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ABSTRACT

The perturbative QCD prediction to the total hadronic width of the tau lepton is

re-examined. A more convergent perturbative expansion is proposed, which is associated

with a smaller renormalization-scheme dependence and better-de�ned higher-order uncer-

tainties.
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The total � hadronic width can be accurately calculated using analyticity and the

operator product expansion [1{8]. The result, which is known to order �3s(m
2
� ), turns out

to be very sensitive to the value of the strong coupling constant [3]. Therefore, precise

experimental measurements of the � lifetime or its leptonic branching ratio can be used

to infer a value of �s(m
2
� ). Moreover, non-perturbative contributions can be shown to be

strongly suppressed, which allows for a reliable estimate of the theoretical uncertainties.

A detailed study of the � hadronic width has already been done in ref. [8], where

the value of �s(m
2
� ) implied by present data has been worked out. This analysis has

shown that the �nal theoretical uncertainty is completely dominated by the uncalculated

perturbative QCD corrections of order �4s(m
2
� ). Therefore, the error in the determination

of �s(m
2
� ) is small. Taking a conservative �130(

�s(m
2

�
)

�
)4 for the perturbative error, the

resulting uncertainty on �s(m
2
� ) was estimated to be about 10% in ref. [8]. When the

running coupling constant �s(�
2) is evolved from the scale m� to higher energies the error

scales roughly as �2s(�
2) and thus shrinks as � increases. A modest precision of about 10%

in �s(m
2
� ) then translates in a very precise determination of the QCD coupling at some

higher-energy scale such as MZ .

The purpose of this letter is to provide an improvedQCD perturbative expansion of the

total hadronic width of the tau. Within the framework of this revisited QCD prediction,

the sensitivity of the extracted �s(m
2
� ) value to the unknown higher-order perturbative

corrections and more generally the systematic error attached to the renormalization scheme

ambiguity are reanalysed.

Following ref. [8], we normalize the hadronic � decay width to the electronic one, i.e.

we de�ne the ratio

R� �
�(�� ! ��hadrons(
))

�(�� ! ��e���e(
))
; (1)

where (
) represents possible additional photons or lepton pairs. R� can be written as a

contour integral in the complex s-plane, along the circle jsj = m2
� . For massless quarks,

and neglecting the small non-perturbative and electroweak corrections, one has

Rpert
� = �6�i

I
jsj=m2

�

ds

s

�
1� 2

s

m2
�

+ 2
s3

m6
�

�
s4

m8
�

�
D(s) ; (2)

where the dynamical information is carried by the logarithmic derivative of the two-point

correlation function of the vector (axial) current,

D(s) � �s
d

ds
�(s) ; (3)
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which satis�es a homogeneous Renormalization Group Equation. Making use of this equa-

tion, the perturbative expansion of D(s) in powers of the running coupling constant can

be written in the form

D(s) �
1

4�2

X
n=0

~Kn(�) a
n(�2s) ; (4)

where a =
�s

�
, � is an arbitrary factor (of order unity) and

~K0(�) = ~K1(�) = 1;

~K2(�) =K2 �K1�1 log �;

~K3(�) =K3 � 2K2�1 log � +K1

�
�21 log

2 � � �2 log �
�
;

(5)

and similarly for the other ~Kn�4(�) functions. The Kn = ~Kn(1) coe�cients are known

[9{11] to order �3s. For 3 
avours and in MS, the Kn and �n coe�cients are1

K0 = K1 = 1; K2 = 1:6398; K3(MS) = 6:3711;

�1 = �
9

2
; �2 = �8; �3(MS) = �

3863

192
:

(6)

Inserting the expansion (4) in eq. (2), Rpert
� can be expressed as

Rpert
� = 3

X
n=0

~Kn(�)A
(n)(a�) ; (7)

where the functions

A(n)(a�) =
1

2�i

I
jsj=m2

�

ds

s

�
1� 2

s

m2
�

+ 2
s3

m6
�

�
s4

m8
�

�
an(��2s) (8)

are contour integrals in the complex plane which only depend on a� =
�s(�

2m2
� )

�
. Note

that, formally, the A(n)(a�) functions obey the same renormalization-group equation as

an:
@

@ log �
A(n)(a�) = n

X
k=1

�kA
(n+k)(a�); (9)

apart from the fact that now n is an index.

1 In ref. [8] the perturbative contribution to R� was parametrized in terms of the

coe�cients Fn, appearing in the expansion of the spectral function Im�(s) in powers of

a(s). Both parametrizations are related by trivial factors: K2 = F3; K3 = F4+(�2�21=12).
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The running coupling a(��2s) in eq. (8) can be expanded in powers of a�, with

coe�cients that are polynomials in log (�s=m2
� ). Doing so, the following perturbative

expansion of the A(n)(a�) functions is obtained:

A(0)(a�) =1;

A(1)(a�) = a� +
�1

2
I1 a

2
� +

�
�2

2
I1 +

�21
4
I2

�
a3�

+

�
�3

2
I1 +

5

8
�1�2I2 +

�31
8
I3

�
a4� +O(a

5
� );

A(2)(a�) = a2� + �1I1 a
3
� +

�
�2I1 +

3

4
�21I2

�
a4� +O(a

5
�);

A(3)(a�) = a3� +
3

2
�1I1 a

4
� +O(a

5
�);

A(4)(a�) = a4� +O(a
5
�);

(10)

which is regulated by the coe�cients of the QCD �-function times the elementary integrals

Ik =
1

2�i

I
jxj=1

dx

x
(1� 2x+ 2x3 � x4) logk(x): (11)

To order �4s, the needed integrals are

I1 = �
19

12
' �1:58 ; I2 =

265

72
�
�2

3
' 0:39 ; I3 = �

3355

288
+

19

12
�2 ' 3:98 : (12)

The perturbative expansion of R� in powers of �s(�
2m2

� ) takes the form

Rpert
� = 3

X
n=0

( ~Kn(�) + gn(�)) a
n
� ; (13)

where the gn(�) coe�cients depend on ~Km<n(�) and on �m<n:

g0(�) = g1(�) = 0;

g2(�) =
�1

2
I1 = 3:563;

g3(�) =

�
~K2(�)�1 +

�2

2

�
I1 +

�21
4
I2

=19:99 ( for � = 1);

g4(�) =

�
~K3(�)

3�1

2
+ ~K2(�)�2 +

�3

2

�
I1 +

�
~K2(�)

3�21
4

+
5

8
�1�2

�
I2 +

�31
8
I3

=78:00 ( for � = 1):

(14)
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Since a(m2
� ) � 0:1, the value of g4(1) indicates that the O(�

4
s(m

2
� )) correction is at the

few per cent level. One observes that the gn(1) contributions are larger than the direct

~Kn(1) contributions. For instance, the bold guess value ~K4(1) � K3(K3=K2) � 25 is to

be compared with g4(1) = 78.

It is possible to make the �rst ~Kn(�)+gn(�) coe�cients smaller by taking a particular

value of the renormalization scale. Owing to gn(1) > ~Kn(1), the obvious choice
2 is to take

the value of � which reduces the gn contribution, e.g. the one which satis�es ~Kn(�)+gn(�) '

Kn. For n � 2 this requirement gives � = e I1=2 (i.e. it suggests to use the scale

�0 = �m� = 808 MeV). In that case one gets ~Kn(�) + gn(�) = Kn for n � 2, and

~K3(�) + g3(�) = K3 � (�1=2)
2(I21 � I2) = �4:34. Hence, in addition to removing the

gn=2 contribution, this selection of scale 
ips the sign of the O(�3s) term. However, this

apparent improvement is misleading. The price to be paid to obtain this apparently faster

convergence of the series is to have an almost twice bigger expansion parameter [a(m2
� ) �

0:1 implies a(�20) � 0:17]. In fact it is shown below that the higher-order gn contributions

make the perturbative series non-convergent for this choice of scale. In contrast, with

� = m� and for a(m2
� ) = 0:1, the expansion is convergent, but the contributions from

the higher-order gn coe�cients are quite important. The reason of such uncomfortably

large contributions stems from the complex integration along the circle s = m2
� exp (i�)

(��[0; 2�]) in eq. (8). When the running coupling a(��2s) is expanded in powers of a�, one

gets imaginary logarithms, log (�s=m2
� ) = i(� � �), which are large in some parts of the

integration range. The radius of convergence of this expansion is actually quite small. To

make the argument simpler, let us consider the � function to the one-loop approximation

only. The perturbative expansion

a(��2s) =
a�

1� �1
2
a� log (

�s
m2

�

)
= a�

1X
n=0

�
�1

2
a� log

�
�s

m2
�

��n
; (15)

is convergent along the circle jsj = m2
� , provided that a� < 2=(j�1j�) = 0:14. Therefore

the series is (slowly) convergent for a(m2
� ) � 0:1 but it is non-convergent for a(�20) � 0:17.

A numerical analysis of the series involving the �1, �2, and �3 coe�cients shows that, at

the three-loop level, an upper estimate for the convergence radius aconv is

aconv < 0:11 : (16)

2 After completion of this work, we received a paper by M. Luo and W.J. Marciano

[12] where this value of �0 is in fact advocated.
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The present level of accuracy achieved on the �s(m
2
� ) determination is fairly compati-

ble with values above this convergence radius. The slow apparent convergence of the Rpert
�

expansion should not be attributed to the original Kn expansion of the dynamical two-

point correlation function D(s). It is the large log (s) range (i.e. 2�i) over which �s(s)

is made to run, when calculating the A(n)(a�) integrals, which produces this unwanted

behaviour. Note3 that there is no deep reason to stop the A(n)(a) integral expansions at

O(�3s). One can calculate the A(n) expansion to all orders in �s, apart from the unknown

�n>3 contributions, which are likely to be negligible (see below). Even for a(m2
� ) larger

than the radius of convergence (16), the integrals A(n)(a) are well-de�ned functions that

can be numerically computed, by using in eq. (8) the exact solution for �s(s) obtained

from the renormalization-group �-function equation. For illustration, the perturbative ap-

proximation to �(0) = (Rpert
� �3)=3 is shown in �g. 1 at the three-loop level (i.e. �n>3 = 0

and ~Kn>3(1) = 0), as a function of the order m where the expansion in powers of a has

been truncated. The results plotted in �g. 1a correspond to � = 1 and a� = 0:1. As m

increases, the series converges to the exact result indicated by the horizontal line, but the

di�erence is still sizeable for the m = 3 truncation that appears in the midst of a large

initial oscillation. Fig. 1b shows the results obtained for �m� = �0 and a� = 0:17 under

the same assumptions; in this case, the non-convergent series makes very large oscillations

around the exact result.

Thus a more appropriate approach is to use a ~Kn expansion of Rpert
� as in eq. (7), and

to fully keep the known 3-loop-level calculation of the functions A(n)(a). The perturbative

uncertainties will then be reduced to the corrections coming from the unknown �n>3 and

Kn>3 contributions, since the gn(�) contributions are properly resummed to all orders. To

appreciate the size of the e�ect, Table 1 gives the exact results for A(n)(a) (n = 1; 2; 3)

obtained at the one-, two- and three-loop approximations (i.e. �n>1 = 0, �n>2 = 0,

and �n>3 = 0, respectively), together with the �nal value of �(0), the perturbative QCD

correction to R� , for a(m
2
� ) = 0:1. For comparison, the numbers coming from the truncated

expressions at order �3s(m
2
� ) are also given. Although the di�erence between the exact and

truncated results represents a tiny 0:6% e�ect on R� , it produces a sizeable 4% shift on the

value of �(0). The �(0) shift, which re
ects into a corresponding shift in the experimental

3 A similar suggestion has been recently made in reference [13].
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Table 1
Exact results for A(n)(a) (n = 1; 2; 3) obtained at the one-, two- and three-loop ap-

proximations, together with the �nal value of �(0) � (Rpert
� � 3)=3, for a(m2

� ) = 0:1. For
comparison, the numbers coming from the truncated expressions at order �3s(m

2
� ) are also

given.

Type of calculation A(1)(a) A(2)(a) A(3)(a) �(0)

�n>1 = 0 0:13247 0:01570 0:00170 0:1690

�n>2 = 0 0:13523 0:01575 0:00163 0:1714

�n>3 = 0 0:13540 0:01565 0:00160 0:1712

O(�3s(m
2
� )) 0:14394 0:01713 0:00100 0:1784

�s(m
2
� ) determination, depends strongly on the coupling constant value; for a(m2

� ) = 0:14

the �(0) shift reaches the �20% level.

Notice that the di�erence between using the one- or two-loop approximation to the

�-function is already quite small (1:4% e�ect on �(0)), while the change induced by the

three-loop corrections is completely negligible (0:1%). Therefore (unless the �-function

has some unexpected pathological behaviour at higher orders), the error induced by the

truncation of the �-function at third order should be smaller than 0:1% and therefore can

be safely neglected. For the sake of illustration a sample of a�nA(n)(a) functions, obtained

through numerical integration, are represented on �g. 2a. One observes that A(n)(a)� an

for large values of n or a; hence the A(n) expansion of Rpert
� converges faster than the D(s)

expansion itself.

The only relevant source of perturbative uncertainty is then the unknown higher-

order coe�cients Kn>3. To obtain an estimate of the error induced on �(0), one can

make the na��ve guess �(�(0)) � �(K3=K2)K3A
(4)(a), which for a(m2

� ) = 0:1 gives a small

�(�(0)) = �0:004 e�ect. The sensitivity of �(0) on K4 can be appraised from �g. 2b where

the QCD perturbative prediction is represented as a function of a for the three values

~K4(1) = +25; 0;�25. In particular, one observes, for a = a� ' 0:19, that the fourth-

order term ~K4(�)A
(4)(a�) cancels out (cf. �g. 2a) while the higher-order contributions

~Kn(�)A
(n)(a�) (n > 4) are also reduced4 (A(n)(a�)� an

�
for n� 4).

4 It follows that, for the particular choice of renormalization scale �� = ��m�

which satis�es �(0)[exp] = �(0)(a�� = a�), the higher-order uncertainties are of order

~K5(��)A
(5)(a�) = �10

�4 ~K5(��).

6



To estimate the sensitivity of the �s determination on the choice of renormalization

scheme, we consider the e�ect of changing the renormalization scale and changing the �3

coe�cient independently (a more involved analysis of this problem can be found in ref.

[14]). We consider as an example an experiment that obtains �(0)[exp] = 0:2. The �s(M
2
z )

determination extracted from this value as a function of the chosen renormalization scale

� = �m� is shown in �g. 3a. The �s evolution from the tau mass to the Z0 mass is

done following ref. [15], but changing the 
avour by one unit at the �2 = 4m2
q (charm

and bottom) crossings rather than at the �2 = m2
q crossing, in order to be consistent

with the use of nf = 3 at � = m� > mc. The full line [curve (1)] corresponds to the

determination obtained using the A(n)(a�) expansion of eq. (7) while the dotted line

[curve (2)] corresponds5 to the �s determination using the an� expansion of eq. (13). One

observes that the �-scale ambiguity is drastically reduced by the use of eq. (7). The

resulting theoretical uncertainty, de�ned to be half the range spanned by varying � from

1 GeV to 2:5 GeV, is �0:0009 using eq. (7), and �0:0035 using eq. (13). Hence, the

�-scale uncertainty attached to eq. (7) reaches a completely negligible level, owing to the

actual experimental errors (typically �0:006). The shift between the two �s(M
2
z ) values

obtained using eq. (7) and eq. (13) (0:003) is within the previously estimated theoretical

uncertainties [8] (e.g. it is of the same size as the �-scale ambiguity of eq. (13)). One

remarks also that the Principle of Minimal Sensitivity (PMS) introduced in [16] points

towards a value which is close to the tau mass (�PMS = 1:3 GeV) for eq. (7), in contrast

with the disturbingly small value obtained using eq. (13) (�PMS = 0:85 GeV).

Similarly, theMS �s(M
2
z ) value obtained when changing the Renormalization Scheme

through the �3 coe�cient, according to ref. [16]:

~KRS
3 (1) = ~KMS

3 (1) � C ;

�RS3 =�MS
3 + C�1 ;

�RSs (m2
� ) '�MS

s (m2
� )

�
1 +C

 
�MS
s (m2

� )

�

!2�
;

(17)

is shown in �g. 3b for the two expansions, as a function of �RS3 =�MS
3 . In that case also the

uncertainty is signi�cantly reduced using eq. (7). The resulting theoretical uncertainty

5 The fall-o� of the curves at small values of � is due to the fact that with such small

scales the assumed �(0) value cannot be obtained exactly (i.e. the experimental �2 would

sharply increase in that region).
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using eq. (7), de�ned to be half the range spanned by varying �RS from 0 to 2�MS, is

�0:0005; with these purely conventional error de�nitions, it is comparable but smaller than

the �-scale error.

Another means of estimating the theoretical uncertainty is to consider the e�ect of

the missing ~K4(1) coe�cient on the �s determination. Figure 4a represents the �s(M
2
z )

determination extracted from �(0)[exp] = 0:2, as a function of �, using the A(n) expansion

to order n = 4 with ~K4(1) = �25 [curve (1)], ~K4(1) = 0 [curve (2)], ~K4(1) = +25 [curve

(3)] and to order n = 3 [curve (4), the same as curve (1) of �g. 3a]. Note that the four

curves cross exactly at the scale �� = ��m� , where the a�� value which is given by the

n = 3 determination yields A(4)(a�� ) = 0 (cf. �g. 2a) and that, by construction, curves

(4) ( ~K4(�) = 0) and (2) ( ~K4(1) = 0) cross again at � = m� (� = 1). Using the n = 4

prediction, one observes that the �-scale ambiguity is almost totally removed. Thus, the

only remnant source of theoretical uncertainty, in that case, comes from ~K4(1). Taking half

the largest range spanned by varying K4 from �25 to +25 as a measure of this uncertainty,

one obtains �0:0008, which is of a similar size as the �-scale error. Figure 4b is the same

as �g. 4a, but using the an expansion. Again, the fall-o� of the curves at small � values

re
ects the fact that �(0) = 0:2 cannot be obtained with too small scales. One observes

that, even at order n = 4, the � dependence is reduced, but not removed, when using the

an expansion; therefore the estimation of the theoretical uncertainty must account for it.

To summarize, we have shown that the standard QCD perturbative prediction to the

total hadronic width of the tau lepton leads to a non-convergent expansion for �s > 0:11�.

The lack of convergence is not connected with the dynamical two-point correlation func-

tion, but is due to the large log (s) range over which �s is made to run in the course of

the calculations. The revised expression we propose makes use of the known coe�cients of

the Renormalization Group Equation to resum the non-convergent part of the series to all

orders in �s. In addition, it has been shown that, using this approach, the Renormaliza-

tion Scheme dependence is strongly reduced with respect to the standard one and that the

higher-order uncertainties are better de�ned. Within the framework of this revisited QCD

prediction, the uncertainties attached to the experimental �s determination derived from

R� are presently dominated by experimental errors. The theoretical uncertainties due to

unknown higher-order contributions and Renormalization Scheme ambiguities have been

estimated to be at the level of �[�s(M
2
z )] � 0:001. A complementary analysis, using the

hadronic �nal state invariant-mass-squared distribution, will be presented in a forthcoming
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publication [17]. Combined with the R� measurement, this more complete analysis allows

for the simultaneous determination of �s and of the relevant non-perturbative terms, thus

removing most of the theoretical uncertainties attached to the non-perturbative contribu-

tions.
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Figure captions

� Figures 1 : convergence of the �s expansion.

�(0), the QCD perturbative correction to R� , as a function of m, the order to which

the �s perturbative expansion is stopped (�n>3 = 0 and ~Kn>3(1) = 0). Figures 1a and 1b

correspond to � = 1, a� = 0:1 and � = eI1=2, a� = 0:17 respectively. In the latter case the

coe�cients ~Kn(�) 6= 0 are accounted for.

� Figures 2 : Sensitivity to the higher-order contributions

Figure 2a represents the a�nA(n)(a) functions for n = 1; 2; 3; 4; 5 and 10. One observes

that A(3)(a) = 0 for a particular a� value and that A(n)(a) � an for large n or a values.

Figure 2b shows the �(0)(a) function for the three values ~K4(1) = +25; 0;�25.

� Figures 3 : Renormalization Scheme uncertainties.

One considers an hypothetical experiment having measured �(0)[exp] = 0:2 from which

is extracted a determination of the MS value of �s(M
2
z ). Figure 3a represents the �s(M

2
z )

determination as a function of the chosen renormalization scale � = �m� . Figure 3b shows

the �s(M
2
z ) determination as a function of the second renormalization scheme dependent

quantity : �RS3 =�MS
3 . In both �gures, the curves (1) and (2) are obtained using the

A(n)(a�) and an� expansions, respectively.

� Figure 4 : Overall theoretical uncertainties.

Figure 4a represents the �s(M
2
z ) determination extracted from �(0)[exp] = 0:2 using

the A(n) expansion to order n = 4 with ~K4(1) = �25 (curve (1)), ~K4(1) = 0 (curve (2)),
~K4(1) = +25 (curve (3)) and to order n = 3 (curve (4)). The four curves cross exactly at

the scale �� = ��m� . Figure 4b is the same as �gure 4a, but using the an expansion.
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