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Abstract

An investigation is performed of all non-leptonic kaon decays sensitive to the
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detail. Including the dominant contributions of O(p®), the experimentally ob-
served dependence of the direct emission amplitude for K;, — #+tx~~ on the
photon energy can be understood. A survey is made of the rare “anomalous”
decays K — wwyy and K — 37v(7), including some numerical estimates.
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1 Introduction

The standard model is a chiral quantum field theory. The chiral structure is
responsible for the existence of the chiral anomaly [1, 2] whose theoretical
origin and mathematical properties are well understood. On the other hand,
experimental tests of this important ingredient of modern particle physics
are relatively rare.

The chiral anomaly manifests itself most directly in the low-energy inter-
actions of the pseudoscalar mesons (some of the phenomenological aspects
can be found in the recent reviews [3, 4, 5]). The appropriate framework
to study these effects is chiral perturbation theory (CHPT) [6, 7, 8]. For
the strong, electromagnetic and semileptonic weak interactions, all anoma-
lous Green functions can be obtained from the Wess-Zumino-Witten (WZW)
functional [9]. In contrast to most other aspects of the standard model in the
world of hadrons, the translation from the fundamental level to the effective
chiral level is unambiguous and free from hadronization problems.

The chiral anomaly also appears in the non-leptonic weak interactions.
The purpose of this paper is to give a systematic account of all non-leptonic
K decays where the anomaly contributes at leading order, O(p*). As already
shown in previous work [10, 11], only radiative K decays are sensitive to the
chiral anomaly in the non-leptonic sector. There are two different manifes-
tations of the anomaly: the reducible amplitudes [10], which can again be
derived directly from the WZW functional, and direct contributions [11, 12],
which are subject to some theoretical uncertainties. We shall present a self-
contained and systematic discussion of those contributions. As a special ap-
plication, the two most frequent “anomalous” decays Ky — wtx~~ and
K* — 7t7% will be analysed in detail, including the dominant effects of
O(p®). In both cases, the direct emission amplitudes are dominated by the
anomaly. A careful treatment of O(p®) effects is necessary to understand the
experimentally observed dependence of the direct emission amplitude on the
+7r_’y.

In Sect. 2, we summarize the chiral realization of the AS = 1 non-leptonic

photon energy for the decay K; — =

weak interactions in the meson sector. The relevant terms of the strong and
weak Lagrangians of O(p*) are listed. The distinction between reducible and
direct anomalous amplitudes is explained in Sect. 3. The direct weak anomaly
functional is related to the general weak Lagrangian of O(p*). A list of all



non-leptonic K decays with local anomalous amplitudes of O(p*) is given.
General features of the decays K — 7wwy are put together in the following
section. A general theorem on the structure of the lowest-order amplitudes
for those decays is formulated and discussed. The dominant effects of O(p°)
are expected to be due to vector meson exchange. The factorization model
is proposed to estimate the direct weak terms related to V exchange.

We turn to the phenomenology of K — w7y decays in Sect. 5. For com-
pleteness, we include a brief review of the theoretical status of the decays
*tx~~ even though they are not subject to anoma-
lous contributions. Our main emphasis, however, is on the anomalous decays

K, — 7#tr7y and KT — 777%. In both cases, the bremsstrahlung am-

Kps — 7'7% and Kg — 7

plitudes are suppressed as are the one-loop amplitudes. A careful analysis
of the magnetic amplitudes of O(p®) is made since experiments are already
sensitive to those subleading contributions. We suggest an interpretation of
the measured slope parameter in the K, decay [13, 14, 15] and compare with
previous work by other authors. In Sect. 6, on overview of the remaining
non-leptonic K decays sensitive to the anomaly is given. In addition to some
comments on the general structure of those decays, numerical results are
presented for two typical transitions, K* — 77 7%~ and K; — 7=tz 7%,
Our findings are summarized in Sect. 7. Two Appendices contain a proof of
the bremsstrahlung theorem of Sect. 4 and the definition of loop functions

encountered in Sect. 5.

2 CHPT for non-leptonic weak interactions

At low energies (£ < My ), the AS = 1 non-leptonic weak interactions are
described by an effective Hamiltonian [16]

- G
Ha ' = 71;—‘/1“1‘/“*5 Z CiQi + h.c. (2.1)

in terms of Wilson coefficients C; and local four-quark operators ();. The
effective chiral Lagrangian for (2.1) to lowest order in the chiral expansion
can be written as (F' is the pion decay constant in the chiral limit, F' ~ F, =



93.2 MeV):

- 2
EQAS_I = G8F4<)\L#LM> + G27F4 <LM23L'L1L1 + nglL/fS) -+ h.c. (22)

1
A= 5()‘6 - i)\7)a Lu = iUTDqu <A> = tr A.

The matrix field U(y) incorporating the eight pseudoscalar Goldstone
boson fields transforms linearly under the chiral group SU(3), x SU(3)g.
The covariant derivative

DU =8,U —ir,U +iUL, (2.3)

with 3 x 3 Hermitian matrix fields ¢,, r, contains in particular the photon

field:
r, = v,+a,=eQQA,+ ...
b, = vy—a,=€eQA,+... (2.4)
1
Q = 3 diag (2,—1,—-1),

where () is the quark charge matrix.

The coupling constants (s, Ga7 in (2.2) measure the strength of the
two parts in the effective Hamiltonian (2.1) transforming as (8z,1r) and
(271, LR), respectively, under chiral rotations. Neglecting the small Al = 1/2
part of the 27-plet, the Lagrangian (2.2) produces the tree-level amplitudes

AK? = ztx7) = 2iF(Gs + G/ (M? — ME)
AKY = 7t7%) = 3G (M2 — M2) (2.5)
5
G(Q?;/Q) = §G27-

Up to radiative and higher-order chiral corrections [17, 18], the ratio

G
LR (2.6)
Gis 32

is small (and positive), expressing the Al = 1/2 rule in K — 27 decays, and

|G| ~9-107% GeV~2.



At next-to-leading order in CHPT, the chiral Lagrangian ££°=! is al-
ready quite involved [19]. We shall only need the octet Lagrangian of O(p?).
Employing the operator basis of Ref. [20], we write

L35 = GsF* YT N;W; + hee. (2.7)

with dimensionless coupling constants N; and octet operators W;. Refer-
ring to Ref. [20] for the complete Lagrangian, we list here only those terms
that will be needed in the following. To facilitate the use of this effective
Lagrangian, we write down the relevant operators in two different represen-
tations commonly used in CHPT:

Wiy = i<A{fiy7u#uV}> = l<)‘{F£y + UTFEVU7 L#Lu}>

Wis = i(Au,fiu,) = i(AL(F + UTFE'U)L,)

Wie = (A{f2 wu}) = iMEE —U'FRU, L,L,Y)

Wir = i{Au,f*u,) = i(AL,(F}" — U'FE'U)L,)

Wis = (A(frwf = fou f2) = 200(FL U Fru U + U Fra UFL(DS)

Was = i€upe(Aut) (u"ulu’) = ic,,,0 (AL*)(LY LPL7)

Wa = (ALY = 2 uuu]) = 20U FRU, L, L))

Wao = (Aw)(fiw,) = AL)(FL + UFRU)L,)

War = (Auu) (/%) = (AL)(FL" = U'FRU)L,)
U =u?, A = udul, U, = 'éuTDMUuJr = uLMuT, Y = uFu +u FA u.
Fr", Fp” are the field strength tensors associated to the external gauge fields
Cyyry [8] and Firpu = 5uup0F£:7R are their duals.

To calculate non-leptonic weak amplitudes, we also need the chiral La-
grangian for the strong, electromagnetic and semileptonic weak interactions.
At lowest order, it is given by

F2

Ly =— (D,UD*U" + 2B, M (U 4+ UM)) (2.9)

in the notation of [8], where M is the diagonal quark mass matrix and By is
related to the quark condensate.

Of the strong chiral Lagrangian of O(p*) [8] we shall encounter only one
term,

Ly=—iLe(F/"D,UD,U+ FE'D,UD,U) + ... (2.10)
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Like many of the weak couplings N; in (2.7), the measurable (renormalized)
coupling constant Lj(p) is scale-dependent due to the divergences of the one-
loop functional [8]. In Sect. 5 we shall use the standard value [8] Lg(M,) ~
6.9 1072,

Finally, a crucial ingredient of our analysis is the chiral anomaly, which
also enters the effective description at O(p*). It will be dealt with in the
following section.

3 The chiral anomaly in the non-leptonic
weak sector

The contributions of the chiral anomaly to strong, electromagnetic and
semileptonic weak amplitudes can be expressed in terms of the Wess-Zumino-
Witten (WZW) functional [9] S[U, ¢, r|wzw. If the vector currents are to be
conserved, it has the following explicit form :

S[U, L. r]wzw —24%2/6101“ (stebsbyisl) (3.1)
—5 / a2z s (WU, 6r)28 — W(L, £,r)»?)

1
WU, ) ey = <Uuy£azﬁrﬁ + UGU U g + 00,00,
+ 10,r, Ul Ulrg — iX20, U Ul + 3EUT0,r, Ulg
— SESLU Uly + X00,0,05 + £50,0.05 (3.2)
. 1 .
— i Shuty + 5L SR — SLSLSLE)
— (L < R)
vh=vto,u  xF=00,U"
Ne =3 €o123 = 1

where (L < R) stands for the interchange

U Ut l, = r,, EﬁHEf.



The functional S[U, ¢, r|w zw conserves parity and it reproduces the anomaly
under chiral transformations in Bardeen’s form [2]. The integration in the
first term of Eq. (3.1) is over a five-dimensional manifold whose boundary
is four-dimensional Minkowski space. Since the integrand is a surface term,
both the first and the second term of Sy zw are O(p*), according to the usual
chiral counting rules.

The chiral anomaly also contributes to non-leptonic weak amplitudes
starting at O(p*). We may distinguish between two different manifestations
of the anomaly.

i. Reducible anomalous amplitudes

These amplitudes arise from the contraction of meson lines between a weak
AS =1 Green function and the WZW functional. At O(p*), there can only
be one such contraction and the weak vertex must be due to the lowest-order
non-leptonic Lagrangian £5°=! in Eq. (2.2). The corresponding diagrams are
of the type shown in Fig. ??.

Since £2°=! contains bilinear terms in the meson fields, the so-called
pole contributions to anomalous non-leptonic amplitudes can be given in
closed form by a simultaneous diagonalization [21] of the kinetic parts of the
Lagrangians £, and £5°=!. The corresponding local Lagrangian (octet part
only) is [10]:

ieGg =y . g _
_87r2FFM 8ﬂ7rofx+ D, +

Ong

o F

~ 1
LA5=1 = F*F,, (K+7r_7ro — —K07r+7r_) +h.c.

V2
(3.3)

Here F,, = 0,A, — 0,A, is the electromagnetic field strength tensor,
FW = €0 F?7 its dual and D,p* = (9, F 1eA,)p* denotes the covariant
derivative with respect to electromagnetism. In the limit of CP conservation,
the anomalous Lagrangian (3.3) contributes only to the decays

+ + +

Kt — at7%, 7t 70y and Ky — n7n vy (3.4)

with real or virtual photons.

There are of course other reducible anomalous amplitudes corresponding
to the diagram in Fig. ??. A generic example is provided by a non-leptonic



Green function where an external 7° or 5 makes an anomalous transition to
two photons. Such transitions are the dominant O(p*) contributions to the
decays Ks — w°yy [22] and K, — 7%%yy [23, 24]. All reducible anoma-
lous amplitudes of O(p*) are proportional to Gy in the octet limit. No other
unknown parameters are involved.

ii. Direct weak anomaly functional

The second manifestation of the anomaly in non-leptonic weak amplitudes
arises diagrammatically from the contraction of the W boson field between
a strong Green function on one side and the WZW functional on the other
side. However, such diagrams cannot be taken literally at a typical hadronic
scale, because of the presence of strongly interacting fields on both sides
of the W. Instead, one must as in Sect. 2 first integrate out the W together
with the heavy quark fields. The operators appearing in the operator product
expansion must then be realized at the bosonic level in the presence of the
anomaly.

Following the methods of Ref. [25], the bosonization of four-quark op-
erators in the odd-intrinsic parity sector was investigated in Ref. [11]. As
in the even-intrinsic parity sector, the bosonized four-quark operators con-
tain factorizable (leading in 1/N¢, where N¢ is the number of colours) and
non-factorizable parts (non-leading in 1/N¢ ).

Due to the non-renormalization theorem [26] of the chiral anomaly,
the factorizable contribution of O(p*) can be calculated exactly [11]. The
bosonized form of a (V — A) x (V — A) four-quark operator in the anomalous
sector is [factorizable contribution of O(p*)]:

0Swzw 652

TV oL, TIVuGi lk s ji 3.5
TVt TR = g g7 + (lk < ji) (3.5)
where
6.5, F
- _Z (m. 3.
L* = U'D*U



is the left-chiral current of lowest order p corresponding to the chiral La-
grangian (2.9). The anomalous current [of O(p?)] has the following form

5SWZW 1 vo an
S 7€" ﬁ‘]uaﬁ,ij
04, i 167
. 1
o= iLLalg+ {Ffa +SUTERD, Lﬁ} . (3.7)

A physically irrelevant polynomial in the external fields £, r has been omitted
in the anomalous current (3.7).

Specializing to the dominant octet operator in H47=! [Eq. (2.1)],

Q- = Q2—Ch (3.8)
Qr = $7"(L —7)d uyu(l —75)u
Q2 = $7"(1 = s)u tyu(l —5)d,
one obtains the following bosonized form of O(p?*) in the factorizable approx-
imation for the odd-parity part [11, 12]:

2

Q-(fact) <

(2% (AL,) (Ly Lo Lp)

672
+ (MU'FRU, L, L)
+ 3 (AL (P} + UL UL, )
+ (AL ((Ff = UNER U)LY . (3.9)

Comparison with the general weak Lagrangian £5=! of O(p*) in (2.7),
(2.8) shows that all the possible octet operators proportional to the ¢ tensor
(Was, Wag, Wyo and Wiq) appear in _(fact) in (3.9). Thus, in a slightly
counter-intuitive way, the chiral anomaly contributes to all the coefficients
Nss, ..., N3; of normal octet operators. Moreover, the non-factorizable parts,
which automatically have the right octet transformation property (they do
not get any contribution from the anomaly), must be of the same form (3.9).
The corresponding coefficients will differ from those in Eq. (3.9). In fact, they
must depend on the QCD scale u to cancel the pu-dependence of the Wilson
coefficients in the AS = 1 effective Hamiltonian [25].



Since all octet operators in H5 =" produce the same structure (3.9), the
AS =1 effective Lagrangian in the anomalous parity sector of O(p*) can be
characterized by the coefficients [11]

an al an a2
Nig = D) Nig = 55 2
87 327 (3 10)
an 3@3 an a4 ‘
N3 = Tga2 Nat' = Teaz

From the dominance of the octet operator ()_, we expect the dimensionless
coefficients a; to be positive and of order 1. Unlike in the normal parity sector
at O(p?) [25], the dominant penguin operator (s does not contribute to the
coefficients (3.10) in the factorizable approximation because there are no
(pseudo-) scalar external fields in Sy zw. Since Qg contributes constructively
to the O(p*) weak coupling Gy [25], which is pulled out in the definition
of LL5=1 in (2.7), we expect the a; to be actually smaller than one. The
enhancement at O(p*) of the Al = 1/2 K — 27 amplitudes [18] lends
additional support to this expectation.

We are now in a position to determine all couplings relevant to non-
leptonic K decays to which the chiral anomaly contributes in a direct way
via L8571 in (2.7), (2.8) with coefficients (3.10). Restricting our attention
to kinematically allowed K decays (< 3 pions, any number of photons), we
obtain

12¢/27

Was = e K9m0 D w4 D7 x4
die -
W = el {3[(*8“7TOD”7F—|—\/§K0 (Dﬂw+DV7r—+ ZF“” rtr )}

+ %FMU{6[X’+WODMW_6U7TO —AD*KY DY ntr” + 4K T~ DFrt DV~

+3V2 K9 70t n + V(UK 9 0 — 0" K°x°)(x D” x )} + ...

4i
Wi = J;GFW]’*D“W 9" =

- F4FW{ 2K D97 = 5V2 0" K09 x'x
+ \/‘_KO(?“WO(W+ D” T ) 4.
22 ie

W31 = F Fm,aﬂlfo( 51/ 7T+)




Table 1: A complete list of local anomalous non-leptonic weak K decay am-
plitudes of O(p*) in the limit of CP conservation.

Transition ,Cfnszl Was Wiy Wi Wi expt.
K+ — ntr0% X X X X
Kt — nt70y~y X X X

Ky — ntny X X X
Ky — ntn~yy X X X

Kt — nt7%7% X X X
Kt — 7t7070%~ X X

Kt — ntrtr—y X X X
KT — ntrtn=yy X X

Ky — ntn~n0% X X X

Ks — 7ta~7%(7) X X X

n %Fw{z(fﬁ D* 77)(x* DY 77) + V2 (20 9 K°)(x* D¥ 7)) +(3.11)
We collect this information in Table 1 where all local contributions from

either the Lagrangian £5°=! in (3.3) or the direct terms of O(p*) to all
kinematically allowed non-leptonic K decays are listed. A separate column
indicates whether the corresponding decay has been observed experimentally.

We emphasize that the transitions with either three pions and/or two photons

in the final state are in general also subject to non-local reducible anomalous
contributions of the type shown in Fig. ??.

Finally, we observe that in the non-leptonic weak sector the chiral
anomaly contributes only to radiative K decays.

4 General features of K — 7y decays

The amplitude for K(P) — m1(p1) + #2(p2) + 7(¢) is decomposed into an
electric amplitude E(z;) and a magnetic amplitude M (x;):

A(K — mry) = e*(q) [E(x:) (p1apau — p2qprn) + M(2:)e 000705471/ M
(4.1)
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_ Pp; _ Pq

- M - Mg’
The invariant amplitudes E(x;), M(x;) are dimensionless. Summing over the
photon helicity, the differential decay distribution can be written as (r; =

Mm /MK)

(621,2), I3 $1—|—$2—|—$3:1.

Ty

aQF M]’r\"

0x10x4 4(47)3

= ———(|B(z)? + |M(z)P)[(1 = 225 — r2 — r2)(1 — 22y +r? —r2).

(1 =2z, + rg — r2) — Tf(l — 2z, + r% - T%)Q — r%(l — 29 + r% — rf)Q].

There is no interference between £ and M as long as the photon helicity is
not measured. In the following, we will not include the strong == rescattering
phases in the amplitudes £, M [27]. Of course, those phases should and are
usually taken into account in the experimental analysis.

For most of the K — w7nv decays, the electric amplitude is dominated
by the bremsstrahlung amplitude Eg(z;). This amplitude arises already at
lowest O(p*) in CHPT. In fact, the following theorem [10, 17] shows that to
O(p?) the K — mw~ amplitudes (actually K — 7x(ny) for any n > 1) are
completely determined by Ep(x;). In other words, there is no additional in-
formation to O(p?) that would not already be contained in the corresponding
non-radiative transitions K — #x.

Theorem: Consider a general Lagrangian L£;(p;, D,pi) (¢ = 0,4, —) with
at most two (electromagnetically gauge covariant) derivatives. In addition
to the kinetic terms, there are only cubic interactions. Then the tree level
amplitude for ¢g, v1,p_ and any number n of photons in the initial or final
states factorizes,

Alpopro-71---Yn) = AB(a, ¢u, pi) AlPop+p-)  a=1,....n =0+,

(4.3)
A(popt+p-) is the on-shell amplitude for the decay of either spin-0 particle
into the other two and Ag(eq, ¢4, pi) is the general bremsstrahlung amplitude
independent of the structure of L.

11
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The proof is straightforward and is relegated to Appendix A. Here, we
add a few clarifying comments.

i. Although the notation is suggestive, the conclusion is not restricted to
O(p?) in CHPT. Arbitrary mass terms in the chiral expansion fall under
the general assumptions as long as there are at most two derivatives
in the respective couplings. As a particular consequence, parts of the
O(p*) CHPT corrections are covered by the theorem.

ii. The same constraints of gauge invariance and at most two derivatives
imply that the amplitude K — 7~*...~* vanishes for any number of
real or virtual photons [21]. There, only the gauge-invariant kinetic
parts enter.

iii. A corresponding statement does not hold for more than three particles
or more than two derivatives. We shall come back to this remark in
Sect. 6. Note that this comment does not contradict Low’s theorem
[28], which is of course always valid.

iv. Although relatively trivial for n = 1, the relation (4.3) can save a
considerable amount of work for n > 2.

In the next section, we will try to estimate the dominant effects of O(p°)
for the transitions K — 777~y and K+ — 7¥t7% due to vector meson ex-
change. As is the case in general for non-leptonic weak transitions, there are
two different mechanisms related to V exchange [29]. The first mechanism
involves a strong VMD amplitude in connection with a non-leptonic weak
transition on the external pseudoscalar meson legs. Given the strong ampli-
tude, the weak VMD amplitude is unambiguously calculable through a weak
rotation [21]. This is unfortunately not the case for the so-called direct weak
terms corresponding to the weak Lagrangian £5°=! in the present situation.
Even at O(p*), one must resort to models to obtain estimates of such terms
related to V exchange [20].

In Ref. [10], the so-called weak deformation model (WDM) [29] was used
to estimate the direct weak terms for the magnetic amplitudes of O(p°®).
Another model that has been used frequently in non-leptonic weak transitions
(see [25] and references quoted therein) is the factorization model (FM). The

12



FM is motivated by large- N¢ arguments' and can be defined as (keeping only
the octet part)

05 65
= 4k A—— h.c. 4.4
Lo fG8< 5@5@>+ ¢ (44)
where S is the CHPT action for the strong interactions and
oS Jr—
JZI J£:J£71+J£73+J£75+ J£71:—§FUD#U (45)
I

is the corresponding left-chiral current. The constant ks is a fudge factor
which the naive FM puts equal to one.? As shown in Ref. [20], the WDM can
be expressed through the Lagrangian

6S
Lwpm = 2Gs <)\ {J£,17 w}> + h.c. (46)

This Lagrangian formulation of the WDM immediately leads to the result
[20] that Lwpym is a special case of Lpy for ky = 1/2 to O(p*). However,
starting at O(p°) the FM has additional terms not contained in the WDM.

For the transitions of interest here, we are only concerned with the mag-
netic amplitudes of O(p®). Since the strong action S of O(p*) [8] has no terms
with an ¢ tensor except for the anomaly, the relevant FM Lagrangian consists
of the following two terms:

B 655 656 0S4 0Swzw
et st (A2, 550) 185 W

Comparing with Lwpwm in (4.6), the first term of Lpym(Ms) reduces again to
the WDM for ky = 1/2 since

05, u

- . 4.

6€# ‘]L,l ( 8)
We can therefore simply multiply the WDM amplitudes derived in Ref. [10]
by 2k to get the corresponding M amplitudes.

1A more systematic treatment of the large-Nc expansion in this connection can be
found in Ref. [30].
2For the weak anomalous action of Sect. 3, ky =1 corresponds to a; =1 (i =1,...,4)

in Eq. (3.10).
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The second term in Eq. (4.7) involves the anomalous current (3.7) and
the normal current 6S4/6¢, of O(p®). It is well-known [31] that the dom-
inant terms in Sy are due to spin-1 exchange. Taking the special form of
the anomalous current in Eq. (3.7) into account and restricting ourselves to
couplings sensitive to spin-1 exchange [31], one finds that a single term in
S, albeit the one with the biggest coupling constant Lg, can contribute to
K — w7y decays via (4.7). Omitting all terms irrelevant for our transitions,
the (matrix) current of O(p?) is given by

5
%‘ i Led (DU, U — 8,U10,U) + ... (4.9)

5 Phenomenology of K — mny decays

From the analysis of Sect. 3 summarized in Table 1, the chiral anomaly is seen
to contribute only to the decays Kt — 7#t7% and K, — #F7~y at O(p*). In
this section, we perform a detailed phenomenological analysis of these decays.
For completeness, we include some remarks about the remaining K — w7~y
decays referring to and commenting on recent work.

51 Kpg— mn%
For the decays K° — 7%z%y, Bose statistics implies

E(zq,21) = —E(x1,22)
M(zy,21) = —M(zq,29). (5.1)

In the limit where CP is conserved, the amplitude for K (Ks) is purely
electric (magnetic).

The transition K — 7°7% has recently been considered in the literature
[24, 32]. Eq. (5.1) implies the absence of a local amplitude of O(p*), or more
generally the absence of an E1 amplitude. Although this by itself does not
imply a vanishing one-loop amplitude (as can be seen in the case of K —
7tr 75 later in this section), Funck and Kambor [24] have shown that it
does indeed vanish for a real photon. For a virtual photon, the one-loop

14



amplitude is non-zero. In fact, it is divergent and it gets renormalized by the
same combination of weak counterterms [24]

appearing in the transition K — 7%* [33].
Thus, the decay K, — w°x% with a real photon is at least O(p®) in
CHPT. In fact, chiral symmetry permits local octet couplings of O(p®) con-

tributing to this transition. A typical term, compatible with all symmetries,
is provided by 3

1 v
3 <{A, TNV yuutu, + ul,uAVAuu)> . (5.3)

A survey of vector meson couplings of O(p®) [34] shows that there is no
strong amplitude of O(p°) induced by V exchange that could contribute to
K — 7°7% via a weak rotation. It therefore seems legitimate to estimate
the strength of the coupling (5.3) by naive chiral dimensional analysis [35] as

Gs

EAS:I —
¢ 2(4)4

<{A, TNV suutu, + ul,u)‘V;\u#)> +he+... (54

The corresponding amplitude for K7 — 7%7%y is

4iG8€MI5(
EG(.fl’ $2) = W(ZEI - .fQ) 5 (55)
yielding a branching ratio
BR(K Or0 =7-107, )
R(Kp —7'x 7)|O(p6) 7-10 (5.6)

By relating K; — 7%7% to the decay K — #Tx~v (which is dom-
inantly M1), Heiliger and Sehgal obtain a considerably bigger estimate
[32] BR(KL — 7°7%)|ys = 1 - 107® together with BR(Ks — 7°7°%y)|ys =
1.7-1071,

3For our purposes, the covariant derivatives in (5.3), (5.4) can be replaced by normal
ones.
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52 Kg—rnhny

_|_

In the limit of CP conservation, the amplitudes for Ks — 7777~ obey the

symmetry relations

E(z_,zy) = FE(zy,z-) (5.7)
M(z_,zy) = —M(xg,x).

To O(p*), the amplitude is therefore purely electric. In addition to the
bremsstrahlung amplitude of O(p*) (cf. theorem (4.3)), the loop and coun-
terterm amplitudes of O(p*) have recently been calculated by D’Ambrosio,
Miragliuolo and Sannino [36]. The local contribution of O(p?*) is proportional
to

Nig — Nis — Nig — Niz (5-8)

and it is scale-independent [19, 20]. The same combination of coupling con-
stants appears in the electric amplitude for the decay KT — wtz% [10].
Consequently, the loop amplitudes for both Ks — 77~y and KT — 7t7x%
are finite.

At present, experimental data [37] are consistent with a pure
bremsstrahlung amplitude. However, forthcoming facilities like DAPHNE [38]
should be able to detect interference with the O(p*) amplitude that is ex-
pected to show up at the level of 107 in branching ratio (for F, > 20 MeV)
[36].

5.3 K, —nfn v

The bremsstrahlung amplitude of O(p*) [10]

_ eeA(KY — ntrT)
Mg (5 —24)(3 — )

violates CP. Here ¢ is the standard CP violation parameter in K — 77

Ep(x;) PL=DPpy, P2 =p- (5.9)

decays and we have neglected ¢’. From O(p*) on we assume CP conservation

implying [cf. Eq. (5.7)]

E(z_,zy) = —FE(zy,2)
M(z_,zy) = M(zq,zo). (5.10)
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The dominant contribution of O(p*) occurs in the magnetic amplitude and it
is due to the anomaly. As discussed in Sect. 3, there is no reducible anomalous
amplitude of O(p*). The direct weak anomaly functional gives rise to [11, 12]

GGSMIS(

M4 = 2772F (CLQ + 2&4) (511)

in terms of the coupling constants a; defined in Eq. (3.10).

Because of (5.10) there is no local contribution to £ at O(p*). In contrast
to K — 7%7%y, there is however a finite one-loop amplitude. The relevant
Feynman diagrams are shown in Fig. ??. The result of the loop calculation
is proportional to the non-leptonic weak vertex occurring in Fig. ??, where
the momenta of the corresponding three mesons are put on the mass shell.
Consequently, only the diagrams of type b give non-vanishing amplitudes for
the 7 K? and the K*7 intermediate states. In accordance with (5.10), the
loop amplitude for K, — 7t 777 takes the form [10]

teGs Mg (M3 — M?)

loo
E4 p('r‘}'?x—) = 8772F

[9(z-) —g(x4)], (5.12)

where the function g(z) is defined in Appendix B. This result can now be
compared with the bremsstrahlung amplitude (5.9):

‘EéBp B e(i‘g)?[g(m—) —g(z4)] (% - $+) G — a:_) ‘ . (5.13)

Taking the maximum of this ratio over the whole Dalitz plot leads to the
bounds

BN g0
Eg = ’
B (K*n) 2
S 2 <0107 5.14
‘ n < (5.14)

for the contributions of the 7*K? and K*p intermediate states, respectively.
The smallness of the ratio of the two amplitudes is, of course, due to CP
invariance, which is responsible for the antisymmetry in x4, z_ of EX°P,
forbidding in particular an electric dipole amplitude. Note also that because
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of arge ~ /4 there is only partial interference between EY°® and Ep. It
seems almost impossible to detect the loop amplitude.

For the electric amplitude F, the analysis to O(p*) is therefore more than
sufficient. There are on the other hand strong experimental indications for the
presence of a sizeable magnetic amplitude beyond O(p*). A recent analysis of
K — 7mtn~~ at FNAL [14] confirms an earlier result from Brookhaven [13]
finding evidence for a dependence of the direct emission amplitude on the
photon energy. On the other hand, the dominant direct emission amplitude
My in (5.11) is a constant, independent of the photon energy.

At O(p®), CP invariance leads to the following most general form of the
magnetic amplitude via Eq. (5.10):

—~ P E
Ms(zvy,2_) = a+b(zy+2_) = at+b—bry = Ms—bas, T3 = M—g = Mj(’
(5.15)

where F., is the photon energy in the kaon rest frame. To O(p?), the total
magnetic amplitude is therefore given by

M(zy,x_) = My+Mg(zy,2_) = My+M—bas = (My+Mg)(14cxs). (5.16)

From the distribution in F., measured by E731 [14], one can extract [39] a
value

c=—-1.74+0.5 (5.17)
for the slope ¢, in agreement with the earlier measurement [13, 15].

How can CHPT account for this rather big slope? An early explanation
was put forward by Lin and Valencia [40], who suggested a vector-meson-
dominated form factor in the #¥7~ invariant mass to be responsible for the
slope. The experimental value (5.17) of the slope is in fact consistent with
their model amplitude. Unfortunately, as already noted by Picciotto [41],
the amplitude of Ref. [40] violates chiral symmetry. In the terminology of
Sect. 3, their magnetic amplitude is of the reducible type, corresponding in
particular to a; = 0 (¢ = 1,...,4). To agree with our general result (5.11),
their amplitude should therefore vanish at O(p*), which in fact it does not.
The source of the problem seems to lie [41] in the model for combining the
chiral anomaly and vector mesons.

Vector meson exchange contributes first at O(p®) to the amplitude M.
This implies that the dependence on E. due to a V' propagator is an effect
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of O(p®) and higher. Although not impossible, the big slope of Eq. (5.17)
makes the interpretation as an O(p®) effect difficult to understand for the
chiral practitioner. To make this feeling more quantitative, let us adopt the
simplifying assumption that Mg in (5.15) is entirely due to V' exchange. In
this case

My( ) Mg M l1+M12"(1 2x3) + (My ~ M,)
Ty, )= = — 2z o~
S ] BT A v
My,
(5.18)

and consequently

— M2 2M2 MY

Mg = M? (1+ g) c=— K6 (5.19)

M} ME(M, + M)

Making the plausible assumption that the amplitude Mg is at most equal to
M, in magnitude, the observed sign of ¢ requires that M, and Me (or MY)
interfere constructively. Moreover, with |M,| > |]\A46| the absolute value of
the slope is bounded by

2MEMP | M, M2
le| = iMo/Ms —r =03, (5.20)
ME(L+ My/Mg) M+ Mg

much too small to explain the measured value (5.17).

We are therefore led to interpret the slope ¢ as an effect of O(p®). Which
are the dominant contributions of O(p®)? First of all, there is a reducible
amplitude due to the anomaly of the form

€G8M13(
272 F

Mamem = Fy (5.21)

F

1 _(c—ﬂs)(c—l—?ﬂps)+(\/§c+s)(2\/§pc—5)
12 3(r2—1) 3(r — 1)

ri = M; /Mg, ¢ = cos O, s =sin®

in the notation of Ref. [10]; ® denotes the np—n' mixing angle and p # 1
takes into account possible deviations from nonet symmetry for the non-
leptonic weak vertices (nonet symmetry is assumed for the strong WZW
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vertices). At O(p*) (0 = 0, M,, — oc), F} vanishes because of the Gell-
Mann-Okubo mass formula. In the real world, the n and 7’ contributions
interfere destructively for 0 < p < 1 and © ~ —20° as in the similar case of
the Kj — 2+ amplitude. Although not really predictable with any precision,
£} is dominated by the pion pole and certainly positive. We observe that M,
(with a; > 0) and M2"°™ interfere destructively, as already noted by Cheng
[12], making a reliable estimate all the more difficult. At the present state
of the art, the real challenge in K, — 777~ is to understand the sign and
magnitude of the slope c.

In the simplifying limit M, = 0, the strong VMD amplitude of O(p°) is
unique. The relevant couplings are defined by the Lagrangian [34]

gy o -~ ~u -~ -~ ~
Ly = =DV uw]) + by (Vo P+ V= VW =V, 0,
22
~ (5.22)
for the vector meson resonance field V,. Contracting the vector meson fields
to produce an effective strong VMD Lagrangian of O(p°) proportional to

gvhy and applying a weak rotation leads to the weak VMD amplitude [10]
(M =0)

16\/5 eGggthMIir

Mg]MD = QCv(l — 3303), Cv = 3M2;F

(5.23)

To estimate the direct weak amplitude of O(p°) related to V exchange, we
make use of the FM as discussed in the previous section. With the Lagrangian

defined in Eq. (4.7), one obtains (M, = 0)
eGSMIS(LQ
w23

The first term reduces to the WDM amplitude for k; = 1/2 [10], whereas the
second term has no analogue in the WDM and is proportional to the O(p?)
coupling constant Lg appearing in the current (4.9).

MEM = 4k;Cyas + k(2 — bas). (5.24)

Altogether, we obtain for the magnetic amplitude

GGSMIS{
2w

2Lo M2
{a2 + 2a4 — Fy 4 ry[l 4 252k — 3)] + Lk p(2 — 5$3)}

M(zs3) = 72
(5.25)
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64\/§7T2gvth12{ ~ O 4 ~ QLQ(MP)MI?{
3M2 - F?

ks

Ty =
with [29, 34, §]

gv = \/§MV’

In contrast with more phenomenologically oriented treatments, CHPT as a
quantum field theory permits a reliable determination of the relative signs of
the various terms in the amplitude (5.25):

\hy| ~3.7-1072, Ly(M,)~6.9-107°.  (5.26)

o Although we cannot predict a precise value for the quantity as42a4— F1,
factorization discussed in Sect. 3 (0 < a; < 1) strongly indicates a
positive sign.

e Although the rates I'(V — P~) only determine |hy |, the product gy hy,
and therefore ry, must be positive. The argument invokes yet another
vector meson coupling constant fy [31, 34]. The product fyhy governs
the slope of the 7%, 5 — ~vy* — 4£*{~ amplitudes in the virtual photon
mass [42]. Experimental evidence (see the discussion in Refs. [42, 43])
agrees with the predicted magnitude and fixes fyhy > 0. On the other
hand, fygy ~ F?/M% [34] is known to be positive and so is therefore
gvhy (see also Ref.[44]).

o Lj(M,) is certainly positive [8]. In resonance approximation [31, 34]
Lg = %fvgv, substantiating the previous argument.

Comparing the total magnetic amplitude (5.25) with the definition (5.16) of
the slope parameter ¢, we infer that ¢ must be negative for all reasonable
values of the factorization parameter ks (0 < kf $ 1). To find out whether
(5.25) can also explain the magnitude of the experimentally measured slope
(5.17), we use the recent measurement [14]

BR(E, > 20 MeV)pg = (3.19 +0.16) - 10~° (5.27)

of the direct emission branching ratio to determine the quantity as +2a4 — F}
for given values of k. Then, the slope ¢ can be extracted from Eq. (5.25)
both in magnitude and sign.
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Table 2: The slope parameter ¢ as a function of the factorization parameter
ks. The quantity a; + 2a4 — F} is extracted from the measured branching
ratio (5.27).

ki | az 4+ 2a4 — Fy c

0 0.9 —-0.9
0.5 0.6 -1.3
1 0.3 —-1.6

The results are displayed in Table 2 for three representative values of ky.
The fitted values of a3 + 2a4 — F; document the expected strong destructive
interference between the leading term ay + 2a4 and the O(p®) correction
Fi. Our main results are the big values for |¢| as found experimentally. In
view of Eq. (5.18), we may in addition expect an enhancement of |¢| by
the propagator effect of O(p®). However, our analysis reinforces the previous
conclusion that the slope parameter is dominantly an effect of O(p°). In
summary, we cannot claim to be able to predict the rate for K — nt7 7,
but CHPT establishes a correlation between the rate and the slope parameter
¢, in agreement with experiment.

In addition to the analysis of Ref. [40] already mentioned, several authors
have addressed the decay Kj, — 777~ recently. Cheng [12] used factoriza-
tion for the O(p*) magnetic amplitude (a; = a4 = 1). He has emphasized
the need for a strong destructive interference between the leading contri-
bution and higher-order terms like Fi, but he did not include V exchange
(rv = Lg = 0 in (5.25)). In two more recent papers [45, 41], vector meson
exchange is included. The magnetic amplitudes of Ko and Truong [45] and of
Picciotto [41] agree to O(p®) with our amplitude (5.25) in the (not very re-
alistic) limit a3 = a4 = 0 (no direct anomalous amplitude) and ks = 0 (pure
VMD only). Within the hidden symmetry approach [46] for the “anomalous”
couplings of vector mesons, they go beyond O(p®) by including in particular
the vector meson propagators, but they find essentially no dependence of M
on the photon energy.

Further work on K — w7y decays can be found in Ref. [47].
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54 Kt — ataly

The decay Kt — 777y shares several features with K — 7T 77 ~:
e The bremsstrahlung amplitude is suppressed;
e The dominating contribution of O(p*) is due to the chiral anomaly;
e The one-loop amplitude is finite, but again very small.

The bremsstrahlung amplitude [10]

eA(KT — 7txY)
Ep(xi) = : = P+, = po, 5.28
B(xi) Mrzs(} = 20) P1 =D+, DP2=Po (5.28)

includes the complete amplitude of O(p?) according to the theorem of Sect. 4
and it is suppressed by the Al = 1/2 rule.

The magnetic amplitude of O(p*) consists of both a reducible and a direct
amplitude [10, 11]:

M4 _ BGgMI% <

3
or2 [ —1 -+ Fa2 — 3&3) . (529)

2

Factorization suggests constructive interference between these two terms.

In contrast with K — wtx~~, there is now a local scale-independent
contribution of O(p*) to the electric amplitude E [10]:

QiGGgM?(
F

As already mentioned, the same combination of coupling constants appears
in the amplitude for Ks — 7tx~~ [36]. By measuring the energy spectrum
of the photon, the counterterm amplitude (5.30) can in principle be isolated
through its interference with the bremsstrahlung amplitude (5.28). We can

estimate the size? of this interference by appealing to the FM which predicts
[20]

Eleeal = (N1gy — Nis — Nig — Ni7). (5.30)

2

F
Nig — Nis — Nig — Niz = _kuZ\JQ = —T7-107%k;. (5.31)
‘f

4Although Nia— Ni5 can be determined from the recent measurement of K+ — 7tete™
[48, 33], the constants Nyg, Ny7 are still unknown.
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For ks > 0, the interference is predicted to be positive [10]:

local
E4
Ep

~ 231’3(1 — 2$0)(—N14 + N15 + N16 + N17)/7 : 10_3. (532)

The sign is well-determined because the ratio Gg/(G57 is known to be positive
from K — 27 decays (see Sect. 2). Except for small £, (25 — 0, 229 — 1)
where bremsstrahlung is bound to dominate, the amplitude £ should be
detectable. In fact, the experiment of Abrams et al. [49] is consistent with
constructive interference between Ep and EY°® but the available data [49]
are not precise enough to separate the amplitudes £ — Eg and M experi-
mentally.

We now turn to the loop amplitude, which is necessarily finite. The Feyn-
man diagrams are shown in Fig. ??. Similar to K;, — 7+ 7~ v, only the graphs
of type b with 7t K? and K*5 intermediate states yield non-vanishing con-
tributions in the octet limit (G97 = 0). The corresponding amplitude is given
by 2 2
1eGgMy (Mi — M

: As(m? =) (o) (5.33)

where the function h(z) can again be found in Appendix B. The ratio of the

Bz =

loop amplitude to the bremsstrahlung amplitude can now be written in the

form .
oop 2
Ba 7| | MiGs (1—;50) h(zo)| . (5.34)
Ep | |uxzp2ql? " \2
which leads to the bounds
Eloop + 770
‘w < 3.4-1072,
b'p
EY°P(K+
‘M‘ < 071072 (5.35)
Ep

At least in the foreseeable future, the loop amplitude can safely be neglected
in comparison with the bremsstrahlung amplitude (5.28). On the other hand,
the counterterm amplitude (5.30) should be within reach of facilities with in-
tense K™ beams such as DAPHNE [38], not to speak of proper kaon factories.
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For K;, — =t

777, it was essential to include V exchange effects of O(p®),
in particular to understand the slope parameter ¢. All the mechanisms dis-
cussed there also contribute to KT — 77 7%, The weak VMD amplitude is
10]

MYMP = ¢y, (5.36)

and the direct weak amplitude is given by (M, = 0)

GGSM;(LQ

FM _ «
Mg™ = Zkav + 9 2]3

ke(3 — 8xy — 2x0) (5.37)

in the framework of the FM. Altogether, we find for the total magnetic am-

plitude

eGgM%
Ar?F

2L M%
{—2 + 3ay — 6as + v (2k; — 1) + ;2 Kfr(3 —8xy — 2:1:0)} :
(5.38)
Under the assumption that direct emission is entirely due to the magnetic
part, experiments [49, 37| find a branching ratio

M = My+Ms =

BR(55 < Tp+ (MeV) < 90) = (1.8 £ 0.4) - 107 (5.39)

for the given cuts in the kinetic energy of the charged pion. Proceeding in a
similar way as for K, — 7#t7~~, we extract the quantity Ay = —2+3ay —6as
from the measured rate. In order to exhibit the sensitivity to the O(p°)
contributions, we first determine A4 in the limit where V' exchange is turned
off (ry = Lo = 0):

Ay =—-4.540.5. (5.40)

For the physical values of ry and Lg listed in Eq. (5.25), A4 is found to be
Ay = —4.1—-0.3ks £0.5, 0<ks<lL. (5.41)
We draw the following conclusions:
i. Compared with K, — 777~ v, the V exchange contributions are of less

importance in the present case. Especially for ks ~ 1, the O(p°) terms
are essentially negligible in the rate.
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ii. However, the last term in Eq. (5.38) shows a rather pronounced depen-
dence on z4. A high-precision analysis of the decay distribution in 7+
may be able to reveal this dependence.

iii. The fitted values of A4 are very much consistent with our expectations
based on a; $ 1 (cf. Sect. 3).

iv. Because of the expected positive interference between Ep and Ecal,
the coefficient |A4| is probably somewhat smaller than found above.
Future experimental analysis should include an E1 amplitude of the

type (5.30).

6 Survey of the decays K — nmyy and K —
B

The complete list of non-leptonic K decays with direct anomalous contri-
butions can be found in Table 1. In comparison with the dominant decays
Kp — ntn~, Kt — 77 7% discussed in the previous section, the remaining
processes are either suppressed by phase space or by the presence of an extra
photon in the final state. It seems premature to perform a complete analysis
of all those transitions to O(p*) in CHPT. Instead, we discuss their general
features and illustrate the expected magnitude of anomalous contributions
for two specific examples.

For the decays K — w7w~y7y, the general theorem of Sect. 4 applies.
Thus, the O(p?) amplitude is completely given by bremsstrahlung. As for
the K — mry transitions, direct anomalous amplitudes occur again only in
the decays KT — 7t7%~ and K, — 777~y where bremsstrahlung is sup-
pressed. However, in both cases the dominant anomalous contributions are
not the direct ones, but the rather trivial 7° — 27 transitions from K — 37
intermediate states.> Therefore, in order to isolate the non-trivial anomalous
amplitudes in both Kt — 7t7%~ and K, — mT 7~y it is necessary to stay
away from the pion pole in the 2v-invariant mass. In practice, only the part
of phase space with large my, seems feasible for this purpose.

5Also n — 2v contributes, but to a much lesser extent.
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Let us consider the decay KT(P) — 7+ (p1)7%(po)v(q1)7(g2) as an exam-
ple. As explained above, the amplitude at O(p*) is completely determined by
A(K*t — 7 7Y), which is suppressed by the A = 1/2 rule:

E(l)gu(ql)*gu(QZ)*.
1 1 1 1
=5 Puprr — 5—— 1Pt
{ Papre " Papral
4 ! llp(p o+ ——(P )P+]
Pla + 2) — g2 [P . Ny Pq, G@2)utv T Juv
1 1 1
t Pau(P+ + @)y + ——(p+ + ¢2)uPs — 1,
P+(Q1 +CJ2) + 192 [P+Q1p+ﬂ(p+ q1) P+9q2 (p+ qQ)“pJ’ g“”(%})

with B = 2 A(K+ — 7t79).
At O(p*), the electric amplitude is given by

gﬂ(ql)*gu(qQ)*_
‘ {E(Q) [Lpﬂ(p+q2p0V — Pog2p+v) + L(P+Q1Z?0u — poqiP+u) Py
qu PQQ
1
— —p+u((P+ + @1)@2p00 — Pog2(p+ + 01)0)
P+qu
1

((p+ + g2)q1pop — Poqi(P+ + G2) ) P1v
P+9q2

+ (pouqiv + G2uPov — (¢1 + 92)Pogun) | + E(S)(‘hnqw - Q1Q29;w)}7 (6.2)

where the coefficients £ and E®) are scale-independent combinations of
the coupling constants /V;:

riald
E® = ———=(Nis — Nis — Nig = Nug),
271G
E(S) = TS(Nlél - N15 - 2N18)‘ (63)

Consequently, the one-loop contributions to the decay amplitude must be
finite. From the similarity with the case of K+ — 7t7%y, we expect them to
be small.
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The contributions from the chiral anomaly enter in the magnetic ampli-
tude, which is given by

e (q1)"e" (g2) e
P P
. 1| _ N v o , N _H
{M 9usP+~vq1 pOﬁPq2 Yv§P+~v9202P0p Pq,

P+v P+u

+ 9us(p+ + G1)~G2aP03

+ 9us(P+ + 42)~q10P0p
. ! P+q2 P+

+ (MP + MO+ M (4))gwgu6qlaqw}’
with

2aG 3

M(l) — ﬂ-FS (1 — 5612 ‘I’ 3@3) )
4aG

M(Q) f— —8
InF’

y® — aGs6Ppy — 3Mj —2M7 +2(q1 + ¢o)°
3 F (q1 + q2)* — M? 7

o 2G5 P(p+ — po) (6.5)

TF (g4 q2)? — M2

The term with M@ is determined by the magnetic amplitude of K+ —
7t7%. The second term, proportional to M), is generated by the La-
grangian (3.3). Finally, the last two terms are coming from a K+ — 7T 7%7°
(Kt — 7t7%) intermediate state, followed by a subsequent transition
™=y (1= 7).

As long as the photon helicities are not measured, there is no interfer-
ence between electric and magnetic amplitudes. Our numerical results for the
various contributions to the branching ratio with three different cuts in the
27~ invariant mass m%w = (q1 + ¢2)* are displayed in Tables 3 and 4. For the
coupling constants N; occurring in (6.3) we have chosen the values suggested
by the FM with k; = 1. In the quantity M®) of (6.5) we have used the naive
factorization values a3 = a5 = 1.

The remaining cases K — 37y(y) are in general dominated by the
bremsstrahlung amplitudes entering with full strength. However, it is im-
portant to realize that the theorem of Sect. 4 is not applicable for those
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Table 3: Contributions to the branching ratio BR(KT — #T7%~) in units
of 107 from the electric amplitudes. The indices 7,7 = 1,2,3 refer to

EM E® EG) of (6.1) and (6.2) .

[ 4,7 | BRij(m2, > 170 MeV) | BRi;(my, > 180 MeV) | BRij(ma, > 190 MeV) |

1,1 11.1 4.3 1.3
2,2 0.7 0.3 0.1
3,3 0.7 0.4 0.2
1,2 5.4 2.3 0.7
1,3 4.8 2.4 0.9
2,3 1.3 0.7 0.3
‘ sum ‘ 23.9 10.3 3.5

Table 4: Contributions to the branching ratio BR(KT — #T7%~) in units
of 107! from the magnetic amplitudes. The indices ¢,7 = 1,2, 3,4 refer to

MO M MO M@ of (6.4).

‘ L,J ‘ BRij(mer > 170 MGV) ‘ BRZ']‘(mQW > 180 MGV) ‘ BRZ']‘(mQW > 190 MGV) ‘

1,1 A7.2 22.2 8.0
2,2 0.9 0.5 0.2
3,3 22.0 8.5 2.7
14 0.0 0.0 0.0
1,2 12.7 6.7 2.7
1,3 - 61.7 - 26.9 - 9.2
1,4 - 1.9 - 0.9 - 0.3
2,3 — 4.4 - 2.1 - 0.8
2,4 - 0.1 - 0.1 0.0
3,4 0.7 0.3 0.1
| sum | 15.2 8.3 3.4
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decays. In other words, already at O(p?) in CHPT there are in general ad-
ditional contributions to the amplitudes that are not of the bremsstrahlung
type. Those leading-order contributions are interesting in themselves and will
be discussed in detail elsewhere. Here, we are interested in the sensitivity re-
quired to detect the presence of direct anomalous amplitudes governed by
the weak coupling constants Nas, ..., N3;. We emphasize that there are in
addition anomalous amplitudes of the reducible type that are not covered
by the Lagrangian (3.3), but are of the type shown in Fig. ??. Since the
WZW functional has no free parameters, those contributions are completely
determined by the octet coupling Gy in the O(p?) weak Lagrangian (2.2).
An example, in addition to the #%(n) — 7~ vertex relevant for two-photon
decays, is a transition of the type K — 7% — wx7y where the second step
occurs via the WZW functional.

An interesting case with direct anomalous contributions is provided by
*tr~7%. From the explicit form of the octet operators Ws, ..., Wa;
in Eq. (3.11) and using (3.10), one finds the direct anomalous coupling

[X’L—>7T

clirect(), 7t 70%) = 12;5;2 (8ay + ay — 10a3) F* 9, K20, x%x x~.
(6.6)
This Lagrangian has a few interesting features. First of all, the coefficients
are potentially rather big if we recall ¢; = O(1) from the dominance of
factorizable contributions (Sect. 3). However, with the naive factorization

values a; = 1 there would be almost complete destructive interference in
(6.6). Finally, the decay K;, — mt7~ 7%y is the only experimentally accessible
process sensitive to the weak coupling constant N,s. Therefore, this decay
affords in principle an interesting possibility to check the structure of direct
anomalous terms.

Unfortunately, the available phase space is small. Ignoring all other con-
tributions, in particular the dominant bremsstrahlung amplitude, the La-
grangian (6.6) would give rise to a branching ratio

BR(Kp — 777~ 7%) = (8a; + ay — 10a3)* - 2- 107", (6.7)

direct

Since not even the bremsstrahlung part has so far been observed experimen-
tally, a test of the anomalous coupling (6.6) may have to wait for a while.
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7 Summary

Anomalies play a fundamental role in our understanding of modern particle
physics. Gauge symmetries should be free of anomalies in order to allow a
consistent quantization of the corresponding field theory. Global symmetries,
however, can be broken at the quantum level. A well-known example is the
chiral anomaly [1, 2], present in quantum field theories with chiral structure,
such as the standard model. They do not constitute any obstruction for a
proper quantization. Moreover, they have important implications for particle
physics.

In the standard model, the chiral anomaly manifests itself most directly in
the low-energy interactions of the pseudo-Goldstone bosons of spontaneously
broken chiral symmetry. Since anomalies have a short-distance origin, their
effect is completely calculable. The translation from the fundamental quark-
gluon level to the effective chiral level (mesons) is unaffected by hadronization
problems. The Wess-Zumino-Witten functional [9] encodes all low-energy
manifestations of the chiral anomaly in strong interactions, in the presence
of arbitrary external vector and axial-vector fields.

It is straightforward to work out the experimental consequences of the
anomaly for electromagnetic and semileptonic weak processes. In addition
to the classical test via the two-photon decays of the neutral pseudoscalars
(7% — vy, n — vv, ¥ — 77) or the 37 and y#T7 " interactions [5],
the manifestations of the non-Abelian chiral anomaly have mainly been in-
vestigated in semileptonic kaon decays [3, 4, 50]. Tau decays into three or
more hadrons have also been pointed out [51, 52, 53] to be sensitive to the
anomaly, especially the decays 7 — v,n + nx (n > 2) [51, 52], which (for
small hadronic invariant mass) only get contributions from the WZW term.
Unfortunately, the presence of resonances at the high Q% values relevant for
the 7 decay spoils the possibility of making a clean quantitative test of the
anomaly predictions.

In this paper we have presented a systematic investigation of the relevance
of the chiral anomaly in non-leptonic weak transitions. Within the framework
of CHPT, the manifestations of the anomaly appear first at O(p*). They can
be grouped in two different classes of anomalous amplitudes: reducible and
direct contributions.
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The reducible amplitudes arise from the contraction of meson lines be-
tween a weak AS = 1 vertex and the WZW functional (Fig. ??). The so-
called pole contributions can be given in closed form [10] as a local Lagrangian
(3.3) which contributes only to the decays KT — 7#t7%, KT — 7t7%+ and
tn~~~. There are other reducible contributions which cannot be
written in local form. In the octet limit, all reducible anomalous amplitudes

[(L—>7T

of O(p*) can be predicted in terms of the coupling Gs.

The direct anomalous contributions arise from the contraction of the W
boson field between a strong Green function on one side and the WZW func-
tional on the other side. Their computation is not straightforward, because
of the presence of strongly interacting fields on both sides of the W. Using
the operator product expansion to integrate out the heavy fields (W, ¢, b,
¢), one gets an effective Hamiltonian in terms of four-quark operators, which
must be realized at the bosonic level in the presence of the anomaly. The
factorizable contribution can be calculated in terms of bosonic currents. Due
to the non-renormalization theorem of the chiral anomaly [26], there are no
QCD corrections to the anomalous current, which is directly obtained from
the WZW functional. Moreover, the non-factorizable piece does not get any
contribution from the WZW functional. Therefore, the bosonized form of
the direct anomalous amplitude can be fully predicted [11]. At O(p*), the
anomaly turns out to contribute to all the possible octet operators propor-
tional to the ¢ tensor (Was, Wag, Wso and W3;). In spite of its anomalous
origin, this contribution is chiral-invariant. Unfortunately, the coefficients of
these four operators get also non-factorizable contributions of non-anomalous
origin, which cannot be computed in a model-independent way. Therefore,
we can only parametrize the final result [Eq. (3.10)] in terms of dimensionless
coefficients a; (¢ = 1,...,4), which are expected to be positive and of order
one.

A complete list of all kinematically allowed non-leptonic K decays that
get local contributions from the anomaly at O(p?*) is given in Table 1. Only
radiative K decays are sensitive to the anomaly in the non-leptonic sector.
The most frequent “anomalous” decays K; — nTn~y and Kt — 7tz%
share the remarkable feature that the normally dominant bremsstrahlung
amplitude is strongly suppressed, making the experimental verification of
the anomalous amplitude substantially easier. This suppression has different

origins: K+ — 7%7% proceeds through the small 27-plet part of the non-
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leptonic weak interactions, whereas K — nt7~ is CP-violating.

*tx~~, the direct emission rate is completely dominated by

the magnetic amplitude. There is however a strong destructive interference

For K;, — «

between the O(p*) contribution (5.11) and the anomalous reducible ampli-
tude (5.21), first appearing at O(p®). This O(p®) contribution stems from
corrections to the Gell-Mann-Okubo mass formula and is very sensitive to
the n—n' mixing angle and to nonet-symmetry-breaking effects. This makes
a reliable estimate of the rate very difficult. Moreover, there is an important
VMD contribution at O(p®), which generates a sizeable dependence of the
magnetic amplitude on the photon energy. Although we cannot make abso-
lute predictions for this decay, CHPT establishes a correlation between the
rate and the energy slope in agreement with experiment.

For Kt — 7%x%y, there is a potentially sizeable electric amplitude in-
terfering with bremsstrahlung. This interference must be taken into account
in the experimental analysis to extract the contribution of the anomaly to
the rate. The VMD contribution to the magnetic amplitude is less important
*tx~~. Nevertheless, it generates a rather pronounced de-
pendence on the charged pion energy. Fitting our formulae to the measured
direct-emission rate, one gets a value for the anomalous O(p*) magnetic am-
plitude (5.29), in good agreement with the factorization estimate.

than in K, — =«

The remaining non-leptonic K decays with direct anomalous contribu-
tions (Table 1) are either suppressed by phase space or by the presence of
an extra photon in the final state. For the decays K — wxvy~, direct anoma-
lous amplitudes occur again only for K; — 7tn~vy and Kt — nt7%~,
where bremsstrahlung is suppressed. However, in both cases the dominant
anomalous contributions are the trivial #° — 24 transitions from K — 37
intermediate states. The decays K — 37y(7) are in general dominated by the
bremsstrahlung amplitudes entering with full strength. An interesting case
with direct anomalous contributions is provided by Kj; — 7tz 7%y, which

is the only experimentally accessible process sensitive to the weak coupling

Ngg.

Although not as straightforward as for electromagnetic and semileptonic
weak processes, non-leptonic K decays offer interesting possibilities for ex-
perimental tests of the chiral anomaly.
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Appendix A: Bremsstrahlung amplitudes for
K —7mmy...vy
The tree level generating functional Zie.[s, A] for connected (3 4 n)-point

functions with three external spin-0 legs and n external photons can be writ-
ten as

Ztree[j7 A] = / d4$£(2:ubic(s‘oil[j7 A]7 DM@?U? A]) (‘Al)

L5 is the cubic part of the general Lagrangian L,(ipr, D, ) in the theorem
of Sect. 4. The classical fields ¢x[7, A] are solutions of the free equations of
motion

with external sources j; in the presence of an external electromagnetic field

A,
Using partial integration in the action, the most general gauge-invariant
cubic interaction Lagrangian with at most two derivatives has the form

L5 = po(a1D*pyp- + axpy D’ + azDyor DM ) + boopro—, (A.3)

where ay, as, ag, b are coupling constants that may depend on the masses Mj.
We use partial integration once more,

poDupi Do = %(D%ow@— —poDorp- —pops D?p-),  (AA4)

to bring £5"P¢ into the final form
L5 = po(ay Doy + aypy DPo ) + aiD ooy o + booprp-. (AL5)
In the generating functional Ziye. in (A.1), the derivatives appear therefore

only in the form of covariant d’Alembertians acting on the classical fields <.
Using the equations of motion (A.2), we may write

D*o = D*(D* + M?) ™' ji = jr — ME(D?* + M?) ™ js. (A.6)

Since the first term j; on the right-hand side does not contribute to on-shell
amplitudes (amputated Green functions), we may replace D?p<! by —MZp¢!
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everywhere in L£5™¢(¢¢ D, %), Thus, the Lagrangian is equivalent to the
non-derivative cubic Lagrangian

L3 = Gooy o (—ai M2 — ayM? — a, M2 + b) (A7)

for which the theorem is trivially satisfied.
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Appendix B: Loop functions

The kinematical functions g(x) and h(x) originate from the loop integral

d*k Jet v - , , ) )
/ (2m)% (k2 — M2)((k + q)2 — M2)((k — p)? — M2) = 19" Cao(p®, (p+q)", My, My)+. ..,
(B.1)

where ¢* = 0. The dots in (B.1) refer to terms that are irrelevant in our case.
In the next step we define the (finite) function

Cao(p*, (p+ @)%, M, M) = Coo(p®, (p + @)*, MY, M) — Cao(p®, p*, M, M3).

(B.2)
With this definition, the function g(x) [used in (5.12)] and the function h(x)
of (5.33) are given by

2
K

Mz — _
g@) = (m)' =k [Coolp?, (r+ @), M7 M) + Caolv, (0 + 0, M, M)

M} [ 2
h(z) = (4m)? pé [Czo(pzv(pirq)?,Mi,Mi'Hngo(pQ,(erQ)2,Mi'7Miﬁ}373)

where p?> = M? and pg = M} (L — z).
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