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ABSTRACT

The total 7 hadronic width can be accurately calculated using analyticity and the op-
erator product expansion. The theoretical analysis of this observable is updated to include
all available perturbative and nonperturbative corrections. Experimental measurements of
7 decay rates are used to determine with high precision the QCD running coupling con-
stant at the scale of the 7 mass. The analysis is also used to study the present discrepancy
between the experimental measurements of the leptonic branching fractions of the 7 and
its total lifetime.
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1. INTRODUCTION

The  is the only presently known lepton heavy enough to decay into hadrons. Its
semileptonic decays are an ideal tool for studying the hadronic weak currents under very
clean conditions [1]. Moreover, the inclusive character of the total 7 hadronic width makes
it possible to do an accurate theoretical calculation of this observable using standard field
theoretic methods [2-7]. Our aim in this paper is to present a detailed analysis within the
standard model of all the contributions to the 7 hadronic width, taking into account ad-
ditional higher-order corrections to the results previously discussed in the literature. This
analysis will be used to provide an updated determination of the QCD running coupling
constant a,(M;) at the scale of the 7 mass. It will also be used to study the present
discrepancy [8,9] between measurements of the leptonic branching fractions and the total
lifetime of the 7.

We shall be primarily concerned with the ratio

R = (7~ — vyhadrons(y))
"= T e (1)

(1.1)

where (+) represents possible additional photons or lepton pairs. If strong and electroweak
radiative corrections are ignored and if the masses of final state particles are neglected,
the universality of the W-coupling to the fermionic charged currents implies that this ratio
should be

Rreve = N, (|Voal® + [Vas|?) ~ 3, (1.2)

which compares reasonably well with the formal experimental average [9] RZ*P = 3.61 &
0.05. This provides strong evidence for the colour degree of freedom N.. We will show
in the following that QCD dynamics is able to account quantitatively for the difference
between the naive prediction and the measured value of R;.

The experimental value for R, is actually determined by measuring the leptonic

branching fractions:
1_B,-B,

B, ’
where Be = T(7~ — vr£~74(7))/Tr and T'; is the total decay rate. The branching fractions
are measured by accumulating a large number of 7 decay events, counting the number of

ezp, B —
ReepB =

(1.3)

decays into specific channels, and correcting for various experimental biases. An indepen-
dent determination of R, can be obtained by measuring the lifetime 1/T',:

Rezp,]_" — FT - FT-—J—e - PT-—-»,u
T = y
Lre

(19

where [yy = (7~ — v£~7(7)). Because the decays 7~ — v-£~7g(y) are purely
electroweak processes, their rates can be calculated theoretically with great accuracy. The
only unknown in (1.4) is therefore the total decay rate I';. It is measured by collecting a
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large sample of 7 decay events and measuring the distribution of the decay lengths of the
7. This measurement of R, is therefore completely independent of the branching fraction
measurement (1.3). The present results [9] for these two independent determinations of
R, are

Re*»B =366+0.05, (1.5a)
Re*PT =3.3240.12, (1.58)

which differ by about two standard deviations. The experimental number quoted before,
Re*P = 3.61 % 0.05, is just the formal average of (1.5a) and (1.5).

We will show conclusively in this paper that the uncertainties in the theoretical cal-
culation of R, are quite small. The value of R, can then be accurately predicted as a
function of a,(M;). Alternatively, measurements of inclusive 7 decay rates can be used
to determine the value of the QCD running coupling a,(M,) at the scale of the 7 mass.
In fact, 7 decay is probably the lowest energy process from which the running coupling
constant can be extracted cleanly without hopeless complications from nonperturbative
effects. As we shall see in this paper, the 7 mass M, = 1.784GeV lies fortuitously in
a “compromise” region where the coupling constant a,{M-) is large enough that R, is
sensitive to its value, yet still small enough that the perturbative expansion in powers of
as (M) still converges well. Moreover, as will be shown, the nonperturbative contributions
to the total 7-hadronic width are very small.

It is the inclusive nature of the total semihadronic decay rate that makes a rigorous
theoretical calculation of R, possible. The only separate contributions to R that can
be calculated are those associated with specific quark currents. We can calculate the
nonstrange and strange contributions to R,, and resolve these further into vector and
axial vector contributions. Since strange decays can not be resolved experimentally into
vector and axial vector contributions, we will decompose our predictions for R, into only

three categories:
R, = R-,-’V + Rra+ R,-,s. (1.6)

Nonstrange semihadronic decays of the 7 are resolved experimentally into vector (Rr ) and
axial vector (R, 4) contributions according to whether the hadronic final state includes
an even or odd number of pions. Strange decays (Rrs) are of course identified by the
presence of an odd number of kaons in the final state. The naive predictions for these
three ratios are R, v = R, 4 = {N./2)|Vya|* and R, s = N|V,.|%, which add up to (1.2).

The outline of the remainder of this paper is as follows. In section 2, we describe
the theoretical framework in which the ratio R, is calculated. In section 3, we collect
together all the QCD corrections to R,. They include the perturbative QCD corrections
neglecting quark masses (section 3.1), the leading quark-mass corrections (section 3.2}, and
QCD corrections of dimensions 4 (section 3.3), 6 (section 3.4), and higher (section 3.5). In
section 4, we present the electroweak corrections. Section 5 contains a detailed numerical
analysis of all the contributions. Our phenomenological predictions and conclusions will
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be summarized in section 6. Our calculations make use of a number of previous results
on the operator product expansion (OPE) for current-current correlation functions which
are collected together into two appendices. Appendix A is a compendium of the Wilson
coefficients for this expansion, including next to leading order corrections. Appendix B de-
scribes the basis of dimension 4 operators which have the required scaling and factorization
properties.

2. THEORETICAL FRAMEWORK

The theoretical analysis of the inclusive semihadronic decay rate of the 7 begins with
the two-point correlation functions for the vector Vi = v and axial vector Afj =
d’j’}"u'Ys‘;bi color singlet quark currents:

I, (g) = i [ 'z ei9® < OT(VAWVEONI0 >, (2.1a)
e, (q) =4 / diz 17 < O|T(AY(2)A%(0))]0 > . (2.15)

Here, the subscripts ¢, = u,d,s denote light quark flavours. The vector (V) and axial
vector (A) correlators in (2.1) have the Lorentz decompositions

My a(a) = (—9""¢" + ¢*¢) 1y 4(6) + ¢ Ty (%), (2.2)

where the superscript (J) denotes the angular momentum J =1 or J =0 in the hadronic
rest frame.

The imaginary parts of the correlators H'(ii)V/ 4(¢%) defined in (2.2) are proportional
to the spectral functions for hadrons with the corresponding quantum numbers. The
semihadronic decay rate of the 7 can be written as an integral of these spectral functions
over the invariant mass s of the final state hadrons:

M} 2
7 ds s E . .
Rr = 1271' ) _ﬂf_g- (1 -_ _ﬂl—g) [(1 + 21—\4—3) ImH(l)(s ‘|‘ EE) + ImH(D) (5 + ZE)] . (23)
The appropriate combinations of correlators are

MO)(s) = Waal? (A0(6) + D4 + VauP () +T04) - (2)

Since the hadronic spectral functions are sensitive to the nonperturbative effects of
QCD that bind quarks into hadrons, the integrand of (2.3) can not be calculated at present
in any systematic way !. Nevertheless the integral itself can be calculated systematically
by exploiting the analytic properties of the correlators II{/)(s) [11]. They are analytic

! Some early attemps to estimate the high-energy region can be found in ref. [10].
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Fig.l. Integration contour in the complex s-plane, used to obtain eq. (2.5).

functions of s except along the positive real s-axis, where their imaginary parts have
discontinuities. The integral (2.3) can therefore be expressed as a contour integral running
from s = M? — ie below the axis to s = M2 + ie above the axis . By analyticity, the
integral along the entire contour in Figure 1 vanishes. Thus R, can be expressed as an
integral around the contour that runs counter-clockwise around the circle [s| = A2

. ds s \? s
Rr = 67['2 [3|=M2 M_3 (1 - Mz) [(1 +2H'2—) H(l)(s) + H(O)(S) . (2.5)

T

The naive prediction (1.2) for R, is reproduced by inserting into (2.5) the correlators for
massless noninteracting quarks:

N,
ngl_,)v(s) = HE;,)A(S) = — 133 log(—s) + constant, (2.6a)

Iy (s) = I(s) = 0. (2.60)

The advantage of the expression (2.5) for R, over (2.3) is that it requires the correlators
only for complex s of order M2, which is significantly larger than the scale associated
with nonperturbative effects in QCD. The short distance OPE can therefore be used to
organize both the perturbative and nonperturbative contributions to the correlators into
a systematic expansion in powers of 1/s. The possible uncertainties associated with the
use of the OPE near the time-like axis are absent in this case because the integrand in
(2.5) includes a factor (1 — s/M2)?, which provides a double zero at s = M2, effectively

suppressing the contribution from the region near the branch cut.

4



For scalar correlators, the operator product expansion takes the form [12]

I (s) = Z (-—__55/7 Z C (s, ) < O(p) >, (2.7)

D=0,2,4,... dimQ=D

where the inner sum is over local gauge invariant scalar operators of dimension D. The
parameter g in {2.7) is an arbitrary factorization scale which separates long distance non-
perturbative effects, which are absorbed into the vacuum matrix elements < O(y) >, from
short distance effects which belong in the Wilson coefficients C(/)(s, #). The only operator
of dimension 0 is the unit operator. It is convenient to treat running quark masses m;(u)
as operators, in which case the dimension-2 operators are of the form m(u)m;(u). The
first dynamical operators appear at dimension 4 and are scale invariant; they are the quark
condensates < mj¥1; > and the gluon condensate < (a;/7)GG >. At dimension 6, there
are dynamical operators with a nontrivial dependence on the scale . Since logarithms
of light quark masses represent long distance kinematical effects, it is essential that all
such logarithms be factorized into the matrix elements < O(u) >. The Wilson coeflicients
C)(s, ) are then dimensionless functions of s and g only. Since they represent short
distance effects, they can be computed perturbatively as expansions in powers of a.(p).
For s on the contour |s| = M2, large logarithms of the form log(—s/p?) in the perturbation
expansion of C(Y)(s, u) can be avoided by choosing the factorization scale to be pp = M-.

The current-current correlators defined in (2.1) should be smooth functions of ¢* as
g — 0. From the Lorentz decompositions (2.2), one can see that while T1(%) (42) and TI(}) (¢?)
may both have poles at g2 = 0, the combination I+ (g%) = I (¢?) + IV (g*) must
have a smooth limit as ¢ — 0. It is then convenient to rewrite eq.(2.5) in the form

. ds s \? 8 8
R, = 6mi /|s|=M2 i (1 — M?) KHZ"J\E) H(O“)(s)—zMgH(”)(s) . (28)

If II(9(s) has a pole at s = 0, it cancels in II®**)(s) and it contributes a constant to the
sII(®(s) term, which integrates to 0 by Cauchy’s residue theorem. Whether or not there
is a pole at ¢ = 0 is a nonperturbative question involving long distance physics. From
our understanding of the nonperturbative behavior of QCD, we know that the vector
correlators Hgi)v(s) have no poles near s = 0. The axial vector correlator HE[.?, 4(s) has a
pole at s = m2, where m, is the mass of the pion. In the chiral limit my,mg — 0, the
pole approaches s = 0 and the pion becomes a Goldstone boson. The Goldstone nature
of the pion makes it impossible to separate the transverse and longitudinal components of

the axial two-point function in the OPE; this does not affect, however, the calculation of

R,, since only the combinations Hiad—:_j) and Sﬂiﬂd)’ 4 are needed to compute the r.h.s. of
eq. (2.8), and these can be unambigously calculated using the OPE.

The dependence of the correlator (2.7) on the complex variable s resides in the pow-
ers (—s)"P/? and in the Wilson coefficients C(s, 1), which have a weaker logarithmic
dependence on s. After inserting the functions (2.7) into (2.8) and evaluating the contour
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integral, the result can be expressed as an expansion in powers of 1 /M2, with coefficients
that depend only logarithmically on M,. It is convenient to express the corrections to
R, from dimension D operators in terms of the fractional corrections 5 i 1), s to the naive

contribution from the current with quantum numbers 7,V or ij, A:

-D
B = Y A2y ds (=87 s\’
i, V/A MP |8|=Mz M.?. ME M.?

dimO=D
8
[(14—2@) :;34\:’}34(‘57 #)— C(OV/A(‘SM”)]
(J)

where C;; v/ 4(8, 1) are the Wilson coefficients for the correlators H( iV 4(8). The contour
integral in (2.9) is dimensionless and depends only on the scales p and M,. Setting
¢ = M, , the contour integral can be expressed as a function of the running coupling

(2.9)

constant a,(M,) only.

The QCD calculation of R, has been criticized on the grounds that the operator prod-
uct expansion can not reproduce with sufficient accuracy the effects of hadronic thresholds
and resonances to allow any precise predictions [13]. This claim was based on calculations
using models of hadrons that were incompatible with some of the fundamental aspects of
QCD, such as chiral symmetry or the operator product expansion. R, depends only on the
integrated hadronic spectrum, and not on the detailed structure of the hadronic spectral
functions. Using the OPE, the integral (2.5) can be accurately calculated within QCD.
This prediction gives in fact a consistency constraint that any model of hadrons should
satisfy in order to be in agreement with QCD.

In terms of the fractional corrections defined in (2.9), the three experimentally mea-
surable components of R, defined in (1.6) become

Ry =3 Syl {1460+ ¥ 65‘2}, , (2.10a)
D=24,.

1«3,,A=_|VM|2 1+60+ 3 5;1;’;1 , (2.100)
D=24,.

Rrs = 3|Vus|* [ 146+ > &2, (2.10¢)
D=2,4,...

where 6(JD) is the average of the vector (V) and axial vector (A) corrections: 55;) ) =
(65;3‘)/ + 553 /2. The dimension-0 correction 6(9) is the purely perturbative correction
neglecting quark masses, which is the same for all the components of R,: 5(2)V A= 640,

Adding the three terms in (2.10), the total ratio R, is

Rr = 3(Vaal? +Vael®) [14+6@ + > (c052006§§)+5in2905gﬁ?)) . (2.11)
D=24,..
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where the Cabbibo angle ¢ is defined by sin® 8¢ = |Vis|?/(|Vaa|® + [Vus|*)-

It is instructive to consider the form that the power corrections would take if the
logarithmic dependence of the Wilson coefficients C() (s, ) on s is neglected. In this case,
the contour integrals in (2.9) can be evaluated trivially using Cauchy’s residue theorem,
and are nonzero only for D = 2, 4, 6, and 8. The corrections simplify even further if
we also take the chiral limit m,,mg,m, — 0. The dimension-2 corrections then vanish
because there are no operators of dimension 2. In the chiral limit, both the vector and axial
vector currents are conserved, which implies sﬂgi-_‘;o)(s) = SHS;-{EO)(.s) = 0. Thus only the
11(°+1)(s) term in (2.8) contributes to R,. The form of the kinematical factor multiplying
IO+ (s) in eq. (2.8) is such that when the s-dependence of the Wilson coefficients is
ignored, only the D = 6 and D = 8 contributions survive the integration. The power
corrections to Ry in (2.10) then reduce to [2-4]

(D=4) _
bijvsa =0 (2.12a)
(D=6)
o3, < 0]
(D=6) [Z 1j,V/A
§ivra ~ —24x? Ve : (2.12b)
(D=8)
Tt <o >]
6P=8) v _16x? [ cAdl (2.12¢)
iy, V/A — ME ) .
S >0 (for n238). (2.12d)

When the logarithmic dependence of the Wilson coefficients on s is taken into account,
operators of dimensions other than 6 and 8 do contribute, but they are suppressed by one
or more powers of ay(M,). The largest power corrections to H; come from dimension 6
operators, which have no such suppression. We shall show in Section 5 that the power
corrections to R, are numerically very small, and this is due in large part to the fact that
the most important such correction falls off like the sixth power of 1/M;.

3. QCD CORRECTIONS
§.1. Perturbative Corrections

We shall find in Section 5 that the dimension 0 QCD correction to R, is by far the
most significant numerically. It can be obtained by calculating the inclusive decay rate of
the 7~ into v, plus gluons and massless quarks using perturbative QCD, ignoring all the
nonperturbative complications of the strong interactions. The formalism of the OPE in
Section 2 is required only to justify the leading role of the perturbative QCD result, and
to estimate the magnitude of the nonperturbative corrections.

The perturbative QCD contribution to R, can be expressed as a power series in
as(M,) and it is known to order as(M;)?. It can be extracted from a recent calculation
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to third order in a, of the analogous ratio R +.-(s) for e*e™ annihilation:

o(ete™ — hadrons(y))
o(ete™ — ptu=(7))

Ro+.-(5) = = 127 ImIl. (s + t€), (3.1)

where Il (s) is the correlator associated with the conserved electromagnetic current
JE, = ¥, Qv (i = u,d,s,c,...). As in the case of R;, the OPE can be used to
expand R(s) in powers of 1/s with all long distance nonperturbative effects factorized
into vacuum matrix elements < O(p) >. The magnitude of these power corrections falls
rapidly with s, and they are completely negligible for /s beyond a few GeV. Thus at high
energy and far from quark thresholds, R(s) is given to great accuracy by the perturbative
contribution alone:

S (D), ()

RIE() = 3000 -
(24

+ (z Q:)*

(3.2)

b

where the error is of order a,(1/s )*. Here, a,(4/s ) denotes the strong running coupling
constant defined by the modified minimal subtraction renormalization scheme (M) and
evaluated at the scale s. The O(a?) coefficient was calculated more than a decade ago [14]:
Fy = 1.9857 — 0.1153n ¢, where ns denotes the number of quark flavours. A caleulation of
the O(a3) correction was reported in ref. [15] , where a very large value of F; was found
(Fy = 67.340 for ny = 3). This could cast doubts on the usefulness of a perturbative
expansion in powers of a,. However, some errors were discovered [16] in a computer
program used in this calculation. The four-loop corrections to R(s) have been re-evaluated
recently by two different groups, with the result [17,18]

Fy = —6.6368 — 1.2001n; — 0.0052n% . (3.3)

The new value (Fy = —10.284 for ny = 3) is smaller by almost an order of magnitude and
has the opposite sign from the one given in ref. [15].

To calculate the perturbative QCD corrections to R;, we need the perturbative cor-
rections for the combinations of correlators in (2.4). We are neglecting quark masses,
so both the vector and axial vector currents are conserved. This implies sII(®(s) = 0
and therefore only the correlator II{®+)(s) contributes to (2.8) . Moreover, for massless
quarks, the perturbative corrections to the spectral functions Imﬂggj,l/zq(s) are identical
to the corrections to the 3, @? term in (3.2) . That these corrections are identical for
vector (V') and axial vector (A) correlators is a consequence of the chiral invariance of the
QCD interaction [19]. The term proportional to (¥, @:)* in (3.2) results from diagrams
in which a separate quark loop is attached to each current. It contributes only to flavour
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singlet correlators, and thus does not contribute to R;. The perturbative expression for
the total spectral function for 7 decay to order a(y/5)? is then given by

2
all®* (s ie) = 5 (Vaal? +[Vaol?) |1+ a_(??@ o (%(f))

o
+ F (a“'(f))sl :

In spite of the fact that the perturbative expression (3.4) is a poor approximation
to the hadronic spectral function over most of the range 0 < s < MZ, it can be used to
calculate R, by inserting it for ImII)(s +i€) in the integral (2.3) . The reason is that the
contour integral arguments of Section 2 guarantee that the dimension 0 contribution to R,
can be expressed as a power series in a,(M,). While it is not an accurate representation
of the spectral function, the perturbative expression (3.4) does give the correct coefficients
in this expansion. The coupling constants a,(1/3 ) in (3.4) can be expanded in powers of
as(M,), with coefficients that are polynomials in log(s/M?):

(3.4)

2

1 s 1 5. o5 8 as(M;) 3

where 8y = (2ny — 33)/6 and B2 = (19ns — 153)/12 are the first two coefficients of the
QCD p-function. The integrals over s are then all elementary, and the result is [3-5]

(3.5)

Rgeﬂ =3 (|V'ud|2 + IVuS|2)

T

3
+(rm - 2+ 2) (222)].

(3.6)

288 1

We stress that the use of the perturbative expression (3.4) in the integral (2.3) is just
a convenient shortcut for getting the expansion of R, in powers of a,(M,). A rigorous
derivation of the result (3.6) is given in Appendix A. It makes use of the contour integral
formula (2.8) and requires the knowledge of the correlators N(Y)(s) only on the contour
|s] = M2 where perturbation theory is valid.

A contour integral expression that reproduces the first two correction terms in (3.6)
was first given in {2]. The complete result (3.6) was expressed as an expansion in powers
of 1/log(M,/Azrz) in ref. [4], where it was pointed out that the sensitivity of R to Az
could be used to measure the fundamental QCD scale. This result was first expressed
compactly as a power series in a,(M;) in ref. [5].
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Setting the number of flavors ny equal to 3 in (3.6) , the fractional correction to the
naive prediction (1.2) for R, is

2 3
§(D=0) _ “_—”(:4”) +5.2023 (M) + 26.366 (ﬂgﬁ)) : (3.7)

T

with an error of order a,(M,)*. The coeficient of (a(M,)/ 7r)3 is smaller by a factor of
4 than the coefficient that followed from the erroneous calculation of ref. [15].

3.2, Leading Quark Mass Corrections

The 1/M? contributions §(P=2) to the ratio R, are simply the leading quark mass
corrections to the perturbative QCD result of section 3.1. While corrections proportional
to m;m; are certainly tiny for the up and down quarks, the correction from the strange
quark mass may not be negligible for strange decays. The leading quark mass corrections
to the correlators (2.1) have been calculated to next-to-leading order in a, in refs. [20],
[21] and [22], and are given in Appendix A.2. Inserting these expressions into (2.8) and
evaluating the contour integral, we find that the fractional corrections to R, defined in
(2.9) are

(D=2) _ 16 a (M,)] mi(M;) + m3(M,)
Pvia =8 [H 3 M2 (3.8)
+4 (14 g’?_as(MT) mi(MT)mJ(MT) .
3 vy M?2 ’

where m;(M.) is the running mass of the quark of flavor ¢ evaluated at the scale M;. The
error in the coefficients are of order a,(Af;)?. The average of the vector and axial vector
contributions is

. (3.9)

sP=2) _ _ 1+EQ’3(M1-) m?(M.) +m2(M,)
b 3 T M?2

T

The leading quark mass correction was given in [2] in the form of a contour integral.

3.8, Dimension § Corrections

If the inclusive rate for 7~ to decay into gluons and massive quarks is calculated
using perturbative QCD and expanded to fourth order in the quark masses m;, the co-
efficients of the m* terms will contain logarithms of the quark masses. These logarithms
are long distance kinematical effects of the quark masses. In the framework of the OPE
described in section 2, they should be factorized into vacuum matrix elements of local
operators < () > of dimension 4. As discussed in Appendix B, these operators can
be constructed so that they are independent of the renormalization scale . The matrix
elements of these renormalization-scale independent operators are called the gluon conden-
sate < (as/m)GG > and the quark condensates < m;¥;; >. In addition to having small
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perturbative contributions proportional to the fourth power of the light quark masses, the
quark and gluon condensates also have large nonperturbative contributions. Besides these
condensates, the only other dimension-4 operators are products of four running quark

masses.

The dimension 4 terms in the OPE have been computed beyond leading order in
refs. [22] and [23]. They are expressed in terms of the scale invariant quark and gluon
condensates in appendix A.3. Inserting those expressions into the contour integral in (2.9),
the fractional corrections to R, are found to be

so=t _ 11 , (as(Mr))z < (@s/7)GG >

GViA 4 T M#
9 (oa(MH\’| < (mi F my) (s F ¥5¢5) >
+ 1672 1+§(a (71- )) ] (m mj)gw;} i)
(M < mipgah; + mypi; >
— 18%2 (a (ﬂ_ )) m M;%mj i3 o
2 - 3.10
_ 877 (as(i‘/fr)) Zk: < miﬁ;% >
+ 48 (as(M,-))_l + 22 [mi(M;) F m;(M;)] [m?(MT) + m?(Mr)}
7 s 7 M2 '
- | | 2 2
n 6m£(Mr)mJ(Mr)[TE;Mr) F m;(M-)]? 436 (sz\)/_fi:j (M) -

The errors in the coefficients are of order o (M-)%, a,(M;)}, and a,(M,) for the
< (as/m)GG >, < my1p >, and m?* terms, respectively. The inverse power of the coupling
constant multiplying one of the m?* terms arises from factorizing logarithms of a quark
mass into the quark and gluon condensates [22]. The quark condensate contribution to
leading order in o, was given in [2]. A previous calculation [6] of the coeflicient of the gluon
condensate contained an algebraic error. Note that the gluon condensate is suppressed by
two powers of a,(M,)/x. This arises because the gluon condensate only contributes to the
TI(O+D) correlator and the constant term in its Wilson coefficient gives a vanishing contri-
bution to the contour integral (2.9) . The first nonvanishing contribution comes from the
variation in s of the order , term in the Wilson coefficient, and this is of order a?.
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The average of the vector and axial-vector corrections is

5= _ 11 (as(Mf))z < (as/m)GG >
1} -

4 T M2
27 Cks(M,-) 2 <mi@55¢-+m-1ﬁ-¢- >
2 <0 i iYi¥;
+ 167 I:l-l— 3 ( — ) ] Y
2 {as(M)\ < mudthn >
o ( = ) 2.~
m3 (M, )m3(M;)
+ 24 M‘#J
|88 (e - | 22| mi(Mr) + my(M:)
7 7 M? '

3.4. Dimension-6 corrections

(3.11)

The largest power corrections to the ratio R, come from the 4-quark operators of

dimension 6. These operators have the form (v;T'%;¥x'¢;)(1t), where T is the product of
a Dirac matrix and an SU(3) color matrix. The other dimension-6 operators are G*(¢) =
fobe GLY GiAGY¥ plus lower dimension operators multiplied by running quark masses. The
coeflicient function of G*(g) vanishes to leading order in «, [24], so we will neglect it. We
also neglect all the dimension 6 operators that are suppressed by powers of the light quark
masses.

The coefficient functions for the 4-quark operators have been calculated beyond leading

12

order in ref. [25] and are given in Appendix A.4. After inserting them into the contour
integral (2.9) and setting the renormalization scale to 4 = M-, the fractional correction to
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(3.12)
The upper component of (_:5) or (¥) is for the vector (V) correlator, while the lower
component is for the axial vector (A).

The number of independent operators appearing in (3.12) is rather large. At present,
we don’t have precise phenomenological estimates of their matrix elements that can match
the accurate calculations of their Wilson coefficients. The matrix elements of 4-quark oper-
ators have been traditionally simplified using the vacuum saturation approximation {12] to
express them in terms of products of 2-quark matrix elements < ¥ip(p) >. Unfortunately
the vacuum saturation approximation is inconsistent with the scaling properties of the
4-quark operators [26], so the terms of order o2 in the Wilson coefficients are meaningless
within this approximation. Keeping only the terms of order @, in the Wilson coefficients,
the vacuum saturation approximation applied to (3.12) gives

5P=8) o 4 2567 as(1) < Pitpi(p) >< 1) >

via T 3 T M$
) _ ;- \ (3.13)
2567 as(p) < papi(p) >* + <) >
I M? ‘

T

The combination of operators a (k) < ¥;9;(p) >< ¥i;() > is almost scale invariant:
its anomalous dimension is {5 + 271 )as/7, which is fortuitously small for QCD with 3
flavors of quarks. Thus if the vacuum saturation approximation was a good one at some
hadronic scale , it should remain a reasonable approximation at the scale M:.
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Unfortunately, the vacuum saturation approximation is really just a simplifying as-
sumption. There are no strong theoretical reasons to expect it to be a good approximation
at any scale p. In fact, it is well known [27-29] that the vacuum saturation approximation
underestimates the D = 6 contributions to the OPE. One approach that has been used
to take into account deviations from the vacuum saturation approximation is to replace
ag(p) < Pihi(p) >< P;;(u) > in (3.13) by an effective scale invariant matrix element
pas < b >2 which is determined phenomenologically [27-29]. The approximation (3.13)
is then replaced by

§D=8) ( 7 )256773 pa, < P >2

i, VA — —11 97 M.f (3-14)

When these contributions are averaged to give §(P=%) there is a large cancellation between
the axial and vector contributions.

It is difficult to provide a reliable error estimate for the approximation (3.14), because
there is no limit of QCD in which it becomes exact. As we will see in section 5, the
uncertainty in the estimate (3.14) will be one of the main limitations to the accuracy of
our predictions.

3.5. Dimenston-8 and higher corrections

The contributions from higher dimension operators are expected to be quite small,
since they are suppressed by additional powers of M.. For D > 10, the power corrections
are further suppressed by one or more powers of a,(M;), as pointed out at the end of
section 2. They can therefore be safely neglected.

The coefficient functions of D = 8 operators contributing to the vector correlation
function (2.1e) have been computed in the chiral limit in ref. [30]. To our knowledge, the
corresponding calculation for the axial-vector correlator (2.15) has not yet been done. In
order to have an order of magnitude estimate of the uncertainty associated with the D =8
correction to R, we will consider the effect of the purely gluonic operators, which should
give the same contribution to the vector and axial-vector channels. Using the results given
in appendix A.5, it is straightforward to obtain:

- 1
M 607 ™ 27 <3301 + 590, + 3405 — 2180, >, (3.15)

where the O; (i=1,...,4) are G* operators, whose explicit form is given in eq. (A.15) .
The vacuum expectation values of these G* operators are not well determined. Their

size has been estimated in ref. [31] using heavy-quark expansion techniques together with

quark-condensate factorization. Inserting these estimates in eq. (3.15), one gets

- 39 ,< 2GG >? _
G R e e ~ —107%, (3.16)




which is completely negligible. Even if one asigns to this estimate a generous error of about
an order of magnitude 2, the D = 8 correction is much smaller than the uncertainties
associated with the lower dimension contributions to R, . Therefore we will neglect the
D = 8 contribution in the numerical analysis to be presented in section 3.

4. ELECTROWEAK CORRECTIONS

The electroweak corrections to the ratio R, defined in (1.1) are surprisingly large, be-
cause the electroweak corrections to the numerator of (1.1) include logarithms of Mz /M,
which are not present in the corrections to the denominator. The logarithms arise because
the pure QED correction to the decay rate for 7= — wvrdu or 7 — vrst is ultravio-
let divergent. There is no such divergence in the QED correction for the leptonic decay
7= — vpe—U,, because the divergence cancels for the particular combination of electric
charges of the particles in this reaction. In the Standard Model, the divergence in the
correction to the decay rate into quarks is cut off at the weak scale, leaving a logarithm
of Mz. A complete calculation of the electroweak correction to order a has recently been
carried out [32]. It can be expressed as a fractional correction épw that should be added
to the other fractional corrections in (2.11):

Sew = (3 + 2log MZ) a(f’l.

B i, (4.1)

The running coupling constant for QED at the scale M, is a(M;) = 1/133.29.

The logarithm in (4.1) was calculated previously [33]. It represents a short distance
correction to the low energy effective four-fermion coupling of the 7 to vrda or vrsu.
The QCD corrections discussed in Section 3 will also be modified by this short distance
correction. The logarithmic term in (4.1) should therefore be absorbed into an overall
multiplicative correction Sgw to the formula (2.11). Including the electroweak correction,

(2.11) should read

R, = 3([Vaal? + [Vasl?) Sew | 146w +8690+ ) (cos2 686 + sin? 905;13))
D=24,...
(4.2)

The residual clectroweak correction is 8%y = (5/12)a(M;)/m ~ 0.0010. To order a, the
short distance factor is Sgw = 1 + 2log(Mz /M, )e(M;)/m ~ 1.0188.

The renormalization group can be used to sum up higher order electroweak corrections
of the form a™log"(Mz/M,) . Assuming that the top quark has a mass larger than Mgz,
the short distance factor in (4.2) becomes [34]

Sow = (SUBIY"™ (SI) (SN

2 A bigger value for the D = 8 correction to the correlators (2.1a,b) has in fact been
obtained from a fit to r-decay data [28,29).
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The running QED coupling constants at the masses of the b-quark, W%, and Z° are
a(M;) =1/132.05, a(Mw) = 1/127.97, and a(Mz) = 1/127.93, respectively. The numer-
ical value of the short distance factor in {(4.3) is therefore Sgw = 1.0194. The effect of the
summation of leading logarithms via the renormalization group is comparable to that of
the residual electroweak correction 6%y, in (4.2).

If the short distance factor (4.3) is used in (4.2), the remaining perturbative elec-
troweak corrections are of order log(Mz/M;)a(M;)? and are therefore negligible. There
are also QCD corrections to the electroweak correction. While nonperturbative QCD ef-
fects significantly modify the spectrum of photons emitted in the semihadronic decay of
the 7, their effect on the inclusive decay rate is probably very small. It should be possible
to organize these corrections systematically into an expansion in powers of 1/M,, similar
to that given in Section 3 for the pure QCD correction. All nonperturbative and other
long distance effects would be factorized into hadronic matrix elements that would have
to be determined phenomenologically. If this could be done, it would guarantee that these
corrections would be suppressed relative to the pure QCD power corrections by the QED
coupling constant a(M; ), in which case they would be completely negligible.

5. NUMERICAL ANALYSIS

In this section we present numerical estimates of all the contributions to R-.

The fractional perturbative QCD correction §(P=% is given in Table 1 for different
values of the running coupling constant a,(M;) or, equivalently, different values of the
parameter A= . Our definition of Ay¢ (see Appendix A) corresponds to ny = 3, with the
B-function evaluated at the three-loop level. The perturbative series (3.7) converges quite
well; for instance, taking a,(M,) = 0.30 , the size of the a,(M;), a,(M;)? and a,(M;)?
corrections is 9.5%, 4.7% and 2.3% respectively. We can estimate the error due to unknown
higher order corrections by noting that the corrections of order a,(M;)* and a,(M,)® are
both smaller than the previous term by a factor of about 5a,(M;)/7. It is reasonable
to expect the a,(M;)* term to be smaller by a similar factor. We therefore estimate the
error in 6(°=% due to higher order perturbative corrections to be £130(a (M, )/7)*. In
the case a,(M;) = 0.30, this error is about 1%.

The uncertainty in §P=% due to renormalization scheme dependence has been ana-
lyzed in ref. [35]. The inclusion of the O(a?) corrections considerably improves the agree-
ment among the results obtained with different renormalization schemes. Note that our
predictions in table 1 refer to a given value of «,(M;) in the M S renormalization scheme.
A change of renormalization scheme would modify both the values of the coefficients in
eq. (3.7) and the numerical value of the coupling constant a,(M;). When both changes
are taken into account, the error due to renormalization scheme dependence is of order
a,(M;)*. This is not an independent source of error from the uncalculated order a (M, )*
correction, and is adequately taken into account in our estimate £130(a,(M;)/m)?* for the
perturbative error. Also included in this error estimate is the ambiguity from the choice of
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as(M;) | Ayrg (MeV) §(P=0)
0.16 52 0.0679 £ 0.0009
0.18 81 0.0793 £ 0.0014
0.20 114 0.0915 £ 0.0021
0.22 150 0.1046 £+ 0.0031
0.24 189 0.1185 =+ 0.0044
0.26 229 0.1333 £ 0.0061
0.28 269 0.1491 £ 0.0082
0.30 308 0.1659 &+ 0.0108
0.32 347 0.1837 £ 0.0140
0.34 | 384 0.2026 £+ 0.0178
0.36 420 0.2226 £+ 0.0224
0.38 454 0.2437 + 0.0278
0.40 487 0.2661 £ 0.0342
0.42 518 0.2897 £+ 0.0415
0.44 547 0.3145 £ 0.0500
Table 1

Perturbative corrections

the scale p in the expansion parameter a,(p), which is just a special case of renormalization
scheme dependence.

The perturbation expansions of R.+.- and R; are known to be at best asymptotic ex-
pansions [36-39] with coefficients F,, that eventually grow like n! for large n. Asymptoticly,
the coefficients F,, are predicted to all have the same sign, making the series not Borel
summable. One might worry that our estimate of the error in §(P=0) ¢ould be a severe
underestimate if the asymptotic factorial growth has set in already at n = 4. Fortunately
this possibility can be ruled out for R,. One can show that the asymptotic ratio of the
coefficients Fyy1/F, for R.+.- must be identical to that for R,.. While the ratio Fy/F3 in
the expansion (3.2) for R+~ is negative, the corresponding ratio for R, given in (3.7) is
positive. We conclude that the asymptotic factorial growth of the perturbation expansion
has not yet set in at n = 4 for Rr. It is therefore reasonable to estimate the size of the
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coefficient of (a,(M,)/7)* by assuming only algebraic growth of the coefficients as we have
done above.

Table 2 shows the leading (D = 2} corrections induced by the non-zero values of the
light-quark masses. Since the coefficients of the m? contributions (3.8) are only known at
O(a,(M,)), we have used for consistency the running quark-masses at the two-loop level.
For the renormalization-invariant quark mass parameters n; defined in Appendix A.5, we
have taken the values [40,41]

My = (871 15)MeV, gy =(154%15)MeV, rm,=(270.£30)MeV. (5.1)

The quark-mass corrections are negligible for nonstrange decays. They give a sizeable
correction to the ratio R, g for strange decays, which is approximately ~15% for a,(M,) =
0.30. Nevertheless, due to the sin? 8¢ suppression, the effect on the total ratio R, in (2.11)
is only —0.7%.

In Table 3 we show the fractional corrections to R, induced by dimension-4 operators.
For the gluon condensate, we have used the input value [40]

< %“—GG >= (0.02+0.01)GeV?, (5.2)

The quark condensates are conveniently parameterized by < m;$y >= —rh i, where
are the quark mass parameters given in (5.1). For the parameters f;, we use the input
values [40]

flo = ftg = (189 7)MeV fis = (160 £ 10)MeV . (5.3)

The quoted error in Table 3 is mainly due to the uncertainty in the leading quark-
condensate contribution (the second term on the r.h.s. of eq. (3.10)) , except for 523?,4)
where the uncertainty in the value of the gluon condensate dominates. The large relative
errors in 5'(‘?;4) are due to a numerical cancellation between the leading quark condensate
and the mass term m#, which is enhanced by an inverse power of the coupling constant
as(M;). The D = 4 correction to the total ratio R, is very small, less than 0.7% for
as(M;) = 0.30.

The biggest nonperturbative QCD corrections to R, come from the dimension-6 con-
densates. At present, our best estimate of these contributions comes from eq. (3.14), using

the input value
pay < P > (3.842.0) x 107 GeVS (5.4)

which is obtained from phenomenological fits to different sets of data [27-29]. The resulting
predictions for the fractional corrections of dimension 6 are

807 ~ (24£13) x 1072,
805% & —(3.842.0) x 1072, (5.5)
877 & —(0.7£0.4) x 1072,
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The uncertainty in 5”.,‘/ /A

Leading quark-mass corrections

(D=6)

as(M,) | 8577 x 10° 60577 x 10° 607 DY
0.16 |—0.22+0.05 —0.37£0.05|—0.068 +0.015 —0.070 & 0.015
0.18 |—0.26 +0.06 —0.42+0.06 | —0.078 £0.018 —0.081 + 0.018
0.20 |—0.20+0.07 —0.48£0.07|—0.089 +0.020 —0.092 % 0.020
0.22 |—0.33+0.08 —0.54£0.08|—0.100 +0.023 —0.104 % 0.023
024 |-037+0.09 —0.610.09|-0.112+£0.025 —0.116 & 0.025
026 |—041+0.10 —0.68£0.10]|—0.124+0.028 —0.129 + 0.028
0.298 |—-045+0.11 —0.75+0.11|—0.137+0.031 —0.143 +0.031
0.30 |-049+0.12 —0.83+0.12|—0.151 £ 0.034 —0.157 + 0.034
032 |—054+0.13 —0.91£0.13|—0.165+0.037 —0.172 + 0.037
0.34 |—0.58+0.14 —0.99+0.14 | —0.180 £ 0.041 —0.187 & 0.041
0.36 |-063+0.15 —1.08+0.15]|—0.196 £ 0.044 —0.203 % 0.044
038 |-068£0.16 —1.174+0.16 | —0.212+0.048 —0.220 + 0.048
040 |—0.74+40.18 —1.2640.18 | —0.228 +0.052 —0.238 £ 0.052
042 |—-0.79+0.19 —1.36+0.19|—0.246 +0.056 —0.256 = 0.056
044 |—0.85+0.20 —1.4640.20|—0.264 +£0.060 —0.275 % 0.060
Table 2

is a big limitation to the accuracy of our predictions for the

separate vector and axial-vector contributions to R.. Note however that the absolute error
in the sum 653 =6) of the vector and axial vector corrections is much smaller due to the
cancellation in (3.13) of the operator with the largest Wilson coefficient.

The electroweak corrections are given in (4.2) and include the additive fractional
correction §5y, = 0.0010 and the overall multiplicative short distance factor Spw = 1.0194.
Qur final predictions for R, v, B, 4, Rr s and R,, including the electroweak corrections,
are given in Table 4. For the Cabibbo-Kobayashi-Maskawa mixing factors we have used
the values [42]

Veg = 0.9753 £ 0.0006 ;

Vus = 0.221 £ 0.003, (5.6)

which were determined under the assumption that the 3 by 3 mixing matrix V;; is unitary.
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as(M:) | 8570 x 103 6(57Y x 102 803 853
016 | 0.17+0.07 -5.0X06 0.005 £ 0.005 —0.054 + 0.007
0.18 022+009 —49=%0.6 0.005 + 0.006 —0.054 £ 0.007
020 | 0.27£0.11 —49+06 0.004 £ 0.005 —0.055 £ 0.007
022 {033£013 -49=x06 0.004 £ 0.005 —0.056 £ 0.007
024 | 039+0.16 —-48+06 0.003 4+ 0.005 —0.057 &+ 0.007
026 | 045+0.18 —4.8+06 0.002 + 0.005 —0.058 4 0.007
028 | 0.53+0.21 —47+07 0.002 + 0.005 —0.059 = 0.007
030 | 0.60+0.24 —474£0.7 0.001 £ 0.005 —0.060 3= 0.007
0.32 0.69+028 —4.6+£0.7 0.001 £ 0.005 —0.061 £ 0.007
034 | 0.78+£0.31 —4.6x0.7 0.000 £ 0.005 —0.062 & 0.007
036 | 0.87+035 —45x0.7 0.000 £ 0.005 —0.063 = 0.007
038 [ 097+039 —4.4+0.7 {—0.001+£0.005 —0.064 £ 0.008
0.40 | 1.08+044 —44408 [—-0.002+0.005 —0.065=+0.008
0.42 | 1.19+£048 —4.3+08 }-0.002+0.005 —0.066 % 0.008
044 | 1.30+053 —4240.8 |-0.003+0.005 —0.067 £ 0.008

Table 3

Fractional corrections induced by dimension-4 operators.

The errors given in Table 4 are obtained by adding in quadrature the errors from the
uncalculated order-a* correction and the errors from the input values in (5.1), (5.2), (5.3),
(5.4), and (5.6). For R, v, R 4 and R, the only significant sources of error are the higher
order corrections to 6(P°=%_ which we have estimated to be £130(cs(M;)/7)*, and the
dimension-6 operator given in (3.4) . The strange quark mass 772, also gives a significant
contribution to the error in R s. '

6. CONCLUSIONS

We have presented an updated calculation of the ratio R, for 7 decay, including
all available perturbative and nonperturbative contributions. We have decomposed our
predictions into vector (V), axial vector (A), and strange (S) components. Our final results
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as(M;) R:v R:a R: s R,
0.16 {1.59+0.02 1.49+0.03 0.145+0.004]3.23 £0.01
0.18 |1.61+0.02 1.51+0.03 0.1451+0.004 |3.26 £ 0.01
0.20 |[1.624+0.02 1.53+0.03 0.145 £ 0.005 | 3.29 £ 0.02
0.22 |1.64+0.02 1.5564+0.03 0.145+0.005{3.33 £0.02
024 |1.66+0.02 1.57+0.03 0.14540.005 |3.37 = 0.02
0.26 |1.6840.02 1.594+0.03 0.145 £ 0,005 | 3.42 + 0.02
0.28 |1.714£0.02 1.61+0.03 0.146 £0.005 | 3.46 +0.03
0.30 |1.73+0.02 1.63+£0.03 0.146 +0.006 | 3.51 = 0.04
0.32 |1.76+0.03 1.66+0.04 0.146 £ 0.006 | 3.56 £ 0.05
0.3¢ |[1.79+0.03 1.69+0.04 0.147 £ 0.007 | 3.62 £ 0.06
0.36 |1.814+0.04 1.72+0.04 0.147 £ 0.007 | 3.68 = 0.07
0.38 |1.85+0.04 1.754+0.05 0.148 £ 0.008 | 3.74 £ 0.09
0.40 11.88+0.05 1.78+0.06 0.148 £0.009 | 3.81 £0.11
0.42 |1.914+0.06 1.81+0.07 0.149+0.010(3.88+0.13
0.44 [1.95+0.08 1.854+0.08 0.150+0.011 [3.95 £ 0.15

Table 4

Final predictions for the different components of the 7 hadronic width.

for R, as a function of the coupling constant a,(M;) are given in the final column of Table
4. The quoted error is mainly due to the uncalculated perturbative QCD correction of
order a,(M; ), which we have estimated to be :ElBO(ﬂq—TM—Tl)‘L, and to the estimated 1/M}
power correction due to nonperturbative QCD effects, which has been estimated using
information from QCD sum rules. These are the only significant sources of uncertainty in
the calculation of R..

One application of these calculations is the determination of the QCD coupling con-
stant at the scale M,. The decay of the  is the lowest energy process from which one
can extract a value of a, without hopeless complications from nonperturbative effects.
Using Table 4, experimental measurements of the ratio R can be translated into values
of ay(M.). There are two completely independent methods for measuring R, experi-
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mentally. The value obtained from the leptonic braching fractions B, and B, of the
7 is given in (1.5a¢). From Table 4, the corresponding value for the QCD coupling is
ay(M;) = 0.36 £ 0.04. Using the value (1.5b) determined from the 7 lifetime, one obtains
ay(M;) = 0.21 £ 0.07. The discrepancy between these two determinations of a, reflects
the 2 standard deviation discrepancy between the two independent determinations of R-.
Both the leptonic branching fractions and the lifetime of the 7 will be measured with great
accuracy in the near future. The error in the determination of a,(M,)} will then be domi-
nated by the uncertainty in our calculation, and this will allow a determination of a,(M;)
to about 10%.

Once the running coupling constant a,() is determined at the scale M, it can be
evolved to higher energies using the renormalization group. The error bar on « +(p) must
also be evolved using the renormalization group. Its size scales roughly as as(u)?, and it
therefore shrinks as p increases. Thus a modest precision in the determination of a, at
low energies results in a very high precision in the coupling constant at high energies.

The formal average of R¢*?8 and Re*?T | R¢*P = 3.61+£0.05, corresponds to a,(M,) =
0.34+0.04. After evolution up to the scale Mz = 91.2GeV, this running coupling constant
decreases to as(Mz) = 0.12010-00% in amazing agreement with the present LEP average
[43], a,(Mz) = 0.120 £ 0.007, and with a smaller error bar. The comparison of these two
determinations of a,(x) in two extreme energy regimes, M, and Mz, provides a beautiful
test of the predicted running of the QCD coupling constant.

Reversing this logic, a precise determination of a,(x) at high energies can be used
to predict the ratio R.. Using the renormalization group to evolve down the LEP value
as(Mz) = 0.120 £ 0.007, one gets as(M,) = 0.34%3:08 QOur calculations imply then
R, = 3.6, The central value is very close to the experimental result (1.5a) obtained by
measuring the leptonic branching fractions. However, the big error bar makes this result
also compatible with the value (1.5b) extracted from the measured r-lifetime.

Further accumulation of data from LEP will result in a still more precise measurement
of w,(Mz), allowing an even sharper prediction for R,. It is only a matter of time be-
fore the present discrepancy between the experimental values of R is resolved by precise
measurements of the 7 lifetime or its leptonic branching fractions. Agreement with the
theoretical predictions for R, would be a spectacular triumph for QCD.
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Appendix A, COMPENDIUM OF COEFFICIENT FUNCTIONS

The coefficient functions for the operator product expansion (OPE) of current-current
correlators were first calculated at leading order by Shifman, Vainshtein, and Zakharov [12].
Calculations of the coefficient functions beyond leading order are scattered throughout
the literature. In this appendix, we collect the coefficient functions that are used in the
calculation of R,

The general form for the OPE of scalar correlators is given in (2.7). At Euclidean
values s = —Q? of the hadronic invariant mass, the dimension-D contribution to the
scalar correlators associated with the ij, V or ij, A current is

00,409 = g5 X P a-@hm < 0w > (A1)

Q dim@=D

The correlators compiled in this appendix have been calculated consistently using
dimensional regularization to regularize ultraviolet divergences and the modified minimal
subtraction renormalization scheme (MS) to remove the divergences. Thus the running
coupling constants a,(x) and running masses m;(p) are those of the MS scheme. The
running coupling constant can be parameterized as follows:

as(p) _ ) w
— = as {1 ag ) log (log .f\_Z_-_

) , (A.2)
ﬁz ( U /32 o ﬁz ﬁ3
+a? log? | log —— log | log —5— + O(d?)
B A B A TE A
where
as = ! (A.3)
T =B log(n/Aypg) '
and §; are the O(a}) coefficients of the QCD S-function [44] :
11
181 = - E_f 3
51 19
1 5033 325 ,
B3 = 7] —2857 + 5 ng— 7 ny

Setting the number of flavors equal to 3, they have the values §; = -9/2, B, = —8, and
B3 = —20.1198. The parameter Az;z depends on the number of flavors ny in such a way
that a,(s) is continous across quark thresholds.
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The running mass m;(¢) can be expressed in terms of a scale invariant mass parameter
h; as follows:

FG-2) - AGR)H G () o).
(A.5

L1
2

where v; are the O(a?) coefficients of the quark-mass anomalous dimension [45] ,

T = 27
1015
2= 13 TRt (A.6)
1 2216 140

and ((3) = 1.2020569... is the Riemann zeta function at n = 3. Setting the number of
flavors equal to 3, they have the values 71 = 2, v = 91/12, and ~3 = 24.8404.

A.1. Dimension 0

For massless quarks, the perturbative contributions to the vector and axial-vector

correlators H(?}}L(—Qz) are known to O(a?). The additive constant in HEE}I/L(—QZ)

3
depends on the renormalization scheme and does not contribute to the contour integral

(2.8) . All of the physical information is carried in the logarithmic derivative
d
Disvia(~@") = =@ gL v/a-Q), (AT)

which satisfies 2 homogenous renormalization group equation. For the flavor nonsinglet
correlators (i # j), one has D;; v(—Q?) = Dj; a(—Q%) = D(—Q?). The result for D(s)

expanded in powers of the running coupling constant « s(pt) 1s

o == {2 [ ] (422

4n2 T

2 2 8
+ [F4 + (F351 + ﬂ_z) L+ st (L2 + E—)] (a_s(,u_)> + O(a‘:)} ,
2 4 3 s
(A.8)
where L =log(Q?/p?) and F3 = 1.6398 , F; = —10.2830 [17,18] for ny = 3. The factors
of f; in (A.8) are such that the logarithms L can be absorbed into the running coupling

constant simply by replacing the scale p by Q.
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Using integration by parts, the relevant term in the contour integral (2.8) can be
written

3 84

) ds {1 s 8
Reet = —127i ([Vial® + [Vaul?) /1s|=M2 "y (5 Tzt E T 2M§) Dis). (A9)

In the expression (A.8) for D(s), the only dependence on s appears in the logarithms L
Inserting (A.8) into (A.9), the contour integrals are straightforward to evaluate and they
give the result (3.6) .

A.2. Dimension 2

The dimension-2 contributions to the correlation functions (2.1) are simply the leading
quark mass corrections to the perturbative QCD result. The only operators of dimension
2 are products of two running quark masses, m;(pt)m;(gt). The coefficient functions have
been calculated beyond leading order in refs. [20] , [21] , and [22].

The sum of the J = 0 and J = 1 coeflicient functions satisfies a homogeneous differ-
ential equation which guarantees that all dependence on the factorization scale p can be
absorbed into the running coupling constant and the running masses {20,21]:

@ e " = - o [1+ 529 mi@ £ mi(@)F

3 (A.10)

The upper and lower signs correspond to the vector (V') and axial vector (4) currents,
respectively, and a,(Q) and m;(Q) denote the running coupling constant and the running
mass evaluated at the spacelike momentum transfer Q2 .

The J = 0 coefficient function [20,21] is

@ 00, -] =5 [(“‘*f >)—§] m.(@) F my(Q)P

(A.11)
+ 6V/A(M) [ (pe) F mj(#)]2 -

The constant év/ a(p) depends on how H” v/ 4(—@Q?) is renormalized but does not con-
tribute to physical quantities.

A.8. Dimension J

The dynamical operators of dimension 4 are the gluonic field strength-squared
GG(p)MS = G} G“"A(y)MS and the scalar quark density ;1 (,u)MS multiplied by a
running quark mass m;j(u). These operators are defined by dimensional regularization
and minimal subtraction of divergences and therefore depend on a renormalization scale
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i1 The remaining D = 4 operators are products of 4 running quark masses. As discussed
in Appendix B, one can form nontrivial linear combinations of the D) = 4 operators that
are scale invariant. The matrix elements of these scale invariant operators are called the
gluon condensate, < (as/m)GG > , and the quark condensates, < m st >

The coefficient functions for the minimally subtracted dimension-4 operators have been
calculated beyond leading order in refs. [22] and {23]. Their vacuum expectation values
are expressed in terms of the scale invariant condensates < (a,/7)GG > and < m i >
in Appendix B. Making those substitutions we find that the dimension -4 contributions to
the correlators reduce to

o* [mety (- QZ)](D=4) _1 1— E?S_(Q.)_] < %GG >

i3,V /A 18
- 2
1o 2 B (Y] s>
4a, 59 [ as(Q)\” X .
+ §%Q_)+F (9@) } < mjid; + mapp; >
bl el @ 2 S (22 (Q)}ZMWWP

bos [+ (- hees ) )) 249D i @)mi@)
s [ﬂg (‘“—fri)) et 1] [m4(@) +m(Q)]
F 2y @Qmy(@) [mA(Q) + mi(Q)]

_ 581?5 [1 _ (%5 — 16¢(3) ) S(Q)] > mi(Q),

k

(A.12)
and

(D=4)
Q* I, (-0

=< (m; Fmy)($ih: F 155%') >
1| 12 fa (@7
+ 472 l: T ( T )
¥ g @mi(@) (@) Fmy(Q
A.4. Dimension 6

(A.13)
[ {(Q) F mi(Q)) [mi(Q) F mj(Q))

The most important dimension-6 operators are the 4-quark operators of the form
($:T 9, )(pt), where T is the product of a Dirac matrix 7, or vu7s and a color
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matrix, which is either the identity matrix 1 or an SU(3) generator T normalized so
that tr(T°T®) = §2°/2. The coefficient function of the dimension-6 operator G3(p) =
g fteGerGLAGY! vanishes to leading order in e [24], so we will neglect it. The other
dlmensmn 6 operators are lower dimension operators multiplied by running quark masses.
Since these are severely suppressed by the quark masses, we shall omit them also.
The coefficient functions for the 4-quark operators were calculated to next-to-leading
order in ref. [25]. In the chiral limit the longitudinal coeflicient sC (7=0) vanishes, and the
J = 0+ 1 term in the correlator is

(D=8)

Q° [M2,(-@)
431 9 8 ] n a " a
= 872 [1 + (_QE 3 ) = (ﬂ)] 2 i_”) < ¢i'}’n P}f)T ¢j¢j7ﬂ (’}f)T 1l”l'(n'u) >
1

T

2 2 -
+ 2 (3+4L) (“*(” )) <¢m( )T“Wn“(l)T%(n)>
s s

+ ? (3+4L) (a:(r”))z < Y (715)%%7“ (715) pi(u) >

_ 8a? [1+ (2087 %L) asT(T#)] a:(:t)

X > < Dy Ti + 97T ;) 0y T i(u) >
k

2 2 ) . )
+ % (—7+6L) (a:&u)) Z < (v T % + vy T oy v T nlp) >
( 7+6L) (aiu)) Z < (Bivuysti + ivuvs i) Pry s e (i) >

2
+ %(1 +6L) ( o ) Z < BT P T () >

(A.14)
where L = log(Q?/p?) . The upper component of (;5) or (¥) is for the vector (V)

correlator, while the lower component is for the axial vector (A).

A.5. Dimension 8

In the chiral limit, the complete basis of D = 8 operators contributing to the vector
correlator (2.1a) consists of 10 quark operators, 3 gluonic operators involving the color
current j§ = 3, 4, P71 T2 , and 4 purely gluonic G* operators. The explicit form of
these 17 operators can be found in ref. [30], where their coefficient functions have been
computed at leading order.

Since no such calculation is available for the axial-vector correlator (2.1b), we will only
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consider the effect of the G* operators:

01 = ¢* Tr(G,, G** GosG*P),
0, = ¢* Tr(G,,GosG**G*P),
2 g ( o B ) (A.15)
03 = ¢* Te(G G *GopG™"),
04 = ¢* Tr(G ., Gas G GPH).

They should give the same contribution to the vector and axial-vector channels:

](D=8) 1

2
=] 21677210g(%) <—501 + 02 +4- 1003 + 604>

QM) (-@")

<—190; — 1930, — 26203 + 558 Oy > .
(A.16)

+

259272

Appendix B. SCALE INVARIANT D =4 OPERATORS

The perturbative evaluation of quark-mass corrections to the correlation functions
(2.1a, b) gives rise to infrared logarithms of the form m Lo, (p)" log" (Z)(k<n+ 1), where
4 is the M3 renormalization scale. These mass singularities arise from the region of
small loop momenta in the relevant Feynman diagrams, and therefore should be factorized
into the matrix elements < @(u) > . The infrared logarithms are nothing else than the
perturbative contributions (renormalized in the MS scheme) to the vacuum expectation
values of the D = 4 operators:

< GG(M) >pert =

1 ay i)
S o (#) Zm (p)? [ ’:E‘M) + 12log? —’Lﬂ{l] , (B.la)
<¢wm)mn=15mmm{k—m%—fﬂ]

+ [10 ~ 20log m—’L—(“) + 24 ]og? m’i’”)] “'*7(;“) } . (B.1b)

This does not imply that the complete matrix elements < GG(p) > and < b)) >
only have perturbative contributions. In addition to the small perturbative contributions
(B.1a, b), they also have large nonperturbative contributions due to the complicated struc-
ture of the QCD vacuum.

Note that the calculation of the leading (D = 2) quark-mass corrections does not
produce any logarithms log¥(m/p). The absence of such mass-singularities in the m?
terms is guaranteed by the absence of D = 2 operators in QCD.

To facilitate the summation of the logarithms log(Q/p) using the renormalization
group, it is convenient to introduce combinations of the minimally substracted operators
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G’G(u)m— and &iw,bi(y)m which are scale-invariant. These combinations are called the
gluon and quark condensates. For ny = 3, the perturbative expressions [46,22] for these
condensates are

< %GG > = (1-{— §M+O(a§)) g‘;(ri) < GG(p) >MS

il

16 as(n) (1 + glﬂ‘f%‘_) + O(ai)) > malp) < $rr(n) >M3
k

9 = 4
- 3_35 (1 + g_c_xi_p)_ + O(aﬁ)) Zk:m‘}c(,u), (B.2q)

<mibigs > = miw) < i) >M

TWa?:(u) (1 - g%&g_) + O(aﬁ)) mi(u)m3(p) - (B.2b)

Note the presence of an inverse power of the coupling constant in the expression for the
quark condensate.

The coefficient functions in the OPE of the minimally substracted operators GG(
and m;{p)¢;¢;(s)M° were calculated beyond leading order in refs. [23] and [22]. After
expressing their results in terms of the scale-invariant condensates < %GG > and
< mgp;ip; > defined above, the coefficient functions satisfy homogenous renormalization
group equations. The logarithms log(Q/u) can then be easily summed into the running
coupling constant a,(@) and the running mass m;(Q), and one obtains the results given
in egs. (A.12) and (A.13).

p)Ms
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