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and IFIC, Centre Mixte Universitat de València – CSIC
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Abstract

The 2–point functions for ∆S = 1 current-current and QCD-penguin operators, as well

as for the ∆S = 2 operator, are calculated at the next-to-leading order. The calculation

is performed in two different renormalization schemes for γ5, and the compatibility of the

results obtained in the two schemes is verified. The scale- and scheme-invariant combina-

tions of spectral 2–point functions and corresponding Wilson-coefficients are constructed

and analyzed. For ∆S = 1, the QCD corrections to the CP-conserving part, dominated by

current-current operators, are 40%–120% at q2 = (1 − 3 GeV)2, whereas the correction to

the imaginary part, mainly coming from the penguin operator Q6, are 100%–240%. The

large size of the gluonic corrections to current-current operators provides a qualitative un-

derstanding of the observed enhancement of ∆I = 1/2 transitions. In the ∆S = 2 sector

the QCD corrections are quite moderate (≈ −20%).
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1 Introduction

Recent years have witnessed considerable improvement in Standard Model calculations of

non-leptonic weak decays. In particular, the effective Hamiltonians for flavour-changing

∆F = 1 [1,2,3,4] as well as ∆F = 2 [5,6] transitions were calculated at the next-to-leading

order (NLO) in renormalization group (RG) improved perturbation theory. The neces-

sary computations included the determination of 2–loop anomalous dimension matrices for

current-current, QCD-penguin, and electroweak penguin operators [1,2,7,8,9,10,11]. The

benefit from such calculations is the following:

• the size of the NLO short distance corrections to the coefficient functions was ob-

tained,

• this allowed an estimation of the scale down to which RG evolution is possible, before

perturbation theory breaks down, to be around 1 GeV,

• only a NLO calculation allows for a meaningful use of the QCD scale ΛMS, extracted

for example in deep inelastic scattering, τ decay or LEP experiments,

• and it made possible to attack the question of the dependence of coefficient functions

on the renormalization scheme, e.g. the definition of γ5 in an arbitrary space-time

dimension, which first appears at the next-to-leading order.

Sadly enough, this is not the whole story. In order to fully calculate the decay amplitude

for a certain process, we also need to know the matrix elements of the operators appearing

in the effective Hamiltonian, between the hadronic initial and final states. This part is

much more difficult, for it involves non-perturbative dynamics at low energies. Methods to

attempt this involved task include lattice gauge theory [12, 13, 14], 1/N -expansion [15, 16,

17], chiral perturbation theory [18,19], QCD sum rules [20,21,22,23,24,25,26], and mixed

approaches involving functional integration of quark fields [26]. A strategy to obtain the

matrix elements for ∆S = 1 decays at NLO as far as possible from experimental data was

also advocated in ref. [4].

All these methods suffer from more or less severe drawbacks. Although the lattice

could eventually become the ultimate tool for the calculation of matrix elements, the pre-

cision of present lattice results is still very poor. 1/N -expansion and chiral perturbation

theory are not yet directly related to the fundamental QCD Lagrangian, and therefore,

a sound matching of matrix elements calculated in one of these methods and the coeffi-

cient functions, obtained in perturbation theory, is still not possible. The bridge between
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the effective low-energy chiral Lagrangian and the underlying QCD theory can be built

with functional bosonization techniques [26], or using QCD sum rules to relate the two

energy regimes [20,21,22,23,24,25,26]. Unfortunately, the present determinations are not

very accurate. Finally, there is not enough experimental information to obtain all matrix

elements, say for K → ππ decays, from the phenomenological method of ref. [4].

The problem becomes much easier at the inclusive level, where the properties of the

non-leptonic effective weak Hamiltonian can be analyzed within QCD [20,21,22,23,24,26].

Given, for instance, the short-distance ∆S = 1 Hamiltonian [2, 4]

H∆S=1
eff =

GF√
2

VudV
∗
us

∑

i

Ci(µ
2) Qi , (1.1)

obtained through the operator product expansion, one considers the 2–point function

Ψ∆S=1(q2) ≡ i
∫

dx eiqx 〈0| T{H∆S=1
eff (x)H∆S=1

eff (0)†}|0〉

=

(
GF√

2

)2

|VudV
∗
us|2

∑

i,j

Ci(µ
2) C∗

j (µ
2) Ψij(q

2) . (1.2)

This vacuum-to-vacuum correlator can be studied with perturbative QCD methods, al-

lowing for a consistent combination of Wilson-coefficients Ci(µ
2) and 2–point functions

of the 4–quark operators, Ψij , in such a way that the renormalization scheme and scale

dependences exactly cancel (to the computed order). The associated spectral function
1
π
ImΨ∆S=1(q2) is a quantity with definite physical information. It describes in an inclusive

way how the weak Hamiltonian couples the vacuum to physical states of a given invariant

mass. General properties like the observed enhancement of ∆I = 1/2 transitions can be

then rigorously analyzed at the inclusive level.

A detailed analysis of 2–point functions associated with ∆S = 1 and ∆S = 2 operators

was presented in ref. [26], where the O(αs) corrections to the corresponding correlators Ψij

were calculated. The NLO corrections to the ∆I = 1/2 2–point functions were found to

be very large [26], confirming the QCD enhancement obtained in a previous approximate

calculation [24]. The results of ref. [26] were, however, incomplete because the NLO correc-

tions to the Wilson-coefficients of penguin operators were still missing. With the progress

achieved for the Wilson-coefficient functions mentioned above, we are now in a position to

match matrix elements and coefficient functions consistently at NLO.

To get a sensible result, we obviously need to use the same renormalization scheme

conventions on both sides of the calculation. Unfortunately, for technical reasons, different

bases of operators have been used in the 2–point function and Wilson-coefficient calcula-

tions. In order to avoid ambiguities coming from the definition of γ5 in d 6= 4 dimensions, a
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set of colour-singlet 4–quark operators was used in ref. [26] to perform the 2–point-function

calculation; the computation was done with dimensional regularization and a naively anti-

commuting γ5 (NDR scheme). While that is fine in the leading logarithmic approximation,

the basis of colour-singlet operators does not close under renormalization at the NLO. The

Fierz-transformations, which are needed to relate some of the operators in the process of

renormalization, are broken by O(αs) corrections, and additional contributions have to

be taken into account. For this reason, we shall reconsider the calculation of the 2-point

functions of 4–quark operators in this work.

We shall use the same basis of operators which has been taken for the calculation of the

Wilson-coefficients, so that we can directly incorporate the results of refs. [2,7,8,11]. The

presence of colour-non-singlet operators in this basis gives rise to γ5 complications in the

2–point-function evaluation. Like for the calculation of the anomalous dimension matrices

in refs. [2,7,8,11], we shall perform the calculation in two different schemes for γ5, to have

explicit tests on our result. A direct computation with a naively anticommuting γ5 is not

possible, since two diagrams include traces of odd numbers of γ5; but we shall show, how

nevertheless a result in the NDR scheme can be obtained. For the second computation,

the consistent definition of a non-anticommuting γ5 in arbitrary dimensions according to

’t Hooft and Veltman (HV scheme) [27, 28, 7] is used.

In sect. 2, we shall discuss the general structure of 2–point functions of 4–quark op-

erators. As a first step towards the explicit calculation for the ∆S = 1 case, in sect. 3,

the 2–point functions of current-current operators are computed, and the full set including

QCD-penguins is presented in sect. 4. A numerical analysis of the results is given in sect. 5.

In sect. 6, we evaluate the 2–point function for the ∆S = 2 operators. A comparison with

the results of ref. [26], together with some concluding remarks, is finally given in sect. 7.

2 General structure

As a first step, let us discuss the general structure of the 2–point functions of 4–quark

operators and their renormalization. The bare 2–point function ΨB(q2) is defined by

ΨB(q2) ≡ i
∫

dx eiqx 〈0| T{QB(x) QB†

(0)}|0〉 . (2.1)

Q(x) can either be a single operator, or a vector of 4–quark operators, in which case ΨB(q2)

is a symmetric matrix1.

1For this general discussion, we shall assume ΨB(q2) to be a matrix.
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Keeping only relevant terms up to next-to-leading order in αs, and working with dimen-

sional regularization, the regularized, but yet unrenormalized 2–point function ΨR(q2, µ2)

has an expansion in ε (d = 4 + 2ε),

ΨR(q2, µ2) = − (q2)4

(4π)6

{(−q2

µ2

)3ε 1

3ε

[
A + Bε + . . .

]

+
αs

π

(−q2

µ2

)4ε 1

4ε2

[
C + Dε + . . .

]
+ O(α2

s)
}

. (2.2)

µ2 is a renormalization scale in the MS scheme, that is, we have redefined the scale of

dimensional regularization ν2 to be exp(γE) µ2/(4π), where γE is Euler’s constant, so that

only poles in ε have to be subtracted. Our main goal will be to calculate the four matrices

A, B, C, and D.

The renormalized 2–point function is given by

Ψ(q2, µ2) = RMS

[
Z−1 ΨR(q2, µ2) (Z−1)T

]
, (2.3)

where Z is the renormalization matrix of the 4–quark operators, QB ≡ Z Q, and RMS

means that additional poles in ε, stemming from the operator product, need to be sub-

tracted. In the minimal subtraction scheme, Z has the general expansion

Z = 1 +
∞∑

k=1

(αs

π

)k
k∑

n=1

Z(k)
n

εn
. (2.4)

The anomalous dimension matrix of 4–quark operators is defined through

γ ≡ Z−1µ
dZ

dµ

∣∣∣∣
ε=0

= γ(1) αs

π
+ γ(2)

(αs

π

)2
+ . . . . (2.5)

Inserting the expansion for Z, eq. (2.4), we find

γ(1) = 2 Z
(1)
1 , γ(2) = 4 Z

(2)
1 , Z

(2)
2 =

1

4
Z

(1)
1

(
2 Z

(1)
1 − β1

)
. (2.6)

Here, β1 = − (11N − 2f)/6 is the leading coefficient of the β–function, N and f being

the number of colours and flavours respectively. For the operators which mediate ∆S = 1

transitions, and shall be our interest for most part of the paper, the leading order anomalous

dimension matrix is known already since a long time [29, 30, 31, 32, 33]. However, the full

next-to-leading order matrix has only been obtained recently [1,2,7,8,11]. To make contact

with the notation of refs. [2, 8], we note that

γ(1) =
1

4
γ

(0)
BJLW , and γ(2) =

1

16
γ

(1)
BJLW . (2.7)
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Using the results of eq. (2.6), together with eq. (2.4), up to non-logarithmic corrections

the renormalized 2–point function turns out to be

Ψ(q2, µ2) = − (q2)4

(4π)6

{
A L +

αs

π

[
1

2
CL2 + XL

] }
, (2.8)

where L = ln(−q2/µ2), and

X = D − 1

2

(
γ(1)B + B γ(1)T

)
. (2.9)

Because of renormalizability, it also follows that

C =
1

2

(
γ(1)A + A γ(1)T

)
. (2.10)

For the rest of this work, we shall only be concerned with the spectral function (the

imaginary part of the 2–point function) which is directly related to physical quantities:

Φ(s, µ2) ≡ 1

π
Im Ψ(q2, µ2) = θ(s)

s4

(4π)6

{
A +

αs

π

[
C ln

∣∣∣∣
s

µ2

∣∣∣∣+ X
] }

, (2.11)

with s ≡ q2. It is straightforward to see that Φ(s, µ2) satisfies a homogeneous renormal-

ization group equation (RGE),

µ
d

dµ
Φ(s, µ2) + γ Φ + Φ γT = 0 . (2.12)

This implies that

Φ̂(s) ≡ CT (µ2) Φ(s, µ2) C∗(µ2) (2.13)

is a renormalization group invariant quantity, with C(µ2) being the Wilson-coefficient

function of the 4–quark operators, which satisfies the RGE

{
µ

d

dµ
− γT

}
C(µ2) = 0 . (2.14)

At the next-to-leading order, the coefficient function for ∆S = 1 operators can be found

in refs. [2, 3, 4]. The scale- and scheme-independence of Φ̂ should be clear, because this

function is just proportional to the physical spectral function 1
π
ImΨ∆S=1(s). The scheme

independence of H∆S=1
eff is carried over to the 2–point function.

We can easily sum up the next-to-leading logarithms in the 2–point function by setting

µ2 = s, yielding

Φ(s) = θ(s)
s4

(4π)6

{
A +

αs(s)

π
X
}

, and Φ̂(s) = CT (s) Φ(s) C∗(s) . (2.15)
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Like the Wilson-coefficient function, also the spectral function at the next-to-leading

order, in particular the matrices B and D, depend on the renormalization scheme. If the

renormalization matrices in two schemes Za and Zb are related by a finite shift,

Za = Zb

[
1 +

αs

π
∆r

]
, (2.16)

we find the following relation between X in the two schemes,

Xb = Xa + ∆r A + A ∆rT . (2.17)

Together with the scheme dependence of the Wilson-coefficient functions (eq. (3.6) of

ref. [4]),

Cb(µ
2) =

[
1 − αs

π
∆rT

]
Ca(µ

2) , (2.18)

it is a trivial check that Φ̂(s) is indeed scheme-independent up to O(α2
s).

3 Current-current operators

As an introductory example, we shall first calculate the 2–point function of the ∆S = 1

current-current operators, before embarking on the full set including penguins:

Q1 = (s̄αuβ)V−A (ūβdα)V−A , Q2 = (s̄u)V−A (ūd)V−A , (3.1)

where α, β denote colour indices (α, β = 1, . . . , N) and the colour indices have been omitted

for the colour singlet operator Q2. (V − A) refers to γµ(1 − γ5). This basis closes under

renormalization if penguin operators are neglected.2

In the course of the calculation, it will become useful to also study 2–point functions

of the Fierz-transformed operators

Q̃1 = (s̄d)V−A (ūu)V−A , Q̃2 = (s̄αdβ)V−A (ūβuα)V−A , (3.2)

and mixtures of the bases (3.1) and (3.2). Since these mixtures do not close under renor-

malization, we will have to include evanescent operators. This will be discussed in detail

below.

The calculation of the 2–point function requires the evaluation of the leading order

3–loop diagrams of fig. 1 and the next-to-leading 4–loop diagrams of fig. 2. The results

of this evaluation are summarized in tables 1 and 2, and will be discussed in great detail

2For the HV scheme, γµ has to be taken in 4 dimensions.

6



in the following. A straightforward inspection reveals that the topology 2e contains traces

with an odd number of γ5’s. Actually, there are two diagrams of type 2e: one with the

fermion lines in the upper and lower loop circulating in opposite directions, denoted by

2e, and one with the same direction, denoted by 2e’. These cannot directly be calculated

in renormalization schemes with a naively anticommuting γ5. For this reason, and also to

make direct contact with the NLO calculation of the Wilson-coefficient function [2, 3, 4],

we shall perform the calculation with a non-anticommuting γ5, originally due to ’t Hooft

and Veltman [27, 28, 7], and in addition we present a way to nevertheless obtain results in

the NDR scheme.

Table 1: Results for the lowest-order diagrams of fig. 1.

Diagram 1a 1b

A 4
45

4
45

BNDR −653
675

−593
675

BHV −1637
1575

−1637
1575

Table 2: Results for the O(αs) diagrams of fig. 2 (Feynman gauge).

Diagram 2a 2b 2c 2d 2e 2e’ 2f 2g 2g’ 2g”

C 1
45

1
45

− 2
45

− 2
45

8
45

− 2
45

8
45

4
135

4
135

4
135

DNDR − 61
180

−19
60

67
90

7
10

−26
9

67
90

−122
45

−31
81

−167
405

−179
405

DHV −1349
3780

−1349
3780

1643
1890

1643
1890

−2866
945

1643
1890

−2866
945

−263
567

−263
567

−263
567

3.1 Current-current operators in the HV scheme

Since the calculation is more transparent in the HV scheme, let us begin with this case. We

shall denote with Ψij a matrix element of the general matrix Ψ, eq. (2.2), corresponding

to the 2–point function of the operators Qi and Qj . Then the three entries for the 2 × 2

7



matrix for Q1 and Q2 (recall that Ψ is symmetric) are given by

Ψ11 = N2Ψ1a + N2Cf

[
4Ψ2a + 2Ψ2e′

]
, (3.3)

Ψ12 = NΨ1a + NCf

[
4Ψ2a + 2Ψ2c + 2Ψ2e + 2Ψ2e′

]
, (3.4)

Ψ22 = N2Ψ1a + N2Cf

[
4Ψ2a + 2Ψ2c

]
+ NCfΨ2g , (3.5)

where Cf = (N2−1)/2N . The contributions to the 2–point function from a given diagram,

Ψdiag, can be obtained by inserting into eq. (2.2) the relevant entries of tables 1 and 2.

Including the corresponding colour factors and multiplicities which can be read off from

eqs. (3.3)–(3.5), we obtain the 2 × 2 matrices A, BHV , C, and DHV :

A =
4

45
N


 N 1

1 N


 , BHV = − 1637

140
A , (3.6)

C =
4

15
NCf


 0 1

1 0


 , DHV =

1

315
NCf


 42N −1321

−1321 42N


 . (3.7)

Inserting these results into eq. (2.9), we arrive at

XHV =
2

225
NCf


 15N −121

−121 15N


 . (3.8)

Although at this stage a statement about the size of the radiative corrections is scheme-

dependent, let us nevertheless perform this exercise. Taking αs(s)/π ≈ 0.1, from eq. (2.15)

we find a moderate 20% correction in the diagonal, but the off-diagonal terms are almost a

factor of 2 compared with the leading term. This already gives an indication of huge radia-

tive corrections in the final result. However, note that these contributions are subleading

in an expansion in 1/N .

Several technical remarks on the calculation so far are in order:

i) Up to now, we only dealt with the current-current operators Q1 and Q2. In this case,

the penguin type contribution of diagram 2g in eq. (3.5) has been omitted for consistency.

It will be taken into account in the full result including penguin operators.

ii) Naively, the HV scheme breaks some Ward-identities, e.g., the weak current is not

conserved. We can enforce conservation of the weak current by performing a finite renor-

malization which results in a shift for DHV . This shift is given by −2CfA, and has been

incorporated3 into eq. (3.7).

3See also the discussion in refs. [2, 4, 8].
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iii) In the course of the calculation of the anomalous dimension matrix for 4–quark

operators [7,8,11], tensor structures with six γ-matrices appear which have to be projected

onto the physical subset of operators. One example for the projections used in refs. [7,8] is

γµγνγλ(1 − γ5) ⊗ γµγνγλ(1 − γ5) −→ 4 (4 − ε) γµ(1 − γ5) ⊗ γµ(1 − γ5) . (3.9)

Generally speaking, at O(ε) this projection is arbitrary and a specification of the projection

has to be added to the definition of the renormalization scheme. The projections used in

refs. [7, 8] have been chosen such that Fierz-relations in the current-current sector are

preserved. This were not the case for an arbitrary projection. As a check, we have also

performed the calculation with an arbitrary projection, and have verified that scheme-

invariant quantities are indeed independent of this choice, as they should.

Now, the 2–point functions have to be calculated in accord with the calculation of the

anomalous dimensions. This means, we first have to calculate the radiative correction to

either of the operators, then perform the projection onto the physical basis, and finally

insert the resulting expression into the 2–point function. The only place where this treat-

ment gives a different result, compared to a naive evaluation of the 2–point function (given

the above choice of projection), is in diagrams 2e and 2f in the HV scheme. In the NDR

scheme the naive calculation immediately yields the correct result for all diagrams except

for the problems with γ5 in 2e and 2e’.

From tables 1 and 2 it can be seen immediately that the result in the HV scheme

respects Fierz-symmetry. Namely, the entries for the Fierz-conjugated diagrams (1a, 1b),

(2a, 2b), (2c, 2d, 2e’), (2e, 2f), and (2g, 2g’, 2g”) are equal. In the case of the NDR scheme,

we have the relations

ΨNDR
1b, 2b, 2d, 2f = (1 + ε) ΨNDR

1a, 2a, 2c, 2e , (3.10)

ΨNDR
2e′ = ΨNDR

2c , (3.11)

ΨNDR
2g = (1 + ε) ΨNDR

2g′ = (1 + ε)2 ΨNDR
2g′′ . (3.12)

3.2 Current-current operators in the NDR scheme

As was already mentioned above, diagrams 2e and 2e’ contain traces with an odd number

of γ5’s, and thus a direct evaluation in the NDR scheme is not possible. We can, however,

use a “trick” in order to circumvent this problem. The trouble stems from the fact that

Q1 is in the colour non-singlet form. For 2–point functions of only colour singlet operators

the problematic diagrams 2e and 2e’ do not arise. Therefore, a solution lies in choosing
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the basis (Q̃1, Q2), enabling one to calculate all diagrams without γ5-problems [26]. The

price to pay is the fact that this basis is no longer closed under renormalization, and we

have to explicitly add two evanescent operators E1 ≡ Q̃1 − Q1 and E2 ≡ Q̃2 − Q2.

Now, the original and the new basis read

Q = ( Q1, Q2, E1, E2) and Q̃ = ( Q̃1, Q2, E1, E2) . (3.13)

The 1–loop renormalization of these two bases can be obtained by calculating matrix

elements of Q and Q̃ between free quark states. A straightforward computation leads to

< Q̃B > = M̃Q̃Tree with

M̃ = 1 +
αs

π

(
3

4ε
− 7

4

)




−1/N 1 0 1

1 −1/N −1 0

0 0 −1/N 1

0 0 1 −1/N




. (3.14)

The corresponding matrix M for the Q-basis is the same except for zeros in the entries

(1,4) and (2,3). Thus, the finite shift ∆̃r of eq. (2.17), mediating between the Q̃-basis and

the Q-basis is given by

∆̃r =
7

4




0 0 0 −1

0 0 1 0

0 0 0 0

0 0 0 0




. (3.15)

For the 1–loop anomalous dimension matrices we find

γ̃(1) = 2Z̃
(1)
1 =

3

2




−1/N 1 0 1

1 −1/N −1 0

0 0 −1/N 1

0 0 1 −1/N




. (3.16)

and γ(1) is the same with the entries (1,4) and (2,3) again being zero.

We are now in a position to calculate all matrices in the NDR scheme. A and C are

not scheme-dependent and therefore given by eqs. (3.6) and (3.7), with all other entries

being zero. The matrices BNDR, B̃NDR, and D̃NDR, can be obtained from tables 1 and 2.

The result is

BNDR = − 653

60
A , D̃NDR =

1

45
NCf


 6N −175

−175 6N


 , (3.17)
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B̃NDR = − 1

675
N




653N 593 60N 60

593 653N −60 −60N

60N −60 120N 120

60 −60N 120 120N




, (3.18)

where for BNDR and D̃NDR we only need the projection on the physical subspace. Next,

we calculate the combination P ≡ (γ(1)B + B γ(1)T

)/2 which appears in eq. (2.9):

P NDR = − 653

225
NCf


 0 1

1 0


 , P̃ NDR = − 593

225
NCf


 0 1

1 0


 . (3.19)

In addition, the contribution from the shift ∆̃r in eq. (2.17), ∆̃rA + A ∆̃r
T
, vanishes.

Combining everything, we obtain for DNDR,

DNDR = D̃NDR − P̃ NDR + P NDR =
1

45
NCf


 6N −187

−187 6N


 . (3.20)

Using this result together with eqs. (3.3) and (3.4), we can deduce the entries DNDR
2e and

DNDR
2e′ of tab. 2, which were not calculable directly. Finally, we have

XNDR =
2

75
NCf


 5N −47

−47 5N


 . (3.21)

As a test for this result, we can use the relation (2.17) between the HV and the NDR

scheme. The corresponding matrix ∆r for this case can be obtained from eq. (3.9) of

ref. [8] and eq. (4.25) of [4]:

∆r =
1

2


 −1/N 1

1 −1/N


 . (3.22)

It turns out that the relation (2.17) is indeed satisfied, providing a strong check of our

result.

3.3 The diagonal basis

Further insight in our results for the current-current operators can be gained by trans-

forming to the diagonal basis Q± ≡ (Q2 ± Q1)/2 [1, 7]. Following ref. [7], we define the

scheme-invariant operators

Q± ≡
[
1 +

αs

π
B±

]
Q± , (3.23)
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where the scheme-dependent coefficients B± are given by

BHV
± =

7

8

(
± 1 − 1

N

)
; BNDR

± =
11

8

(
± 1 − 1

N

)
. (3.24)

The 2–point functions in that basis are explicitly scheme-independent and read

Ψ±± =
1

2

(
1 +

αs

π
2B±

)[
Ψ11 ± Ψ12

]
, (3.25)

if we take advantage of the result Ψ2c = Ψ2e′.

Using this expression together with eq. (2.11), the spectral functions Φ±± ≡ 1
π
ImΨ±±

turn out to be

Φ±±(s, µ2) = θ(s)
s4

(4π)6
A±

{
1+

αs

π

[
3

2

(
± 1− 1

N

)
ln

∣∣∣∣
s

µ2

∣∣∣∣+
3

4
N ∓ 101

20
+

43

10

1

N

] }
, (3.26)

with A± = 2N(N ± 1)/45. The coefficient of the logarithm is, of course, just equal to the

leading-order anomalous dimensions of Q±, γ
(1)
± .

The corresponding coefficient functions C±(µ2, M2
W ) have been calculated in refs. [1,7].

We find it convenient to split up the Wilson-coefficients in two factors, one solely depending

on µ2 and the other on M2
W : C±(µ2, M2

W ) = C±(µ2) C±(M2
W ). The two factors are given

by

C±(µ2) = αs(µ
2)γ

(1)
± /β1

[
1−αs(µ

2)

4π
R±

]
, C±(M2

W ) = αs(M
2
W )−γ

(1)
± /β1

[
1+

αs(M
2
W )

4π
R±

]
.

(3.27)

The NLO correction R± can be found in ref. [7].

Using this result, we are in a position to form the scale-independent spectral functions

of eq. (2.15), Φ̂±±(s) = C2
±(M2

W ) C2
±(s) Φ±±(s):

Φ̂±±(s) = θ(s)
s4

(4π)6
αs(s)

2γ
(1)
± /β1C2

±(M2
W )
[
A± +

αs(s)

π
X̂±

]
. (3.28)

Setting f = 3, we find for the NLO contributions X̂±:

X̂+ =
Cf

β2
1

[
121

540
N4 − 30917

16200
N3 +

11173

5400
N2 − 781

600
N +

5

12

]
, (3.29)

X̂− =
Cf

β2
1

[
121

540
N4 +

22997

16200
N3 − 8143

5400
N2 +

641

600
N − 5

12

]
. (3.30)

For N = 3 the two spectral functions simplify to

Φ̂++(s) = θ(s)
8

15

s4

(4π)6
αs(s)

−4/9 C2
+(M2

W )
[
1 − 3649

1620

αs(s)

π

]
, (3.31)

Φ̂−−(s) = θ(s)
4

15

s4

(4π)6
αs(s)

8/9 C2
−(M2

W )
[
1 +

9139

810

αs(s)

π

]
. (3.32)
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Let us comment briefly on the implications of our results. Again taking αs(s)/π ≈ 0.1,

at the NLO we find a moderate suppression of Φ̂++ by roughly 20%, whereas Φ̂−− acquires

a huge enhancement on the order of 100%, including the coefficient functions at MW ,

C±(M2
W ), which only have a minor effect. Because Φ̂++ solely receives contributions from

∆I = 3/2, and Φ̂−− is a mixture of both ∆I = 1/2 and ∆I = 3/2, this pattern of the

radiative corrections entails a strong enhancement of the ∆I = 1/2 amplitude. Hence, we

are provided with a very promising picture for the emergence of the ∆I = 1/2–rule.

Analyzing our result from the point of view of the large-N expansion [15, 16], we see

that at leading-order, the corrections to Φ̂++ and Φ̂−− are equal [24, 26], meaning that

the ∆I = 1/2–rule is missed completely. This situation is partly remedied if the large

next-to-leading corrections in 1/N are taken into account.

4 Full result including penguins

To obtain the complete result, we have to add to our basis the following four penguin

operators

Q3 = (s̄d)V−A

∑

q

(q̄q)V−A , Q4 = (s̄αdβ)V−A

∑

q

(q̄βqα)V−A ,

Q5 = (s̄d)V−A

∑

q

(q̄q)V+A , Q6 = (s̄αdβ)V−A

∑

q

(q̄βqα)V+A , (4.1)

which arise from the current-current operators in the process of renormalization. The

corresponding Fierz-transformed operators, again being needed for the calculation in the

NDR scheme can be found in ref. [8].

The 2–point functions for (V −A)⊗ (V −A) operators including Q3 and Q4 are given

by

Ψ13 = N2Ψ1b + N2Cf

[
4Ψ2b + 2Ψ2d

]
, (4.2)

Ψ14 = NΨ1b + NCf

[
4Ψ2b + 4Ψ2d + 2Ψ2f

]
, (4.3)

Ψ23 = Ψ14 + 2NCfΨ2g , Ψ24 = Ψ13 + fNCfΨ2g′ , (4.4)

Ψ33 = fΨ11 + 2Ψ23 , Ψ34 = fΨ12 + 2Ψ24 , (4.5)

Ψ44 = fΨ11 + 2Ψ14 + f 2NCfΨ2g′′ . (4.6)

In the expression for Ψ33, we have used the relation Ψ2c = Ψ2e′.

The 2–point functions with insertions of the (V − A) ⊗ (V + A) operators Q5 and Q6

can be calculated analogously. For simplicity, we don’t give their contributions in detail,

13



but just state the final results. In the HV scheme, we find:

A =
4

45
N




N 1 N 1 0 0

1 N 1 N 0 0

N 1 fN + 2 2N + f 0 0

1 N 2N + f fN + 2 0 0

0 0 0 0 fN f

0 0 0 0 f fN




, (4.7)

BHV = −N




1637N
1575

1637
1575

1637N
1575

1637
1575

−2N
315

−2
315

1637
1575

1637N
1575

1637
1575

1637N
1575

−2
315

−2N
315

1637N
1575

1637
1575

1637(fN+2)
1575

1637(2N+f)
1575

−2(fN+2)
315

−2(2N+f)
315

1637
1575

1637N
1575

1637(2N+f)
1575

1637(fN+2)
1575

−2(2N+f)
315

−2(fN+2)
315

−2N
315

−2
315

−2(fN+2)
315

−2(2N+f)
315

1637fN
1575

− 4
315

1637f
1575

− 4N
315

−2
315

−2N
315

−2(2N+f)
315

−2(fN+2)
315

1637f
1575

− 4N
315

1637fN
1575

− 4
315




.

(4.8)

The matrix C satisfies the relation (2.10) with γ(1) given in ref. [8], and we don’t list

it explicitly. The matrix DHV has been relegated to the appendix. Inserting these into

eq. (2.9), we obtain for XHV :

XHV = NCf




2N
15

−242
225

2N
15

−242
225

0 0

−242
225

2N
15

− 242
2025

−2662
2025

2N
15

− 242f
2025

0 −242f
2025

2N
15

−2662
2025

2fN
15

− 5324
2025

4N
15

− 2662f
2025

0 −484f
2025

−242
225

2N
15

− 242f
2025

4N
15

− 2662f
2025

2fN
15

− 242f2

2025
− 484

225
0 −242f2

2025

0 0 0 0 2fN
15

38f
25

0 −242f
2025

−484f
2025

−242f2

2025
38f
25

322fN
225

− 242f2

2025




.

(4.9)

The treatment to work around the γ5 problem in the NDR scheme for the full basis

parallels the method used in the current-current case. We can choose the basis used in

ref. [26], ( Q̃1, Q2, Q3, Q̃4, Q5, Q̃6), which does not contain colour non-singlet operators,

thus not posing γ5 problems for the computation of the 2–point function. However, because

this basis does not close under renormalization, this time, for each of the six operators we

have to add to the basis an evanescent operator, implying that at intermediate steps of the

calculation we have to work with 12 × 12 matrices. We skip the unilluminating details of

this computation and just present our results.
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As already stated, the matrices A and C do not depend on the scheme, and agree with

the HV case. For BNDR we find

BNDR = −N




653N
675

653
675

593N
675

593
675

0 0

653
675

653N
675

593
675

593N
675

0 0

593N
675

593
675

653fN+1186
675

1186N+653f
675

0 0

593
675

593N
675

1186N+653f
675

653fN+1186
675

0 0

0 0 0 0 653fN
675

653f
675

0 0 0 0 653f
675

653fN
675




, (4.10)

and DNDR can again be found in the appendix. From these results we deduce for XNDR:

XNDR = NCf




2N
15

−94
75

2N
15

−94
75

0 0

−94
75

2N
15

− 182
2025

−2902
2025

2N
15

− 212f
2025

0 −212f
2025

2N
15

−2902
2025

2fN
15

− 5804
2025

4N
15

− 2962f
2025

0 −424f
2025

−94
75

2N
15

− 212f
2025

4N
15

− 2962f
2025

2fN
15

− 242f2

2025
− 188

75
0 −242f2

2025

0 0 0 0 2fN
15

74f
75

0 −212f
2025

−424f
2025

−242f2

2025
74f
75

94fN
75

− 242f2

2025




.

(4.11)

The expressions for XHV and XNDR given above again do satisfy the relation (2.17)

with ∆r taken from ref. [8] and eq. (4.25) of [4] to be

∆r =
1

2




− 1
N

1 0 0 0 0

1 − 1
N

1
6N

−1
6

1
6N

−1
6

0 0 − 2
3N

2
3

1
3N

−1
3

0 0 1 − 1
N

0 0

0 0 0 0 − 3
N

3

0 0 0 0 2 N − 3
N




. (4.12)

This test of our results provides us with great confidence as to their correctness.

Let us make a few observations on the results thus obtained:

• Comparing the NLO matrices XNDR and XHV to the LO matrix A, we find huge

corrections on the order of 200% for the entries (1,2), (1,4), (2,3), (5,6), and (6,6).

The difference between the NDR and HV scheme is small with respect to the large

absolute value of the corrections. All other entries have moderate corrections <∼ 50%.
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• If the number of flavours f = 3, in the HV scheme we have the operator relation

Q4 = Q3 + Q2 −Q1. This leads to the following relation for the two point functions:

ΨHV
4i = ΨHV

3i + ΨHV
2i − ΨHV

1i . The relation is satisfied by our result, providing an

additional test. In the NDR scheme, the relation is broken by O(α∫ ) corrections.4

• Due to the factorization property of the Q6 operator in the large-N limit, in this limit

Ψ66 can be related to a convolution of two 2–point functions for scalar currents [26].

This relation holds for our result but we shall return to this point in sect. 7.

5 Numerical Results

In this section, we shall provide the reader with a brief discussion of the numerical implica-

tions of our results, and postpone a thorough phenomenological analysis to a forthcoming

publication.

Following the notation of refs. [2, 4], the Wilson-coefficient functions for ∆S = 1 weak

processes can be decomposed as C(s) = z(s) + τ y(s), where τ ≡ − (VtdV
∗
ts) / (VudV

∗
us).

The coefficient function z(s) governs the real part of the effective Hamiltonian, and y(s),

parametrizes the imaginary part and governs e.g. the measure for direct CP-violation in

the K-system, ε′/ε. We thus have two different quantities with the help of which we can

form the scale- and scheme-invariant combination Φ̂(s) of eq. (2.15). Let us denote these

two functions by:

Φ̂z(s) = zT (s) Φ(s) z(s) ; Φ̂y(s) = yT (s) Φ(s) y(s) . (5.1)

For the numerical analysis, we shall consider the range Q ≡ √
s = 1−3 GeV, appearing

as a natural scale for a QCD sum rule analysis of the K-system [25]. In this range, the

coefficient functions have the following structure:

• Above the charm threshold mc, z3 − z6 vanish, and Φ̂z is only given as a product of

(z1, z2) and the current-current part of Φ(s). Below mc, penguins are generated from

the operator mixing, but the coefficient z3 − z6 still remain small above 1 GeV, such

that Φ̂z(s) in the whole range is dominated by current-current operators.

• In the case of y(s), only y3−y6 are non-vanishing in the whole range considered. The

coefficient for the Q6 operator y6 dominates, but the other penguin operators also

give noticeable contributions.

4See also sect. 4.5 of ref. [4]
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Since in this work we are mainly interested in the size of the radiative corrections to

the effective Hamiltonian, we write Φ̂(s) as

Φ̂z, y(s) = Φ̂(0)
z, y(s) + Φ̂(1)

z, y(s) , (5.2)

where the superscripts (0) and (1) refer to the leading as well as next-to-leading order

respectively. In fig. 3, we plot the ratios Φ̂(1)
z /Φ̂(0)

z and Φ̂(1)
y /Φ̂(0)

y for ΛMS = 200, 300, and

400 MeV. For simplicity, in fig. 3, we have not included the quark threshold at mc, but we

work in a theory with f = 3 up to 3 GeV. We have checked that these threshold effects

only cause a small change in the NLO correction. Of course, as expected, the values for

Φ̂z, y in the HV and NDR scheme exactly agree.

From fig. 3, we can see that in the region Q = 1 − 3 GeV, and for a central value

ΛMS = 300 MeV, the radiative QCD correction to Φ̂z ranges approximately between 40%

and 120%, whereas in the case of Φ̂y we find a correction on the order of 100%–240%.

Because the 2–point function is constructed as the square of the effective Hamiltonian, the

actual corrections to H∆S=1
eff are only about half the corrections to the 2–point function.

Therefore, the perturbative QCD correction to the real part of the effective Hamiltonian

turns out to be 20%–60%, and for the imaginary part 50%–120%.

In sect. 3.3, we have demonstrated that the large αs corrections correspond to the

∆I = 1/2 part of the effective weak Hamiltonian5. The corrections to the ∆I = 3/2

part are identical to the ones in the ∆S = 2 correlator (both operators are in the same

representation of the chiral group), which, as shown in sect. 3.3 and the next section, are

quite moderate and negative. This implies that for the ∆I = 1/2–rule in K → ππ decays,

we receive an additional large and positive contribution, bringing theoretical calculations

closer to the experimental value.

The calculation of the imaginary part of Heff, no longer retains perturbative character,

because of the large corrections. Nevertheless, this does not completely spoil existing

determinations of weak matrix elements in the framework of the 1/N expansion or chiral

perturbation theory, for there, to a given order in 1/N or the chiral expansion, the largest

corrections in αs are completely summed to all orders.

5This has also been extensively discussed in ref. [26].
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6 The ∆S = 2 operator

For the case of ∆S = 2 transitions, things are somewhat simpler because there is only one

operator. We take this operator to be

Q∆S=2 ≡ 1

2

[
(s̄d)V−A (s̄d)V−A + (s̄αdβ)V−A (s̄βdα)V−A

]
. (6.1)

This definition might seem unfamiliar, but we shall discuss in the following, why it is

convenient. First, let us note that it renormalizes into itself, even in a general dimension6,

and it is obviously Fierz-symmetric. Apart from the quark content it has the same structure

as Q+.

Collecting the contributing diagrams, and making use of the relation (3.11), the 2–point

function of Q∆S=2 is given by

Ψ∆S=2 = Ψ11 + Ψ12 + Ψ13 + Ψ14 . (6.2)

From this expression, we obtain the following values for A, B, and X:

A∆S=2 =
8

45
N
(
N + 1

)
, (6.3)

BHV
∆S=2 = − 3274

1575
N
(
N + 1

)
; BNDR

∆S=2 = − 1246

675
N
(
N + 1

)
, (6.4)

XHV
∆S=2 = NCf

(
4N

15
− 484

225

)
; XNDR

∆S=2 = NCf

(
4N

15
− 188

75

)
. (6.5)

As was already remarked at the end of the last section, up to a multiplicity factor 4,

these quantities agree with the corresponding expressions for Ψ++ of sect. 3.3, if we would

refrain from performing the rotation of eq. (3.23) to a scheme-invariant basis. C∆S=2 again

respects eq. (2.10), and the relation between schemes (2.17) is also satisfied with

∆r∆S=2 =
1

2

(
1 − 1

N

)
, (6.6)

being easily obtained from ref. [8].

In the HV scheme, we could have worked with the operator

O∆S=2 ≡ (s̄d)V−A (s̄d)V−A , (6.7)

in 4 dimensions being equivalent to Q∆S=2, since in HV Fierz-symmetry is respected for

current-current operators, and O∆S=2 renormalizes into itself. This is not true for the NDR

6Apart from evanescent terms which are taken care of by the projection discussed in sect. 3.1
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scheme and we would have to go through a similar procedure as described in sect. 3.2.

Namely, augmenting the basis by an evanescent operator E∆S=2 = Õ∆S=2 − O∆S=2 and

including this operator for renormalization, because it induces additional contributions to

the physical subspace. We have checked that this treatment leads to the same value for

XNDR
∆S=2. Let us point out that this only concerns the quantities BNDR

∆S=2 and DNDR
∆S=2. The

anomalous dimensions of Q∆S=2 and O∆S=2 in the NDR scheme agree even at NLO.

In order to be able to form the scheme-independent combination Φ̂∆S=2(s), we need

the Wilson-coefficient function for ∆S = 2 processes at NLO. It can be obtained from

refs. [5, 6] for internal top and charm quark exchange in the box-diagram. The mixed

charm-top contribution is not yet available at NLO. However, here we shall not pursue

this any further, but use the strategy of ref. [5] of defining a scale- and scheme-invariant

operator for ∆S = 2. This operator is given by

Q̂∆S=2 ≡ αs(µ
2)γ

(1)
∆S=2/β1

[
1 − αs

4π
Z
]
Q∆S=2 , (6.8)

where γ
(1)
∆S=2 = γ

(1)
+ is the LO anomalous dimension of Q∆S=2. The finite NLO correction

Z depends on the scheme, and can be found in [5]. The matrix element of this operator

is directly parametrized in terms of the scheme-invariant B-parameter BK for K0 − K0-

mixing.

Calculating the spectral function Φ̂∆S=2(s) for Q̂∆S=2, we obtain

Φ̂∆S=2(s) = θ(s)
s4

(4π)6
αs(s)

2γ
(1)
∆S=2

/β1

[
A∆S=2 +

αs(s)

π
X̂∆S=2

]
, (6.9)

with X̂∆S=2 = 4 X̂+, and X̂+ being given in eq. (3.29). This function is explicitly scheme-

invariant, and for N = 3 takes the form

Φ̂∆S=2(s) = θ(s)
32

15

s4

(4π)6
αs(s)

−4/9
[
1 − 3649

1620

αs(s)

π

]
. (6.10)

Because both, Q+ and Q∆S=2, have the same chiral representation, as expected, apart from

a global factor, their spectral functions agree. We observe that the NLO QCD-correction

is negative and on the order of 20%, for αs(s)/π ≈ 0.1.

7 Discussion

Our work improves and completes the 2–point function evaluation of ref. [26] with two ma-

jor additions: the recently calculated NLO corrections to the Wilson-coefficient functions
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have been taken into account and, moreover, we have incorporated the missing contribu-

tions from evanescent operators. The final results are then renormalization scheme- and

scale-independent at the NLO, and, therefore, constitute the first complete calculation of

weak non-leptonic observables at the NLO, without any hadronic ambiguity.

It is worthwhile to make a comparison with the results of ref. [26]. In this work, the

NDR scheme was used and the calculation of the 2–point function for the ∆S = 1 case

was performed in the basis

Q̃ =
(
Q̃1, Q2, Q3, Q̃4, Q5, Q̃6

)
, (7.1)

not being plagued by problems with γ5. The topologies present in that calculation were

1a, 1b, 2a, 2b, 2c, 2d, 2f, and 2g. We have reproduced the results for all these diagrams

and we fully agree with ref. [26]. However, as already remarked in sects. 3 and 4, in the

NDR scheme the basis (7.1) does not close under renormalization, and we had to add

contributions from evanescent operators which were not included in [26]. In the notation

of sect. 3, these evanescent contributions shift the matrices B̃NDR and D̃NDR to BNDR and

DNDR, and therefore the final correction XNDR gets changed. In addition, the relation

Q̃4 = Q3 + Q2 − Q̃1 for f = 3 was used in ref. [26] to eliminate Q̃4. As it stands this

relation is valid on the operator level.

Removing the entries for Q4 from our matrices BNDR, DNDR, and XNDR, and setting

f = 3, one can easily see the differences with the results of ref. [26]. The evanescent

contributions have changed the entries (1,2), (1,3), and (6,6) of BNDR, and (1,2) and (6,6)

in DNDR. The differences in BNDR propagate via the matrix products of eq. (2.9) into

most entries of XNDR: all entries except for (5,5) and the trivial zeros in (1,5), (2,5), and

(3,5) are different. The final numerical differences are however not big, since the most

sizeable αs corrections were already included in the original calculation of ref. [26].

In the large-N limit the operator Q6 factorizes in the product of two current operators.

Therefore, the 2–point function Ψ66 can be calculated as a convolution of two current-

correlators.7 This was used in [26] as a check for Ψ66 at the leading order in 1/N . In

fact, the large-N limit result of ref. [26] was already a full NLO calculation, since the

corresponding anomalous dimension γ66 was already known at the NLO (it is related to

the quark-mass anomalous dimension in the large-N limit) and it was correctly taken into

account. Although our results for BNDR
66 and DNDR

66 show a discrepancy to the result

of [26] even at the leading order in 1/N , the combination XNDR
66 only deviates from the

result of [26] by subleading terms in the 1/N -expansion, hence fulfilling the test in both

7For details see ref. [26]
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cases. The differences at intermediate steps of the calculation (BNDR
66 and DNDR

66 ) stem

from the fact that a different form of the operator (Q6 or Q̃6) is being used, but the final

physical result is of course identical.

For the ∆S = 2 operator the evanescent contributions result in changes in all next-to-

leading quantities BNDR
∆S=2, DNDR

∆S=2, and XNDR
∆S=2. The coefficient of the NLO correction to

Φ∆S=2, eq. (6.10), was found to be −1217/810 in ref. [26], compared to −3649/1620 in our

case. This correction was used in ref. [25] for a sum rule determination of BK . The effect

of our new result would be to slightly further reduce the value of BK obtained in ref. [25].

Qualitatively, the conclusions of ref. [26] remain unchanged. At the NLO, the ∆I = 1/2

piece of the ∆S = 1 effective Hamiltonian gets a huge positive correction, while the gluonic

effects in the ∆I = 3/2 (and ∆S = 2) operator are moderate and negative. Together with

the previously known enhancement of the Wilson-coefficient [1,2,7,4], this provides a very

suggestive explanation of the observed enhancement of ∆I = 1/2 transitions in K decays.

As explicitly shown in fig. 3, the NLO gluonic contributions are even more important

in the CP-violating piece of the weak ∆S = 1 Hamiltonian; the reason being that this

part is dominated by the penguin operator Q6, which gets the largest correction. As

shown in ref. [26], this enhancement is further reinforced8 at O(α2
s), indicating a blow-up

of the perturbative series in this case. Fortunately, this non-perturbative character does

not completely prevent the feasibility of a reliable determination of CP-violating effects,

since these leading contributions in 1/N can be resummed to all orders.

In a series of articles [34, 35, 36, 37] a more phenomenological description of the ∆I =

1/2–rule was advocated. The key idea is to rewrite the 4–quark operators as a product of

diquark-anti-diquark operators by means of Fierz-transformations, and treating the diquark

as an effective particle, similar to the constituent quarks. The important observation then

lies in the dominance of pseudoscalar diquark matrix elements for low momentum transfer

over axialvector meson matrix elements which are proportional to the momentum. All

low energy decays in which diquarks can participate show the enhancement of ∆I = 1/2

amplitudes and a surprisingly good description of those processes was obtained.

An inspection of our results at the diagrammatic level reveals the following pattern for

the origin of large corrections: all 2–point functions (except those which vanish at lowest

order) receive contributions from the self-energy diagrams 2a or 2b, as well as from the

quark-antiquark vertex corrections 2c, 2d, or 2e’. These contributions cancel to a fair

8Thanks to the factorization property of the penguin operator in the large-N limit, the O(α2
s) correction

is also known in this limit.
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amount:

C2·2a+2c = C2·2a+2e′ = C2·2b+2d = 0 , (7.2)

DNDR
2·2a+2c = DNDR

2·2a+2e′ = DNDR
2·2b+2d =

1

15
, (7.3)

DHV
2·2a+2c = DHV

2·2a+2e′ = DHV
2·2b+2d =

7

45
. (7.4)

The quark-quark and antiquark-antiquark correlation diagrams 2e or 2f already by them-

selves are the biggest terms, and due to the partial cancellation of self-energy and current-

vertex diagrams, we receive large corrections wherever quark-quark correlations can con-

tribute. Note that these diagrams are subleading in 1/N . The penguin diagrams 2g, 2g’,

and 2g” generally have small impact on the 2-point functions.

This structure of the radiative corrections to 2–point functions of ∆S = 1 and ∆S = 2

operators allows for a deeper understanding, why the description of non-leptonic weak

decays in terms of diquarks was so successful as far as the ∆I = 1/2–rule is concerned.

In this framework, by working with effective diquarks, the quark-quark correlations were

phenomenologically summed up to all orders in the strong coupling. Since these are the

dominant corrections to the 2–point functions, summing them up provides us with a very

good physical picture of the underlying QCD dynamics. As such, though, the statement in

question, like the diquark-current itself,9 is gauge-dependent. In fact, the gauge-invariant

combinations of diagrams are (2 · 2a + 2c), (2 · 2a + 2e′), (2e + 2e′), as well as their cor-

responding Fierz-conjugates. However, now the gauge-independent combination involving

the quark-quark correlations dominates the other terms even more drastically (by one order

of magnitude):

C2e+2e′ = C2d+2f =
2

15
, (7.5)

DNDR
2e+2e′ = − 193

90
, DNDR

2d+2f = − 181

90
, (7.6)

DHV
2e+2e′ = DHV

2d+2f = − 1363

630
. (7.7)

A full QCD calculation has been possible because of the inclusive character of the

defined 2–point functions. Although only qualitative conclusions can be directly extracted

from these results, they are certainly important since they rigorously point to the QCD

origin of the infamous ∆I = 1/2–rule, and, moreover, provide valuable information on the

9See the related discussion in ref. [35].
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relative importance of the different operators, which can be very helpful to attempt more

pragmatic calculations. Obviously, a direct application of our results would be the use of

dispersion relations to extract “more exclusive” information from the 2–point functions,

following the methods developed in refs. [20, 21, 22, 23, 24, 25, 26]. We plan to investigate

this and other possible phenomenological applications in the future.
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Appendix

DNDR = NCf




2N
15

−187
45

2N
15

−35
9

0 0

−187
45

2N
15

− 31
81

−377
81

2N
15

− 167f
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0 −167f
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2N
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−377
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2fN
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4N
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− 2017f
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405
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9
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4N
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− 70

9
0 −179f2

405

0 0 0 0 2fN
15
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9

0 −167f
405
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405
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35f
9
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45
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DHV = NCf
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−1321
315
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−1321
315
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− 263
567

−14519
2835
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− 29038
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315
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945

−fN
105
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567

0 4
945

8
945
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945

2fN
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− 4
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−2N
105

+ 4387f
945
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567

−2N
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Figures

1a) 1b)

Figure 1: Leading order diagrams for the 2–point function.
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2a) 2b)

2c) 2d)

2e) 2f)

2g) 2g’)

2g’’)

Figure 2: O(αs) diagrams for the 2–point function.
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