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1. INTRODUCTION

One of the outstanding successes of QCD is the solution of the so-called U(1) 4 prob-
lem: why is the SU(3)-singlet n'(958) so much heavier than the low-lying SU(3)-octet of
pseudoscalars 7 The two basic ingredients which are used in the explanation are the axial
anomaly of the U(1)4 current {1], and the non-perturbative structure of the QCD vacuum
[2-4]. The solution within the QCD framework [5-9] implies, however, the existence of an
effective additional term in the QCD Lagrangian (GW = Leu,0GLVP7):

_90

ZG%)G“ w(a), (L1)

with 6 , the so-called vacuum angle, a hitherto unknown parameter (for a good review
article on the subject see ref. [10]).

The new term (1.1) violates P, T and CP and may lead to observable effects in flavour
conserving transitions. It may generate, in particular, a sizeable neutron electric dipole

moment (nEDM), which very refined experiments have constrained down to a very high
precision [11,12]. With the standard definition (F,,(z) = 8,4,(z) — 8,4,(z))

dy — , Y
LoEDM = EE U (z)iyso? Up(z) Fyy(z) (1.2)
for an electric dipole moment coupling, the most accurate measurements give [12]

dY = (-3+5) x 107 ®eccm; (1.3)

and a further improvement in sensitivity by a factor of 10 is still expected from the same
experiment within the next two years {13].

Early theoretical estimates of the size of d induced by the §;-term in (1.1) range from
0.4 x 1076y ecn to 20 x 107186y ecm [14-17] , suggesting that the phase 8, is limited
by experiments to be below 107%. In fact, the constrained parameter is not quite 6y but

rather the combination

8 = 6y + arg(det M), (1.4)

where M denotes the full mass matrix emerging from the Yukawa couplings of the light

quarks in the electroweak sector. In full generality, M is non-diagonal and non-Hermitian:

Lyass = —qriMijqr; — QLz'M;[jQRj- (1.5)
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However, with the help of an appropriate SU(3}; ® SU(3)p transformation one can always
restrict M to the form

M = exp{% arg(det M)} diag(m,, mg, m,), (1.6)

with my,mg and m, positive. In the absence of the #;-vacuum term in the QCD-
Lagrangian, the phase arg(det M) could be reabsorbed by a simple U(1)4 rotation of
the quark fields. However, because of the U(1)4-anomaly, the fy-vacuum is not invariant
under U(1)4 transformations. The U(1),4 rotation which eliminates arg(det M) from the
mass term generates a new fy-vacuum value, which is the combination appearing in eq.
(1.4) above.

Of particular interest among the theoretical estimates of dY quoted above is the one by
Crewther, Di Vecchia, Veneziano and Witten [15], hereafter referred to as CDVW. These
authors pointed out that the coefficient of the leading chiral logarithm which contributes
to dj is calculable in terms of known parameters (modulo the overall #-phase factor of
course), thus providing a reliable order-of-magnitude estimate of the dY expected from
strong CP-violation. The possibility to check this result, by doing numerical simulations
in lattice QCD [18,19] , has now triggered a renewal of interest in calculations of strong
CP-violating processes [20-23].

We propose to take a fresh new look at this subject from the point of view of the
chiral effective Lagrangian formulation of the strong CP-violation sector of QCD. The
question of whether or not one can calculate long-distance effects like  — 77 and d7,
to some approximation at least, translates then into the question of to what level in a
systematic chiral expansion there appear new constants in the effective Lagrangian not
fixed by symmetry arguments alone, and unknown from phenomenology. In fact, the idea
of using an effective Lagrangian framework to study strong CP-violating transitions is not
new. Practically all that is needed here can be dug out from earlier papers by Di Vecchia,
Veneziano and Witten [8,9,16] (see also ref. [24]) . Only the part of our formulation which
includes baryons is perhaps new (to our knowledge) and provides an alternative to the
early one offered in Di Vecchia’s lectures [16].

We have organized the paper as follows. Section 2 is a short review of the QCD
effective Lagrangian for Goldstone bosons, in the presence of the explicit breaking of chiral
symmetry generated by the quark mass term in the QCD Lagrangian, and the breaking by

the U(1}4 anomaly. We also discuss the vacuum alignment in the presence of the 8-term.
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The derivation of an effective QCD Lagrangian with inclusion of baryon fields is discussed
in section 3. The possible couplings emerging from the underlying strong CP-violation in
QCD, which can contribute leading chiral logarithms to the nEDM, are identified. The
chiral loop calculation of d}} (and d}} is reported in section 4. Section 5 contains a listing
of the possible local counterterms, which contribute to the nEDM at O(M) as well. We
also discuss how these couplings could be fixed from phenomenoclogy. Our conclusions and

numerical results are given in section 6.

2. EFFECTIVE LAGRANGIAN FOR GOLDSTONE BOSONS: QUARK
MASSES; LARGE N;; AND THE U(1), ANOMALY

In the limit where the number of colours N in QCD is taken to be large, the Ul)a
anomaly is absent . If furthermore we also consider the chiral limit where all the light

quark masses vanish, i.e. m, = mg = m, = 0, the QCD Lagrangian

1 a a v .=
L8, = ~1 2 GWEW + gy Dyg (2.1)

a
has then a U(3). ® U(3)z symmetry in flavour space, which is expected to be sponta-
neously broken down to U(3)y. According to Goldstone’s theorem , there appears then a
nonet of massless pseudoscalar particles (7, K,n,7'). The fields of these particles can be
conveniently collected in a 3 x 3 unitary matrix U (#), which parametrizes the Goldstone
excitations over the vacuum. Under the chiral group, U (¢) transforms as U — gpl/ 9;
(9r,L € U(3)r,L)- It is convenient to factor out from the [/(¢) matrix its vacuum expec-
tation value, i.e.

U(¢) =< T > U(9), (22)

with < U >=1. A useful parametrization for U(¢), which we shall adopt, is
U(¢) = exp(—iv2%(z)/ fx), (2.3)

where ( X are Gell-Mann’s matrices with trag Ay = 26,3)
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At low energies, it is possible to work out the consequences of the chiral symmetry
properties of the underlying QCD-theory, by writing the most general effective Lagrangian
involving the matrix U, which is consistent with the U(3)r ® U(3)g symmetry. The
Lagrangian is organized in terms of increasing powers of momentum or, equivalently, in
terms of increasing number of derivatives. In the low energy domain we are interested in,
the terms with a minimum number of derivatives will dominate. To lowest order in the
number of derivatives, the effective chiral Lagrangian is uniquely given by the term

2 o~ ~
ﬁeff = ');—ﬂtr(auUa”UT). (2.5)

The constant fr, which is not fixed by symmetry requirements, is phenomenologically
known from the decay © — uv (f, ~ 93.3MeV).

We need a generalization of eq. (2.5) which includes the explicit breaking of chiral
symmetry generated by the quark mass term (1.5) in the QCD Lagrangian, and the break-
ing by the anomaly from U(3); @ U(3)r to SU(3), ® SU(3)r @ U(1)y.. Moreover, we want
to incorporate external gauge fields as well because eventually we shall have to consider
chiral couplings of photons to pseudoscalars (and to baryons later). To the standard QCD

Lagrangian L8 in (2.1) we then add the terms
QCD

2 —
L= £E§E;D + §v*{vu(z) + ysau(z)}g — TrMay, — GLMTqr + 8, 3ng ZG'(MGV)G(a)uV’
(2.6)
where the external fields v,(z) and a,(z) are Hermitian 3 x 3 matrices in flavour space.

In the presence of these terms the full Lagrangian (2.6) is formally invariant with respect
to local (gr(z),gr(z)) chiral U(3)z ® U(3)g transformations:

9L = 9L4L,
4r — 9R4R,
lh=v,—a, — gLI“gj{l + z'gLaugE . (2.7)
Tw =V +ay — grrugh +igrdugh,
M — grMg] .
To lowest order in the number of derivatives, and in powers of M and external v, and a,

fields, the most general effective Lagrangian invariant under local chiral transformations

is given by [24]
2 .
Lojs = J;_”tr(D,,,UD#U* + XU 4+ UxY), (2.8)
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where

DU = 8,U —ir,U +il1l, (2.9)

and ¥ is a 3 x 3 matrix proportional to M ,
X = 2By M, (2.10)

with By a constant which, like fr , is not fixed by symmetry requirements alone.
Once special directions in flavour space are selected for the external fields or for the

matrix M, chiral symmetry is of course explicitly broken. For instance, to introduce

530 3)

The important point is that (2.8) then breaks chiral symmetry in exactly the same way as

electromagnetic interactions one should take I, = r, = eQA,, with Q = diag(

the fundamental Standard Model Lagrangian does.

Although the Lagrangian (2.6) is formally invariant under local chiral transfor-
mations, this is no longer true for the associated generating functional expil' =
J[DGDgDq) exp{i [ d*zL}. The anomalies of the fermionic determinant break chiral
symmetry at the quantum level. Here, we are interested in the axial anomaly induced by
U(1) 4 chiral rotations, i.e. gp = g]; = ¢’ I, which generate a contribution to the 8;-term

ns = 3 is the number of light quark flavours):
f
by — 6y —2ns3. (2.11)

As already mentioned before, the combination 8y + arg(det M) remains invariant under
these transformations. To lowest non-trivial order in 1/N,, the chiral symmetry breaking
effect induced by the U(1)4 anomaly can be taken into account in the effective Lagrangian,
through the term (see Di Vecchia and Veneziano [9] and Witten [8]; see also ref. [25))

2 i

a ~ ~
Luy, = _fi\_fc §[1og(det U) —log(det UM)]}2, (2.12)

which breaks U(3)z ® U(3)r but preserves SU(3). ® SU(3)z ® U(1)y. The parameter a
has dimensions of mass squared and, with the factor 1/N, pulled out, is booked to be of
O(1) in the large N, counting rules. Its value is not fixed by symmetry requirements alone;
it depends crucially on the dynamics of instantons. In the presence of the term (2.12), the
m-field becomes massive even in the chiral limit (mys = N%a + O(M)).

Performing an appropriate chiral transformation, the quark mass matrix can be re-

stricted to the form
M = 3 diag(m,, mq,m,) = €M, (2.13)
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with 8 the full §-vacuum angle in (1.4). In the absence of the term (2.12), the phase in
(2.13) could be reabsorbed by the U(1}4 transformation

U — et/ (7¢%/8 (2.14)
In the presence of the U(1)4 anomaly, and hence the term (2.12), this transformation
generates new physical interactions. With (2.13) inserted in (2.8), and (2.14) applied to
the Ly(1), Lagrangian in (2.12), the new form of the effective bosonic Lagrangian in the

presence of the QCD #-vacuum term is then

2 ~ ~ ~ o~ ; o~ o~
Los = f—"{tr(D”UD“UT + 10+ Uty) — ;—r{ %[log(de’c [7) — log(det U] -9}2},

4
(2.15)

where now the matrix ¥ is real, positive and diagonal

X = %' = diag(x%, x%, x%). (2.16)

If the term proportional to a/N, were absent, we could take without loss of generality

< U >=1 and the diagonal entries x? would correspond to the Goldstone boson masses:
Xa = Mys +mke —mio,
Xﬁ = mfrq. + mf;(o - m§{+ 3 (217)
= ml e — iy

In this case, the constant By introduced in eq. (2.10) directly relates the pseudoscalar

masses to the current quark masses of the QCD Lagrangian:

BB — mrr2+ — mK2+ — m[?l) —_ 3m7?28 . (218)
my -+ my My + Mg mg + My my +myg 4 4m,

In the presence of the third term in eq. (2.15), < U/ > cannot be set equal to the
unit matrix , and therefore it is convenient, before applying this Lagrangian to calculate

physical processes, to minimize the potential energy associated to £, g7 in (2.15):

~ 2 ~ a i det T
VO) = -2 {0+ 00 - e iglos(S0 TN ), (219)

so as to fix < U >. With ¥ diagonal, < U > can be restricted to be diagonal as well and
of the form

< U > = diag(e %=, e™4, e*%), (2.20)
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The minimization conditions V/8¢; = 0 restrict the ;’s to satisfy the Dashen [26] Nuyts
[27] equations:

. a ]
xZsinp; = M(_49 — Z@j), (i = u,d, s). (2.21)
7

The ¢;’s appearing in L.;f in eq. (2.15) can be reabsorbed in Hermitian matrices y and

H defined by 3
<Ut>3%=x+iH,

. (2.22)
Yi<U>=yx —iH.
In fact, eqs. (2.21) fix H to be proportional to the unit matrix,
a a -
H = fV_c(e; _;%)I = EGI' (2.23)

The effective bosonic Lagrangian as a functional of U(¢) (eq. (2.3)), with < U >= 1, is
then (§ =60 — > wi)

_ I t t @ rgr — Log( 9ol v
Loss = F{(DUD T +x(U +UY) - v 18 = gllos(Go77)I*)

(2.24)

_.agz oy det U
zNCG{tr(U u") log(detUT)}}.

We are now in the position to discuss two salient physical features of this Lagrangian.
i) In the chiral limit y — 0, the singlet 7, -particle acquires a mass from the third term
induced by the U(1) 4-anomaly,

-3 (@), (225)

Furthermore, as stressed in ref. [28], the n;-kinetic term in tr(D,UD*U") decouples from
the ¢'s and the 71 particle becomes stable in the chiral limit (but for strong CP-violating
effects, which allow 7; — 77 and which shall be discussed next).

ii) The last term in L.f; above generates strong CP-violating transitions between
pseudoscalar particles. In particular it induces the phase-space allowed decays ng —

°7° and n; — atx™,7%7% . The transition amplitudes for n — 77 can be

7r+1r_, 7r
readily obtained from this effective Lagrangian. (Notice that in the effective Lagrangian
formulation of eq. (2.24) tadpole-like diagrams have been eliminated via the correct vac-

uum alignment. ) The result is

a

T(n — 7¥7~) = (cosfp — V2sin fp) A %, (2.26)




where we have taken into account the n; — ng mixing

n = nacosfp — mysinfp,
(2.27)
n' = ngsinbp + 1 cosbp.
The result in eq. (2.26) is in agreement with the earlier calculations in CDVW [15]
and in ref. [29].

3. BARYONS AND CHIRAL DYNAMICS

The formal procedure to introduce baryous in effective Lagrangians was first discussed
many years ago [30] (for an updated pedagogical introduction see the book of Howard
Georgi [31]). In practice, this approach has been implemented in several papers where
various pieces of low-energy phenomenology have been discussed [32]. Here we shall adopt
the standard non-linear representation of baryons and recall only the basics.

The wanted ingredient for a non-linear representation of the chiral group is the com-
pensating U(3)y transformation h(¢,g) which appears under the action of the chiral
U(3)®U(3)r group on the left £1(¢) and right £(#) coset representatives (=91 ®gr):

£1(6) — g€ (DA (d,9),

. ” (3.1)
Er(9) — grér(B)T(0,9).

In terms of £ 1(#) and £p(8), the unitary matrix U(4) introduced in the previous section
(see egs. (2.2) and (2.3)) is defined by the product

U(¢) = En(9)E}(4). (3.2)

The octet of baryon fields is then collected in a 3 x 3 matrix

3l A s+

W + _\/16( Q 0 p
B(z) = e v I : (3.3)
g~ =0 —2A°
/6
which under U(3);, ® U(3)g transforms non-linearly
B — h(d,g) BA'(4,9). (3.9

We look for the most general U(3), ® U(3)g invariant effective Lagrangian one can
write in terms of the matrices B(z), B(z) = B(z)y,, &(qﬁ) and £x(4); but (fortunately)
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we wish to keep only the dominant terms which contribute to physical processes as leading
powers in momenta and quark masses. The baryon-meson effective Lagrangian has a

kinetic term

Ly = t(Biv"D,B) — Mptx(BB), (3.5)
where Mp is a common mass term to all baryons, and D, denotes here the covariant
derivative

D,B = §,B + [T, B], (3.6)
with
Iy = %{72(3;:: —iry)lr + €1(0, — il Y, (3.7)

and r, , I, the external fields introduced in eq. (2.7). Notice that from the point of
view of chiral power counting B and B are booked as O(1); D,B and MpB as O(1), but
17" DyB — MgB is O{p). Therefore, to the kinetic term in (3.5) we have to add possible

interaction terms of O(p) as well. These are

LF) = =5 (B 1s{Eu(9), BY) - & n(Bros[Eu(d), BI) + Sw(Euld) i(BrtvsB),

(3.8)
with
6u(9) = i {ER(0u — iru)éR — L0 —il)EL} . (3.9)
Under U(3), ® U(3)g gauge transformations,
Eu(®) — h($,9)Eu(8)R1(3,9). (3.10)

The first two terms in (3.8) are the usual F' and D couplings, which govern semileptonic
hyperon decays. The third § coupling is specific to the axial flavour-singlet baryonic
current.

Of special interest for our purposes are the possible terms generated by the explicit
chiral symmetry breaking induced by quark mass terms in the underlying Lagrangian in
eq. (2.6). The possible lowest O(M) interactions induced in the effective meson-baryon

Lagrangian are
LY = —botr(%4)te(BB) — by tr(B4B) — by tr(BBR,), (3.11)

where by, by and b; are coupling constants with dimensions of an inverse mass, and ¥4 is

a shorthand notation for
Xz = Ehxér £ € 7R, (3.12)

9




Under U(3); ® U(3)r gauge transformations,

X+ — h(s,9) %+ h'(d,9). (3.13)

Terms with 45 and y_ like e.g. tr(ByY 7sB) are O(Mp), i.e. higher order in the chiral
expansion, and will therefore not be kept at this stage. We shall however come back to
possible physical effects from these terms at the end of this section.

With M restricted to the form in eq. (2.13), and in the absence of the U(1) 4 anomaly,
the phase in (2.13) could be reabsorbed by the same U(1),4 transformation as in (2.14)

() — e /°¢(6)R1(4,0) Er(8) — e¥%Ep(¢)h!(4,0). (3.14)

In the presence of the U(1) 4 anomaly, and hence the term (2.12) in the mesonic Lagrangian,
this transformation generates new physical interactions between mesons, as we have seen
in the previous section, and new interactions as well between mesons and baryons, as
we are going to see next. Again, before we proceed to analyze physical implications, it
is convenient to rewrite the effective Lagrangian in a form compatible with the correct

vacuum alignment. :
From egs. (2.22) and (3.2) it follows that

<fh>i<f>=<€y><fl>y=y+iH, (3.15)

where we have used the fact that ¥ is diagonal and , without loss of generality, < £, >
and < £p > can be restricted to be diagonal as well. It is then convenient to introduce

field matrices £ and ¢, so that

fL=<§& >¢ and  fp =<&p> g, (3.16)

with < {f >=<{p>=1and U = £R§E . Furthermore, it is always possible to choose a

coset representative such that

Er=¢l=¢ ; U=¢. (3.17)
We then have
X = x+ + i%a(m FU), (3.18)
where
Xz = Elxet £ €xe. (3.19)
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Inserting (3.18) in ES\‘AB) as given in (3.11), leads to CP non-conserving meson-baryon

interaction terms modulated by the coupling I—%@ :

£(J{3) = —bo tr(x+) tr(BB) — b, tr(Bx+B) — b, tr(BBx+)
— z%e {bo tz(U" = U)tx(BB) + by tr(B(U — U)B) + by tr(BBU ~U))} .
(3.20)
The first three terms in E_(Al:) give contributions to baryon masses. From the experi-
mentally known baryon mass splittings it is then possible to obtain the couplings b; and

by, with the result { for my, = mg = m)

Mz — Mg
4my —m3)

My — My
4(m§( ~m2)

™

by = ~ 0.14GeV™h | by = ~ -028GeVl.  (3.21)

The term with by gives an overall contribution to the baryon mass M B, and therefore
cannot be extracted from baryon mass splittings.
The interesting terms for our purposes are the ones proportional to Nicg' The in-

teractions with the lowest possible number of fields, induced by these terms, are of the

type

—23\/§ )
B — ;%5 ~L by ny te(BB) + by to(B®B) + b, tr( BB
2 {\/?—) o M tr(BB) + by tr( ) + by tr( ) (3.22)

+ O(BB¢é¢/f7)} .

If we further restrict B to be the f-field, and ¢ to be a charged field, we find as possible

interaction terms

2 _
£ = }/i ie){b1 Apr” + bAZ K'Y + he.. (3.23)

Since we are also interested in a calculation of the electric dipole moment of the A° expected

from strong CP-violation, we shall also give the couplings when B is restricted to be the
A®-field, and ¢ is restricted to charged fields:

a . 2 + st
L 2§ {b A° [-2pK~ + 2 KT 4+ Z%r~ + 7717
VA { (3.24)

+0 A°[pK™ =25 Kt + S + 572t} + hee..

We finally wish to discuss possible strong CP-violation effects which may originate
from baryon couplings with a 75 and linear in ¥ ; i.e., terms of O(Mp) which we have

neglected so far. The possible terms of this type are
L3 = —cote(% ) tr(BysB) — ¢y tx(Bys%_B) — catr(BrsBR), (3.25)
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Upon redefinition of ¥_in (3.18) they generate new strong CP-violating interactions
Egi{ - — i%é {cotr(UT + U)te(BvsB) + tro(Bvys (U + U)B)

+ catr(Bys B(UT + U))} (3.26)
= —2i;—r§(360 +c + ca) tr(BysB) + iNigo(B”/sé‘ﬁB)-

Terms O(Bvs¢$B) can only contribute to d} via two chiral loops at least and therefore
will be neglected. The term proportional to itr(BysB), when lumped together with the
baryon mass term Mpir(BB) in the kinetic term (3.5), becomes (terms O(#?) and higher
are always neglected)

—~Mgtr(BB) — 2z'Nié (3¢o + €1 + o) tr(Bys B) ~ —tz(B'MpB'), (3.27)
C

where

.a §
B = exp{zl%cM—B(?»co +c1 +ca)vs ) B. (3.28)

This baryon fleld redefinition leaves the kinetic term tr(Bivy*D,B) , as well as the D, F
and § coupkngs in (3.8) invariant. It generates new interactions when applied to the ES\}?
term in (3.20). The new strong CP-violating interactions are however higher order in the
chiral expansion, they are O(M) at least, and therefore will be neglected as well.

We conclude that the leading effective CP-violating couplings which can contribute
to d) and d} via one chiral loop are only those in £(é") and E%A) in (3.23) and (3.24).

4. THE CHIRAL LOOP CALCULATION OF 47

We have now all the ingredients to do this calculation. The possible Feynman diagrams
which can generate a nEDM at the one-loop level are shown in fig. 1 The continuous line
represents a baryon, the dashed line a meson, the wavy line the photon. The vertex with
a dot is the CP-violating interaction induced by one of the couplings in eq. (3.23).

The normal CP-conserving B B¢ vertex interactions are those generated by the inter-
action Lagrangian Cgft) in (3.8), with £, in eq. (3.9) restricted to the term

V2

£y = f_(a.uq) - ieA#[Q,tb]) ) (4.1)

where @ is the 3 x 3 matrix in (2.4), A, the electromagnetic field and @ = diag(g—., 5 :31)
the electric charge matrix. The fact that the propagating pseudoscalar has to be charged
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restricts the CP-conserving BB ¢ vertex interactions to those of F and D type only, There
is no contribution from the S-coupling at the one-loop level.
We also require the ¢¢vy and BB~ vertices which follow from the first term in (2.24),

Lom = —ied,(¢T0%¢™ — 97 3%¢T) + 2 A, AP ™, (4.2)
with ¢ =7, K ; and from the kinetic term ﬁii} in (3.5), i.e.

£ = e, tr(B1[S(1Q¢ + €Qe"), B]) (43)

The calculation is then rather straightforward. Only diagrams (a) and (b) give chiral
logarithms, plus constant terms which we keep and higher order terms in the chiral expan-
sion which are neglected. Diagrams (c) and (d) are suppressed by an additional baryon
propagator; they don’t give chiral logarithms, but produce constant terms which happen
to cancel the constant terms from (a) and (b). Diagrams (e) and (f) cancel each other.

The final result from the one-loop calculation is then

v .. g ¢ Mz — My M% Ms - My ME
dn N,;9167r2f,2r {m%{_m% (D+F) Iog(mgr) + m%{_qur (D F) log(m%{)}

(4.4)

The baryon mass in the chiral logarithm acts as an ultra-violet cut-off and should

be considered as such. It is simply telling us that a complete calculation of d to O(p?)
must necessarily bring new local counterterms of the same chiral order, with coupling
constants not fixed by symmetry arguments alone and probably rather hard to determine

from phenomenology. We examine this question in the next section.

5. LOCAL COUNTERTERMS

We are interested in all the possible local couplings which could generate a tree-level
contribution to d ( and d} ) to order O(M). Some must certainly be there to renormalize
the UV-behaviour of the contribution from the chiral loop reported in the previous section.
There may be others as well with scale-independent coupling constants.

A possible set of terms are those with factors Bo*’~vsB , ¥_ and F,, as necessary
ingredients. In order to build chiral invariants we have to use, rather than F,,, the
quantities

i = & FpEL £ EL P é, (5.1)
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where F7'", are the left (right) field strength tensors associated with the / x and r, external
gauge field 3 x 3 matrices. Under U(3)r ® U(3)r gauge transformations,

£ — h(8,9) 2" B ($,9). (5.2)
When restricted to the electromagnetic field tensor, f£* reduces to
Y = e(€1QéL £ ELQER) FH
= e(€QET + ¢TQe) P,

where we have used the fact that @ is diagonal .

(5.3)

There are 10 possible invariants of this type:

1 _ . v — Y o~
E(CB) = Wf—? { 4 tr(BGM’}’s{X_,ff. }B) + &2 tf(BJuV’%f—’: Bx )

+83t2(BovsX_BFY) + b4 tr(Bay,vsB{%_, f*})

+ 85 tr(%_) tr(Bou,vsBfY) + 66 tr(% ) tx(Bo,ys f27 B) (5:4)
+ 67 tx(f£¥) tr(Bopyys BE ) + 68 tr(f4*) tr(Bo s B)

+ 80 tr(f1"% ) t1(Boyuu s B) + 10 te(F17) tr(%) tl‘(B%v’YsB)}-

Since @ is traceless, so is the restricted form of f®” in (5.3), and the couplings &7, &
and 0o are inoperative. We are interested only in the CP-violating terms generated by
the replacement of ¥_ by the r.h.s. in eq. (3.18), when ¢ is furthermore restricted to the
constant term [ in the ® expansion. In that case §y is also inoperative, and the rest of

the couplings can be collected in two sets :

. a de
P O s fz{(zﬁl + 83 + 386) tr(Bo,, v:QB)

(5.5)
+ (63 + 264 + 355)tr(,§am5BQ)} .

The tree-level contribution to the neutron (lambda) electric dipole moment can now be

read out from this effective Lagrangian, with the result

di = 2d] = —2g>

¥.3 T6r 2f2 575 (281 + 85 + 63 + 264 + 385 + 365) . (5.6)

Possible terms with Bys(vy,D, —~,D,)B (instead of Bo,,vsB), x_ and f&° are
not independent. They are related to the ones in (5.4) because (YuDy — 7wD,)B =
5'Mpo,, B+ terms O(p), which follows from the baryon-field equations of motion.

14



The other possible set of counterterms are those generated by the B-field redefinition
in (3.28) when applied to magnetic-moment-like couplings of the type

Mg _ ” _ ,
5&2) = 16722 {K;l tr(Boyy f{"B) + ki tr(Boy, BfY )}5 (5.7)

with «; and %, dimensionless couplings, finite in the chiral limit, which to lowest order
in Chiral Perturbation Theory (ChPT) are fixed by the baryon magnetic moments. For

the neutron and the lambda we have in particular

MB €

16m2f2 20Mp (58)

8
Pn = 2pp = —g("‘?l +K2) s

The baryon field redefinition (3.28), when applied to (5.7) above, generates direct tree-level

electric dipole moment couplings

Estg) — N 94(3C0 +e1+ 62)16 2f2 {Hl tI‘(BO’uy’}%QB) + K2 tr(BU,u.u’YSBQ)} 1

(5.9)

from which we can read out the contributions
4y = 2d] = @58 3 5.10
n N 316 2f2(K'1+K’2)( cO+C]+C2) (' )

The total tree-level contribution to d to lowest order in the ChPT expansion is then

-8 9
d“f‘tree = 2d;(|tme = —EBE T6n? /2 §(v*), (5.11)
with 8(+*) the combination of couplings
(5 = 261 + 52 + 63 + 254 + 365 -l- 363 - (Kﬁ]_ + 52)(360 + (&) + Cg), (512)

at a renormalization scale v, This contribution, when added to the result in eq. (4.4) from

the chiral loop, gives our final scale-independent result

a -~ e v? 2 2
dl = 2d) = A_rcgﬂswz—ﬁg‘l{bl (D + F) log(n?;) — by (D~ F) log(g%—{—) - §<5(f,«2)}.

(5.13)
Of the coupling constants appearing in §(+?) in (5.12), only &1 + 2 is known. How
could the é;’s and the ¢;’s be determined phenomenologically? This is the final question

which we wish to discuss here.
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The é;’s in the interaction Lagrangian C(CB) in (5.4) also contribute to CP-conserving
transitions via the term x_in the r.h.s. of ¥_in eq. (3.18). By construction y_ requires at
least one Goldstone field to be present. Therefore the §;’s contribute to physical processes
like pion-photoproduction { YN — wN) at tree level. In fact they renormalize the UV-
behaviour of chiral loop corrections to the lowest order contribution; loops like the one
in the Feynman graph of fig. 2. The loop structure in this diagram is in fact the same
as the one in the diagrams of fig. 1. (Notice that the NTN= vertex in fig. 2 comes from
the CP-conserving part of the same interaction Lagrangian ES\? which contributes to the
vertex with a dot in the chiral loop evaluation of d7 .)

The ¢;’s in the interaction Lagrangian £5 10 (3.25) also contribute to CP-conserving
transitions via the term x_in the r.h.s. of ¥_in eq. (3.18). Again x_ requires an odd
number of Goldstones to be present. Therefore the ¢;’s contribute to effective B Br vertices
and could in principle be extracted from low energy 7N phenomenology by a comparison of
data, say 7N — 7N , with ChPT predictions at the one-loop level and with the inclusion
of tree-level terms like those in (3.25).

6. CONCLUSIONS AND NUMERICAL RESULTS

The main conclusion from the analysis reported here is that the coeficient of the
leading chiral logarithm (log m,) which contributes to the nEDM, as a result of strong CP-
violation in the Standard Model, is unambiguously fixed by low energy phenomenology.
The expression we find in eq. (4.4) has all the expected factors present: i) it vanishes
in the large N, limit; ii) it vanishes in the chiral limit where § — 0 [see egs. (2.21) and
(2.23)] ; iii) it is proportional to the couplings 5 and by [ see eq. (3.21)] responsible for
the baryon mass splitting; iv) it is proportional to the baryon D and F couplings; and v)

Qur result in (4.4) confirms the basic claims of the early work by CDVW [15] and Di
Vecchia [16]. The result (2.26) for the n — 77 decay amplitude, which follows from the
effective bosonic QCD Lagrangian obtained in eq. (2.24), is also in agreement with the
earlier calculations in CDVW {15] and in ref. [29].

We have identified the set of local couplings which can also give contributions to
the nEDM at the same O(M) in ChPT. They are listed in eqs. (5.4) and (5.7). Their

overall contribution to the nEDM is proportional to the combination §(v*) given in eq.

it has the suppression factor —27? characteristic of a chiral loop.

(5.12). Only #1 + sy is explicitly known at present, from the neutron (and lambda)
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magnetic moment measurements. The couplings §; and ¢; could however be determined
from a phenomenological comparison of data on vN — 7N and #N — 7N reactions near
threshold, with ChPT predictions at the one-loop level, where these constants contribute
as local counterterms.
We have also calculated the electric dipole moment of the A, to lowest O(M), with
the result
& = %d;. (6.1)

In order to make a numerical estimate of d7, it is convenient to use the empirical fact

that

a
XiaX?z < ng ]TC (62)
and use the approximate relation (m, = mq =m < m,)
a - ¢ 1
= = ~ —ml4. (6.3)
N, ™
N, 3, x—lf + 2

a

We also need values for the D and F couplings. Jenkins and Manohar [33], in a recent
phenomenoclogical analysis of hyperon semileptonic decays within the framework of ChPT,
have pointed out that the values obtained at the tree level have rather large logarithmie
corrections. They propose a new determination, which incorporates the effect of A’s as
well as N’s, with the result [34]

D=1061£004 and F = 0.40+0.03. (6.4)

Using these values and the physical nucleon mass in the chiral logarithms, we get from the
chiral loop expression in (4.4) the result

dmLcm}J =33x10""%fecm, (6.5)

which is remarkably close to Di Vecchia’s estimate in ref. [16].

As an estimate of the error coming from the unknown contribution of the constant
8(v?) in (5.11), we propose to vary the scale in the chiral logarithm between the value of
the constituent quark mass, Mg ~ 320 MeV, and the average mass scale Ma ~ 1500 MeV

of the baryon decuplet. This gives as our final estimate

dy = (33+18)x107 %6 ecm. (6.6)
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From a comparison between this result and the experimental upper limit in eq. (1.3), we

conclude that

18] < 5x 10719, (6.7)
This is a much more stringent limit, of course, than the one obtained from n — 7t 7=,
The predicted branching ratio here (using §p = —20° for the 7, — 1 mixing angle) is
Br(n —» nt7~) = 1.8 x 10%6?%; (6.8)
while the present experimental upper limit is
Br(n —» n¥77) < 1.5 x 1072, {(6.9)

from which 8 is limited to be |8} < 3 x 1073 .
The comparison between our result for the AEDM (6.1) and the present experimental
upper bound [35], df < 1.5x107*%ecm (95 % C.L.), only limits 8 to || < 2.
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Figure Captions

Fig. 1. Feynman diagrams contributing to the nEDM at the one-loop level. The con-
tinuous line represents a baryon, the dashed line a meson, the wavy line the
photon. The vertex with a dot is the CP-violating interaction induced by one of
the couplings in eq. (3.23).

Fig. 2. Feynman graph contributing to { YN — 7N ) at the one-loop level .
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