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1 Introduction

At low energies the strong, electromagnetic and weak interactions of pseudoscalar mesons
can be described by an effective chiral lagrangian. This lagrangian depends on a number
of low-energy coupling constants which cannot be determined from the symmetries of
the fundamental theory only. They are in principle determined by the underlying QCD
dynamics in terms of the renormalization group invariant scale A and the heavy quark
masses (., my, .. .).

The coupling constants of the effective chiral lagrangian will in general receive contri-
butions from different sources, in particular from meson resonances, but also from other
hadronic states or even direct short-distance contributions. The purpose of this paper is
to demonstrate that the coupling constants of the effective chiral lagrangian for strong
interactions at order p* {1,2] are essentially saturated by meson resonance exchange .
This extends a previous analysis [1] of p exchange in SU(2); x SU (2)r to general meson
resonance exchange in the framework of chiral SU(3). The non-leptonic weak interactions
will not be considered here.

Independently of the general problem of including resonances in chiral perturbation
theory (CHPT), it is of interest to find out which hadronic states are especially important
for low-energy hadronic interactions in a consistent chiral framework. Many years of
phenomenological analysis in both nuclear and particle physics have provided ample
evidence for the special réle of vector mesons in this respect. They have therefore been
included in chiral lagrangians from the early days on (3], usually with the assurption
that vector and axial-vector mesons are at least in some approximate sense the gauge
bosons of local chiral symmetry. Comprehensive reviews of such attempts emphasizing
especially the more recent ideas of “hidden” local chiral symmetry can be found in Ref.
[4]. In spite of this attractive hypothesis it must be stressed that there 1s no proof for the
existence of dynamical gauge bosons of local chiral symmetry in QCD.

From the point of view of chiral symmetry, there is nothing special about vector and
axial-vector mesons compared to scalar, pseudoscalar or any other meson resonances.
All meson resonance fields will be treated in this paper on the same level: they carry
non-linear realizations of chiral SU(3) which are uniquely determined by the known
transformation properties under the vectorial subgroup SU (3)v (octets and singlets). In
spite of this democratic treatment of all meson resonances with spin < 1 the special rdle
of vector mesons will emerge very clearly from our analysis.

In Sect. 2 we recall the basic features of CHPT [1,2,5] to calculate the generating
functional of Green functions of quark currents in a systematic expansion in powers of
external momenta and quark masses. At lowest order p*, the effective action is provided
by the non-linear sigma model coupled to external fields. Of special interest for the
present investigation is the local action of order p*. The corresponding coupling constants
Ly, .., L1 were determined some time ago by comparison with experiment [2].

In Sect. 3 we introduce resonance fields of type V, A, S and P carrying non-linear
realizations of chiral SU(3). Their transformation properties under SU(3) specify their
interactions with the pseudoscalar mesons. For our purpose we only need the lowest order
couplings in the chiral expansion which are linear in the resonance fields. A complete list



of such couplings allowed by chiral symmetry, P and C invariance is given for octets and
singlets of type V, A, § and P.

The values of the corresponding resonance parameters {(masses and couplings) are
determined as far as possible in Sect. 4. While the vector meson parameters can be directly
taken from experiment, we use Weinberg’s sum rules [6] in the resonance approximation
to fix the mass and coupling of the axial-vector meson octet. As a check for the axial
coupling, we calculate I'(A; — 77) to lowest order. While only octets couple to lowest
order for V and A, both octets and singlets can in principle contribute for S and P.
These couplings cannot be reliably estimated from decay processes alone.

The contributions of meson resonances to the p* effective chiral lagrangian are worked
out! in Sect. 5. We find clear evidence for the importance of vector {and to a lesser extent
axial-vector) meson contributions which account for the bulk of the low-energy coupling
constants. The coupling parameters unaffected by spin-1 exchange are then shown to be
dominated by pseudoscalar singlet (n') and very likely by scalar octet exchange. As a
check for the scalar dominance assumption we calculate I'(¢g — n7) in good agreement
with experiment. We collect the various contributions and find evidence for a complete
resonance dominance of the coupling constants L,. .., L.

In Sect. 6 we calculate the electromagnetic pion mass difference in the chiral limit in-
cluding explicit resonance fields. Unlike in the previous section where resonance exchange
was restricted to tree diagrams, we must now consider loop diagrams involving both the
photon and the resonance fields. Due to the Weinberg sum rules [6], the one-loop mass
shift is finite and reduces to the old result of Das et al. [7] in resonance approximation.
Phrasing the result in a different way, we find that in analogy to the coupling constants
Ly, ..., Lo also the single low-energy constant of O(e?p°) is completely dominated by
resonance (loop) contributions.

Our conclusions are summarized in Sect. 7. Appendix A contains a short discussion
of antisymmetric tensor fields, which we use to describe massive spin-1 particles. Finally,
resonance contributions to the effective chiral lagrangian for the case of SU(2); x SU(2)r
are considered in Appendix B. '

2 Green Functions at Low Energies

The Green functions of the vector, axial-vector, scalar and pseudoscalar quark currents
built out of the three flavours u, d and s are generated by the vacuum-to-vacuum tran-
sition amplitude

eiZ[v,a,s,p] — (OlTeiffxﬁ(f)l()) (2.1)

associated with the lagrangian

L(z) = [’(CJQCD + gv* (v, + 5a.)g — §(s — tv5P)g- (2.2)

1We have been informed by J. Donoghue that a similar investigation is being performed by himself,
C. Ramirez and G. Valencia.



Lyep is the QCD lagrangian with the masses of the three light quarks set to zero. The
external fields v,, a,, s and p are hermitian 3 X 3 matrices in flavour space. The quark
mass matrix

M = diag(m,, mqy, m,) (2.3)
is contained in the field s(z). In the following we disregard the SU(3) singlet vector,
axial-vector and pseudoscalar currents and put

tra, =trv, =trp=0.

The lagrangian (2.2) exhibits a local SU(3)r, x SU(3)r symmetry

1 1
g — gn§(1+7s)q+gL§(1—7s)q

v, fa, — gpr(v, =+ %)Q’L,L + igR,LaﬂgL,L
. .\t
s+ip — grls+ip)g;

grR1L € SU(S)R'L.

The generating functional Z admits an expansion in powers of the external momenta
and of quark masses. Approximating Z by a given order in this expansion is called
chiral perturbation theory (CHPT) [1,2,5]. As a consequence of chiral symmetry and its
spontaneous breakdown, the generating functional Z coincides in the meson sector at
leading order in CHPT with the classical action

Z = /d"xﬂg(U,v,a,s,p). (2.5)

L; is the non-linear o model lagrangian coupled to the external fields v, a, s, p

f2

L, = T(D,,UD"U* + xU + x'U) (2.6)

where
DU =8,U ~i(v, + a,)U +:U(v, - a,), X = 2B,(s + ip), (2.7)

and (A) stands for the trace of the matrix A. U is a unitary 3 x 3 matrix
UlU =1, detU =1,

which transforms as
U — grUgl (2.8)

under SU(3)y x SU(3)g. U incorporates the fields of the eight pseudoscalar Goldstone
bosons. The parameters f and By are the only free constants at O(p*)%: f is the pion
decay constant in the chiral limit, fr = f(1 + O(myuars)) , Whereas By is related to the
condensate, (0|@u|0) = — f2By(1 + O(myyark)).

At order p* the generating functional consists of three terms [2]:

%f is denoted by Fj in Refs. {1,2].



i) A contribution to account for the chiral anomaly.
i) The one-loop functional originating from the lagrangian (2.6).
i1i) An explicit local action of order p.

A functional which reproduces the anomaly was constructed by Wess and Zumino [8],
whereas the one-loop functional may be found in {2]. In this article we are concerned with
the local action of order p* which is generated by the lagrangian £,:

Ly = Ly(DUYD*U)? + Ly(D,U'D,UND*UtDU)
+L3(DUD*UD,UID*UY + LoD, UtD*UY (XU + xU*)
+Ls(DUID*U(XIU + Utx)) + Le{xtU + xUN? + L {x1U — xUN? (2.9
+Le{xUx'U + xUTxU") — iLe{F§’' D, UD, Ut + Ff* D, UtD,U)

+Lio{UTFR"U Fru) + Hi(Fru FR + Fru FEY + Hy(x x)

where
FRp=0*(v" ") — 8"(v* £ a*) — i[v* + a*, v £ a"]. (2.10)

Ly, ..., Ly are ten real low-energy coupling constants which, together with f and By,
completely determine the low-energy behaviour of pseudoscalar meson interactions to
O(p*) (Hy, H, are of no physical significance).

The pew parameters Ly, ..., Lo that arise at order p* are in general divergent (ex-
cept L3, L7). They absorb the divergences of the one-loop functional referred to above.
Consequently, they will depend on a renormalization scale p which will, of course, drop
out in all observable quantities. The renormalized parameters are denoted by LI(u) in
the following.

It seems worthwhile to dwell upon the physical meaning of the coupling constants f,
By, L,..., L3, In the language of CHPT, they parametrize the most general solution
to the constraints imposed on the generating functional Z by chiral symmetry, P and C
invariance and unitarity at order p*. They are fixed by the dynamics of the underlying
theory through the renormalization group invariant scale A and the heavy quark masses
Mc, My, . . .. With present techniques it is, however, not possible to calculate them directly
from the QCD lagrangian (for several attempts see [9]). In the absence of such a calcula-
tional scheme they have been determined {2] by comparison with experimental low-energy
information and by using large-Ng arguments . The result of that analysis is shown in
the first column of Table 1, where we quote the values of L7(u) at the scale u = M,. The
entries are taken from Ref.[2], except for Ly and L. The central value of Lg is the same,
whereas its error has been changed according to a recent accurate determination of the
pion charge radius [10] (see also Bijnens and Cornet [11]). The value of L,q corresponds
to a recent determination of the structure term associated with the decay = — evy [12].
The scale dependence of the running coupling constants is of some importance later in



this article. We therefore list the central values of L] at u = 0.5 GeV and 4 =1 GeV in
the second column of Table 1.

In Ref. [1] it was shown that the observed values of the corresponding coupling con-
stants in the SU(2); x SU(2)g case are quite well reproduced if one assumes that they are
exclusively due to p exchange at a scale of order ¢ = 0.5 GeV or g =1 GeV (see App. B for
details) . It is the purpose of this article to extend that analysis to the SU(3)r x SU(3)g
case and to estimate the contributions of all low-lying resonances to the L] and therefore
to the effective chiral lagrangian at order p*. We shall consider vector (V), axial-vector
(A), scalar (S) and pseudoscalar (P} contributions and write the renormalized coupling
constants L7(g) as sums .

W= ¥ IF+Lw (211)
R=V,A,S,P
of resonance contributions L and a remainder Li(). The choice of the renormalization
scale y is arbitrary. However, it is rather obvious that we can only expect the resonances
to dominate (if at all) the L](x) when u is not too far away from the resonance region.
Therefore, we shall adopt 4 = M, as a reasonable choice in what follows.

In order to evaluate the resonance contributions LF we have to include in the effective
chiral lagrangian £, [Eq. (2.6)] vector, axial-vector, scalar and pseudoscalar degrees of
freedom in a chiral invariant manner. This is done in the following section.

3 Chiral Couplings of Resonances

From the point of view of chiral symmetry only, vector and axial-vector mesons do not
have any special status compared to scalar, pseudoscalar or any other meson resonances.
In particular, in a systematic low-energy expansion in powers of the momenta these mas-
sive particles do not play any special role — their presence only manifests itself indirectly
in the values of the low-energy constants L. As we pointed out already in the Introduc-
tion, we shall therefore investigate the chiral couplings of vector and axial-vector mesons
to Goldstone bosons along the lines outlined in Ref. [1} for the p meson couplings, i.e.,
not considering them as gauge bosons of any kind. With respect to transformations of the
chiral group G = SU(3) x SU(3)g, all resonances are treated on the same footing. They
carry non-linear realizations of G depending on their transformation properties under the
diagonal subgroup SU(3)y.

A non-linear realization of spontaneously broken chiral symmetry is defined [13]
by specifying the action of G on the elements u(yp) of the coset space SU(3), x
SU(3)r/SU(3)v: :
u(p) = gru(p)h(w) = h(p)u(p)g} (3.1)
where ' (1 <1 < 8) are the Goldstone fields parametrizing coset space and the equality

in (3.1) is due to parity. Whenever an explicit form of u(g) is required we shall use the
exponential parametrization

ulp) = expl-T50/f), B =5) Al (3.2

=1



The compensating SU(3)y transformation h(y) defined by (3.1) is the wanted ingredient
for a non-linear realization of GG. In practice, we shall only be interested in resonances
transforming as octets or singlets under SU(3)y. Denoting the multiplets generically by
R (octet) and R; (singlet), the non-linear realization of G is given by

R 5 h(e)Rh(p)
(3.3)

with the usual matrix notation for the octet

1 &\ pi

=1

Since the non-linear realization of G on the octet field R in (3.3) is local we are led
to define a covariant derivative

V.R=0,R+ [T, R] (3.5)
with ’ 1 |
I'y= ‘2‘{'“1[6# — (v, + @, )]u + u[0, — (v, ~ a#)]uf} (3.6)

ensuring the proper transformation
V.R S h(p)V,.Rh(p)'. (3.7)

Without external fields, I', is the usual natural connection on coset space.
From (3.1) one infers the well-known linear representation

U(e) S grU(e)gl (3.8)

for the quantity U(y) = u(p)? [cf. (2.8)].

We shall now discuss the chiral couplings of meson resonances of the type V(1-7),
A(1**), S(0*t) and P(0*) to the pseudoscalar Goldstone fields. As far as the vector
and axial-vector mesons are concerned, we shall describe the relevant degrees of freedom
in terms of antisymmetric tensor fields [1] instead of the more familiar vector fields. This
formulation is especially convenient when considering interactions with external gauge
fields such as the electromagnetic field. Another advantage is that even in the presence
of interactions the spin-1 character of the field is not modified. This is in contrast to the
usual vector field formulation where couplings of the form

V,04S (3.9)

with a scalar field S may arise requiring a redefinition of the spin-1 vector field. A well-
known example is provided by a; — 7 mixing in the usual framework [4]. The description
of massive spin-1 fields in terms of antisymmetric tensors is not very popular in phe-
nomenological particle physics. We find it therefore useful to elaborate the method in



some detail. In order not to interrupt the argument we relegate the discussion to App.
A. |

To determine the resonance exchange contributions to the effective chiral lagrangian
we need the lowest order couplings in the chiral expansion which are linear in the reso-
nance fields. With the coset element u(y) defined in (3.1) we obtain the following list of
terms which can couple to those fields and which are at most of order p?.

Octets
u, = wDUul=ul
UL,
u, = wlD,D,Uut (3.10)
x+ = ulyul+uyxtu
Y = uFfut 2 utFRu
Singlets
(u#ui/)‘z (u,uu)a (X:f:)' (3.11)

The term V,u, = 8,u, + [['y, u,] with T, defined in (3.6) is omitted in the list because
of the relation

Vuu, = u,, + %(u“u,, + u,u,). (3.12)

Invoking P and C invariance (cf. Table 2), it turns out that all the couplings linear in
the fields V', A, S and P start at order p°.
We merge all resonance couplings in a lagrangian

L= 3. {Lrn(R)+ L:(R)} (3.13)

R=V,A,S,P
with kinetic terms

1 M3
Liin(R) = = (V*R\,V,R"" — -551

1., M},
RuR") = SO R0, R + =2 R B, R=V,A

1

£kin(R) )

1
(VERV,R - MAR?) + 5{0“R13“R1 — M}, R3}, R=SP
(3.14)
where Mg, Mp, are the corresponding masses in the chiral limit. The interactions £,(R)



read
LAV = 2 i) + T (V) (3.150)
CIAT)] = 3 (A f2) (3.159)
LalSO++)] = ca (Sut) + cm (Sx4) + &1 (w,0") + 65 () (3.150)
Lo[P(0-H)] = id,,, (Px_) + idp Pr{x-)- (3.15d)

All coupling constants are real. In deriving the lagrangians (3.15) we have used the field
equations [2] for D*U and the relation

ul = it [D*, DUt = — . (3.16)

In the matrix notation (3.4)

( pO Wy + \
LA _+_ —_ P I{H—
V2 V6
0
Vpu = P_ —% + %’% K*O (317)
| KT 0 _2ws

V6 /

and similarly for the other octets. We observe that for V and A only octets can couple
whereas both octets and singlets appear for S and P (always to lowest order p?). We also
note that there is no coupling that would induce the transitions V — P+ at O(p?) in the
chiral expansion. The leading couplings allowing these transitions are then O(p*). The
consequences of this fact will be elaborated elsewhere [14].

In order to calculate the contribution of L,., to the effective chiral lagrangian we have
to pin down the coupling constants and masses occurring in L,.,. This is done in the next
section.

4 Resonance Parameters

4.1 Vector Mesons

The mass parameter My (octet mass in the chiral limit) cannot be directly determined
from the observed mass spectrum. Using the empirical fact that vector meson masses may
well be described by the quark counting rule [15], we conclude that My must be rather
close to M,. Thus, we shall take My = M, for the numerical discussion in Sect. 5. Note
that the error committed through this choice is of order p® in the effective lagrangian.
Since there is no coupling of the singlet vector meson at O(p?), singlet exchange will not
contribute at Q(p?) in the effective lagrangian and the value of My, is of no concern.



The octet couplings Fyy and Gy can in principle be determined from the decay rates
for p° — e*e™ and p — 2, respectively. From the observed rate [16] P(p® — ete™) =
(6.9 % 0.3) keV we obtain 2

|Fy| = 154 MeV, (4.1)

while I'(p — 27) = (153 £ 2) MeV [16] implies
|Gv| = 69 MeV. (4.2)

Since chiral corrections are in general difficult to estimate and since we are more interested
in the general features of resonance contributions than in detailed fits, we shall refrain
from assigning errors to our coupling constants.

For the decay p — 27 in particular, chiral corrections are expected to be important
since the pions are far from being soft. In this case we can actually obtain a rather
reliable estimate of the chiral corrections by noting that the vector form factor is quite
well reproduced by the vector meson dominance formula

1+ Fo(t) = Mg""it. (4.3)
F{(t) is the p contribution to the vector form factor and is found to be
Fi) = 5 (4.4)
from (3.15a). Comparison between (4.3) and (4.4) requires FyGy > 0 and
|Gy | =57 MeV. (4.5)
Including also the contributions from chiral loops [2] reduces (4.5) to
|Gv| = 53 MeV. (4.6)

Since Lj is determined precisely from the pion charge radius, the value (4.6) for Gy
amounts to the assumption that L}(M,) is completely given by p exchange. For the
analysis of Sect. 5 we shall use (4.6). Comparison with (4.2) gives an idea of the magnitude
of chiral corrections.

4.2 Axial-Vector Mesons

Instead of determining F4 and the octet mass M, in the chiral limit from experiment we
appeal to Weinberg’s sum rules [6]. The first sum rule is known to converge even in the
presence of quark masses while the second one converges only in the chiral limit [17]. Since
we are interested precisely in the chiral limit values for F,; and M A we can safely make use
of both sum rules. The relevant vector and axial-vector currents follow in a straightforward

3Unless stated otherwise, we use [ = fr = 93.3 MeV. This is a consistent procedure at the order in
which we consider the low-energy expansion in the present article.
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manner from the lagrangians (2.6} and (3.13). Saturating the corresponding spectral
functions with the one-particle contributions yields the two sum rules in the familiar
form

FZ=F%4f? (4.7a)
MLF} = M3F;. (4.75)

Thus, the Weinberg sum rules (4.7) allow for a determination of F4, M, in terms of the
already known parameters Fy, f, and My:

Fa = +JF2 — f2=123MeV
My = My/\J1— f2/F2 = 968 MeV.

The mass M4, which we recall is the axial-vector octet mass in the chiral limit,
compares reasonably well with two recent determinations of the a; mass* from 7 decay

[18,19]:

(4.8)

M — { (1056 & 20 + 15)MeV [18] (4.9)

% = 1 (1046 & 11)MeV [19]

We can also check the Weinberg prediction for F4 by calculating the decay a; — 7y to
lowest order in CHPT. From (3.15b) we obtain

I'(a; = 7my) = g-gqi—f——ﬁ?( - ;jé )3. (4.10)
Comparison with the experimental value [21]
I'(a; — mv) = (640 £ 246)keV (4.11)
and using M,, = 1050 MeV yields
Fy = (135 £ 30)MeV (4.12)

in remarkable agreement with (4.8).

4.3 Scalar Mesons

The most promising way to determine ¢4 and ¢, in lowest order CHPT seems to be the
decay ap — nm where both final mesons are reasonably soft. The relevant term in (3.15¢)
is given by

2v2

2 LN LIPS
Lo(agnm) = W(cdaoaﬂ'a“n — Cm M 2doin) (4.13)

4Note, however, that the errors in (4.9) do not include the considerable uncertainties involved in
parametrizing a large-width resonance like the a;. In fact, other T decay experiments [20] have extracted
substantially bigger values of M,, from similar raw data.
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0
where M} = Bo(m,, + my) is the first term in the quark mass expansion of M2, M2 =

flod.?r(l-'rO(mqua,k)). However, from the observed rate [16] ['(ap — f7) = I';p(ag) = (54+7)
MeV we can only determine a linear combination of ¢; and ¢,,. Thus, we leave their values
undetermined for the time being. In analogy to the vector mesons we shall assume the
octet mass My in the chiral limit to be given by M,, = 983 MeV.

The scalar singlet parameters &, &, and Mg, are practically impossible to determine
at present because the assignments of the 0*+ states with I = 0 are still controversial.
However, we can invoke large-N¢ arguments [22] to relate the scalar singlet to the scalar
octet parameters. For No = o0, octet and singlet mesons become degenerate and thus

Mg, = Ms. | (4.14)

Moreover, since the amplitude for a meson to decay into two other mesons is [22] O(Ng Y 2)
and since f = O(N/?) we conclude that ¢, Cmy &2y Em are all O(NY?) [cf. Eq. (4.13)].
Anticipating the results of Sect. 5 where scalar octet and singlet exchange will contribute
also to coupling constants (2L; — Ly, Ly, Le} which are O(1) for large N¢ [2] and taking
into account (4.14), we find that the scalar couplings must obey the nonet relations

- € - €
Cd="ﬁcd, Cm=%0m,

for No = oo. We shall use the large-N¢ estimates (4.14) and (4.15) for the numerical
discussion in Sect. 5.

€ =1 (4.15)

4.4 Pseudoscalar Resonances

Although we do not expect the pseudoscalar nonet (including, e.g., the 7(1300)) to give
rise to important contributions to the low-energy effective lagrangian we have included
the octet P in L., for completeness. We shall argue in the next section that we can safely
disregard those contributions.

The more interesting case is the pseudoscalar singlet 7, which becomes a Goldstone
boson in the limit Ng — oco. The lagrangian (3.15d) gives rise to 7, — 7° and 5, — s
mixing via®

£2(mixing) =~ 1,7%(m, — m,) - Do, — )}, = 3 (et ma). (416)

In the SU(2) limit m, = m, the mass terms relevant for 5 — ' mixing are of the form

1 M:  &m? ( . )
ﬁmaas = -z _ 8 4.17
9 (778"71 ) ( 6m2 M:l m ( )

84, B . 8d, o0 0
§m? = ﬁ(m, —1h) = —\/a;—f(M%——— M?) (4.18)

SWe shall use from now on 7, instead of P, to denote the pseudoscalar singlet field.
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0 0
where M 2 and M % are the pseudoscalar octet masses to leading (linear) order in the
quark mass expansion and M,,(M,, ) is the octet (singlet) mass. M, is related to M, by

+ d(2 MK+ Mw) + O( quark) (419)

with d = 1/3 in the la,rge-NC limit [23,2].
We may now obtain an estimate for the coupling d,, as follows. From (4.17) we have

M:B + M,;"l = M,f + M:;
= (M2 ME — MIM2)'/? (4.20)
with M, = 548.8 MeV, M,, = 957.6 MeV. In Sect. 5 we shall determine L, and Lg from

scalar exchange using Ls and Ly as input. The information on these couplings suffices to
evaluate M,, from the quark mass expansion of the  mass squared given in [2]. We skip

all details and just quote the result M, = 639 MeV. Using finally the values ]& » = 135
MeV, A?IK = 487 MeV and f = 87.2 MeV quoted in [2], we find from (4.18) and (4.20)

M,, = 804 MeV

|d..] = 20 MeV. (4.21)
where we have used d = 1/3 and neglected terms of O(m?2,,.;) in (4.19). The estimate
(4.21) for d,, is in nice agreement with the large-Ng prediction |d,| = f/v24 =

MeV which follows by comparing the contribution (5.13) to L; and the corresponding
expression in the large-N¢ limit (see Ref. {2]).

5 Resonance Contributions to the Low-Energy Ef-
fective Chiral Lagrangian

The determination of the resonance contributions to the effective lagrangian is straight-
forward given the chiral couplings of Sects. 3 and 4. Since all those couplings are O(p?),
resonance exchange will automatically produce contributions of O(p*) from the two ver-
tices. This implies that only the non-derivative (momentum independent) parts of the
resonance propagators are relevant for the L. Moreover, the resonance masses appearing
in L? will be the chiral limit values independent of the quark masses.

We shall be rather explicit for the vector meson contributions and only state the
results for the remaining cases.

5.1 Vector Mesons

The lagrangian (3.15a) can be written as

Ly(V) = (V. J*) =Z
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ith
wi ; GV

Fy
J¥ = gt u* o’
Expanding around the classical solution for Vm,, we obtain the effective action SV induced
by V exchange

(5.1)

= % j &z (V,, J*) (5.2)
where V,,, satisfies the equation of motion
VeV Vo ~ VIV, Ve 4 MV = —2J9F, (5.3)
Solving (5.3) by iteration, the contribution at order p* is found to be
| S¥ = [daLl(z)+0()

LY = —M7J*J,)
- G (D,U'D,UD*U'D*U - D, U'D, UD*UD*U)
oM YR Y weom (5.4)
szGV uy »
SN (F§'D,UD, Ut + F*D,UID,U)
F2 ' Y FZ .
4M2 (U Fg UFLMU)_SMQ (FR.LWFR +FL,U.VF#)

In order to transform the first term in (5.4) into the basis employed for the lagrangian
(2.9) we make use of the SU(3) relation [2]

(D U'D,UD*U'D'U — DU'D UD"U DU =

-3(D, U'D*UD, U D'U) + %(D,uU’fDﬂU)2 + (D UDDUND*U D). (5.5)

Inserting (5.5) into (5.4) and comparing with (2.9), we can directly read off the non-
vanishing coupling constants L} (including HY for completeness):

G

Ly = ERYER LY =2LY, LY = -6LY,
(5.6)
LV_FLG‘_Y_ V__Fg' J:‘{V____‘FT3
* oM’ Y VE TosME
5.2 Axial-Vector Mesons
Proceeding in exactly the same way as for the vector mesons with
Lo(A) = (A d®), v = \/‘ = (5.7)
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we easily obtain the axial-vector meson induced lagrangian of order p*

F2 v FZ v v
Li= ZMAi (UTFﬁ UFL;W) - ﬁ (FR#vFﬁ + FLI“‘FE ) (5.8)
and thus 2 F?
A _ —A A____4 .
Llo"‘ 4M§, 1 SMJ% (5 9)

Before proceeding with the scalar and pseudoscalar meson resonances it is very instructive
to make a first comparison of the V and A contributions with the phenomenologically
determined L}(u). As already discussed in Sect. 4, we prefer to determine Gy directly
from L} rather than from I'(p — 2x). Fy, F4, M4 are taken from (4.1) and the Weinberg
sum rules (4.8) together with My = M, = 770 MeV.

The results shown in Table 1 are a clear indication for the chiral version of vector {and
to a lesser extent axial-vector) meson dominance. Whenever V and A contribute, they
strongly dominate the low-energy coupling constants L}(M,) leaving very little room for
additional contributions. We emphasize once again that we did not have to make any
assumptions about a possible gauge structure of the V and A interactions.

5.3 Scalar Mesons

In contrast to the spin-1 case both octet and singlet resonances contribute in this case.
We denote the octet (singlet) mass in the chiral limit by Ms (Ms,) and arrive at the
following scalar contributions to the low-energy coupling constants:

Octet:
2
c3 CdCrm
Lf = —@, Lg = —3L'1sa Lf = _3_ﬁ4§, L? = —3Lfs (5 10)
2 2 -
5 _ Cm _ y — Cn
By WETMe Mg
Singlet:
~ o =2
IS = G L5 = CdCm L5 = _Cm_ .
1 21,\’:{.%1 ) 4 Mg‘l ] 6 2M§1 (5 11)

5.4 Pseudoscalar Meson Resonances

Again both octet and singlet can in principle contribute although we expect the singlet
7y contribution to be much more important in this case.

Octet:
dZ,

=2
T 6ME

LP=—3f  HP =6L7. (5.12)



15

Singlet:
2
2M2

Referring to Table 1, we first concentrate on those coupling constants (Ls, Ly, Lg)
which are definitely non-zero but do not get V or A contributions. Starting with Ly, we
observe that 7, exchange gives the right sign [2} while the contribution coming from the
pseudoscalar octet resonances has the wrong sign. Therefore, neither the octet P nor a
possible heavy singlet P, (the nonet partner of P) are expected to be of much relevance
for the low-energy chiral lagrangian and we disregard those contributions in the sequel
just as we neglect other resonances in the 1 - 2 GeV region. For L, this procedure is in
addition supported by an argument based on large N¢ [2]: the contribution (5.13) is of
order N% in the large- N limit, while the other resonance contributions are of order N¢
and thus suppressed. Using the values for M,, and d,. quoted in (4.21) we find

L} = -0.3-1075, (5.14)

L = (5.13)

Neglecting the octet P, the two remaining coupling constants of relevance, Ls and Ls,
only receive contributions from the scalar octet given in (5.10). We note that L neces-
sarily has the correct positive sign. In Sect. 4 we discussed the problem of determining
the scalar couplings ¢y, ¢, from scalar meson decays where only the decay ay — n7 seems
to be amenable to a trustworthy calculation in lowest order CHPT. We shall therefore
turn the argument around and assume that L§ and L§ completely account for the phe-
nomenological values Lf 3(M,) given in Table 1 to predict the rate I'(ag — 7x). In this
way one computes with Mg = M, = 983 MeV

leal = 3.2-1072 GeV
leq| = 4.2-1072 GeV (5.15)
cacm > 0.
From (4.13) and using ISI 2 ~ M? we can then calculate
I'(ag — 77)|theory = 39 MeV ‘ (5.16)

to be compared with I'(ap — n7) = Tyu(ag) = (54 £ 7) MeV from experiment. Even
though this exercise cannot be considered as a definite proof for scalar dominance of Ls,
Lg, the prediction (5.16) is at least a very convincing demonstration of its consistency.
From (5.15) all other octet scalar contributions in (5.10) can be calculated and we collect
the complete results for V, A, S, S; and 5, exchange in Table 3 using the large-Ng
estimates (4.14) and (4.15) for S; exchange. '

The assumption of scalar dominance for Ls, Lg has not only produced the successful
prediction (5.16) for I'(ag — =), but it is also fully consistent with all the other low-
energy information embodied in the LI. The emerging picture of complete resonance
saturation of all the low-energy constants Ly, ..., Ly, can be expressed in the concise
form

LiMy~0 (1<i<10) (5.17)
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in the notation of (2.11). In other words, there is no indication for the presence of any
other contribution in addition to the meson resonances.

6 Electromagnetic Interactions and the Pion Mass
Difference

In this section we show that the low-energy coupling constant which occurs at leading
order in the effective lagrangian for electromagnetic interactions can also be estimated
with resonance contributions.

We first disregard resonance contributions due to V', A, § and P exchange. For the
evaluation of the mass shifts of the meson octet it is sufficient to evaluate the pole
position of the relevant two-point functions of the meson fields defined in (3.2). Our
calculation furthermore concerns the chiral limit m, = my = m, = 0, and we may
therefore completely dispose of the external fields. The lowest order effective lagrangian

. . . . 1 .
including electromagnetismis then obtained from (2.6) by putting vﬂ+—3 vg proportional

to the photon field A,, disregarding the remaining external fields and by adding the
relevant kinetic term:

L= -2 b + L (00 —ielQUIA)@U —iclQ, U4 (61)

where () = diag(2/3,—1/3, —1/3) is the charge matrix. The tree graphs associated with
this lagrangian determine the leading term in the low-energy expansion. One-photon loops
evaluated with (6.1) contribute corrections of order e?. In addition to those loops, one
has to add contributions from chiral invariant local terms of order e?. The effective loop
lagrangian at order e? is of the current x current type and transforms under SU(3), x
SU(3)r as (8,8), (8 x 8,1) and (1,8 x 8). The corresponding local counterterms are easily
found by introducing spurions Qr, @7 which transform under SU(3); x SU(3)g as

Qr— 9:Qrg}, I=R,L. (6.2)

At the end, one identifies ¢J; with the charge matrix . One finds that the effective
lagrangian contains a piece of order p°

2C{(QUQUY), (6.3)

where C is a low-energy constant, independent of the quark masses and not fixed by
chiral symmetry alone. We shall not consider counterterms of order e?p? in the following.
Now we show that the low-energy constant C determines the electromagnetic masses
M+, Mxs of the pions and kaons® in the chiral limit. In the parametrization (3.2) the
term (6.3) has the form
2 + 2620 - Ny - 4
e C{QUQU" = ——f-z-—(w T+ KTK™)+ 0(®%). (6.4)

$The index ~ on meson masses denotes the chiral limit values.
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It contributes an equal amount to the square of the masses of 7%, K% in accordance with
Dashen’s theorem [24]. It does not contribute to the masses of 7%, K°, K° or 9, nor does
it generate #%-5 mixing. Incidentally, it also does not contribute to n — 3x in accordance
with Sutherland’s theorem {25). At the same order in the low-energy expansion there is
also the one-photon loop contribution to the meson mass (Fig. la and 1b. The vertex
in Fig. 1a denotes in the present case the pure photon coupling which follows from the
lagrangian (6.1). Resonances are considered below). These contributions vanish, however,
in the chiral limit in the dimensional regularization scheme, and we are thus left with

.y 262C
M2, = ‘}2 (6.5a)
My = M2, (6.5b)

MO—MKO—Mf(o—Mz_O

T

This shows that C' indeed fixes the electromagnetic mass of pions and kaons in the chiral
limit.

The determination of C' via resonance exchange cannot be carried over directly from
Sects. 3 - 5: in the absence of photon loops, resonance exchange will not contribute to the
counterterm (6.3). Nevertheless, it is possible to evaluate M2, via resonance contributions
[26]. In fact, a surprisingly satisfactory estimate for this quantity will emerge. In analogy
to (2.11) we write X

C=%cCcr+C (6.6)
R

where 3"z CR will be calculated below and € stands for non-resonance contributions.
We add to (6.1) the lagrangian L., [Eq.(3.13)] and introduce the electromagnetic
interactions as described above. Then we evaluate M 2¢ at the one-loop level. There are
altogether four diagrams shown in Fig. 1. The vertex in Fig. la now stands for the sum
of the two diagrams exhibited in Fig. le.
The sum of the diagrams 1a and 1b vanishes in the dimensional regularization scheme,
and the two diagrams lc, 1d yield the following contributions to the mass shifts:

2
AMZ,|, = — 3afy M"[(4 YA+ +11nMV]
2rf? 3 we (6.7)
3aF? M2 1 1. M2 '

2 _ A™MA 2 = -

AM2 |y = i [(47)2) + 3+ 2111 - 4)
where
g1 In4r + I'(1) + 1
,\_(417)2[(1 4——(n7r+ (1) +1)]. (6.8)

These contributions are divergent. The divergences are cancelled by renormalizing the
coupling constant C

~

C = C"(p) + 3N(FEME — FAM2) (6.9)
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and the electromagnetic contribution to the pion (mass)? becomes

A2, = 2¢2C (1)

at = 7 + Xa(p) — Xv(p)

Mj

FIMI( +h=2),  I=AV. (6.10)

XI(”’) 4 _f2

The remaining mass shifts in the meson octet are found from the relations (6.5b).
Using the second Weinberg sum rule (4.7b), the divergences in the mass shift AM?2, =
AMZ,|. + AM2,|4 cancel’. One finds (identifying C™(x) with C according to (6.9))

. 220 3a F’
My = Iz +4 12 fz’

which, for C = 0, reduces to the result of Das et al. [7] in resonance approximation. With
the values of f, Fyv and My given in Sect. 4 one obtains

F*le (6.11)

M?Z, =1.29-10° MeV?, (6.12)

very close to the observed mass difference M2, — M2, = 1.26 - 10° MeV?. Thus, we may
conclude

¢ ~0, (6.13)

a result analogous to what we already found in Eq.(5.17).

7 Summary and Conclusions

We have presented in this article a systematic treatment of all low-lying meson resonances
of the type V(177), A(1*+), S(0**) and P(0~*) in the framework of CHPT. Incorporat-
ing P and C invariance, all possible chiral couplings to the pseudoscalar mesons linear
in the resonance fields were constructed to lowest order in the chiral expansion. These
couplings start at order p? and meson resonance exchange thus contributes to the cou-
pling constants L,, ..., Ljg of the O(p*) effective chiral lagrangian (2]. Determining the
resonance couplings as far as possible directly from experiment and with a few additional
plausible approximations we have been able to show that the renormalized coupling con-
stants LT (u) are completely dominated by meson resonance exchange as long as the scale
parameter g 1s in the range between 0.5 and 1 GeV.
More explicitly, our findings can be summarized as follows.

i) Exchange of vector and axial-vector mesons, which we describe in terms of anti-
symmetric tensor fields, contributes to the constants L, L2, Ls, Lg and Lo (in
Fig. 2 we visualize the contributions from resonance exchange to the quantities

7If we would not use dimensional regularization, there would in general also be a quadratic divergence
proportional to FZ — F2 — f2? which vanishes due to the first Weinberg sum rule (4.7a).
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from which L, ..., Lo were determined phenomenologically [2]). Since there are
no chiral couplings to O(p?) for SU(3) singlet vector or axial-vector mesons, only
the V and A octets can in fact contribute to the O(p*) effective chiral lagrangian.
Due to chiral corrections, the vector coupling constant Gy can be determined from
I'(p — 2r) only with rather big uncertainties. Although the qualitative conclusion
is the same, we instead choose Ly as input to fix Gy. The other parameters nec-
essary for the evaluation of the V and A contributions to L, L,, L and L,, are
taken from experiment and from the Weinberg sum rules [6]. The results shown in
Table 1 clearly establish a chiral version of vector (and axial-vector) meson domi-
nance: whenever they can contribute at all, V and A exchange seem to completely
dominate the relevant coupling constants. Note that vector meson dominance as
defined here is not an assumption but a result of our analysis.

The four coupling constants Ly,Ls,L¢ and Lg behave differently in the large-N¢
limit: Ls,Lg are O(N¢), Ly and Lg are O(1). Except for the negligible pseudoscalar
octet resonances in the case of Lg, only scalar octet exchange contributes to Ls and
Lg. Since the experimental information is limited in the scalar sector, we assume L
and Lg to be due exclusively to scalar octet exchange and investigate the implica-
tions of this assumption. On the one hand, we can then predict I'(ap — n7) in good
agreement with experiment. On the other hand, the scalar octet contributjons to
the other L; are fixed. The scalar singlet exchange can be expressed in terms of the
octet parameters using large-N¢ arguments. For N¢ = o, octet and singlet scalar
exchange cancel in Ly,L, and L.

Dismissing the pseudoscalar nonet (including, e.g., the 7(1300)) as not really low-
lying resonances, the only meson resonance contribution to L7 is due to 7' exchange.
The magnitude of the 7’ contribution can be calculated (using L4, Ls, Lg and Lg
as input) from the quark mass expansion of the  mass squared. The result for L,
is in close agreement with its experimental value. 5’ exchange does not contribute
to any other L,.

The combined resonance contributions are compared with the phenomenologically
determined renormalized coupling constants L? in Table 3. The meson resonances
appear to saturate the LT almost entirely. Within the uncertainties of the approach,
there is no need for invoking any additional contributions. Although we have made
the comparison for ¢ = M, it is obvious from the scale dependence of the LT(u)
shown in Table 1 that a similar conclusion would apply for any value of g in the
low-lying resonance region between 0.5 and 1 GeV.

The effective chiral lagrangian with explicit resonance fields has a much larger range
of applicability than discussed so far. In particular, we have used this lagrangian to
calculate the electromagnetic mass differences of the eight pseudoscalar Goldstone
bosons in the chiral limit at the one-loop level. The divergent piece in the mass
shifts is proportional to FAM3 — FZ M in the dimensional regularization scheme
and thus vanishes if we make use of the second Weinberg sum rule (4.7b). The
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resonance contribution coincides with the expression obtained by Das et al. [7]
using current algebra. In analogy to the resonance saturation of the constants L;,
this result can also be expressed in a different way: the single low-energy constant
of O(e*p®) is again completely dominated by resonance (one-loop) contributions.

To the accuracy one can reasonably ask for, the Green functions of quark currents can
be calculated to O(p*) in two equivalent ways. Either one incorporates the local O(p*)
action with phenomenologically determined coupling constants Ly, ..., Lo in the gener-
ating functional or one uses the effective chiral lagrangian only to O(p?), but including
explicit meson resonance fields with chiral couplings determined in this paper. In the
latter case, the scale parameter appearing in the one-loop functional (generated by the
lagrangian of order p?) must be chosen in the resonance region, say p = M,. It remains to
be seen whether this remarkable equivalence extends beyond the one-loop level in CHPT.
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Appendix A: Spin-1 Particles in Terms of Antisym-
metric Tensor Fields

We consider a lagrangian quadratic in the antisymmetric tensor field W, = -W,,
L= at*W,0,W*" + b0*W,, 8,W* + W, W+ (A.1)

with @, b, c arbitrary constants. The field W*" contains six degrees of freedom. To describe
massive spin-1 particles we ought to reduce them to three. This can be done with an
appropriate choice of the constants a, b. Indeed, consider the equations of motion

a{0"8, W — §"0,W*) + 2b0° 3, W** — 2eW™ = (. (A.2)
In components,

(a+ 2)W% + adW¥ — aB9W® — 2(bA + )W = 0
. . _ (A.3)
26W* 4 a[FF (WO + 0, W) — K (WY + 5, W) — 2(bA + )W = 0

where dots denote time derivatives. For a4+ 2b = 0, the three fields W% do not propagate,
whereas the three fields W are frozen for the choice b = 0. The propagator of W,
defined to be the inverse of the differential operator in (A.1), contains poles at k2 = —c/b
and k* = —2¢/(a + 2b) which disappear for b = 0 or a + 2b = 0, respectively. In the
following we choose a = —1/2, b = 0, c = M?/4 and obtain

1 m pv M? v
L= —-2-3 W, a,W* 4 T W, W (A.4)
from where
;oW — 3", W + MW+ = (. (A.5)

The lagrangian (A.4) describes free spin-1 particles of mass M.
In terms of the canonical momenta

_ac
OWo;

£

=—0,W" (A.6)

the equations of motion (A.3) read in the present case

IT — §°0,W% — M?*W% =
‘ (A7)
O — OFIT — MPW'* = ¢,

It is easy to see that the initial values of I, W% at t = 0, together with the equations
of motion (A.7), suffice to fix all six components of W#* = —W*# at t # 0.
With the definition
W, =M1W, (A.8)
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one obtains from (A.5) the familiar Proca equation
8,(FPW* — 9*W*) + M W* = 0. (A.9)
From the lagrangian (A.4) one derives the free propagator

(OIT{Wp (), Wpo (y) }H0) =

s d4ke—-ik(z—-y) N g
=iM j (27,-)4(M2 — k? _ is)[g#pguo(M —k )+gu9kvk6 _g.wkvkp - (F — V)] (A'IO)

The propagator (A.10) corresponds to the normalization

(0|Wuvlwap) = iM_l{p“éZU(p) - Puep(P)} (Al].)

(O]W.|W, p) = eul(p) (A.12)

with the usual polarization vector €,(p).
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Appendix B: The Case of SU(2);, x SU(2)x

If we only consider Green functions involving u or d quarks and, furthermore, ignore
the isoscalar currents @y,u + dv,d, #7,7su + dv,7sd, the generating functional at order
p* reduces in the limit

PP <« ME; my, my < m,

to the low-energy expansion for SU(2), x SU(2)r which was analyzed in detail in Ref.
[1]. In particular, the seven low-energy constants £y,...,4r and the three high-energy
constants hy, hy and ha which specify the general effective lagrangian of SU(2); x SU(2)r
at order p* can be expressed in terms of the parameters Ly, ..., Lo, H; and H, [2]:

1
6 = 4L +2L;— —v

24 K
. 1
g = 4Lj- Sk,
1
G = -8Li—-4Li+16L5+8L - zv
1
f; = 8L;+4L;_§VK’
1
£ = L;o‘l'l—?*r/}(
1 (B.1)
f2 10 _ , . 1
E? = SBUm_,(l+?pﬂ)+4(L4_L6_9L7_3L8+gVK),
1
Rl = 8L;+4Lg—4L§+2H£_§VK1
r 1 » 1 , 1
h2 = —ZL10”§H1 — -Q—Zy}\.’
r r . 1 1 1
h3 = 4L8+2H2-—§VK_§V,1+96W2,
where 2
1 M}
vp = 3977 (lnu—+1) P=K,q,
1 M2 Ar?
ﬁ"? funsd : n n n
3272 f1?
- ) 4
M = Bom,, M2 =2 M} (B.2)

3
The contributions vy, v, and i, in (B.1) are due to eta and kaon loops, whereas the first
term in €; comes from 7% —  mixing at tree level.
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For the following it is useful to introduce the scale independent constants Z;,
o M? .
T = ——|¥; —_— =1....
‘ea (#) 32#2(& + In ,u2 )1 ? ) ] 6:

M? = By(m, + my), (B.3)

1 _y 1 1
’ T3 = _57 Y4 = 4, 75—_'6’ 76—"5-
Numerical values for £/(M,) and #; are listed in Table 4, together with £ at u = 0.5
GeV and 1 GeV. The entries in the table were obtained from the relations (B.1) and the
numerical values for L as listed in Table 1. Some of the constants Z; (and consequently £7)
have slightly changed their values compared to the ones given in [1], see the corresponding
discussion for L{ in Sect. 2. With the exception of &5 and Z, the error bars in Table 4
are taken from [1]. In order to quote an error for £;, we would have to consider isospin
breaking effects in more detail. Since this is outside the scope of this article, we just give
the central value for ¢; obtained from (B.1).

In a recent analysis [27] of x« scattering, experimental information on the elastic 7=
amplitude up to /3 ~ 700 MeV was used to pin down /£, £, with the result £, = —6.6,
#; = 6.2. This value of ; deviates by slightly more than one standard deviation from
?; = —2.34+3.7 which was obtained from the experimental value of the D-wave scattering
lengths quoted in Ref.{28], whereas £, is very close to the value Z, = 6.0 £ 1.3 (extracted
from the same D-wave scattering lengths). Another phenomenological determination of
¢, and ¢; was made some time ago by Pham and Truong [29] using forward dispersion
relations in 77 scattering. They already noticed, in qualitative agreement with our results,
that £; is p dominated while £, + ¢; gets its main contribution from the large I=0 S-wave.
However, since they have neglected chiral loops a quantitative comparison with our values
is not meaningful.

Consider now the decomposition

E:(ru’)"_- Z £f+ Z fr—{-f,(ﬂ), i'—_l’--'aﬁ,
P=V,ASF P=Kn

b= Y £+ S H+i (B.4)
P=V,A,S P P=Kn

3 T2 =

| =
Wi

=

which is analogous to Eq. (2.11) and where we have explicitly included the contributions
from n, K exchange (and loops) which come in addition to the resonance contributions
V, A, S and P. In the present case the variation of £{ with the scale y is considerably
larger than in the case of SU(3)r x SU(3)g, in particular for £, {3 and £,. The meaning of
resonance saturation may therefore seem questionable for these constants. We note, how-

ever, that in physical quantities only the scale independent couplings £; occur, According
to (B.3) and (B.4), £;(p) = 0 leads to

2 2 2 _
Ziz‘_ln,.ﬂd.z_+:32_”25f=_1n£2+zg‘!’, i=1,...,6. (B.5)
M Yi P I P
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The corresponding predictions for £; thus vary by less than 11 unit in the range y = 0.5
GeVtou =1 GeV.

In any case, the results of Sect. 5 and Eq. (B.1) allow to immediately evaluate reso-
nance contributions in the SU(2) x SU(2)g case. The results are shown in Table 5, both
for the running constants £7(}M,) and for the scale independent quantities Z;. In Table 4
we have surnmed up these individual contributions.

It follows from the results shown in Table 5 that one obtains a good estimate for
Zy, ..., %5 if we assume that the running coupllng constants at a scale of the order of M,
are given by p and a; contributions alone [for £ this is input, see Sect. 5]. The predlctlon
for Z5 from p exchange alone is 5 = 22.4, to be compared with the value £; = 13.4 £0.5
from = — evy [12]. It is amusing to see that axial-vector exchange brings 75 down to
14.8, close to its experimental value [compare the correspondmg case of L], in Table

1]. 57, which is scale independent and which describes isospin breaking effects, does not
recewe contributions from vector or axial-vector meson exchange. It is-dominated by #°-
1, 7%’ mixing and by scalar exchange. The experimental value of £; is £, = 7.1 - 10— -3
whereas resonance exchange predicts £; = 4.5 10~ (see first and third row in Table 4)
This apparent failure of resonance saturation occurs because L; contributes to £, with
the weight —36 (see (B.1)): a failure of saturation in L, is grossly enhanced in #;. This
discrepancy in the prediction for ¢; is thus of no significance.
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Table 1

V and A contributions to the coupling constants LI(M,) in units of 1073, The entries in
the first column are from [2] except L} and L], (see text).To show the scale dependence,
the mean values of L! are also given in brackets for 4 = 0.5 GeV and u = 1 GeV.

Li(M,) [0.5GeV,1 GeV] | V A|V+A
L] 0.7 £ 03 [0.9, 0.5] 0.6 0 0.6
Ly 1.3 + 0.7 [1.8,1.0] 1.2 0 1.2
Ly |44 + 25 [4.4, 4.4] -36 ] 0| -3.6
L, |-03 £ 05 [0.1, ~0.5] o |o| o
L 14 £+ 0.5 [2.4, 0.8] 0 0 0
Iy |-02 + 03 [0.0, -0.3] o o] o
Ir |04 £+ 015| [-04,-04] o lo]| o
L; | 09 + 03 [1.2, 0.7] o |0} o
L} 69 + 0.2 {7.6, 6.5] 69* | 0 6.9
L,|-52 + 03 [-5.9,-4.8] |-100|4.0]| 6.0

*) input
Table 2

P and C transformation properties for octet fields V,,(177), A, (1**), S(0**) and
P(0~*) and for the quantities defined in (3.10). Except for the matrix transposition under

C, the singlet fields transform in the same way as the octets. Space-time arguments are
suppressed. £(0) = 1, (1) = &(2) = ¢(3) = —1.

P C
Vo | €WV | —VZ
A | —(We()Au | AL,
S S sT
P -P pPT
Uy —e(p)u, uy
v | —e(pe(yd, | ol
X+ +xs xi
£ | el | =527
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V, A, S, S and n, contributions to the coupling constants LT in units of 1073,

L:(Mp) V A S Sl M total
L7 07 £ 0.3 06 | 0 |-02]02*( 0 0.6
Ly 1.3 + 0.7 1.2 | 0 0 0 0 1.2
Ly |44 £ 25 | -36 ] 0] 06 0 0 |-3.0
Ly |03 + 0.5 0 0 |-05(05*=| 0 0.0
L 14 + 05 0 0 |14} O 0 14
£ 1-02 £+ 0.3 0 0 ]-063(03*| 0 0.0
7104 %+ 015| ¢ 0 0 0 |-03|-03
Ly | 09 £ 0.3 0 0109°| © 0 0.9
Ly 1 69 £ 02 {69 | 0 0 0 0 6.9
Lig|-52 £ 03 (-100{40] 0 0 0 | -6.0
*) input
**) large- N estimate
Table 4
Values of low-energy constants 4, ..., ; and total resonance contributions for SU/ (2)r x

SU(2)r. We did not work out an error for £;. The individual resonance contributions are
listed in Table 5. The barred quantities are defined in (B.3) and (B.5).

10%-£1(M,) [10.5GeV, 1 GeV] | 103 T p ¢F (; Zpgf:—ln%

6| 61 * 3.9 [5.2,-6.7] 3.6 -23 + 3.7 0.04
L] 53 + 27 [7.1,4.2] 4.7 6.0 + 1.3 5.7
&1 09 + 38 [-0.5,1.7] 1.4 29 + 24 2.6
£ 34 + 57 8.8,0.1] 5.5 43 + 09 4.4
L] 52 + 03 [-5.7,-5.0] -6.0 134 + 05 14.8
b |-13.7 £ 03| [-14.7,-13.9] -13.7 16.5 + 0.3 16.5
L1 1.1 4.5
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Table 5

Resonance contributions £F and £F evaluated from Table 3 and Eq.(B.1).

L0, K 14 A S S /)
100l ~0{ 47 0 o4 [07] 0
l~0|-45| 0 | 04 [07] O
1028 [ ~0 ] 47 | 0 0 0 [ 0C
Fl~0] 22 0 0 0| 0
1. 8101 O 0 105 [10] O
Fl~0] 0 0 [ 03}-06{ 0
1008101 0 0|19 [37] 0
&Eli~0] 0 0 | 03 106 0
10 ~0-100[40] O 0|0
1 ~0]189 |-7T6] 0 0| o0
10°- 28 | ~0 [-138] 0 0 0| O
1 ~0]130) 0 0 0 0
1.4, 137 0 0 |-11.27] 0.7 [ 11.3
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Figure Captions

Fig. 1: One-loop diagrams for the electromagnetic pion mass difference. The vertex in
Fig. la is given by the off-shell pion form factor shown in Fig. le.

Fig. 2: Resonance exchange contributions to the processes from which the L; are de-
termined [2]. = — ——= denotes the axial current §vy,ysA™%¥q, — — —— stands for
resonance exchange and the crosses denote (tadpole) quark mass insertions. L;, Lo,
La: wx D-wave scattering, Zweig rule; Ly: f,, Ls, Zweig rule; Ls: fx/fr; Let M2,

Zweig rule; L;: Gell-Mann-Okubo, Ls, Lg; Lg: Mg+-Mgo, (mg — my)/(m, — ),

Ls; Lg: {r®)T ;s L1t ® — evy.
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