α
×

1
0

4

ns

Figure 7.3: Majoron inflation: α vs. ns for various vBL values. See caption of Figure (7.2)
for more details.

can be large so that the radiative corrections to the ρ4 potential should be

taken into account. The quantum corrections allow us to depart from the

fixed textbook prediction of quartic inflation to lie closer to the BICEP2

region. Figure (7.2) and Figure (7.3) show the effect of the coupling of the

inflaton to right handed neutrinos on the inflationary observables. The blue

line, departing from the quartic inflation prediction is obtained by varying

a, and consequently YN in the range [-0.2, 0] corresponding to a variation of

YN around « 10´3. If vL is taken to lie around 1014 GeV then YN « 10´2

reproduces the correct neutrino mass scale. We display in Table (7.2) the

numerical results for this case.

7.5 Non-minimal coupling to gravity

For completeness we add the case of non-minimal coupling to gravity, origi-

nally not covered in [3]. We consider a class of models [482, 483] which invokes

a quartic potential for the inflaton field with an additional non-minimal cou-

pling of the inflaton field to gravity [484, 485].

Perhaps the simplest scenario of this kind is the so-called ‘Higgs inflation’ [486],

where the SM Higgs drives inflation. This is achieved by coupling the Higgs
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Small solutions (0.01 À r À 0.02)

a |YN | log10p|λ|q ns r α p10´4q V 1{4 p1016 GeVq ρ0 pMP q ρe pMP q

-0.01307 0.00135604 -11.7856 0.890248 0.0100493 7.9222 1.02256 15.1923 2.49121
-0.01305 0.00142537 -11.6983 0.899145 0.0137211 7.32328 1.10535 15.5053 2.49559
-0.01304 0.00145721 -11.6596 0.903321 0.0158434 6.92563 1.14582 15.6575 2.49774
-0.01303 0.00148709 -11.624 0.907307 0.0181559 6.47185 1.18552 15.8065 2.49987
-0.01302 0.00151498 -11.5914 0.911098 0.0206547 5.97014 1.22435 15.9522 2.50198

Large solutions (0.1 À r À 0.2)

a |YN | log10p|λ|q ns r α p10´4q V 1{4 p1016 GeVq ρ0 pMP q ρe pMP q

-0.01279 0.00172752 -11.3556 0.952953 0.101404 -4.68889 1.82249 18.3706 2.54494
-0.01265 0.00167379 -11.4057 0.957019 0.141706 -6.48511 1.98152 19.1795 2.56674
-0.01261 0.00165322 -11.4258 0.957343 0.150727 -6.71294 2.01234 19.3554 2.57247
-0.01256 0.00162674 -11.4521 0.957507 0.160678 -6.9129 2.04476 19.5497 2.57934
-0.0125 0.00159495 -11.4843 0.957484 0.170937 -7.07347 2.07664 19.7519 2.5872
-0.0124 0.00154397 -11.5373 0.957174 0.184759 -7.2355 2.1174 20.0299 2.59943
-0.0123 0.00149676 -11.5877 0.956735 0.195481 -7.33264 2.14748 20.2527 2.61069
-0.0122 0.00145363 -11.635 0.956276 0.20395 -7.39978 2.17037 20.4349 2.62107
-0.0121 0.00141436 -11.679 0.95584 0.210759 -7.45154 2.18826 20.5865 2.63068
-0.0119 0.00134587 -11.7579 0.955081 0.220938 -7.53147 2.21422 20.8243 2.64788
-0.0116 0.00126256 -11.8579 0.954217 0.230944 -7.62064 2.23887 21.0753 2.66959

Table 7.2: Radiatively corrected quartic potential: The values of parameters for number of
e-folds N “ 60.

field in a non-minimal way to gravity, i.e., the Ricci scalar, leading to a typical

prediction pns, rq “ p0.968, 0.003q for N “ 60 e-folds. Note that these predic-

tions are obtained thanks to very large non-minimal couplings and depend on

the exact top quark mass [487]. In non-minimal quartic inflation, the inflation-

ary predictions vary from those in quartic inflation (Section (7.4)) depending

on the strength of the non-minimal coupling [482–485].

The action of non-minimal ρ4 inflation is given by (in the Jordan frame):

Stree
J “

ż

d4x
?
´g

„

´

ˆ

1` ξρ2

2

˙

R` 1

2
pBρq2 ´

λ

4!
ρ4



, (7.15)

where ρ is a gauge singlet scalar field defined in Equation (7.8) and λ is its

self-coupling. In the Einstein frame the action becomes:

SE “

ż

d4x
?
´gE

„

´
1

2
RE `

1

2
pBφq2 ´ VEpφpρqq



, (7.16)

where the canonically normalized scalar field is written in terms of the original
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Figure 7.4: Majoron inflation: r vs. ns for inflation with non-minimal coupling to gravity for
various couplings ξ. Solid (blue) curve is in the presence of the non-minimal coupling only, i.e.,
no Coleman-Weinberg corrections. Long (green) dashed lines are for scenario including both
radiative corrections and non-minimal coupling. For the sake of comparison we also plot the
prediction of Coleman-Weinberg corrections alone (dotted (blue) line) as in Figure (7.2). The
lepton number breaking scale is much smaller than MP , vL “ 10´7MP .

scalar as:

ˆ

dφ

dρ

˙´2

“
p1` ξρ2q

2

1` p6ξ ` 1qξρ2
, (7.17)

and the inflation potential in the Einstein frame is:

VEpφpρqq “
1
4!
λptqρ4

p1` ξ ρ2q
2 . (7.18)

The inflationary slow-roll parameters in terms of the original scalar field (ρ)

are now expressed as:

εpρq “
1

2

ˆ

V 1E
VEφ1

˙2

;

ηpρq “
V 2E

VEpφ1q2
´

V 1Eφ
2

VEpφ1q3
; (7.19)

ζpρq “

ˆ

V 1E
VEφ1

˙ˆ

V 3E
VEpφ1q3

´ 3
V 2Eφ

2

VEpφ1q4
` 3

V 1Epφ
2q2

VEpφ1q5
´

V 1Eφ
3

VEpφ1q4

˙

,
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N “ 60

ξ ns r α p10´4q V 1{4p1016 GeVq ρ0 pMP q ρe pMP q

0.0005 0.954036 0.21082 -6.44459 2.81719 22.0865 2.82279
0.0006 0.954534 0.202853 -6.69298 2.81496 22.085 2.82167
0.0013 0.957192 0.160428 -8.65762 2.7995 22.0695 2.81387
0.0020 0.958936 0.132724 -9.67817 2.78431 22.0481 2.80615
0.0060 0.963119 0.0672979 -8.2811 2.70236 21.8755 2.76359
0.0100 0.964558 0.0455816 -6.30856 2.62769 21.6723 2.7234
0.0500 0.966936 0.0125961 -1.98213 2.12149 19.6921 2.4099
0.1000 0.967342 0.00784365 -1.25435 1.77579 17.7835 2.14612

N “ 50

ξ ns r α p10´4q V 1{4p1016 GeVq ρ0 pMP q ρe pMP q

0.0005 0.944498 0.260543 -9.01182 2.81719 20.1955 2.82279
0.0006 0.945033 0.251993 -9.22631 2.81496 20.1942 2.82167
0.0013 0.94798 0.204923 -11.6336 2.7995 20.1814 2.81387
0.0020 0.950005 0.17271 -13.3355 2.78431 20.1635 2.80615
0.0060 0.955183 0.0915609 -12.7058 2.70236 20.0143 2.76359
0.0100 0.957073 0.062932 -10.0515 2.62769 19.8344 2.7234
0.0500 0.960319 0.0177504 -3.31781 2.12149 18.0409 2.4099
0.1000 0.960887 0.011078 -2.11173 1.77579 16.2979 2.14612

Table 7.3: Non-minimally coupled singlet field (ρ) to gravity, with N “ 50 and N “ 60
efolds.

where a prime denotes a derivative with respect to ρ. The number of e-folds

is then given by:

N “
1
?

2

ż ρ0

ρe

dρ
a

εpρq

ˆ

dφ

dρ

˙

. (7.20)

The inflationary predictions for ns, r, and α are obtained after fixing N and ξ.

In Figure (7.4) we show the predicted values of this scenario in the plane (ns,

r) for the number of e-folds N “ 60. We have varied the non-minimal coupling

strength ξ with and without the Coleman-Weinberg corrections. We display

in Table (7.3) some numerical benchmarks for this inflationary scenario.

7.6 Conclusions

We have discussed the possibility that neutrino masses, inflation and dark

matter may have a common origin. We have illustrated this with the sim-
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7. NEUTRINOS AND THE INFLATIONARY UNIVERSE

plest type-I seesaw model with spontaneous breaking of global lepton number.

The resulting inflationary scenario is consistent with the recent CMB B-mode

observation by the BICEP2 experiment. We have analysed three possible

scenarios: higgs inflation, Coleman-Weinberg corrected quartic inflation and

inflation through non-minimal coupling to gravity. In all the cases, the model

can also account for smaller spectral indices accessible to PLANCK.

On the other hand, the scheme may also account for majoron dark matter and

possibly also leptogenesis induced through the out-of-equilibrium decays of the

right-handed neutrinos, for reasonable parameter values. If supersymmetry is

invoked, then one has a majoron version of the supersymmetric type-I seesaw,

in which lepton flavor violation processes may be within the reach of future

experiments.
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8
Conclusions and outlook

It was the time of lightness, it was the time of darkness...

The Standard Model picture of the Nature suffers from two

important flaws. On the one hand, massive neutrinos hint toward a new

mechanism at work beyond the Standard Model, and on the other, the universe

is dominated by an enigmatic form of matter that outnumbers the baryonic

matter 5-to-1, implying the existence of new particles and perhaps new forces

as well. The early universe is the place where these two mysteries meet.
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8. CONCLUSIONS AND OUTLOOK

This thesis revolved around the following questions: Are neutrinos and dark

matter related to each other? Do they share the same origin? Is there a uni-

fied, predictive, description of dark matter and neutrinos?

To answer these questions, a survey of the literature was done. The physics of

dark matter was briefly reviewed in Chapter (2) where we also touched upon its

link with the baryon asymmetry of the universe. Neutrino mass mechanisms,

both high and low scale, tree-level and radiative, were reviewed in Chapter (3).

The status and general categorization of the approaches followed to link dark

matter and neutrinos were summarized in Chapter (4).

Instead of focusing on a link between DM and neutrinos through the neutrino

mass mechanism, we found it more interesting and perhaps deeper to consider

a relation originating from the symmetries of the leptons instead. In Chap-

ter (5), we have studied in detail the DM phenomenology of a model where the

stability of the WIMP dark matter candidate arises from a flavor symmetry.

The A4 non-Abelian discrete group accounts both for the observed pattern of

neutrino mixing as well as for DM stability. In Chapter (6), we constructed

and analyzed a more predictive model encompassing the most recent develop-

ment in neutrino physics and including the CKM in a nontrivial way.

Following the path of leptonic symmetries, and specifically the lepton number,

we enlarged the description of neutrinos and dark matter to include a simple

and predictive inflationary scenario. We showed that the type-I seesaw mech-

anism not only includes an elegant dark matter candidate but also can drive

inflation.

During the thesis, numerous attempts have been considered to answer the

questions above in the framework of the SUp3qc b SUp2qL b Up1qY gauge

group, extended by continuous or discrete (flavor) symmetries. Most of them

have failed to offer a ‘natural’ relation. Some less than others. This may

be due to two reasons. Either neutrinos and dark matter have fundamentaly

nothing to do with each other and our minimalist bias is misleading, or the local
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structure of the theory must be enlarged to allow for new kinds of interactions

and (predictive) links that are not possible within the SM framework. The

idea that neutrinos and dark matter may originate from the same physics is

too attractive to be abandoned so hastily. Therefore we contemplate extensions

of the SM gauge group that naturally include both DM and neutrinos. As a

first step toward such a description, we proposed a new (radiative) neutrino

mass model based on the SUp3qcbSUp3qLbUp1qX local group [9, 10]. Under

this group, the left-handed leptons are triplets written as:

ψ`L “

¨

˚

˚

˝

`´

´ν`

N c
`

˛

‹

‹

‚

L

,

such that right-handed neutrinos and light neutrinos belong to the same gauge

multiplet. As a consequence, interactions mediated by gauge bosons connect

them. This attractive fact allowed us to generate calculable neutrino masses

radiatively through gauge boson exchange. It would certainly be most interest-

ing to consider a natural embedding of dark matter in such a setup. Perhaps,

we can get a nice interplay between dark matter and neutrinos in this case

with some testable correlations. But that remains to be seen . . .
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A
Group Theory

Here we review the mathematics of the non-Abelian discrete groups used in

the models presented in this work, A4 and ∆p54q. For more details about the

mathematics of non-Abelian discrete groups for particle physicists, we refer

the reader to [429] and [488].

A.1 A4 group

All finite groups are completely characterized by means of a set of elements

called generators of the group and a set of relations, so that all the elements

of the group are given as product of the generators. The group A4 consists of

the even permutations of four objects and then contains 4!{2 “ 12 elements.

The generators are S and T with the relations S2 “ T 3 “ pST q3 “ I, then

the elements are 1, S, T, ST, TS, T 2, ST 2, STS, TST, T 2S, TST 2, T 2ST . A4 is

isomorphic to the symmetry group of the tetrahedron, Figure (A.1). A4 has

four irreducible representations (see Table (A.1)), three singlets 1, 11 and 12
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A. GROUP THEORY

Figure A.1: The A4 symmetry of tetrahedron.

and one triplet. The one-dimensional unitary representations are obtained by:

1 S “ 1 T “ 1

11 S “ 1 T “ ω

12 S “ 1 T “ ω2

(A.1)

where ω3 “ 1. The product rule for the singlets are:

1ˆ 1 “ 11 ˆ 12 “ 1

11 ˆ 11 “ 12

12 ˆ 12 “ 11

(A.2)

In the basis where S is real diagonal,

S “

¨

˚

˚

˝

1 0 0

0 ´1 0

0 0 ´1

˛

‹

‹

‚

; T “

¨

˚

˚

˝

0 1 0

0 0 1

1 0 0

˛

‹

‹

‚

; (A.3)

one has the following triplet multiplication rules,

pabq1 “ a1b1 ` a2b2 ` a3b3 ;

pabq11 “ a1b1 ` ωa2b2 ` ω
2a3b3 ;

pabq12 “ a1b1 ` ω
2a2b2 ` ωa3b3 ;

pabq31 “ pa2b3, a3b1, a1b2q ;

pabq32 “ pa3b2, a1b3, a2b1q ,

(A.4)
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C1 “ tIu C2 “ tT u C3 “ tT
2u C4 “ tSu

1 1 1 1 1
11 1 ω ω2 1
12 1 ω2 ω 1
3 3 0 0 ´1

Table A.1: Character table of A4 where Ci are the different classes and ω3 ” 1.

where a “ pa1, a2, a3q and b “ pb1, b2, b3q.

A.2 ∆p54q group

In the ∆p6N2q family, the first member ∆p6q is equivalent to S3, ∆p24q is

isomorphic to the S4 group. Then comes ∆p54q.

Since in the model of Chapter (6) we use only doublet and singlet representa-

tions, we leave aside the triplet representations in what follows.

There are four doublets and the generators, a, a1, b and c, are represented by

a “ a1 “

˜

1 0

0 1

¸

, b “

˜

ω 0

0 ω2

¸

, c “

˜

0 1

1 0

¸

, on 21,

(A.5)

a “ a1 “

˜

ω2 0

0 ω

¸

, b “

˜

ω 0

0 ω2

¸

, c “

˜

0 1

1 0

¸

, on 22,

(A.6)

a “ a1 “

˜

ω 0

0 ω2

¸

, b “

˜

ω 0

0 ω2

¸

, c “

˜

0 1

1 0

¸

, on 23,

(A.7)
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χ1` χ1´ χ31pkq χ32pkq χ21 χ22 χ23 χ24

C1 1 1 3 3 2 2 2 2

C
p1q
1 1 1 3ωk 3ω2k 2 2 2 2

C
p2q
1 1 1 3ω2k 3ωk 2 2 2 2

C
p0q
6 1 1 0 0 2 ´1 ´1 ´1

C
p1,0q
6 1 1 0 0 ´1 ´1 ´1 2

C
p1,1q
6 1 1 0 0 ´1 2 ´1 ´1

C
p1,2q
6 1 1 0 0 ´1 ´1 2 ´1

C
p0q
9 1 ´1 1 ´1 0 0 0 0

C
p1q
9 1 ´1 ω2k ´ω2k 0 0 0 0

C
p2q
9 1 ´1 ωk ´ωk 0 0 0 0

Table A.2: Characters of ∆p54q (k “ 0, 1, 2).

a “ a1 “

˜

ω 0

0 ω2

¸

, b “

˜

1 0

0 1

¸

, c “

˜

0 1

1 0

¸

, on 24.

(A.8)

Then, characters χ2 for 21,2,3,4 are shown in Table (A.2).

The tensor products between doublets are obtained as

˜

x1

x2

¸

2k

b

˜

y1

y2

¸

2k

“

´

x1y2 ` x2y1

¯

1`
‘

´

x1y2 ´ x2y1

¯

1´
‘

˜

x2y2

x1y1

¸

2k

,(A.9)

for k “ 1, 2, 3, 4,

˜

x1

x2

¸

21

b

˜

y1

y2

¸

22

“

˜

x2y2

x1y1

¸

23

‘

˜

x2y1

x1y2

¸

24

, (A.10)

˜

x1

x2

¸

21

b

˜

y1

y2

¸

23

“

˜

x2y2

x1y1

¸

22

‘

˜

x2y1

x1y2

¸

24

, (A.11)
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˜

x1

x2

¸

21

b

˜

y1

y2

¸

24

“

˜

x1y2

x2y1

¸

22

‘

˜

x1y1

x2y2

¸

23

, (A.12)

˜

x1

x2

¸

22

b

˜

y1

y2

¸

23

“

˜

x2y2

x1y1

¸

21

‘

˜

x1y2

x2y1

¸

24

, (A.13)

˜

x1

x2

¸

22

b

˜

y1

y2

¸

24

“

˜

x1y1

x2y2

¸

21

‘

˜

x1y2

x2y1

¸

23

, (A.14)

˜

x1

x2

¸

23

b

˜

y1

y2

¸

24

“

˜

x1y2

x2y1

¸

21

‘

˜

x1y1

x2y2

¸

22

. (A.15)

Furthermore, the tensor products of the non-trivial singlet 1´ with other rep-

resentations are obtained as

2k b 1´ “ 2k. (A.16)
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B
Oblique parameters for discrete dark

matter

We give more details about the derivation of T parameters for the Discrete

Dark Matter model of Chapter (5). Following the notation of [399], the T

oblique parameter for the Standard Model extended by n Higgs doublets with
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B. OBLIQUE PARAMETERS FOR DISCRETE DARK MATTER

hypercharge 1{2 is

∆ρ “ αT “
g2

64π2m2
W

#

n
ÿ

a“2

2n
ÿ

b“2

ˇ

ˇ

`

U :V
˘

ab

ˇ

ˇ

2
F
`

m2
a, µ

2
b

˘

´

2n´1
ÿ

b“2

2n
ÿ

b1“b`1

“

Im
`

V :V
˘

bb1

‰2
F
`

µ2
b , µ

2
b1

˘

´2
n´1
ÿ

a“2

n
ÿ

a1“a`1

ˇ

ˇ

`

U :U
˘

aa1

ˇ

ˇ

2
F
`

m2
a,m

2
a1

˘

`3
2n
ÿ

b“2

“

Im
`

V :V
˘

1b

‰2 “
F
`

m2
Z , µ

2
b

˘

´ F
`

m2
W , µ

2
b

˘‰

´3
“

F
`

m2
Z ,m

2
h

˘

´ F
`

m2
W ,m

2
h

˘‰(

, (B.1)

where ma, ma denote the masses of the charged scalars and µb, µb are the

masses of the neutral ones, α is the fine-structure constant and the function

F is defined as (x, y ą 0)

F px, yq ”

$

&

%

x` y

2
´

xy

x´ y
ln
x

y
ð x ‰ y,

0 ð x “ y.

(B.2)

We evaluate the U and V matrices for our model as:

U “

˜

U12 0

0 U23

¸

; V “

˜

iU12 UHH1 0 0

0 0 U23 iU23

¸

. (B.3)

The matrices U12, U23 and UH1 and the mixing matrices introduced in Equa-

tion (5.23).
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