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INTRODUCTION TO
CHIRAL PERTURBATION THEORY

A. Pich∗†

Theory Division, CERN, CH-1211 Geneva 23

Abstract

An introduction to the basic ideas and methods of Chiral Perturbation
Theory is presented. Several phenomenological applications of the effective
Lagrangian technique to strong, electromagnetic and weak interactions are
discussed.

1 Effective Field Theories

Effective Field Theories (EFTs) are the appropriate theoretical tool to describe
“low-energy” physics, where “low” is defined with respect to some energy scale
Λ. What that means is that they only take explicitly into account the relevant
degrees of freedom, i.e. those states with m << Λ, while the heavier excitations
with M >> Λ are integrated out from the action. One gets in this way a string
of non-renormalizable interactions among the light states, which can be organized
as an expansion in powers of energy/Λ. The information on the heavier degrees of
freedom is then contained in the couplings of the resulting low-energy Lagrangian.
Although EFTs contain an infinite number of terms, renormalizability is not an
issue since, at a given order in the energy expansion, the low-energy theory is
specified by a finite number of couplings; this allows for an order-by-order renor-
malization. Obviously, for this procedure to make sense, it is necessary that the
spectrum of the fundamental theory contains a mass gap, separating the light and
heavy states.

A simple example of EFT is provided by QED at very low energies, ω << me,
where ω denotes the photon energy. In this limit, one can describe the light-by-
light scattering using an effective Lagrangian in terms of the electromagnetic field
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Centre Mixte Universitat de València–CSIC, E-46100 Burjassot, València, Spain.
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only. Gauge and Lorentz invariance constrain the possible structures present in
the effective Lagrangian:

Leff = −1

4
F µνFµν +

a

m4
e

(F µνFµν)
2 +

b

m4
e

F µνFνσF
σρFρµ +O(F 6/m8

e). (1)

In the low-energy regime, all the information on the original QED dynamics is
embodied in the values of the two low-energy couplings a and b. The values
of these constants can be computed, by explicitly integrating out the electron
field from the original QED generating functional (or equivalently, by computing
the relevant light-by-light box diagrams). One then gets the well-known Euler-
Heisenberg result [1]:

a = −α2

36
, b =

7α2

90
. (2)

The important point to realize is that, even in the absence of an explicit computa-
tion of the couplings a and b, the Lagrangian (1) contains non-trivial information,
which is a consequence of the imposed symmetries. The dominant contributions
to the amplitudes for different low-energy photon reactions like γγ → 2γ, 4γ, . . .
can be directly obtained from Leff. Moreover, the order of magnitude of the con-
stants a, b can also be easily estimated through a näıve counting of powers of the
electromagnetic coupling and combinatorial and loop [1/(16π2)] factors.

The previous example is somehow academic, since perturbation theory in pow-
ers of α works extremely well in QED. However, the effective Lagrangian (1) would
be valid even if the fine structure constant were big; the only difference would then
be that we would not be able to perturbatively compute the couplings a and b.

We can mention two generic situations where EFTs become particularly useful:

• The underlying fundamental theory is unknown, but the symmetry proper-
ties of the light states can be used to build an effective Lagrangian. The
low-energy couplings then parametrize the unknown new physics. A typical
example are EFTs at the electroweak scale.

• Even if the underlying fundamental theory is known, sometimes it is not
directly applicable in the low-energy region. For instance, due to confine-
ment, the quark and gluon fields of QCD are not asymptotic states. Since
we do not know how to solve QCD, we cannot derive the hadronic inter-
actions directly from the original QCD Lagrangian. However, we do know
the symmetry properties of the strong interactions; therefore, we can write
an EFT in terms of the hadronic asymptotic states, and parametrize the
unknown dynamical information in a few couplings.

The theoretical basis of EFTs can be formulated [2] as a “theorem”1: for a
given set of asymptotic states, perturbation theory with the most general La-
grangian containing all terms allowed by the assumed symmetries will yield the

1Although this “theorem” is almost self-evident, it is only “proven” to the extent that no
counter-examples are known.
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most general S-matrix elements consistent with analyticity, perturbative unitarity
and the assumed symmetries.

The purpose of these lectures is to give a pedagogical introduction to Chiral
Perturbation Theory (ChPT), the low-energy effective field theory of the Standard
Model. The chiral symmetry of the QCD Lagrangian is discussed in Section 2,
and a toy low-energy model incorporating the right symmetry properties is stud-
ied in Section 3. The ChPT formalism is presented in Sections 4 and 5, where the
lowest-order and next-to-leading-order terms in the chiral expansion are analysed.
Section 6 contains a few selected phenomenological applications. The relation
between the effective Lagrangian and the underlying fundamental QCD theory
is studied in Section 7, which summarizes recent attempts to calculate the chiral
couplings. The effective realization of the non-leptonic ∆S = 1 interactions is
described in Section 8, and a brief overview of the application of the chiral tech-
niques to K decays is given in Sections 9, 10 and 11. Section 12 shows how ChPT
can be used to work out the low-energy interactions of a possible light Higgs bo-
son. Finally, Section 13 illustrates the use of the chiral techniques to describe the
Goldstone dynamics associated with the Standard Model electroweak symmetry
breaking. A few summarizing comments are collected in Section 14.

To prepare these lectures I have made extensive use of excellent reviews [3–
10] and books [11–14] already existing in the literature. In many cases, I have
sacrificed some rigour to simplify the presentation of the subject. A more careful
discussion and further details can be found in those references.

2 Chiral Symmetry

In the absence of quark masses, the QCD Lagrangian [q = column(u, d, . . .)]

L0
QCD = −1

4
Tr(GµνG

µν) + iq̄Lγ
µDµqL + iq̄Rγ

µDµqR (3)

is invariant under independent global G ≡ SU(Nf )L⊗SU(Nf )R transformations2

of the left- and right-handed quarks in flavour space:

qL
G−→ gL qL, qR

G−→ gR qR, gL,R ∈ SU(Nf)L,R. (4)

The Noether currents associated with the chiral group G are [λa are Gell-Mann’s
matrices with Tr(λaλb) = 2δab]:

Jaµ
X = q̄Xγ

µλa

2
qX , (X = L,R; a = 1, . . . , 8). (5)

2Actually, the Lagrangian (3) has a larger U(Nf )L⊗U(Nf)R global symmetry. However, the
U(1)A part is broken by quantum effects [U(1)A anomaly], while the quark-number symmetry
U(1)V is trivially realized in the meson sector. A discussion of the U(1)A part, within ChPT,
is given in refs. [15, 16].
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The corresponding Noether charges Qa
X =

∫
d3xJa0

X (x) satisfy the familiar com-
mutation relations

[Qa
X , Q

b
Y ] = iδXY fabcQ

c
X , (6)

which were the starting point of the Current Algebra methods of the sixties [17].
This chiral symmetry, which should be approximately good in the light quark

sector (u,d,s), is however not seen in the hadronic spectrum. Although hadrons
can be nicely classified in SU(3)V representations, degenerate multiplets with
opposite parity do not exist. Moreover, the octet of pseudoscalar mesons happens
to be much lighter than all the other hadronic states. To be consistent with
this experimental fact, the ground state of the theory (the vacuum) should not be
symmetric under the chiral group. The SU(3)L⊗SU(3)R symmetry spontaneously
breaks down to SU(3)L+R and, according to Goldstone’s theorem [18], an octet
of pseudoscalar massless bosons appears in the theory.

More specifically, let us consider a Noether charge Q, and assume the existence
of an operator O that satisfies

〈0|[Q,O]|0〉 6= 0; (7)

this is clearly only possible if Q|0〉 6= 0. Goldstone’s theorem then tells us that
there exists a massless state |G〉 such that

〈0|J0|G〉 〈G|O|0〉 6= 0. (8)

The quantum numbers of the Goldstone boson are dictated by those of J0 and O.
The quantity in the left-hand side of Eq. (7) is called the order parameter of the
spontaneous symmetry breakdown.

Since there are eight broken axial generators of the chiral group, Qa
A = Qa

R−Qa
L,

there should be eight pseudoscalar Goldstone states |Ga〉, which we can identify
with the eight lightest hadronic states (π+, π−, π0, η, K+, K−, K0 and K̄0); their
small masses being generated by the quark-mass matrix, which explicitly breaks
the global symmetry of the QCD Lagrangian. The corresponding Oa must be
pseudoscalar operators. The simplest possibility are Oa = q̄γ5λaq, which satisfy

〈0|[Qa
A, q̄γ5λbq]|0〉 = −1

2
〈0|q̄{λa, λb}q|0〉 = −2

3
δab 〈0|q̄q|0〉. (9)

The quark condensate

〈0|ūu|0〉 = 〈0|d̄d|0〉 = 〈0|s̄s|0〉 6= 0 (10)

is then the natural-order parameter of Spontaneous Chiral Symmetry Breaking
(SCSB).

The Goldstone nature of the pseudoscalar mesons implies strong constraints
on their interactions, which can be most easily analysed on the basis of an effective
Lagrangian.
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3 A toy Lagrangian: the linear sigma model

The linear sigma model [19]

Lσ =
1

2
[∂µσ∂

µσ + ∂µ~π∂
µ~π]− V (σ, ~π), (11)

V (σ, ~π) =
λ

4

(
σ2 + ~π2 − v2

)2
, (λ > 0),

provides a very simple example of SCSB. If v2 < 0, the global symmetry O(4) ∼
SU(2)⊗SU(2) is realized in the usual Wigner–Weyl way; one then has degenerate
σ, ~π states with mass m2 = −λv2. However, for v2 > 0, the potential V (σ, ~π)
has a family of minima occurring for all σ, ~π with σ2 + ~π2 = v2; these minima
correspond to degenerate ground states, which transform into each other under
chiral rotations. The symmetry is then realized à la Nambu–Goldstone, and three
massless states appear, corresponding to the flat directions of V (σ, ~π). Taking

〈0|σ|0〉 = v, 〈0|~π|0〉 = 0, (12)

and making the field redefinition σ̂ = σ − v, the Lagrangian takes the form

Lσ =
1

2

[
∂µσ̂∂

µσ̂ − 2λv2σ̂2 + ∂µ~π∂
µ~π
]
− λvσ̂

(
σ̂2 + ~π2

)
− λ

4

(
σ̂2 + ~π2

)2
, (13)

which shows that ~π corresponds to the three massless Goldstone modes, while the
σ̂ field acquires a mass m2

σ̂ = 2λv2.
To clarify the role of chiral symmetry on the Goldstone dynamics, it is useful

to rewrite the sigma-model Lagrangian in a different way. Using the 2× 2 matrix
notation

Σ(x) ≡ σ(x)I + i~τ~π, (14)

the Lagrangian (11) takes the compact form

Lσ =
1

4
〈∂µΣ†∂µΣ〉 − λ

16

(
〈Σ†Σ〉 − 2v2

)2
, (15)

where 〈A〉 denotes the trace of the matrix A. In this notation the Lagrangian is
explicitly invariant under global chiral G ≡ SU(2)L ⊗ SU(2)R transformations:

Σ
G−→ gR Σ g†L, gL,R ∈ SU(2)L,R. (16)

We can now make the polar decomposition [5]

Σ(x) = (v + S(x)) U(φ(x)), (17)

U(φ(x)) = exp
(
i~τ ~φ(x)/v

)
,

in terms of a Hermitian scalar field S and pseudoscalar fields ~φ. These fields
transform in a non-linear way under the chiral group:

S
G−→ S, U(φ)

G−→ gR U(φ) g†L. (18)
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The sigma-model Lagrangian then takes the form

Lσ =
v2

4

(
1 +

S

v

)2

〈∂µU †∂µU〉 + 1

2

(
∂µS∂

µS − 2λv2S2
)
− λvS3 − λ

4
S4. (19)

Equation (19) is very instructive:

• It shows explicitly that the Goldstone bosons have purely derivative cou-
plings, as they should. This was not so obvious in Eq. (13). Of course one
should get the same measurable amplitudes from both Lagrangians, which
means that the original Lagrangian (13) gives rise to exact (and not very
transparent) cancellations among different momentum-independent contri-
butions.

• In the limit λ >> 1, the scalar field S becomes very heavy and can be
integrated out from the Lagrangian. The linear sigma model then reduces
to the familiar Lagrangian

L2 =
v2

4
〈∂µU †∂µU〉. (20)

As we will see in the next section, this is a universal model-independent
interaction of the Goldstone bosons induced by SCSB. It is often claimed in
the literature that the linear sigma model correctly describes the low-energy
strong interactions. This is, however, quite a misleading statement. To the
extent that one is only looking at the predictions coming from the model-
independent lowest-order term (20), the comparison with experiment only
tests the assumed pattern of SCSB.

• In order to be sensitive to the particular structure of the linear sigma model,
one needs to test the model-dependent part involving the scalar field S. At
low momenta (p << MS), the dominant tree-level corrections originate from
the exchange of an S particle, which generates the four-derivative term

L4
σ =

v2

8M2
S

〈∂µU †∂µU〉2. (21)

It will be shown later that this kind of interaction does not agree with the
experimental data. Therefore, the linear sigma model is not a phenomeno-
logically viable EFT of QCD [20].

4 Effective Chiral Lagrangian at lowest order

We want to get an effective Lagrangian realization of QCD, at low energies, for
the light-quark sector (u, d, s). Our basic assumption is the pattern of SCSB:

G ≡ SU(3)L ⊗ SU(3)R
SCSB−→ H ≡ SU(3)V . (22)
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The present understanding of the mechanism of SCSB is based in the dynamical
generation of a non-zero vacuum expectation value of the scalar quark density, i.e.
the vacuum condensate v ≡ 〈0|ūu|0〉 = 〈0|d̄d|0〉 = 〈0|s̄s|0〉 6= 0. The Goldstone
bosons correspond to the zero-energy excitations over this vacuum condensate;
their fields can be collected in a 3× 3 unitary matrix U(φ),

〈0|q̄jLqiR|0〉 −→ v

2
U ij(φ), (23)

which parametrizes those excitations. A convenient parametrization is given by

U(φ) ≡ exp
(
i
√
2Φ/f

)
, (24)

where

Φ(x) ≡ ~λ√
2
~φ =




π0√
2
+ η8√

6
π+ K+

π− − π0√
2
+ η8√

6
K0

K− K̄0 −2 η8√
6



. (25)

The matrix U(φ) transforms linearly under the chiral group,

U(φ)
G−→ gR U(φ) g†L, (26)

but the induced transformation on the Goldstone fields ~φ is highly non-linear.
Since there is a mass gap separating the pseudoscalar octet from the rest of the

hadronic spectrum, we can build an EFT containing only the Goldstone modes.
We should write the more general Lagrangian involving the matrix U(φ), which
is consistent with chiral symmetry. Moreover, we can organize the Lagrangian in
terms of increasing powers of momentum or, equivalently, in terms of an increasing
number of derivatives (parity conservation requires an even number of derivatives):

Leff(U) =
∑

n

L2n. (27)

In the low-energy domain we are interested in, the terms with a minimum number
of derivatives will dominate.

Due to the unitarity of the U matrix, UU † = I, at least two derivatives are
required to generate a non-trivial interaction. To lowest order, the effective chiral
Lagrangian is uniquely given by the term

L2 =
f 2

4
〈∂µU †∂µU〉. (28)

This is exactly the structure (20), which we derived from the linear sigma model
in the last section.

Expanding U(φ) in a power series in φ, one obtains the Goldstone’s kinetic
terms plus a tower of interactions involving an increasing number of pseudoscalars.
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The requirement that the kinetic terms are properly normalized fixes the global
coefficient f 2/4 in Eq. (28). All interactions among the Goldstones can then be
predicted in terms of the single coupling f :

L2 =
1

2
〈∂µφ∂µφ〉 +

1

12f 2
〈(φ

↔

∂µ φ) (φ
↔

∂µ φ)〉 + O(φ6/f 4). (29)

To compute the ππ scattering amplitude, for instance, is now a trivial pertur-
bative exercise. One gets the well-known [21] Weinberg result [t ≡ (p′+ − p+)

2]

T (π+π0 → π+π0) =
t

f 2
. (30)

Similar results can be obtained for ππ → 4π, 6π, 8π, . . . It is the non-linearity of
the effective Lagrangian that relates amplitudes with different numbers of Gold-
stone bosons, allowing for absolute predictions in terms of f .

The EFT technique becomes much more powerful if one introduces couplings
to external classical fields. Let us consider an extended QCD Lagrangian, with
quark couplings to external Hermitian matrix-valued fields vµ, aµ, s, p:

LQCD = L0
QCD + q̄γµ(vµ + γ5aµ)q − q̄(s− iγ5p)q. (31)

The external fields will allow us to compute the effective realization of general
Green functions of quark currents in a very straightforward way. Moreover, they
can be used to incorporate the electromagnetic and semileptonic weak interactions,
and the explicit breaking of chiral symmetry through the quark masses:

rµ ≡ vµ + aµ = eQAµ + . . .

ℓµ ≡ vµ − aµ = eQAµ +
e√

2 sin θW
(W †

µT+ + h.c.) + . . . (32)

s = M+ . . .

Here, Q and M denote the quark-charge and quark-mass matrices, respectively,

Q =
1

3
diag(2,−1,−1), M = diag(mu, md, ms), (33)

and T+ is a 3 × 3 matrix containing the relevant Cabibbo–Kobayashi–Maskawa
factors

T+ =




0 Vud Vus

0 0 0

0 0 0


 . (34)

Formally, the Lagrangian (31) is invariant under the following set of local
SU(3)L ⊗ SU(3)R transformations:

qL −→ gL qL,

qR −→ gR qR,

ℓµ −→ gL ℓµ g
†
L + igL∂µg

†
L, (35)

rµ −→ gR rµ g
†
R + igR∂µg

†
R,

s+ ip −→ gR (s+ ip) g†L.
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We can use this formal symmetry to build a generalized effective Lagrangian for
the Goldstone bosons, in the presence of external sources. Note that to respect
the local invariance, the gauge fields vµ, aµ can only appear through the covariant
derivative

DµU = ∂µU − irµU + iUℓµ, DµU
† = ∂µU

† + iU †rµ − iℓµU
†, (36)

and through the field strength tensors

F µν
L = ∂µℓν − ∂νℓµ − i[ℓµ, ℓν ], F µν

R = ∂µrν − ∂νrµ − i[rµ, rν ]. (37)

At lowest order in momenta, the more general effective Lagrangian consistent with
Lorentz invariance and with (local) chiral symmetry is of the form [15]

L2 =
f 2

4
〈DµU

†DµU + U †χ + χ†U〉, (38)

where
χ = 2B0 (s+ ip), (39)

and B0 is a constant, which, like f , is not fixed by symmetry requirements alone.
Once special directions in flavour space, like the ones in Eq. (32), are selected

for the external fields, chiral symmetry is of course explicitly broken. The impor-
tant point is that (38) then breaks the symmetry in exactly the same way as the
fundamental short-distance Lagrangian (31) does.

The power of the external field technique becomes obvious when computing
the chiral Noether currents. Formally, the physical Green functions are obtained
as functional derivatives of the generating functional Z[v, a, s, p], defined via the
path-integral formula

exp {iZ} =
∫

DqDq̄DGµ exp
{
i
∫

d4xLQCD

}
=
∫

DU(φ) exp
{
i
∫

d4xLeff

}
.

(40)
At lowest order in momenta, the generating functional reduces to the classical
action S2 =

∫
d4xL2; therefore, the currents can be trivially computed by taking

the appropriate derivatives with respect to the external fields:

Jµ
L

.
=

δS2

δℓµ
=

i

2
f 2DµU

†U =
f√
2
Dµφ− i

2

(
φ

↔

Dµ φ
)
+O(φ3/f),

Jµ
R

.
=

δS2

δrµ
=

i

2
f 2DµUU † = − f√

2
Dµφ− i

2

(
φ

↔

Dµ φ
)
+O(φ3/f). (41)

The physical meaning of the chiral coupling f is now obvious; at O(p2), f
equals the pion decay constant, f = fπ = 93.2 MeV, defined as

〈0|(Jµ
A)

12|π+〉 ≡ i
√
2fπp

µ. (42)
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Similarly, by taking a derivative with respect to the external scalar source s, we
learn that the constant B0 is related to the quark condensate

〈0|q̄jqi|0〉 = −f 2B0δ
ij . (43)

Taking s = M and p = 0, the χ term in Eq. (38) gives rise to a quadratic
pseudoscalar-mass term plus additional interactions proportional to the quark
masses. Expanding in powers of φ (and dropping an irrelevant constant), one has

f 2

4
2B0 〈M(U + U †)〉 = B0

{
−〈Mφ2〉+ 1

6f 2
〈Mφ4〉+O(φ6/f 4)

}
. (44)

The explicit evaluation of the trace in the quadratic mass term provides the
relation between the physical meson masses and the quark masses:

M2
π± = 2m̂B0,

M2
π0 = 2m̂B0 − ε+O(ε2),

M2
K± = (mu +ms)B0, (45)

M2
K0 = (md +ms)B0,

M2
η8 =

2

3
(m̂+ 2ms)B0 + ε+O(ε2),

where3

m̂ =
1

2
(mu +md), ε =

B0

4

(mu −md)
2

(ms − m̂)
. (46)

Chiral symmetry relates the magnitude of the meson and quark masses to
the size of the quark condensate. Using the result (43), one gets from the first
equation in (45) the well-known Gell-Mann–Oakes–Renner relation [22]

f 2
πM

2
π = −m̂ 〈0|ūu+ d̄d|0〉. (47)

Taking out the common B0 factor, Eqs. (45) imply the old Current Algebra
mass ratios [22, 23],

M2
π±

2m̂
=

M2
K+

(mu +ms)
=

MK0

(md +ms)
≈ 3M2

η8

(2m̂+ 4ms)
, (48)

and (up to O(mu −md) corrections) the Gell-Mann–Okubo mass relation [24],

3M2
η8 = 4M2

K −M2
π . (49)

3The O(ε) corrections to M2
π0 and M2

η8
originate from a small mixing term between the π0

and η8 fields,
−B0〈Mφ2〉 −→ −(B0/

√
3) (mu −md)π

0η8.

The diagonalization of the quadratic π0, η8 mass matrix, gives the mass eigenstates, π0 =
cos δ φ3 + sin δ φ8 and η8 = − sin δ φ3 + cos δ φ8, where tan (2δ) =

√
3(md −mu)/ (2(ms − m̂)) .
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Note that the chiral Lagrangian automatically implies the successful quadratic
Gell-Mann–Okubo mass relation, and not a linear one. Since B0mq ∝ M2

φ , the
external field χ is counted as O(p2) in the chiral expansion.

Although chiral symmetry alone cannot fix the absolute values of the quark
masses, it gives information about quark-mass ratios. Neglecting the tiny O(ε)
effects, one gets the relations

md −mu

md +mu
=

(M2
K0 −M2

K+)− (M2
π0 −M2

π+)

M2
π0

= 0.29, (50)

ms − m̂

2m̂
=

M2
K0 −M2

π0

M2
π0

= 12.6. (51)

In Eq. (50) we have subtracted the pion square-mass difference, to take into
account the electromagnetic contribution to the pseudoscalar-meson self-energies;
in the chiral limit (mu = md = ms = 0), this contribution is proportional to the
square of the meson charge and it is the same for K+ and π+ [25]. The mass
formulae (50) and (51) imply the quark ratios advocated by Weinberg [23]:

mu : md : ms = 0.55 : 1 : 20.3. (52)

Quark-mass corrections are therefore dominated by ms, which is large compared
with mu, md. Notice that the difference md −mu is not small compared with the
individual up- and down-quark masses; in spite of that, isospin turns out to be an
extremely good symmetry, because isospin-breaking effects are governed by the
small ratio (md −mu)/ms.

The φ4 interactions in Eq. (44) introduce mass corrections to the ππ scattering
amplitude (30),

T (π+π0 → π+π0) =
t−M2

π

f 2
π

, (53)

in perfect agreement with the Current Algebra result [21]. Since f ≈ fπ is fixed
from pion decay, this result is now an absolute prediction of chiral symmetry!

The lowest-order chiral Lagrangian (38) encodes in a very compact way all the
Current Algebra results obtained in the sixties [17]. The nice feature of the chiral
approach is its elegant simplicity. Moreover, as we will see in the next section, the
EFT method allows us to estimate higher-order corrections in a systematic way.

5 ChPT at O(p4)

At next-to-leading order in momenta, O(p4), the computation of the generating
functional Z[v, a, s, p] involves three different ingredients:

1. The most general effective chiral Lagrangian of O(p4), L4, to be considered
at tree level.
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2. One-loop graphs associated with the lowest-order Lagrangian L2.

3. The Wess–Zumino–Witten functional [26] to account for the chiral anomaly
[27, 28].

5.1 O(p4) Lagrangian

At O(p4), the most general4 Lagrangian, invariant under parity, charge conjuga-
tion and the local chiral transformations (35), is given by [15]

L4 = L1 〈DµU
†DµU〉2 + L2 〈DµU

†DνU〉 〈DµU †DνU〉
+ L3 〈DµU

†DµUDνU
†DνU〉 + L4 〈DµU

†DµU〉 〈U †χ+ χ†U〉
+ L5 〈DµU

†DµU
(
U †χ+ χ†U

)
〉 + L6 〈U †χ+ χ†U〉2

+ L7 〈U †χ− χ†U〉2 + L8 〈χ†Uχ†U + U †χU †χ〉
− iL9 〈F µν

R DµUDνU
† + F µν

L DµU
†DνU〉 + L10 〈U †F µν

R UFLµν〉
+ H1 〈FRµνF

µν
R + FLµνF

µν
L 〉 + H2 〈χ†χ〉. (54)

The terms proportional to H1 and H2 do not contain the pseudoscalar fields
and are therefore not directly measurable. Thus, at O(p4) we need ten additional
coupling constants Li to determine the low-energy behaviour of the Green func-
tions. These constants parametrize our ignorance about the details of the under-
lying QCD dynamics. In principle, all the chiral couplings are calculable functions
of ΛQCD and the heavy-quark masses. At the present time, however, our main
source of information about these couplings is low-energy phenomenology.

5.2 Chiral loops

ChPT is a quantum field theory, perfectly defined through Eq. (40). As such,
we must take into account quantum loops with Goldstone-boson propagators in
the internal lines. The chiral loops generate non-polynomial contributions, with
logarithms and threshold factors, as required by unitarity.

The loop integrals are homogeneous functions of the external momenta and the
pseudoscalar masses occurring in the propagators. A simple dimensional counting
shows that, for a general connected diagram with Nd vertices of O(pd) (d =
2, 4, . . .), L loops and I internal lines, the overall chiral dimension is given by [2]

D = 2L+ 2 +
∑

d

Nd(d− 2). (55)

Each loop adds two powers of momenta; this power suppression of loop diagrams
is at the basis of low-energy expansions, such as ChPT. The leading D = 2

4Since we will only need L4 at tree level, the general expression of this Lagrangian has been
simplified, using the O(p2) equations of motion obeyed by U . Moreover, a 3× 3 matrix relation
has been used to reduce the number of independent terms. For the two-flavour case, not all of
these terms are independent [15, 20].
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contributions are obtained with L = 0 and d = 2, i.e. only tree-level graphs with
L2 insertions. At O(p4), we have tree-level contributions from L4 (L = 0, d = 4,
N4 = 1) and one-loop graphs with the lowest-order Lagrangian L2 (L = 1, d = 2).

ChPT is an expansion in powers of momenta over some typical hadronic scale,
usually called the scale of chiral symmetry breaking Λχ. Since each chiral loop
generates a geometrical factor (4π)−2, plus a factor of 1/f 2 to compensate the
additional dimensions, one could expect [29] Λχ to be about 4πfπ ∼ 1.2GeV.

The Goldstone loops are divergent and need to be renormalized. Although
EFTs are non-renormalizable (i.e. an infinite number of counter-terms is re-
quired), order by order in the momentum expansion they define a perfectly renor-
malizable theory. If we use a regularization which preserves the symmetries of
the Lagrangian, such as dimensional regularization, the counter-terms needed to
renormalize the theory will be necessarily symmetric. Since by construction the
full effective Lagrangian contains all terms permitted by the symmetry, the di-
vergences can then be absorbed in a renormalization of the coupling constants
occurring in the Lagrangian. At one loop (in L2), the ChPT divergences are
O(p4) and are therefore renormalized by the low-energy couplings in Eq. (54):

Li = Lr
i (µ) + Γiλ, Hi = Hr

i (µ) + Γ̃iλ, (56)

where

λ =
µd−4

16π2

{
1

d− 4
− 1

2
[log (4π) + Γ′(1) + 1]

}
. (57)

The explicit calculation of the one-loop generating functional Z4 [15] gives:

Γ1 =
3

32
, Γ2 =

3

16
, Γ3 = 0 , Γ4 =

1

8
,

Γ5 =
3

8
, Γ6 =

11

144
, Γ7 = 0 , Γ8 =

5

48
, (58)

Γ9 =
1

4
, Γ10 = −1

4
, Γ̃1 = −1

8
, Γ̃2 =

5

24
.

The renormalized couplings Lr
i (µ) depend on the arbitrary scale of dimensional

regularization µ. This scale dependence is of course cancelled by that of the loop
amplitude, in any physical, measurable quantity.

A typical O(p4) amplitude will then consist of a non-polynomial part, com-
ing from the loop computation, plus a polynomial in momenta and pseudoscalar
masses, which depends on the unknown constants Li. The non-polynomial part
(the so-called chiral logarithms) is completely predicted as a function of the lowest-
order coupling f and the Goldstone masses. This chiral structure can be easily
understood in terms of dispersion relations. Given the lowest-order Lagrangian
L2, the non-trivial analytic behaviour associated with some physical intermediate
state is calculable without the introduction of new arbitrary chiral coefficients.
Analiticity then allows us to reconstruct the full amplitude, through a disper-
sive integral, up to a subtraction polynomial. ChPT generates (perturbatively)
the correct dispersion integrals and organizes the subtraction polynomials in a
derivative expansion.
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5.3 The chiral anomaly

Although the QCD Lagrangian (31) is formally invariant under local chiral trans-
formations, this is no longer true for the associated generating functional. The
anomalies of the fermionic determinant break chiral symmetry at the quantum
level [27, 28]. The anomalous change of the generating functional under an in-
finitesimal chiral transformation

gL,R = 1 + iα∓ iβ + . . . (59)

is given by [28]:

δZ[v, a, s, p] = − NC

16π2

∫
d4x 〈β(x) Ω(x)〉, (60)

Ω(x) = εµνσρ
[
vµνvσρ +

4

3
∇µaν∇σaρ +

2

3
i {vµν , aσaρ}

+
8

3
i aσvµνaρ +

4

3
aµaνaσaρ

]
,

vµν = ∂µvν − ∂νvµ − i [vµ, vν ], ∇µaν = ∂µaν − i [vµ, aν ].

(NC = 3 is the number of colours, and ε0123 = 1.) This anomalous variation of Z
is an O(p4) effect, in the chiral counting.

So far, we have been imposing chiral symmetry to construct the effective ChPT
Lagrangian. Since chiral symmetry is explicitly violated by the anomaly at the
fundamental QCD level, we need to add a functional ZA with the property that
its change under a chiral gauge transformation reproduces (60). Such a functional
was constructed by Wess and Zumino [30], and reformulated in a nice geometrical
way by Witten [31]. It has the explicit form:

S[U, ℓ, r]WZW = − iNC

240π2

∫
dσijklm

〈
ΣL

i Σ
L
j Σ

L
kΣ

L
l Σ

L
m

〉

− iNC

48π2

∫
d4x εµναβ

(
W (U, ℓ, r)µναβ −W (1, ℓ, r)µναβ

)
,(61)

W (U, ℓ, r)µναβ =
〈
UℓµℓνℓαU

†rβ +
1

4
UℓµU

†rνUℓαU
†rβ + iU∂µℓνℓαU

†rβ

+ i∂µrνUℓαU
†rβ − iΣL

µℓνU
†rαUℓβ + ΣL

µU
†∂νrαUℓβ

− ΣL
µΣ

L
νU

†rαUℓβ + ΣL
µℓν∂αℓβ + ΣL

µ∂νℓαℓβ

− i ΣL
µℓνℓαℓβ +

1

2
ΣL

µℓνΣ
L
αℓβ − iΣL

µΣ
L
νΣ

L
αℓβ

〉

− (L ↔ R) , (62)

where
ΣL

µ = U †∂µU, ΣR
µ = U∂µU

†, (63)

and (L ↔ R) stands for the interchanges U ↔ U †, ℓµ ↔ rµ and ΣL
µ ↔ ΣR

µ . The
integration in the first term of Eq. (61) is over a five-dimensional manifold whose
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boundary is four-dimensional Minkowski space. The integrand is a surface term;
therefore both the first and the second terms of SWZW are O(p4), according to
the chiral counting rules.

Since anomalies have a short-distance origin, their effect is completely calcu-
lable. The translation from the fundamental quark–gluon level to the effective
chiral level is unaffected by hadronization problems. In spite of its considerable
complexity, the anomalous action (61) has no free parameters.

The anomaly functional gives rise to interactions that break the intrinsic par-
ity. It is responsible for the π0 → 2γ, η → 2γ decays, and the γ3π, γπ+π−η
interactions. The five-dimensional surface term generates interactions among five
or more Goldstone bosons.

6 Low-energy phenomenology at O(p4)

At lowest order in momenta, the predictive power of the chiral Lagrangian was re-
ally impressive: with only two low-energy couplings, it was possible to describe all
Green functions associated with the pseudoscalar-meson interactions. The sym-
metry constraints become less powerful at higher orders. Ten additional constants
appear in the L4 Lagrangian, and many more would be needed at O(p6). Higher-
order terms in the chiral expansion are much more sensitive to the non-trivial
aspects of the underlying QCD dynamics.

With p <
∼ MK (Mπ), we expect O(p4) corrections to the lowest-order ampli-

tudes at the level of p2/Λ2
χ

<
∼ 20% (2%). We need to include those corrections

if we aim to increase the accuracy of the ChPT predictions beyond this level.
Although the number of free constants in L4 looks quite big, only a few of them
contribute to a given observable. In the absence of external fields, for instance, the
Lagrangian reduces to the first three terms; elastic ππ and πK scatterings are then
sensitive to L1,2,3. The two-derivative couplings L4,5 generate mass corrections to
the meson decay constants (and mass-dependent wave-function renormalizations).
Pseudoscalar masses are affected by the non-derivative terms L6,7,8; L9 is mainly
responsible for the charged-meson electromagnetic radius and L10, finally, only
contributes to amplitudes with at least two external vector or axial-vector fields,
like the radiative semileptonic decay π → eνγ.

Table 1, taken from ref. [32], summarizes the present status of the phenomeno-
logical determination [15,33] of the constants Li. The quoted numbers correspond
to the renormalized couplings, at a scale µ = Mρ. The values of these couplings at
any other renormalization scale can be trivially obtained, through the logarithmic
running implied by Eq. (56):

Lr
i (µ2) = Lr

i (µ1) +
Γi

(4π)2
log

(
µ1

µ2

)
. (64)

Comparing the Lagrangians L2 and L4, one can make an estimate of the
expected size of the couplings Li in terms of the scale of SCSB. Taking Λχ ∼
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Table 1: Phenomenological values of the renormalized couplings Lr
i (Mρ). The last

column shows the source used to extract this information.

i Lr
i (Mρ)× 103 Source

1 0.7± 0.5 Ke4, ππ → ππ

2 1.2± 0.4 Ke4, ππ → ππ

3 −3.6 ± 1.3 Ke4, ππ → ππ

4 −0.3 ± 0.5 Zweig rule

5 1.4± 0.5 FK : Fπ

6 −0.2 ± 0.3 Zweig rule

7 −0.4 ± 0.2 Gell-Mann–Okubo, L5, L8

8 0.9± 0.3 MK0 −MK+ , L5, (ms − m̂) : (md −mu)

9 6.9± 0.7 〈r2〉πem
10 −5.5 ± 0.7 π → eνγ

4πfπ ∼ 1.2GeV, one would get

Li ∼
f 2
π/4

Λ2
χ

∼ 1

4(4π)2
∼ 2× 10−3, (65)

in reasonable agreement with the phenomenological values quoted in Table 1. This
indicates a good convergence of the momentum expansion below the resonance
region, i.e. p < Mρ.

The chiral Lagrangian allows us to make a good book-keeping of phenomeno-
logical information with a few couplings. Once these couplings have been fixed,
we can predict many other quantities. Moreover, the information contained in
Table 1 is very useful to easily test different QCD-inspired models. Given any
particular model aiming to correctly describe QCD at low energies, we no longer
need to make an extensive phenomenological analysis of all the predictions of the
model, in order to test its degree of reliability; we only need to calculate the
predicted low-energy couplings, and compare them with the values in Table 1.
For instance, if one integrates out the heavy scalar of the linear sigma model
described in Section 3, the resulting Goldstone Lagrangian only contains the L1

term [see Eq. (21)] at O(p4); obviously this is not a satisfactory approximation to
the physical world5.

An exhaustive description of the chiral phenomenology at O(p4) is beyond the
scope of these lectures. Instead, I will just present a few examples to illustrate
both the power and limitations of the ChPT techniques.

5A more detailed study of the renormalizable linear sigma model can be found in ref. [20].
The conclusion is that this model is clearly ruled out by the data.
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6.1 Decay constants

In the isospin limit (mu = md = m̂), the O(p4) calculation of the meson-decay
constants gives [15]:

fπ = f

{
1− 2µπ − µK +

4M2
π

f 2
Lr
5(µ) +

8M2
K + 4M2

π

f 2
Lr
4(µ)

}
,

fK = f

{
1− 3

4
µπ −

3

2
µK − 3

4
µη8 +

4M2
K

f 2
Lr
5(µ) +

8M2
K + 4M2

π

f 2
Lr
4(µ)

}
, (66)

fη8 = f

{
1− 3µK +

4M2
η8

f 2
Lr
5(µ) +

8M2
K + 4M2

π

f 2
Lr
4(µ)

}
,

where

µP ≡ M2
P

32π2f 2
log

(
M2

P

µ2

)
. (67)

The result depends on two O(p4) couplings, L4 and L5. The L4 term generates
a universal shift of all meson-decay constants, δf 2 = 16L4B0〈M〉, which can be
eliminated taking ratios. From the experimental value [34]

fK
fπ

= 1.22± 0.01, (68)

one can then fix L5(µ); this gives the result quoted in Table 1. Moreover, one gets
the absolute prediction [15]

fη8
fπ

= 1.3± 0.05. (69)

Taking into account isospin violations, one can also predict [15] a tiny difference
between fK± and fK0, proportional to md −mu.

6.2 Electromagnetic form factors

At O(p2) the electromagnetic coupling of the Goldstone bosons is just the min-
imal one, obtained through the covariant derivative. The next-order corrections
generate a momentum-dependent form factor

F φ±

(q2) = 1 +
1

6
〈r2〉φ±

q2 + . . . ; F φ0

(q2) =
1

6
〈r2〉φ0

q2 + . . . (70)

The meson electromagnetic radius 〈r2〉φ gets local contributions from the L9 term,
plus logarithmic loop corrections [15]:

〈r2〉π±

=
12Lr

9(µ)

f 2
− 1

32π2f 2

{
2 log

(
M2

π

µ2

)
+ log

(
M2

K

µ2

)
+ 3

}
,

〈r2〉K0

= − 1

16π2f 2
log

(
MK

Mπ

)
, (71)

〈r2〉K±

= 〈r2〉π±

+ 〈r2〉K0

.
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Since neutral bosons do not couple to the photon at tree level, 〈r2〉K0

only
gets a loop contribution, which is moreover finite (there cannot be any diver-
gence because there exists no counter-term to renormalize it!). The predicted
value, 〈r2〉K0

= −0.04 ± 0.03 fm2, is in perfect agreement with the experimental
determination [35] 〈r2〉K0

= −0.054± 0.026 fm2.
The measured electromagnetic pion radius [36], 〈r2〉π±

= 0.439 ± 0.008 fm2,
is used as input to estimate the coupling L9. This observable provides a good
example of the importance of higher-order local terms in the chiral expansion. If
one tries to ignore the L9 contribution, using instead some “physical” cut-off pmax

to regularize the loops, one needs [37] pmax ∼ 60GeV, in order to reproduce the
experimental value; this is clearly nonsense. The pion charge radius is dominated
by the Lr

9(µ) contribution, for any reasonnable value of µ.
The measured K+ charge radius [38], 〈r2〉K±

= 0.28 ± 0.07 fm2, has a larger
experimental uncertainty. Within present errors, it is in agreement with the
parameter-free relation in Eq. (71).

6.3 Kl3 decays

The semileptonic decays K+ → π0l+νl and K0 → π−l+νl are governed by the
corresponding hadronic matrix element of the vector current [t ≡ (PK − Pπ)

2],

〈π|s̄γµu|K〉 = CKπ

[
(PK + Pπ)

µ fKπ
+ (t) + (PK − Pπ)

µ fKπ
− (t)

]
, (72)

where CK+π0 = 1/
√
2, CK0π− = 1. At lowest order, the two form factors reduce

to trivial constants: fKπ
+ (t) = 1 and fKπ

− (t) = 0. There is however a sizeable

correction to fK+π0

+ (t), due to π0η mixing, which is proportional to (md −mu),

fK+π0

+ (0) = 1 +
3

4

md −mu

ms − m̂
= 1.017. (73)

This number should be compared with the experimental ratio

fK+π0

+ (0)

fK0π−

+ (0)
= 1.028± 0.010. (74)

The O(p4) corrections to fKπ
+ (0) can be expressed in a parameter-free manner in

terms of the physical meson masses [15]. Including those contributions, one gets
the more precise values

fK0π−

+ (0) = 0.977,
fK+π0

+ (0)

fK0π−

+ (0)
= 1.022, (75)

which are in perfect agreement with the experimental result (74). The accurate
ChPT calculation of these quantities allows us to extract [34] the most precise
determination of the Kobayashi–Maskawa matrix element Vus:

|Vus| = 0.2196± 0.0023. (76)
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At O(p4), the form factors get momentum-dependent contributions. Since L9

is the only unknown chiral coupling occurring in fKπ
+ (t) at this order, the slope λ+

of this form factor can be fully predicted. Alternatively, we can use the measured
slope [39],

λ+ ≡ 1

6
〈r2〉Kπ M2

π = 0.0300± 0.0016, (77)

as an input to get an independent determination of L9. The value (77) corresponds
[15] to Lr

9(Mρ) = (6.6±0.4)×10−3, in excellent agreement with the determination
from the pion-charge radius, quoted in Table 1.

Instead of fKπ
− (t), it is usual to parametrize the experimental results in terms

of the so-called scalar form factor

fKπ
0 (t) = fKπ

+ (t) +
t

M2
K −M2

π

fKπ
− (t). (78)

The slope of this form factor is determined by the constant L5, which in turn is
fixed by fK/fπ. One gets the result [15]:

λ0 ≡
1

6
〈r2〉Kπ

S M2
π = 0.017± 0.004. (79)

The experimental situation concerning the value of this slope is far from clear;
while an older high-statistics measurement [40], λ0 = 0.019 ± 0.004, confirmed
the theoretical expectations, more recent experiments find higher values, which
disagree with this result. Reference [41], for instance, report λ0 = 0.046± 0.006,
which differs from (79) by more than 4 standard deviations. The Particle Data
Group [39] quote a world average λ0 = 0.025± 0.006.

6.4 Meson masses

The relations (45) get modified at O(p4). The additional contributions depend on
the low-energy constants L4, L5, L6, L7 and L8. It is possible, however, to obtain
one relation between the quark and meson masses, which does not contain any of
the O(p4) couplings. The dimensionless ratios

Q1 ≡
M2

K

M2
π

, Q2 ≡
(M2

K0 −M2
K+)− (M2

π0 −M2
π+)

M2
K −M2

π

, (80)

get the same O(p4) correction [15]:

Q1 =
ms + m̂

2m̂
{1 + ∆M}, Q2 =

md −mu

ms − m̂
{1 + ∆M}, (81)

where

∆M = −µπ + µη8 +
8

f 2
(M2

K −M2
π) [2L

r
8(µ)− Lr

5(µ)] . (82)
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Therefore, at this order, the ratio Q1/Q2 is just given by the corresponding ratio
of quark masses,

Q2 ≡ Q1

Q2
=

m2
s − m̂2

m2
d −m2

u

. (83)

To a good approximation, Eq. (83) can be written as an ellipse,

(
mu

md

)2

+
1

Q2

(
ms

md

)2

= 1, (84)

which constrains the quark-mass ratios. The observed values of the meson masses
give Q = 24.

Obviously, the quark-mass ratios (52), obtained at O(p2), satisfy this elliptic
constraint. At O(p4), however, it is not possible to make a separate determination
of mu/md and ms/md without having additional information on some of the Li

couplings.
A useful quantity is the deviation of the Gell-Mann–Okubo relation,

∆GMO ≡ 4M2
K − 3M2

η8 −M2
π

M2
η8
−M2

π

. (85)

Neglecting the mass difference md −mu, one gets [15]

∆GMO =
−2 (4M2

KµK − 3M2
η8
µη8 −M2

πµπ)

M2
η8
−M2

π

− 6

f 2
(M2

η8 −M2
π) [12L

r
7(µ) + 6Lr

8(µ)− Lr
5(µ)] . (86)

Experimentally, correcting the masses for electromagnetic effects, ∆GMO = 0.21.
Since L5 is already known, this allows the combination 2L7 + L8 to be fixed .

In order to determine the individual quark-mass ratios from Eqs. (81), we
would need to fix the constant L8. However, there is no way to find an observ-
able that isolates this coupling. The reason is an accidental symmetry of the
Lagrangian L2 + L4. The chiral Lagrangian remains invariant under the follow-
ing simultaneous change [42] of the quark-mass matrix and some of the chiral
couplings:

M′ = αM+ β(M†)−1 detM, B′
0 = B0/α, (87)

L′
6 = L6 − ζ, L′

7 = L7 − ζ, L′
8 = L8 + 2ζ,

where α and β are arbitrary constants, and ζ = βf 2/(32αB0). The only in-
formation on the quark-mass matrix M that we used to construct the effective
Lagrangian was that it transforms as M → gRMg†L. The matrix M′ transforms
in the same manner; therefore, symmetry alone does not allow us to distinguish
between M and M′. Since only the product B0M appears in the Lagrangian,
α merely changes the value of the constant B0. The term proportional to β is
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a correction of O(M2); when inserted in L2, it generates a contribution to L4,
which is reabsorbed by the redefinition of the O(p4) couplings. All chiral predic-
tions will be invariant under the transformation (87); therefore it is not possible
to separately determine the values of the quark masses and the constants B0, L6,
L7 and L8. We can only fix those combinations of chiral couplings and masses
that remain invariant under (87).

Notice that (87) is certainly not a symmetry of the underlying QCD La-
grangian. The accidental symmetry arises in the effective theory because we are
not making use of the explicit form of the QCD Lagrangian; only its symmetry
properties under chiral rotations have been taken into account. Therefore, we
can resolve the ambiguity by obtaining one additional information from outside
the pseudoscalar-meson chiral Lagrangian framework. For instance, by analysing
the isospin breaking in the baryon mass spectrum and the ρ-ω mixing [43], it is
possible to fix the ratio (ms − m̂)/(md −mu) = 43.7± 2.7. Inserting this number
in Eq. (83), one gets [15]

ms

m̂
= 25.7± 2.6. (88)

Moreover, one can now determine L8 from Eqs. (81), and therefore fix L7 with
Eq. (86); one then gets the values quoted in Table 1. Other ways of resolving the
ambiguity, by using different additional inputs [44, 45], lead to similar estimates
of the quark-mass ratios and the low-energy couplings.

7 Information encoded in the chiral couplings

The effective theory takes explicitly into account the poles and cuts generated by
the Goldstone bosons. Given the non-trivial analytic structure associated with
those physical intermediate states, the full amplitudes are reconstructed up to
a subtraction polynomial. Obviously, the subtraction constants Li contain all
the information on the heavy degrees of freedom, which do not appear in the
low-energy Lagrangian.

It seems rather natural to expect that the lowest-mass resonances, such as
ρ mesons, should have an important impact on the physics of the pseudoscalar
bosons. In particular, the low-energy singularities due to the exchange of those
resonances should generate sizeable contributions to the chiral couplings. This
can be easily understood, making a Taylor expansion of the ρ propagator:

1

p2 −M2
ρ

=
−1

M2
ρ

{
1 +

p2

M2
ρ

+ . . .

}
, (p2 < M2

ρ ). (89)

Below the ρ-mass scale, the singularity associated with the pole of the resonance
propagator is replaced by the corresponding momentum expansion. The exchange
of virtual ρ mesons should result in derivative Goldstone couplings proportional
to powers of 1/M2

ρ .
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It is well known, for instance, that the electromagnetic form factor of the
charged pion is well reproduced by the vector-meson dominance (VMD) formula

F π±

(t) ≈ M2
ρ

M2
ρ − t

, (90)

i.e. 〈r2〉π± ≈ 6/M2
ρ = 0.4 fm2, to be compared with the measured value 〈r2〉π±

=

0.439± 0.008 fm2.
Writing a chiral-invariant ρππ interaction, with coupling GV , one can compute

the effect of a ρ-exchange diagram at low energies; the leading contribution [20,46]
is a π4 local interaction, with a coupling constant proportional to G2

V /M
2
ρ . Since

GV can be directly measured from the ρ → 2π decay width, |GV | = 69 MeV,
the size of this contribution is fully predicted. Similarly, one can write a chiral
invariant ρ0γ interaction, with coupling FV ; this coupling can be extracted from
the ρ0 → e+e− decay width, |FV | = 154 MeV. The exchange of a ρ meson between
the GV and FV vertices, generates a contribution to the electromagnetic form
factor of the charged pion [46]:

〈r2〉π±

=
6FVGV

f 2M2
ρ

. (91)

From the success of the näıve VMD formula (90), one could expect FVGV /f
2 ≈ 1,

which is indeed approximately satisfied (one obtains 1.2 with the measured FV

and GV values).
A systematic analysis of the role of resonances in the ChPT Lagrangian has

been performed6 in ref. [46]. One writes first a general chiral-invariant Lagrangian
L(U, V, A, S, P ), describing the couplings between meson resonances of the type V ,
A, S, P and the Goldstone bosons, at lowest-order in derivatives. The coupling
constants of this Lagrangian are phenomenologically extracted from physics at
the resonance-mass scale. One has then an effective chiral theory defined in the
intermediate-energy region. Formally, the generating functional (40) is given in
this theory by the path-integral formula

exp {iZ} =
∫

DU(φ)DV DADSDP exp
{
i
∫
d4xL(U, V, A, S, P )

}
. (92)

The integration of the resonance fields results in a low-energy theory with only
Goldstones, i.e. the usual ChPT Lagrangian. At lowest-order this integration can
be explicitly performed, expanding around the classical solution for the resonance
fields. The resulting Li couplings [46] are summarized in Table 2, which compares
the different resonance-exchange contributions with the phenomenologically de-
termined values of Lr

i (Mρ). For vector and axial-vector mesons only the SU(3)
octets contribute, whereas both octets and singlets are relevant in the case of
scalar and pseudoscalar resonances.

6Related work can be found in ref. [47].
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Table 2: V , A, S, S1 and η1 contributions to the coupling constants Lr
i in units of

10−3. The last column shows the results obtained with the relations in Eq. (95).

i Lr
i (Mρ) V A S S1 η1 Total Totalc)

1 0.7± 0.5 0.6 0 −0.2 0.2b) 0 0.6 0.9

2 1.2± 0.4 1.2 0 0 0 0 1.2 1.8

3 −3.6 ± 1.3 −3.6 0 0.6 0 0 −3.0 −4.9

4 −0.3 ± 0.5 0 0 −0.5 0.5b) 0 0.0 0.0

5 1.4± 0.5 0 0 1.4a) 0 0 1.4 1.4

6 −0.2 ± 0.3 0 0 −0.3 0.3b) 0 0.0 0.0

7 −0.4 ± 0.2 0 0 0 0 −0.3 −0.3 −0.3

8 0.9± 0.3 0 0 0.9a) 0 0 0.9 0.9

9 6.9± 0.7 6.9a) 0 0 0 0 6.9 7.3

10 −5.5 ± 0.7 −10.0 4.0 0 0 0 −6.0 −5.5

a) Input. b) Large-NC estimate. c) With (95)

At lowest order, the most general interaction of the V octet to the Goldstone
bosons contains two terms, corresponding to the couplings GV and FV described
before. Due to the different parity, only one term with coupling FA is present for
the axial octet A. While V exchange generates contributions to L1, L2, L3, L9

and L10, A exchange only contributes to L10 [46]:

LV
1 =

G2
V

8M2
V

, LV
2 = 2LV

1 , LV
3 = −6LV

1 , (93)

LV
9 =

FV GV

2M2
V

, LV+A
10 = − F 2

V

4M2
V

+
F 2
A

4M2
A

.

To obtain the numbers in Table 2, the value of Lr
9(Mρ) has been fitted to determine

|GV | = 53MeV; nevertheless, the qualitative conclusion would be the same with
the ρ → 2π determination mentioned before. The axial parameters have been
fixed using the old Weinberg sum rules [48]: F 2

A = F 2
V − f 2

π = (123MeV)2 and
M2

A = M2
V F

2
V /F

2
A = (968MeV)2. The results shown in the table clearly establish

a chiral version of vector (and axial-vector) meson dominance: whenever they can
contribute at all, V and A exchange seem to completely dominate the relevant
coupling constants.

There are different phenomenologically successful models in the literature for
V and A resonances (tensor-field description [20, 46], massive Yang–Mills [49],
hidden gauge formulations [50], etc.). It can be shown [51] that all models are
equivalent (i.e. give the same contributions to the Li), provided they incorporate
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the appropriate QCD constraints at high energies. Moreover, with additional
QCD-inspired assumptions of high-energy behaviour, such as an unsubtracted
dispersion relation for the pion electromagnetic form factor, all V and A couplings
can be expressed in terms of f and MV only [51]:

FV =
√
2fπ, GV = fπ/

√
2, FA = fπ, MA =

√
2MV . (94)

In that case, one has

LV
1 = LV

2 /2 = −LV
3 /6 = LV

9 /8 = −LV +A
10 /6 = f 2

π/(16M
2
V ). (95)

The last column in Table 2 shows the predicted numerical values of the Li cou-
plings, using the relations (95).

The analysis of scalar exchange is very similar [46]. Since the experimental
information is quite scarce in the scalar sector, one needs to assume that the
couplings L5 and L8 are due exclusively to scalar-octet exchange, to determine
the scalar-octet couplings. The scalar-octet contributions to the other Li (i =
1, 3, 4, 6) are then fixed. Moreover, one can then predict Γ(a0 → ηπ), in good
agreement with experiment. The scalar-singlet-exchange contributions can be
expressed in terms of the octet parameters using large-NC arguments. For NC =
∞, octet- and singlet-scalar exchange cancel in L1, L4 and L6. Although the
results in Table 2 cannot be considered as a proof for scalar dominance, they
provide at least a convincing demonstration of its consistency.

Neglecting the higher-mass 0− resonances, the only remaining meson-exchange
is the one associated with the η1, which generates a sizeable contribution to L7

[15,46]. The magnitude of this contribution can be calculated from the quark-mass
expansion ofM2

η . The result for L7 is in close agreement with its phenomenological
value.

The combined resonance contributions appear to saturate the Lr
i almost en-

tirely [46]. Within the uncertainties of the approach, there is no need for invok-
ing any additional contributions. Although the comparison has been made for
µ = Mρ, a similar conclusion would apply for any value of µ in the low-lying
resonance region between 0.5 and 1 GeV.

All chiral couplings are in principle calculable from QCD. They are functions
of ΛQCD and the heavy-quark masses mc, mb, mt. Unfortunately, we are not able
at present to make such a first-principle computation. Although the integral over
the quark fields in Eq. (40) can be done explicitly, we do not know how to per-
form analytically the remaining integration over the gluon fields. A perturbative
evaluation of the gluonic contribution would obviously fail in reproducing the cor-
rect dynamics of SCSB. A possible way out is to parametrize phenomenologically
the SCSB and make a weak gluon-field expansion around the resulting physical
vacuum.

The simplest parametrization [52] is obtained by adding to the QCD La-
grangian the term

∆LQCD = −MQ

(
q̄RUqL + q̄LU

†qR
)
, (96)
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Table 3: Leading-order (αs = 0) predictions for the Li’s, within the QCD-inspired
model (96). The phenomenological values are shown in the second row for com-
parison. All numbers are given in units of 10−3.

L1 L2 L3 L9 L10

Lth
i (αs = 0) 0.79 1.58 −3.17 6.33 −3.17

Lr
i (Mρ) 0.7± 0.5 1.2± 0.4 −3.6± 1.3 6.9± 0.7 −5.5± 0.7

which serves to introduce the U field, and a mass parameter MQ, which regulates
the infra-red behaviour of the low-energy effective action. In the presence of
this term the operator q̄q acquires a vacuum expectation value; therefore, (96) is
an effective way to generate the order parameter due to SCSB. Making a chiral
rotation of the quark fields, QL = ξqL, QR = ξ†qR, with ξ chosen such that
U = ξ2, the interaction (96) reduces to a mass-term for the “dressed” quarks Q;
the parameter MQ can then be interpreted as a “constituent-quark mass”.

The derivation of the low-energy effective chiral Lagrangian within this frame-
work has been extensively discussed in ref. [52]. In the chiral and large-NC limits,
and including the leading gluonic contributions, one gets:

8L1 = 4L2 = L9 =
NC

48π2

[
1 +O

(
1/M6

Q

)]
, (97)

L3 = L10 = − NC

96π2

[
1 +

π2

5NC

〈αs

π
GG〉

M4
Q

+O
(
1/M6

Q

)]
.

Due to dimensional reasons, the leading contributions to the O(p4) couplings only
depend on NC and geometrical factors. It is remarkable that L1, L2 and L9 do
not get any gluonic correction at this order; this result is independent of the
way SCSB has been parametrized (MQ can be taken to be infinite). Table 3
compares the predictions obtained with only the leading term in Eqs. (97) (i.e.
neglecting the gluonic correction) with the phenomenological determination of
the Li couplings. The numerical agreement is quite impressive; both the order of
magnitude and the sign are correctly reproduced (notice that this is just a free-
quark result!). Moreover, the gluonic corrections shift the values of L3 and L10 in
the right direction, making them more negative.

The results (97) obey almost all the short-distance relations (95). Comparing
the predictions for L1,2,9 in the VMD approach of Eq. (95) with the QCD-inspired
ones in Eq. (97), one gets a quite good estimate of the ρ mass:

MV = 2
√
2πf = 830MeV. (98)

Is it quite easy to prove that the interaction (96) is equivalent to the mean-field
approximation of the Nambu–Jona–Lasinio (NJL) model, where SCSB is triggered
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by four-quark operators. It has been conjectured recently [53] that integrating
out the quark and gluon fields of QCD, down to some intermediate scale Λχ,
gives rise to an extended NJL Lagrangian. By introducing collective fields (to be
identified later with the Goldstone fields and S, V , A resonances) the model can be
transformed into a Lagrangian bilinear in the quark fields, which can therefore be
integrated out. One then gets an effective Lagrangian, describing the couplings of
the pseudoscalar bosons to vector, axial-vector and scalar resonances. Extending
the analysis beyond the mean-field approximation, ref. [53] obtains predictions for
20 measurable quantities, including the Li’s, in terms of only 4 parameters. The
quality of the fits is quite impressive. Since the model contains all resonances
that are known to saturate the Li couplings, it is not surprising that one gets an
improvement of the mean-field-approximation results, specially for the constants
L5 and L8, which are sensitive to scalar exchange. What is more important, this
analysis clarifies a potential problem of double-counting: in certain limits the
model approches either the pure quark-loop predictions of Eqs. (97) or the VMD
results (95), but in general it interpolates between these two cases.

8 ∆S = 1 non-leptonic weak interactions

The Standard Model predicts strangeness-changing transitions with ∆S = 1 via
W -exchange between two weak charged currents. At low energies (E << MW ),
the heavy fields W , Z, t, b, c can be integrated out. Using standard operator-
product-expansion techniques, the ∆S = 1 weak interactions are described by an
effective Hamiltonian [54]

H∆S=1
eff =

GF√
2
VudV

∗
us

∑

i

Ci(µ)Qi + h.c. , (99)

which is a sum of local four-quark operators, constructed with the light (u, d, s)
quark fields only,

Q1 ≡ 4 (s̄Lγ
µdL) (ūLγµuL), Q2 ≡ 4 (s̄Lγ

µuL) (ūLγµdL),

Q3 ≡ 4 (s̄Lγ
µdL)

∑

q=u,d,s

(q̄LγµqL), Q4 ≡ 4
∑

q=u,d,s

(s̄Lγ
µqL) (q̄LγµdL), (100)

Q5 ≡ 4 (s̄Lγ
µdL)

∑

q=u,d,s

(q̄RγµqR), Q6 ≡ −8
∑

q=u,d,s

(s̄LqR) (q̄RdL),

modulated by Wilson coefficients Ci(µ), which are functions of the heavy W , t, b,
c masses and an overall renormalization scale µ. Only five of these operators are
independent, since Q4 = −Q1+Q2+Q3. From the point of view of chiral SU(3)L⊗
SU(3)R and isospin quantum numbers, Q− ≡ Q2 − Q1 and Qi (i = 3, 4, 5, 6)
transform as (8L, 1R) and induce |∆I| = 1/2 transitions, while Q1+2/3Q2−1/3Q3

transforms like (27L, 1R) and induces both |∆I| = 1/2 and |∆I| = 3/2 transitions.
In the absence of strong interactions, C2(µ) = 1 and all other Wilson coef-

ficients vanish. The Standard Electroweak Model then gives rise to |∆I| = 1/2
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and |∆I| = 3/2 amplitudes of nearly equal size, while experimentally the ratio
between the two amplitudes is a factor of 20. To solve this large discrepancy, QCD
effects should be enormous. The leading αs corrections indeed give, for µ-values
around 1 GeV, an enhancement by a factor of 2 to 3 of the Q− Wilson coefficient
with respect to the Q+ ≡ Q2+Q1 one. Moreover, the gluonic exchanges generate
the additional |∆I| = 1/2 operators Qi (i = 3, 4, 5, 6). Nevertheless, this by itself
is not enough to explain the experimentally observed rates, without simultane-
ously appealing to a further enhancement in the hadronic matrix elements of at
least some of the isospin 1/2 four-quark operators. The computation of hadronic
matrix elements at the K-mass scale is however a very difficult non-perturbative
problem.

The effect of ∆S = 1 non-leptonic weak interactions can be incorporated in
the low-energy chiral theory, as a perturbation to the strong effective Lagrangian
Leff(U). At lowest order in the number of derivatives, the most general effective
bosonic Lagrangian, with the same SU(3)L ⊗ SU(3)R transformation properties
as the four-quark Hamiltonian in Eqs. (99) and (100), contains two terms7:

L∆S=1
2 = −GF√

2
VudV

∗
us

{
g8〈λLµL

µ〉+ g27

(
Lµ23L

µ
11 +

2

3
Lµ21L

µ
13

)
+ h.c.

}
, (101)

where
λ = (λ6 − iλ7)/2, Lµ = if 2U †DµU. (102)

The chiral couplings g8 and g27 measure the strength of the two parts in the
effective Hamiltonian (99) transforming as (8L, 1R) and (27L, 1R), respectively,
under chiral rotations. Their values can be extracted from K → 2π decays [55]:

|g8| ≈ 5.1, g27/g8 ≈ 1/18. (103)

The huge difference between these two couplings shows the enhancement of the
octet |∆I| = 1/2 transitions.

Using the effective Lagrangian (101), the calculation of hadronic weak tran-
sitions becomes a straightforward perturbative problem. The highly non-trivial
QCD dynamics has been parametrized in terms of the two chiral couplings. Of
course, the interesting problem that remains to be solved is to compute g8 and
g27 from the underlying QCD theory, and therefore to gain a dynamical under-
standing of the so-called |∆I| = 1/2 rule. Although this is a very difficult task,
considerable progress has been achieved recently. Applying the QCD-inspired
model of Eq. (96) to the weak sector, a quite successful estimate of these two
couplings has been obtained [56]. A very detailed description of this calculation,
and a comparison with other approaches, can be found in ref. [56].

Once the couplings g8 and g27 have been phenomenologically fixed to the values
in Eq. (103), other decays like K → 3π or K → 2πγ can be easily predicted

7One can build an additional octet term with the external χ field, 〈λ
(
U †χ+ χ†U

)
〉; however,

this term does not contribute to on-shell amplitudes.
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at O(p2). As in the strong sector, one reproduces in this way the successful
soft-pion relations of Current Algebra. However, the data are already accurate
enough for the next-order corrections to be sizeable. Moreover, many transitions
do not occur at O(p2). For instance, due to a mismatch between the minimum
number of powers of momenta required by gauge invariance and the powers of
momenta that the lowest-order effective Lagrangian can provide, the amplitude
for any non-leptonic radiative K-decay with at most one pion in the final state
(K → γγ,K → γl+l−, K → πγγ,K → πl+l−, ...) vanishes to lowest order in
ChPT [57–59]. These decays are then sensitive to the non-trivial quantum field
theory aspects of ChPT.

Unfortunately, at O(p4) there is a very large number of possible terms, satis-
fying the appropriate (8L, 1R) and (27L, 1R) transformation properties [60]. Using
the O(p2) equations of motion obeyed by U to reduce the number of terms, 35
independent structures (plus 2 contact terms involving external fields only) re-
main in the octet sector alone [60, 61]. Restricting the attention to those terms
that contribute to non-leptonic amplitudes where the only external gauge fields
are photons, still leaves 22 relevant octet terms [62]. Clearly, the predictive power
of a completely general chiral analysis, using only symmetry constraints, is rather
limited. Nevertheless, as we are going to see in the next sections, it is still possible
to make predictions.

Due to the complicated interplay of electroweak and strong interactions, the
low-energy constants of the weak non-leptonic chiral Lagrangian encode a much
richer information than in the pure strong sector. These chiral couplings contain
both long- and short-distance contributions, and some of them (like g8) have in
addition a CP-violating imaginary part. Genuine short-distance physics, such as
the electroweak penguin operators, have their corresponding effective realization
in the chiral Lagrangian. Moreover, there are four O(p4) terms containing an
εµναβ tensor, which get a direct (probably dominant) contribution from the chiral
anomaly [63, 64].

In recent years, there have been several attempts to estimate these low-energy
couplings using different approximations, such as factorization [56, 65], weak-
deformation model [66], effective-action approach [56, 67], or resonance exchange
[62, 68]. Although more work in this direction is certainly needed, a qualitative
picture of the size of the different couplings is already emerging.

9 K → 2π, 3π decays

Imposing isospin and Bose symmetries, and keeping terms up to O(p4), a gen-
eral parametrization of the K → 3π amplitudes involves ten measurable param-
eters [69], αi, βi, ζi, ξi, γ3 and ξ′3, where i = 1, 3 refers to the ∆I = 1/2, 3/2
pieces. At O(p2), the quadratic slope parameters ζi, ξi and ξ′3 vanish; therefore
the lowest-order Lagrangian (101) predicts five K → 3π parameters in terms of
the two couplings g8 and g27, extracted from K → 2π. These predictions give the
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right qualitative pattern, but there are sizeable differences with the measured pa-
rameters. Moreover, non-zero values for some of the slope parameters have been
clearly established experimentally.

The agreement is substantially improved at O(p4) [70]. In spite of the large
number of unknown couplings in the general effective ∆S = 1 Lagrangian, only 7
combinations of these weak chiral constants are relevant for describing theK → 2π
and K → 3π amplitudes [71]. Therefore, one has 7 parameters for 12 observables,
which results in 5 relations. The extent to which these relations are satisfied
provides a non-trivial test of chiral symmetry at the four-derivative level. The
results of such a test [71] are shown in Table 4, where the 5 conditions have been
formulated as predictions for the 5 slope parameters. The comparison is very
successful for the two ∆I = 1/2 parameters. The data are not good enough to
say anything conclusive about the other three ∆I = 3/2 predictions; moreover,
the possible discrepancy in the value of ξ3 is not very significative, because this
parameter is expected to be rather sensitive to electromagnetic effects, which have
been omitted in the analysis.

Table 4: Predicted and measured values of the quadratic slope parameters in the
K → 3π amplitudes [71]. All values are given in units of 10−8.

Parameter Experimental value Prediction

ζ1 −0.47± 0.15 −0.47± 0.18

ξ1 −1.51± 0.30 −1.58± 0.19

ζ3 −0.21± 0.08 −0.011± 0.006

ξ3 −0.12± 0.17 0.092± 0.030

ξ′3 −0.21± 0.51 −0.033± 0.077

The O(p4) analysis of these decays has also clarified the role of long-distance
effects (ππ rescattering) in the dynamical enhancement of ∆I = 1/2 amplitudes.
The O(p4) corrections give indeed a sizeable constructive contribution, which re-
sults [70] in a fitted value for |g8| that is about 30% smaller than the lowest-order
determination (103). While this certainly goes in the right direction, it also shows
that the bulk of the enhancement mechanism comes from a different source.

10 Radiative K Decays

Owing to the constraints of electromagnetic gauge invariance, radiative K decays
with at most one pion in the final state do not occur at O(p2) [57–59]. Moreover,
only a few terms of the O(p4) Lagrangian are relevant for these kinds of processess
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[57–59]:

L∆S=1,em
4

.
= −GF√

2
VudV

∗
us g8

{
− ie

f 2
F µν {w1 〈QλLµLν〉+ w2 〈QLµλLν〉}

+e2f 2w4F
µνFµν 〈λQU †QU〉 + h.c.

}
. (104)

The small number of unknown chiral couplings allows us to derive useful relations
among different processes and to obtain definite predictions. Moreover, the ab-
sence of a tree-level O(p2) contribution makes the final results very sensitive to
the loop structure of the amplitudes.

10.1 KS → γγ

+
π


+


+
1
K0


γ
*


γ
*


Figure 1: Feynman diagrams for K0
1 → γ∗γ∗.

The symmetry constraints do not allow any direct tree-level K0
1γγ coupling

at O(p4) (K0
1,2 refer to the CP-even and CP-odd eigenstates, respectively). This

decay proceeds then through one loop of charged pions as shown in Fig. 1 (there
are similar diagrams with charged kaons in the loop, but their sum gives a zero
contribution to the decay amplitude). Moreover, since there are no possible
counter-terms to renormalize divergences, the one-loop amplitude is necessarily
finite. Although each of the four diagrams in Fig. 1 is quadratically divergent,
these divergences cancel in the sum. The resulting prediction [72] is in very good
agreement with the experimental measurement [73]

Br(KS → γγ) =





2.0× 10−6 (theory)

(2.4± 1.2)× 10−6 (experiment)
. (105)
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10.2 KL,S → µ+µ−

There are well-known short-distance contributions (electroweak penguins and box
diagrams) to the decay KL → µ+µ−. However, this transition is dominated by
long-distance physics. The main contribution proceeds through a two-photon
intermediate state: K0

2 → γ∗γ∗ → µ+µ−. Contrary to K0
1 → γγ, the prediction

for the K0
2 → γγ decay is very uncertain, because the first non-zero contribution

occurs8 at O(p6). That makes very difficult any attempt to predict the KL →
µ+µ− amplitude.

1


−


+


K0

γ
*


γ
*
 µ


µ


Figure 2: Feynman diagram for the K0
1 → µ+µ− decay. The K0

1γ
∗γ∗ vertex is

generated through the one-loop diagrams shown in Fig. 1

The situation is completely different for theKS decay. A straightforward chiral
analysis [74] shows that, at lowest order in momenta, the only allowed tree-level
K0µ+µ− coupling corresponds to the CP-odd state K0

2 . Therefore, the K0
1 →

µ+µ− transition can only be generated by a finite non-local loop contribution.
The two-loop calculation has been performed recently [74], with the result:

Γ(KS → µ+µ−)

Γ(KS → γγ)
= 1.9× 10−6,

Γ(KS → e+e−)

Γ(KS → γγ)
= 7.9× 10−9, (106)

well below the present experimental upper limits [39]. Although, in view of the
smallness of the predicted ratios, this calculation seems quite academic, it has
important implications for CP-violation studies.

The longitudinal muon polarization PL in the decay KL → µ+µ− is an in-
teresting measure of CP violation. As for every CP-violating observable in the
neutral kaon system, there are in general two different kinds of contributions to
PL: indirect CP violation through the small K0

1 admixture of the KL (ε effect),
and direct CP violation in the K0

2 → µ+µ− decay amplitude.

8At O(p4), this decay proceeds through a tree-level K0
2 → π0, η transition, followed by

π0, η → γγ vertices. Because of the Gell-Mann–Okubo relation, the sum of the π0 and η
contributions cancels exactly to lowest order. The decay amplitude is then very sensitive to
SU(3) breaking.
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In the Standard Model, the direct-CP-violating amplitude is induced by Higgs
exchange with an effective one-loop flavour-changing s̄dH coupling [75]. The
present lower bound [76] on the Higgs mass mH > 60 GeV (95% C.L.), implies
[75, 77] a conservative upper limit |PL,Direct| < 10−4. A much larger value PL ∼
O(10−2) appears quite naturally in various extensions of the Standard Model
[78]. It is worth emphasizing that PL is especially sensitive to the presence of
light scalars with CP-violating Yukawa couplings. Thus, PL seems to be a good
signature to look for new physics beyond the Standard Model; for this to be the
case, however, it is very important to have a good quantitative understanding of
the Standard Model prediction to allow us to infer, from a measurement of PL,
the existence of a new CP-violation mechanism.

The chiral calculation of the K0
1 → µ+µ− amplitude allows us to make a

reliable estimate9 of the contribution to PL due to K0-K̄0 mixing [74]:

1.9 < |PL,ε| × 103
(

2× 10−6

Br(KS → γγ)

)1/2

< 2.5. (107)

Taking into account the present experimental errors in Br(KS → γγ) and the in-
herent theoretical uncertainties due to uncalculated higher-order corrections, one
can conclude that experimental indications for |PL| > 5 × 10−3 would constitute
clear evidence for additional mechanisms of CP violation beyond the Standard
Model.

10.3 KL → π0γγ

Assuming CP conservation, the most general form of the amplitude forK0
2 → π0γγ

depends on two independent invariant amplitudes A and B [59],

A[KL(pK) → π0(p0)γ(q1)γ(q2)] =

ǫµ(q1) ǫν(q2)

{
A(y, z)

M2
K

(
qµ2 q

ν
1 − q1 · q2 gµν

)
+

2B(y, z)

M4
K

(
pK · q1 qµ2 pνK

+ pK · q2 qν1pµK − pµKp
ν
K q1 · q2 − pK · q1 pK · q2 gµν

)}
, (108)

where y ≡ |pK · (q1 − q2)|/M2
K and z = (q1 + q2)

2/M2
K .

Only the amplitude A(y, z) is non-vanishing to lowest non-trivial order, O(p4),
in ChPT. Again, the symmetry constraints do not allow any tree-level contribu-
tion from O(p4) terms in the Lagrangian. The A(y, z) amplitude is therefore
determined by a finite-loop calculation [58]. The relevant Feynman diagrams are
analogous to the ones in Fig. 1, but with an additional π0 line emerging from the
weak vertex; charged kaon loops also give a small contribution in this case. Due to

9Taking only the absorptive parts of the K1,2 → µ+µ− amplitudes into account, a value
|PL,ε| ≈ 7× 10−4 was estimated previously [79]. However, this is only one out of four contribu-
tions to PL [74], which could all interfere constructively with unknown magnitudes.
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the large absorptive π+π− contribution, the spectrum in the invariant mass of the
two photons is predicted [58, 80] to have a very characteristic behaviour (dotted
line in Fig. 3), peaked at high values of mγγ . The agreement with the measured
two-photon distribution [81], shown in Fig. 4, is remarkably good. However, the
O(p4) prediction [58, 80] for the rate, Br(KL → π0γγ) = 0.67 × 10−6, is smaller
than the experimental value [81, 82]:

Br(KL → π0γγ) =

{
(1.7± 0.3)× 10−6 NA31 [81],

(2.2± 1.0)× 10−6 E731 [82].
(109)

Since the effect of the amplitude B(y, z) first appears at O(p6), one could
worry about the size of the next-order corrections. In fact, a näıve VMD estimate
through the decay chain KL → π0, η, η′ → V γ → π0γγ [83] results in a sizeable
contribution to B(y, z) [66],

A(y, z)|VMD = aV
G8M

2
Kα

π

(
3− z +

M2
π

M2
K

)
, (110)

B(y, z)|VMD = −2aV
G8M

2
Kα

π
,
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with aV ≈ 0.32. However, this type of calculation predicts a photon spectrum
peaked at low values of mγγ , in strong disagreement with experiment. As first
emphasized in ref. [66], there are also so-called direct weak contributions associated
with V exchange, which cannot be written as a strong VMD amplitude with an
external weak transition. Model-dependent estimates of this direct contribution
[66] suggest a strong cancellation with the näıve vector-meson-exchange effect, i.e.
|aV | < 0.32; but the final result is unfortunately quite uncertain.

A detailed calculation of the most important O(p6) corrections has been per-
formed recently [84]. In addition to the VMD contribution, the unitarity cor-
rections associated with the two-pion intermediate state (i.e. KL → π0π+π− →
π0γγ) have been included10. Figure 3 shows the resulting photon spectrum for
aV = 0 (dashed curve) and aV = −0.9 (full curve). The predicted branching ratio
is:

BR(KL → π0γγ) =






0.67× 10−6, O(p4),

0.83× 10−6, O(p6), aV = 0,

1.60× 10−6, O(p6), aV = −0.9.

(111)

The unitarity corrections by themselves raise the rate only moderately. Moreover,
they produce an even more pronounced peaking of the spectrum at large mγγ ,
which tends to ruin the success of the O(p4) prediction. The addition of the V
exchange contribution restores again the agreement. Both the experimental rate
and the spectrum can be simultaneously reproduced with aV = −0.9.

10.4 K → πl+l−

In contrast to the previous processes, the O(p4) calculation of K+ → π+l+l−

and KS → π0l+l− involves a divergent loop, which is renormalized by the O(p4)
Lagrangian. The decay amplitudes can then be written [57] as the sum of a
calculable loop contribution plus an unknown combination of chiral couplings,

w+ = −1

3
(4π)2[wr

1 + 2wr
2 − 12Lr

9]−
1

3
log

(
MKMπ/µ

2
)
, (112)

wS = −1

3
(4π)2[wr

1 − wr
2]−

1

3
log

(
M2

K/µ
2
)
,

where w+, wS refer to the decay of the K+ and KS respectively. These con-
stants are expected to be of order 1 by näıve power-counting arguments. The
logarithms have been included to compensate the renormalization-scale depen-
dence of the chiral couplings, so that w+, wS are observable quantities. If the
final amplitudes are required to transform as octets, then w2 = 4L9, implying
wS = w+ + log (Mπ/MK)/3 [57]. It should be emphasized that this relation goes
beyond the usual requirement of chiral invariance.

10The charged-pion loop has also been computed in ref. [85].
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The measured K+ → π+e+e− decay rate determines two possible solutions for
w+ [57]. The same parameter w+ regulates [57] the shape of the invariant-mass
distribution of the final lepton pair. A fit to the recent BNL E777 data [86] gives

w+ = 0.89+0.24
−0.14, (113)

solving the previous two-fold ambiguity in favour of the positive solution, as ex-
pected from model-dependent theoretical estimates [66]. Once w+ has been fixed,
one can make predictions [57] for the rates and Dalitz-plot distributions of the
related modes K+ → π+µ+µ−, KS → π0e+e− and KS → π0µ+µ−.

The rare decay KL → π0e+e− is an interesting process in looking for new
CP-violating signatures. If CP were an exact symmetry, only the CP-even state
K0

1 could decay via one-photon emission, while the decay of the CP-odd state K0
2

would proceed through a two-photon intermediate state and, therefore, its decay
amplitude would be suppressed by an additional power of α. When CP-violation is
taken into account, however, an O(α) KL → π0e+e− decay amplitude is induced,
both through the small K0

1 component of the KL (ε effect) and through direct
CP-violation in the K0

2 → π0e+e− transition. The electromagnetic suppression of
the CP-conserving amplitude then makes it plausible that this decay is dominated
by the CP-violating contributions.

The short-distance analysis of the product of weak and electromagnetic cur-
rents allows a reliable estimate of the direct CP-violating K0

2 → π0e+e− ampli-
tude. The corresponding branching ratio induced by this amplitude has been
estimated [87] to be around

Br(KL → π0e+e−)
∣∣∣
Direct

≃ 5× 10−12, (114)

the exact number depending on the values of mt and the quark-mixing angles.
The indirect CP-violating amplitude induced by the K0

1 component of the KL

is given by the KS → π0e+e− amplitude times the CP-mixing parameter ε. Using
the octet relation between w+ and wS, the determination of the parameter ω+ in
Eq. (113) implies

Br(KL → π0e+e−)
∣∣∣
Indirect

≤ 1.6× 10−12. (115)

Comparing this value with the one in Eq. (114), we see that the interesting direct
CP-violating contribution is expected to be bigger than the indirect one. This
is very different from the situation in K → ππ, where the contribution due to
mixing completely dominates.

The present experimental upper bound [88] (90% C.L.)

Br(KL → π0e+e−)
∣∣∣
Exp

< 5.5× 10−9, (116)

is still far away from the expected Standard Model signal, but the prospects for
getting the needed sensitivity of around 10−12 in the next few years are rather
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encouraging. In order to be able to interpret a future experimental measurement
of this decay as a CP-violating signature, it is first necessary, however, to pin
down the actual size of the two-photon exchange CP-conserving amplitude.

Using the computed KL → π0γγ amplitude, one can estimate the two-photon
exchange contribution to KL → π0e+e−, by taking the absorptive part due to the
two-photon discontinuity as an educated guess of the actual size of the complete
amplitude. At O(p4), the KL → π0e+e− decay amplitude is strongly suppressed
(it is proportional to me), owing to the helicity structure of the A(y, z) term [59]:

Br(KL → π0γ∗γ∗ → π0e+e−)
∣∣∣
O(p4)

∼ 5× 10−15. (117)

This helicity suppression is, however, no longer true at the next order in the chiral
expansion. The O(p6) estimate of the amplitude B(y, z) [84] gives rise to

Br(KL → π0γ∗γ∗ → π0e+e−)
∣∣∣
O(p6)

∼




0.3× 10−12, aV = 0,

1.8× 10−12, aV = −0.9.
(118)

Although the rate increases of course with |aV |, there is some destructive interfer-
ence between the unitarity corrections of O(p6) and the V -exchange contribution
(for aV = −0.9). In order to get a more accurate estimate, it would be necessary
to make a careful fit to the KL → π0γγ data, taking the experimental acceptance
into account, to extract the actual value of aV .

11 The chiral anomaly in non-leptonic K decays

The chiral anomaly also appears in the non-leptonic weak interactions. A sys-
tematic study of all non-leptonic K decays where the anomaly contributes at
leading order, O(p4), has been performed recently [63]. Only radiative K decays
are sensitive to the anomaly in the non-leptonic sector.

The manifestations of the anomaly can be grouped in two different classes of
anomalous amplitudes: reducible and direct contributions. The reducible ampli-
tudes arise from the contraction of meson lines between a weak ∆S = 1 vertex and
the Wess-Zumino-Witten functional (61). In the octet limit, all reducible anoma-
lous amplitudes of O(p4) can be predicted in terms of the coupling g8. The direct
anomalous contributions are generated through the contraction of the W boson
field between a strong Green function on one side and the Wess–Zumino–Witten
functional on the other. Their computation is not straightforward, because of
the presence of strongly interacting fields on both sides of the W . Nevertheless,
due to the non-renormalization theorem of the chiral anomaly [89], the bosonized
form of the direct anomalous amplitudes can be fully predicted [64]. In spite of its
anomalous origin, this contribution is chiral-invariant. The anomaly turns out to
contribute to all possible octet terms of L∆S=1

4 proportional to the εµναβ tensor.
Unfortunately, the coefficients of these terms get also non-factorizable contribu-
tions of non-anomalous origin, which cannot be computed in a model-independent
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way. Therefore, the final predictions can only be parametrized in terms of four
dimensionless chiral couplings, which are expected to be positive and of order one.

The most frequent “anomalous” decays KL → π+π−γ and K+ → π+π0γ share
the remarkable feature that the normally dominant bremsstrahlung amplitude
is strongly suppressed, making the experimental verification of the anomalous
amplitude substantially easier. This suppression has different origins: K+ → π+π0

proceeds through the small 27-plet part of the non-leptonic weak interactions,
whereas KL → π+π− is CP-violating. The remaining non-leptonic K decays
with direct anomalous contributions are either suppressed by phase space [K+ →
π+π0π0γ(γ), K+ → π+π+π−γ(γ), KL → π+π−π0γ, KS → π+π−π0γ(γ)] or by the
presence of an extra photon in the final state [K+ → π+π0γγ, KL → π+π−γγ].
A detailed phenomenological analysis of these decays can be found in ref. [63].

12 Interactions of a light Higgs

The hadronic couplings of a light Higgs particle are fixed by low-energy theorems
[90–93], which relate the φ → φ′h0 transition with a zero-momentum Higgs to
the corresponding φ → φ′ coupling. Although, within the Standard Model, the
possibility of a light Higgs boson is already excluded [76], an extended scalar sector
with additional degrees of freedom could easily avoid the present experimental
limits, leaving the question of a light Higgs open to any speculation.

The quark–Higgs interaction can be written down in the general form

Lh0q̄q = −h0

u

{
kd d̄Mdd + ku ūMuu

}
, (119)

where u = (
√
2GF )

−1/2 ≈ 246GeV, Mu andMd are the diagonal mass matrices for
up- and down-type quarks respectively, and the couplings ku and kd depend on the
model considered. In the Standard Model, ku = kd = 1, while in the usual two-
Higgs-doublet models (without tree-level flavour-changing neutral currents) kd =
ku = cosα/ sinβ (model I) or kd = − sinα/ cos β, ku = cosα/ sinβ (model II),
where α and β are functions of the parameters of the scalar potential.

The couplings of h0 to the octet of pseudoscalar mesons can be easily worked
out, using ChPT techniques. The Yukawa interactions of the light-quark flavours
can be trivially incorporated through the external scalar field s, together with the
light-quark-mass matrix M:

s = M
{
1 +

h0

u
(kdA+ kuB)

}
, (120)

where A ≡ diag(0, 1, 1) and B ≡ diag(1, 0, 0). It remains to compute the con-
tribution from the heavy flavours c, b, t. Their Yukawa interactions induce a
Higgs–gluon coupling through heavy-quark loops,

Lh0GG =
αs

12π
(ndkd + nuku)

h0

u
Ga

µνG
µν
a . (121)
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Here, nd = 1 and nu = 2 are the number of heavy quarks of type down and
up respectively. The operator Ga

µνG
µν
a can be related to the trace of the energy-

momentum tensor; in the three light-flavour theory, one has

Θµ
µ = −bαs

8π
Ga

µνG
µν
a + q̄Mq, (122)

where b = 9 is the first coefficient of the QCD β-function. To obtain the low-
energy representation of Lh0GG it therefore suffices to replace Θµ

µ and q̄Mq by
their corresponding expressions in the effective chiral Lagrangian theory. One
gets [90–92],

Leff
h0GG = ξ

h0

u

f 2

2

{
〈DµU

†DµU〉+ 3B0〈U †M+MU〉
}
. (123)

The information on the heavy quarks, which survives in the low-energy limit, is
contained in the coefficient ξ ≡ 2(ndkd + nuku)/(3b) = 2(kd + 2ku)/27.

Using the chiral formalism, the present experimental constraints on a very
light neutral scalar have been investigated in refs. [92] and [93], in the context of
two-Higgs-doublet models. A Higgs in the mass range 2mµ < mh0 < 2Mπ can be
excluded (within model II), analysing the decay η → π0h0 [92]. A more general
analysis [93], using the light-Higgs production channels Z → Z∗h0, η′ → ηh0,
η → π0h0 and π → eνh0, allows us to exclude a large area in the parameter space
(α, β,mh0) of both models (I and II) for mh0 < 2mµ.

13 Effective theory at the electroweak scale

In spite of the spectacular success of the Standard Model, we still do not re-
ally understand the dynamics underlying the electroweak symmetry breaking
SU(2)L ⊗ U(1)Y → U(1)em. The Higgs mechanism provides a renormalizable
way to generate the W and Z masses and, therefore, their longitudinal degrees of
freedom. However, an experimental verification of this mechanism is still lacking.

The scalar sector of the Standard Model Lagrangian can be written in the
form

L(Φ) = 1

2
〈DµΣ†DµΣ〉 −

λ

16

(
〈Σ†Σ〉 − u2

)2
, (124)

where

Σ ≡

 Φ0 Φ+

Φ− Φ0∗


 (125)

and DµΣ is the usual gauge-covariant derivative

DµΣ ≡ ∂µΣ+ ig
~τ

2

→

W µ Σ− ig′Σ
τ3
2
Bµ. (126)

38



In the limit where the coupling g′ is neglected, L(Φ) is invariant under global
G ≡ SU(2)L ⊗ SU(2)C transformations,

Σ
G−→ gL Σ g†C , gL,C ∈ SU(2)L,C (127)

(SU(2)C is the so-called custodial-symmetry group). The symmetry properties
of L(Φ) are very similar to the ones of the linear-sigma-model Lagrangian (15).
Performing an analogous polar decomposition [see Eqs. (17)],

Σ(x) =
1√
2
(u+H(x)) U(φ(x)), (128)

U(φ(x)) = exp
(
i~τ ~φ(x)/u

)
,

in terms of the Higgs field H and the Goldstones ~φ, and taking the limit λ >> 1
(heavy Higgs), we can rewrite L(Φ) in the standard chiral form:

L(Φ) = u2

4
〈DµU

†DµU〉 +O (H) . (129)

In the unitary gauge U = 1, this O(p2) Lagrangian reduces to the usual bilinear
gauge-mass term.

As we know already, (129) is the universal model-independent interaction of the
Goldstone bosons induced by the assumed pattern of SCSB, SU(2)L⊗SU(2)C −→
SU(2)L+C . The scattering of electroweak Goldstone bosons (or equivalently lon-
gitudinal gauge bosons) is then described by the same formulae as the scattering
of pions, changing f by u [94]. To the extent that the present data are still not
sensitive to the virtual Higgs effects, we have only tested up to now the symmetry
properties of the scalar sector encoded in Eq. (129).

In order to really prove the particular scalar dynamics of the Standard Model,
we need to test the model-dependent part involving the Higgs field H . If the Higgs
turns out to be too heavy to be directly produced (or if it does not exist at all!), one
could still investigate the higher-order effects [95–103] by applying the standard
chiral-expansion techniques in a completely straightforward way. The Standard
Model gives definite predictions for the corresponding chiral couplings of the O(p4)
Lagrangian, which could be tested in future high-precision experiments. It remains
to be seen if the experimental determination of the higher-order electroweak chiral
couplings will confirm the renormalizable Standard Model Lagrangian, or will
constitute an evidence of new physics

14 Summary

ChPT is a powerful tool to study the low-energy interactions of the pseudoscalar-
meson octet. This effective Lagrangian framework incorporates all the constraints
implied by the chiral symmetry of the underlying Lagrangian at the quark–gluon
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level, allowing for a clear distinction between genuine aspects of the Standard
Model and additional assumptions of variable credibility, usually related to the
problem of long-distance dynamics. The low-energy amplitudes of the Standard
Model are calculable in ChPT, except for some coupling constants which are not
restricted by chiral symmetry. These constants reflect our lack of understanding
of the QCD confinement mechanism and must be determined experimentally for
the time being. Further progress in QCD can only improve our knowledge of these
chiral constants, but it cannot modify the low-energy structure of the amplitudes.

ChPT provides a convenient language to improve our understanding of the
long-distance dynamics. Once the chiral couplings are experimentally known,
one can test different dynamical models, by comparing the predictions that they
give for those couplings with their phenomenologically determined values. The
final goal would be, of course, to derive the low-energy chiral constants from the
Standard Model Lagrangian itself. Although this is a very difficult problem, the
recent attempts done in this direction look quite promising.

It is important to emphasize that:

1. ChPT is not a model. The effective Lagrangian generates the more general
S-matrix elements consistent with analyticity, perturbative unitarity and
the assumed symmetries. Therefore, ChPT is the effective theory of the
Standard Model at low energies.

2. The experimental verification of the ChPT predictions does not provide a
test of the detailed dynamics of the Standard Model; only the implications of
the underlying symmetries are being proved. Any other model with identical
chiral-symmetry properties would give rise to the same low-energy structure.

3. The dynamical information on the underlying fundamental Lagrangian is
encoded in the chiral couplings. Different short-distance models with iden-
tical symmetry properties will result in the same effective Lagrangian, but
with different values for the low-energy couplings. In order to actually test
the non-trivial low-energy dynamics of the Standard Model, one needs first
to know the Standard Model predictions for the chiral couplings.

In these lectures I have presented the basic formalism of ChPT and some
selected phenomenological applications. There are many more applications of the
chiral framework. Any system which contains Goldstone bosons can be studied in
a similar way. A discussion of further topics in ChPT can be found in refs. [3–14].
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