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Abstract

The mass of the bottom quark and the strong coupling constant « are
determined from QCD moment sum rules for the T system. Two analyses
are performed using both the pole mass M; as well as the mass my in
the M S scheme. In the pole-mass scheme large perturbative corrections
resulting from coulombic contributions have to be resummed. In the MS
scheme this can be avoided by an appropriate choice for the renormalization
scale. For the bottom quark mass we obtain M, = 4.60 + 0.02 GeV and
mp(my) = 4.13+£0.06 GeV. Our combined result from both determinations
for the strong coupling is as(Mz) = 0.119 4 0.008.
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1 Introduction

The Upsilon system constitutes a rich source of information about the strong
interaction dynamics. The bottom quark mass is sufficiently heavy for a non-
relativistic description to be a good starting point to analyze the quark-antiquark
forces. Thus, potential models — including relativistic corrections — have been
successfully used to understand the spectroscopy of the corresponding mesonic
bound states [[-]. At the same time, the small size of the hadronic system makes
possible to attempt a short-distance approach. At the relevant energy scale, a is
small enough to allow (at least for the lowest levels) a well-grounded quantum field
theory analysis with perturbative QCD tools, including non-perturbative correc-
tions through the Operator Product Expansion (OPE) [[]. While the coulombic
part of the bb potential is obviously related to the static piece of the gluon-
exchange interaction, a systematic short-distance investigation provides a better
understanding of the remaining terms in the heavy quark potential, in terms of
fundamental QCD parameters [F-L3].

The short-distance description in terms of quarks and gluons is specially well
suited for inclusive quantities, where no reference to a particular hadronic bound
state is needed. The vacuum polarization I1(¢?) induced by the heavy-quark
vector current B%b is then a key ingredient to investigate the J¥ = 1~ bb states.
Its imaginary part can be experimentally determined from the e*e™ — bb cross-

section:

o= s bh
Ry(s) = Qi R(s) = aégif_}ﬂfz)_) = 127QF ImTI(s + ie) . (1.1)

On the other side, I1(¢*) can be calculated theoretically within the OPE. To keep
our equations more general, let us consider the vector current j,(z) = (Q7,.Q)(x),
Q(x) being a heavy quark field of mass M, specifically the bottom quark in our

(0000 = 96 (@) = i [dae™ (T{ju() j(0)}) (1)

Throughout this work, M corresponds to the pole of the perturbatively renor-
malized propagator, whereas the running quark mass in the MS scheme [If]
renormalized at a scale p will be denoted by m(u).

Using a dispersion relation the nth derivative of I1(s) at s = 0 can be expressed



in terms of the nth integral moment of R(s):

2 n
M, = 27 <4M2 i) TI(s)

n! ds

— (4M2)" 7@[3 i(fl) . (1.3)

s=0 0

For later convenience, the moments M, are defined to be dimensionless quan-

tities. In addition, it will prove useful to express the moments M,, in terms of

integrals over the variable v = /1 — 4M?/s,
1
M, =2 /dv v(l —v*)" 'R(v). (1.4)
0

Under the assumption of quark-hadron duality, the moments M,, can either be
calculated theoretically in renormalization group improved perturbation theory,
including non-perturbative condensate contributions, or can be obtained from
experiment. In this way, hadronic quantities like masses and decay widths get
related to the QCD parameters a,, m; and condensates.

For large values of n, the moments become dominated by the threshold region.
Therefore, they are very sensitive to the heavy quark mass. This fact has been
exploited since the very first QCD analyses of charmonium and bottomium [,
(13 to extract rather accurate values of m, and m,. More recently, it has been
suggested by Voloshin [24] that the large-n moments can also be used to get a
precise determination of a;; from the existing data on T resonances.

The perturbative calculation of the moments contains powers of asv/n [[7,[[8,
PT], which correspond to the coulombic contributions; they are associated with
the near-threshold quark-antiquark configurations at typical velocity v ~ 1/y/n,
so that ag/n ~ a,/v is the familiar Coulomb parameter. At large n these
coulombic (a,y/n)* terms should be explicitly summed up to assure a reasonable
convergence of the perturbative series. By the same token, this large-n behaviour
implies a big sensitivity to the value of oy [P4].

In ref. 4] the large-n moments M,, have been studied with a non-relativistic
expansion in powers of 1/n. Fitting the O(1/n) contribution from the sum rules,
the analysis of the moments n = 8, 12, 16 and 20 gave the result: M, = 4827 +
7MeV and aMS(My) = 0.109 £ 0.001. The quoted errors are claimed to include
the experimental uncertainties and the theoretical uncertainty due to subleading
1/n terms [B4].

The reasoning of ref. [R4] looks indeed very suggestive. The large-n moments

are dominated by the first T resonance. Thus, one is actually starting with



a confined bound state. In spite of that, our ability to make an explicit sum
of the coulombic contributions allows to make an impressive determination of
the perturbative coupling. Obviously, an accurate analysis of the theoretical
uncertainties is called for.

The analysis of ref. [R4] was performed at O(ca;), i.e., only the O(1) and O(«)
perturbative contributions to the correlator I1(¢?) were included. Therefore, the
scale and scheme dependence of o, was not under control. Adopting the MS
scheme, the running of o, was included in the Coulomb potential, and used to
fix the scale of the coulombic contributions. For the remaining short-distance
perturbative corrections the BLM prescription €] was used to justify the choice
= e "2\, Given that, the quoted uncertainty in the final o, determination
looks rather unrealistic.

In order to make a more reliable analysis one needs to know the size of the
higher-order perturbative corrections. Fortunately, the O(a?) contributions to
the correlator I1(¢?) have been studied recently [R7-B1]. Although a complete
analytical calculation of these corrections is still not available, the present infor-
mation is good enough to perform an accurate analysis of the moments M,,.

In this paper, we present a detailed study of the relevant moments, using all
the information on II(¢?) that we are aware of. From the present experimen-
tal data we determine the numerical values of the bottom quark mass and the
strong coupling. Moreover, we perform a thorough analysis of the associated
uncertainties.

The resulting values of ay(My) and M, are found to be less precise than
what was claimed in ref. [24]. Nevertheless, they still constitute rather accurate
determinations. The value of the strong coupling constant turns out to be in
excellent agreement with the more precise measurements obtained from the 7
hadronic width [B3-B7] or from Z — hadrons data [Bg]. Previous claims [24,B7]
that low-energy determinations of ay result in lower az(My) values than higher-
energy ones are thus unfounded. On the other side, our analysis of the T system
provides the most precise determination of the bottom quark mass today.

The known perturbative contributions to the moments are given in Section 2
and the Coulomb resummation is performed in Section 3. The non-perturbative
corrections are discussed in Section 4. Section 5 contains the phenomenological
parameterization, extracted from the present data. The numerical analysis is
presented in Sections 6 and 7, which use the pole mass and modified minimal

subtraction schemes, respectively. A short conclusion is finally given in Section 8.



2 Perturbation theory

In perturbation theory the vacuum polarization II(s) can be expanded in powers

of the strong coupling constant,
1P (s) = OO(s) +alW(s) +a?TIP(s) + ..., (2.1)

with a = «a, /7. Analogously, expansions for R?*(v) and MP?' can be written.

For the first two terms, analytic expressions are available [B§,B9]. Here, we
only give R (v) and R (v). The corresponding formulae for I1(¥(s) and T1(V)(s)
can for example be found in refs. [0, [].

RO = gv(i’) —v?), (2.2)

RV = 2(1+1?)(3—1?) [4L12(p) + 2Liy(—p) + In(p) (In(1 + p) +2In(1 - p))]

—4v(3 = v*)(In(1 +p) + 2In(1 - p))
1

3
~1 (1 —v)(33 = 39v — 17v* + 7v*) In(p) + 3 v(5 — 3v?), (2.3)

where p = (1 — v)/(1 + v) and Liy(2) is the dilogarithmic function [[3]. The
expression for R implicitly includes a factor Cp = 4/3.
Using the integral representation ([[.4) for M,,, one finds the following expres-

sions for the moments:
MO = 3(n+1)B(5/2,n), (2.4)

M = B(5/2,n){(2n+3)An+nAn+1—4n+12

6 2 4 6
+E+<n+1>‘<n+2>‘<n+3>}’ 29

with

4 1 3 3
Ar = 5{1_%_(n+1)_2(n+2)

G mn) & mon) ) e

and B(z,y) being Euler’s Beta function. The first order moments M) are in

agreement with the result found by Generalis [[I(].
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The second-order vacuum polarization I (s) is still not fully known analyt-
ically. However, the method of Padé approximants has been recently exploited
to calculate II® numerically, using available results at high energies (s — —o0),
analytical results for the first seven moments /\/ll@ fori=1,...,7 and the known
threshold behaviour R (v) for v — 0 E7-BJ. Following the lines of ref. [29], it

is convenient to split II® according to the colour factors,
n® = 2109 + c,0p @, + CpTrn II? + TP (2.7)

and to treat the four different contributions separately, because they exhibit
different behaviour at threshold. Hf) and HE@Q contain the pure gluonic contri-
butions; the first term is already present in an abelian theory, whereas HE@Q is
characteristic of the non-abelian aspects of QCD. The contributions Hl(Z) and Hg)
arise from diagrams with internal light and heavy quark loops respectively[] The
spectral function Rl(z) (v) is known analytically and Rg)(v) receives contributions
from a two-particle cut with threshold at 2M which is known analytically and
a four-particle cut with threshold at 4M which can be calculated numerically
from a two-dimensional integral [BQ,BT]|. These results can be used to check the
reliability of the Padé approximation for the moments. We shall not repeat the
technicalities of the calculation of the Hg?), but refer the reader to ref. [R9] for
details.

In table [, we give the first twenty moments M© MW and M@ as well
as the four contributions to M@ separately. The first seven moments for ME?),L
correspond to the analytic expressions of ref. [R9], whereas the moments for n > 8
are our results obtained from the Padé approximants. In the case of ./\/lf,)n the
values arise from a [5/4] approximant, and the moments Mﬁgm, Ml(%z and M?’n
were calculated from [4/4] approximants because the constant contribution to I1()
in the limit v — 0 is unknown. To check the stability of our results and thus the
reliability of the Padé approximation, either different Padé approximants using
the full set of information can be calculated, e.g. [4/5] or [6/3] in the case of
Mf,)n, or Padé approximants with one order less can be constructed by removing
one datum. For Mfi)n and Mﬁgn the largest change is found if the seventh
moment is removed as an input datum. In particular, Mf,)m changes by 0.002
and ./\/153)/‘720 by 0.0003. The moments Ml(zrz and Mg; can also be calculated from
the available results for RI(Z) and R BA,BT]. In the case of Mg)n, for n > 8,

'With respect to the bottom quark, we consider the up, down, strange and charm quarks

to be massless.



2 2 2 2
MO MO M| MP | ME | MEL M)

n
1 || 2.4000 | 12.1481 || 11.4197 | 15.9696 | -5.2627 | 1.6358 || 71.2368
2 | 1.0286 | 7.9822 | 14.3850 | 14.1999 | -4.8914 | 0.6010 || 69.7300
3 | 0.6095 | 6.0448 || 15.0503 | 12.1448 | -4.2652 | 0.3373 || 64.1861
4 || 0.4156 | 4.8899 | 15.0403 | 10.5729 | -3.7595 | 0.2238 || 59.1538
5 | 0.3069 | 4.1158 || 14.7923 | 9.3710 | -3.3623 | 0.1627 || 54.9238
6 | 0.2387 | 3.5585 || 14.4586 | 8.4283 | -3.0453 | 0.1252 || 51.3801
7 1 0.1926 | 3.1370 || 14.1001 | 7.6699 | -2.7871 | 0.1003 || 48.3813
8 || 0.1596 | 2.8067 || 13.7427 | 7.0464 | -2.5727 | 0.0827 || 45.8120
9 | 0.1351 | 2.5406 || 13.3977 | 6.5244 | -2.3917 | 0.0698 || 43.5843
10 ]| 0.1163 | 2.3214 || 13.0696 | 6.0804 | -2.2368 | 0.0599 || 41.6318
11 || 0.1015 | 2.1377 || 12.7599 | 5.6980 | -2.1025 | 0.0521 || 39.9043
121 0.0896 | 1.9815 || 12.4685 | 5.3648 | -1.9850 | 0.0459 || 38.3628
1311 0.0799 | 1.8468 || 12.1945 | 5.0718 | -1.8811 | 0.0409 || 36.9772
14 11 0.0718 | 1.7296 || 11.9369 | 4.8118 | -1.7886 | 0.0367 || 35.7233
15 ] 0.0650 | 1.6267 || 11.6945 | 4.5796 | -1.7057 | 0.0331 || 34.5821
16 || 0.0592 | 1.5354 || 11.4661 | 4.3706 | -1.6309 | 0.0301 || 33.5379
17 || 0.0542 | 1.4541 || 11.2505 | 4.1816 | -1.5629 | 0.0276 || 32.5780
1811 0.0499 | 1.3810 || 11.0468 | 4.0097 | -1.5010 | 0.0254 || 31.6919
19 ]/ 0.0461 | 1.3150 || 10.8539 | 3.8527 | -1.4443 | 0.0234 || 30.8707
20 || 0.0428 | 1.2552 || 10.6709 | 3.7086 | -1.3921 | 0.0217 || 30.1070

Table 1: One-, two- and three-loop perturbative contributions for the first twenty

moments M,,.

the moments we are interested in, the contribution of the four-particle cut can
be neglected, and it is sufficient to consider the analytically available expressions
for the two-particle cut. The agreement with the twentieth moments Mz(,z2)o and
Mg,)zo as calculated from the Padé approximants is better than 107% in both
cases. Thus for all moments under consideration the uncertainty is below 0.02%,
being completely negligible for our application. We conclude that the method of
Padé approximation works sufficiently well to predict the moments up to at least
n = 20.

Generally, the moments M) depend on the renormalization scheme and scale



for the strong coupling constant. The values presented in table [] correspond to
a(M) in the M S scheme and a renormalization scale p, = M. If the scale p, is
varied, the moments change according to

MP (1) = MP (M) + BMP e (2.8)

The first coefficients of the S-function in our conventions are given in appendix A.

Besides varying the scale p, at which the coupling constant is evaluated, in
our numerical analysis we shall also use a different definition of the quark mass.
Apart from the pole mass, the sum rules will also be analyzed in terms of a
running M S mass m(u,,), evaluated at a scale y,,. Of course, physical quantities
should remain unchanged. Therefore, the variation in our results originating from
changes of scheme and scale in the coupling and quark mass will give an estimate
of the uncertainty due to higher orders in perturbation theory. It should already
be remarked that we have deliberately chosen different scales p, and pu,, in the
coupling and mass respectively, in order to be able to vary them independently.

From the definition ([J), it is easy to calculate the relations between the
moments defined in terms of the pole mass and those expressed in terms of a

running M.S mass m(fim,):

MY = MO 42 DA (2.9)

MY = MP +2nrOMD 4 (2 4 (20— 1)rD MO (2.10)
where (1) and r(?) appear in the relation between pole and running MS mass

M) = M [ 1+ a(pa) 8 (i) + a(ta)* 72 (Has i) + - | (2.11)

Explicit expressions for 7(1) and ) are also given in appendix A.

As can be seen from table [l], for large n the higher-order corrections grow with
respect to the leading order. At n = 8 the first order correction is roughly 120%
of the leading term whereas the second order contribution is 140%. At n = 20
the contributions of first and second order are 200% and 340% respectively. This
behaviour of the perturbation series for large moments is well known [[[7,[§, 5]
and originates from the fact that the relevant parameter in the Coulomb system
is as/v which leads to a agy/n dependence of the moments. Thus for higher n
the perturbative corrections become increasingly more important and have to be
summed up explicitly in order for the theoretical expressions to make sense. This

Coulomb resummation will be discussed in the next section.



If, on the other hand, the MS mass is used, it is not clear how a Coulomb
resummation could be performed, because now the velocity v depends on the
renormalization scale. However, the radiative corrections in the MS scheme are
somewhat smaller than if a pole mass is used. At pu, = p,, = m and n = 8 the
first and second order corrections are —27% and 3% whereas for n = 20 they
are —170% and 115% respectively. This suggests to try to find a scale pu,, for
which the perturbative corrections stay within a reasonable range. If we require
the second-order correction not to exceed 50%, the scale u,, should lie within
2.7GeV S pm S 3.7GeV. For the numerical analysis it is therefore possible to
also exploit the sum rules in the MS scheme if j,, ~ 3.2 £ 0.5 GeV is chosen.

3 Coulomb resummation

Let us first state our Ansatz for the Coloumb resummed spectral function R(v)

and then discuss the different components:

Rw) = (1-4Cpa+16C}a*){ RO + Ro+ RMa+ RPa? } (3.1)
with
Re = g[(l_i—fw/v)—v}, (3.2)
RY = RW 4 4C0R® — ZﬁCF, (3.3)
R® = R® 44C-RM — 3”;5% - %szF rV (3.4)

Here, 2y = 72Cray and ay is the effective coupling which corresponds to the
heavy quark-antiquark potential. Expressed in terms of the M.S coupling, we

have

av(@®) = alpa) [1+ alua) (@2 /12) + alpa)? D@ /02 + .- ] (35)

Because ay is related to the static QCD potential it is independent of the renor-
malization scale but it does depend on the three-momentum transfer between
the heavy quark and antiquark. Explicit expressions for r‘(,l ) and r‘(,2 ) are given in
appendix B.

The term R¢ corresponds to the resummed spectral function resulting from

the imaginary part of the Green function for the QCD Coloumb potential. It
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resums the leading (a/v)"™ and some of the sub-leading corrections [[J]. The cor-
responding terms have to be subtracted from R and R®. Although the QCD
corrections to R are only known to order a?, we have included the recently calcu-
lated O(a®) contribution for ay [F,[H4], in order to investigate the dependence of
our results on higher-order corrections. This will be discussed further in section 6.
In addition, we have factored out the correction to the vector current which orig-
inates from transversal, hard gluons. To the known correction “—4Cra” we have
added a term 16C%a? in order not to generate additional corrections of order a?
proportional to R®. We shall comment further on this point below. After per-
forming the Coulomb resummation, the large-moment behaviour of the remaining
terms is much weaker. Let us discuss the different contributions in more detail.
It should be clear from eq. ([4) that the large-n behaviour can always be
inferred from the small-v behaviour of R(v). Expanding eq. (2.4), we obtain

Mg°>:9ﬁ{1—i+145—@+0<1>}. (3.6)

4n3/2 2n ' 2Tn?  210p3 nt
The small-v expansion of R is given by:

143

RY — 372 — 24p + 21202 + (16111(8@2) 3

)1)3 — 72t + 0. (3.7)

The first two terms are canceled by the additional contributions to B"). There-

fore, although M)/ M) increases as /n, now

MO 8rd? 16 | (n) O 11} 732 N (9( 1 ) (38)
= — — |In( = — | - —= — . .
MO T oyn sl \2) TTET ] T e n?
For the moments n = 8§, ...,20 the second term is of the same size as the first.

Thus for the case of interest the large-n expansion is very badly behaved. In
fact, below n &~ 100 the ratio M® /MO increases and only for n > 100 the
asymptotic 1/4/n decrease is approached.

The available analytical results for Rl(2) and Rg) allow to calculate the small-v

behaviour for these functions as well:

2 2 2 2
(2 _ ?i[l Li} 11 W_[l d? 1775 3
Hy 7 ey ey I i L ey e W LA GRS
245  4Am?
R;—%) = (22—27{'2)1}—(@—?)1)3"_0(7)4)- (310>

Again, the first term in eq. (B.9) is canceled by the corresponding piece in the
last term of eq. (B-4) if we substitute ¢ = v?s = 40?M?/(1 — v?) and if the first

9



coefficient of the g-function in 7"(,1) is evaluated with n; light quark flavours. On

the other hand, Rg) vanishes at threshold and hence has no contribution which
should be resummed in the Coulomb term. This indicates that consistently the
coupling constant in R should be evaluated in an effective theory with only n;
active flavours. To facilitate the numerical analysis, we then prefer to rewrite the
full expression for M,, in terms of the coupling a defined in the n;-flavour theory.
From the matching relations for a [E3-I1)], it follows that this just amounts to
using the corresponding 3 with n, flavours in eq. (.§).

Analogously, all terms of O(1/v), O(Inv?) and O(1) for Rf) and Rg\Q,)A are
canceled in eq. (B4), such that R® vanishes in the limit v — 0. Nevertheless,
for these two functions the contributions of O(v) which determine the constant
terms in ./(/lvflx/ MO and /\71% A/ MO are not known analytically. Precisely
those terms correspond to the current correction from transversal, hard gluons.
In order to obtain information on the large-n behaviour of the second-order mo-
ments, we can assume an expansion analogous to eq. (B-§), however including
a constant term and fitting this Ansatz to the moments as calculated from the

Padé approximation. We then find

M@ 1174.3 Inn  534.6
o 1611 — ——— 48199 — + — . 11
i 6 NG +819.9 - + - + (3.11)

The fit has been determined using moments with n = 20, ..., 50, but the coeffi-
cients are rather stable if the number of fit points is changed. Although the error
on the coefficients probably is substantial, it nevertheless shows that again here
the large-n expansion converges slowly and for the range of n in which we are
interested, higher-order terms have to be included.

From the constant term in eq. (B.11), we can in principle infer the short
distance correction resulting from transversal gluons. However, in the region of
interest, namely for n = 8§, ..., 20, the ratio /{/lvf) /MO x 40. This contribution
should be added to the 16C% already factorized in eq. (B.1]), therefore further
increasing this positive correction. In the work by Voloshin [4], the BLM scale
setting prescription [P was applied to absorb the O(a?) correction in the term
—4CF a(,) by changing the renormalization scale p,, and it was found that this
should be accomplished with the choice p, ~ 0.63M,. Because the first and
second order terms appear with different signs, from the explicit calculation we
now see that on the contrary the scale pu, should be greater than M,. Because we

keep the O(a?) correction explicitly, there is no need to evaluate this scale here.
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4 Gluon condensate

Analytical results for the gluon condensate contribution to the massive vector
correlator are available at the next-to-leading order [[lA§]. Adopting the notation

of ref. [A], the corresponding moments are given by

3r? (aGG) v
My = = =5 ay[1+aby |, (4.1)
with )
a) = ——(n+1)(n+3)B(1/2,n+3), (4.2)

" 24
and the coefficients b together with numerical values for the a} up to n = 21
are shown in table B The coefficients b} depend on the renormalization scheme

for the mass. If the MS scheme is used the b} change according to

b= b+ (2n+4)rD). (4.3)

n 1 2 3 4 5 6 7

a’ | -0.3048 -0.5079 -0.7388 -0.9946 -1.2730 -1.5726 -1.8918
bx 10.4768 11.7202 12.8494 13.8928 14.8685 15.7888 16.6625
n 8 9 10 11 12 13 14

a,‘f -2.2296 -2.5851 -2.9574 -3.3457 -3.7495 -4.1682 -4.6012
bx 17.4964 18.2956 19.0643 19.8058 20.5229 21.2179 21.8928
n 15 16 17 18 19 20 21

a,‘f -5.0482 -5.5087 -5.9823 -6.4686 -6.9674 -7.4784 -8.0012
bx 22.5492 23.1887 23.8124 24.4216 25.0173 25.6002 26.1712

Table 2: First- and second-order coefficients for the gluon condensate contribu-

tion to the moments M,,.

From eq. ([£2) it is clear that the relative growth of MS))GQ/ M) is propor-

3. Therefore, the non-perturbative contribution grows much faster

tional to n
than the perturbative moments. In addition, as can be seen from table P, in the
pole-mass scheme at p, = M the next-to-leading order correction is of the same
size or larger as the leading term. Because the perturbative expansion for the
gluon condensate cannot be trusted, we shall restrict our analysis to a range of

n where its contribution to the moments is small and can be neglected. Using

11



(aGG) ~ 0.021 GeV* [A],[], we find that for n < 20 the contribution from the
gluon condensate to the bb moments is below 3%. Thus, we shall restrict our
phenomenological analysis to this range.

In the MS scheme the situation concerning the perturbative expansion is
somewhat better. If we take p,, =~ 3.2GeV, as was discussed at the end of
section 2, for n < 20 the next-to-leading order contribution stays below 70% of the
leading order. This demonstrates that a determination of the gluon condensate
from charmonium should be performed in the M S scheme. Nevertheless, for this
work also in the MS scheme we shall keep the restriction to n < 20. A lower

limit on the number of moments will be discussed in the next section.

5 Phenomenological parameterization

In the preceding sections, theoretical predictions for the spectral function R(s)
and the related moments M,, have been calculated without further specifying the
actual quark content. For the phenomenological parameterization of the spectral
function we shall now restrict our discussion to the bb system.

In the narrow-width approximation the contribution to Ry(s) from a Y (kS)

resonance is given by

Ross(s) = o3 T(X(KS) = e*e”) Mys 6(s — M), (5.1)
where @ denotes the running QED coupling evaluated at a scale around the
resonance mass. Because in the Review of Particle Properties [pJ] the electronic
widths have been calculated with @ = 1.07 a? where o = 1/137.04 is the fine
structure constant, we shall use this value accordingly. In the case at hand the
narrow-width approximation is extremely good because the full widths of the
first three T resonances are roughly a factor 10~° smaller than the corresponding
masses and the higher-resonance contributions to the moments are suppressed.

Experimentally, the first six resonances have been observed. The measured
masses and electronic widths are collected in table . For our numerical analysis
the errors on the masses can be safely neglected and have thus not been listed.
Inserting eq. (b)) in the definition of the moments M,,, eq. (), we obtain

9 6 r RP(s
M, — (4M5)n{ il z’jf_H n / ds } (5.2)

_2Qb k 1 n+1
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k 1 2 3 4 ) 6

My [GeV] 9.460 10.023 10.355 10.580 10.865 11.019
s [keV] | 1.31£0.04 0.524+0.03 0.48+£0.08 0.25+0.03 0.31+£0.07 0.13+0.03

Table 3: Masses and electronic widths of the first six YT (kS) resonances.

The numerical weight of the heavier resonances in (f.9) decreases strongly for
increasing values of n. The contribution of the T(55) [Y(65)] state is 9.5% [4%)
at n = 0; 1% [0.3%] at n = 10; and a tiny 0.08% [0.02%] at n = 20. Therefore,
taking n 2 10, the uncertainties associated with the contributions of higher-mass
states are very small.

The second term in eq. (B.9) accounts for the contributions to R;, above the
sixth resonance and is approximated by the perturbative continuum. Generally,
the continuum threshold /5o should lie around the mass of the next resonance,
which has been estimated in potential models [FI]. For our analysis we shall use
V50 = 11.2 £ 0.2GeV. The lower value for sy includes the mass of the sixth
resonance and should be a conservative estimate. There is still a contribution
missing which stems from open B production above the BB threshold and below
So. From the experimental data [pJ] we infer that its influence is small and has

been included in the variation of s.

6 Numerical analysis in the pole-mass scheme

Quark-hadron duality entails the equality of the theoretical moments M!" pre-
sented in sections 2 to 4 and the phenomenological moments MP" discussed in
the previous section. The moments corresponding to the Coulomb term Rg of
eq. (B-2) have been calculated from eq. ([-4) by numerical integration. To sup-
press higher resonances as well as power corrections, following ref. [B4], we have
restricted n to the range n = 8, ..., 20. Solving the moment sum rules for M,, we
can fit M, to a constant by varying M, and as(M,). The fit has been performed
using the program Minuit [p3]. For the central set of parameter values our result

1S

M, = 4.604+0.009 GeV , (6.1)
a (M) = 0.2197 =+ 0.0097 . (6.2)

13




The error in these results just corresponds to the statistical error of the fit. In
the fit we have included every second moment to have less statistical dependence,
but the results change very little if all moments with n = 8,...,20 or only every
fourth moment is used. In figure [[] the resulting values for M, are displayed as a
function of n. This illustrates that a constant M, in the range 8 < n < 20 really

produces an excellent fit.

4.80 |

Figure 1: The b quark pole mass as a function of n.

In the remaining part of this section let us present a detailed discussion of the
errors resulting from the various input quantities. A compilation of all different
contributions to the errors on M, and «,(M,) is summarized in table f. The
dominant theoretical uncertainty is due to the unknown higher-order perturbative
corrections. We have estimated this uncertainty in three different ways. As has
been already remarked in section 3 the relation between the effective coupling
ay in the Coulomb potential and a™ is known to O(¢?) [E3,Ed]. We can thus
include this correction in R¢ to see what the influence on our results is. Although
this is not consistent because the corresponding correction R® is not available,
it nevertheless can be taken as an error estimate of higher-order corrections. A
second possibility is a variation of the scale at which «y is evaluated. For the
result in table [] we have chosen the range M;,/2 < u, < 2M,. As a final test on
the importance of higher-order corrections, we can remove the O(a?) term R®
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AM, [MeV] Aa, (M) [1079]
statistical £9.1 +£9.7
O(a?®) Coulomb +7.3 +22.2
O(a?) +0.9 +8.2
scale 41, £ 156
continuum +2.6 +37
(aGG) +5.3 +3.6
T, +3.1 +6.7
total +13.5 +26.9

Table 4: Separate contributions to the errors of M, and a4(M,).

completely. From table f] we observe that including the O(a?®) correction to ay
has a much bigger influence than removing R®@_ This is not unexpected because
the Coulomb piece sums up the dominant contributions in the large-n limit. The
uncertainty of the scale dependence is of the same order as the sum of the other
two contributions. For our estimate of the uncertainty resulting from higher-
order corrections we can now either take the scale dependence or combine the
other two contributions. Adding all three would double count the error, because
the uncertainty in an asymptotic series, such as the perturbative expansion, is
bounded by the size of the last known term. For our final results, we have chosen
to include the errors of varying the Coulomb and the O(a?) terms.

The error from the continuum contribution has been estimated by varying s,
in the range /sy = 11.2£0.2 GeV. The entry for the gluon condensate in table [f
results from removing the gluon condensate completely and for the uncertainty
from the electronic widths we have varied all widths within the errors given in
table B. With respect to the uncertainty resulting from higher orders all these
errors are small. Adding all errors in quadrature, we arrive at our final result in

the pole-mass scheme:

M, = 4.604+0.014 GeV, (6.3)
as(M,) = 0.2197 = 0.0269 . (6.4)

Evolving the strong coupling constant to Mz, we find
as(My) = 0.1184 £ 00050 (6.5)
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Our central result is in astonishingly good agreement to the current world av-
erage [Bq], although the error turns out to be larger. Further comments on our
results also with respect to the paper by Voloshin [P4] have been relegated to the

conclusions.

7 Numerical analysis in the M S scheme

Besides analyzing the moment sum rules exploiting the pole mass M, in addition
we have investigated the same sum rules in the MS scheme. In contrast to the
pole mass, the quark mass in the MS scheme depends on the renormalization
scale pt,,. As has been remarked in section 2, to restrict the O(a?) corrections to a
reasonable size, u,, should lie in the range p,,, = 3.2+£0.5 GeV. We have refrained
from performing a resummation of the large radiative corrections because now the
velocity v depends on the renormalization scheme and it is not straightforwardly
possible to proceed in analogy to the Coulomb resummation for the pole mass.
The fitting procedure was performed along the same lines as for the pole-mass

case. For the central values of our input parameters, we obtain

my(my) = 4.133+0.002 GeV | (7.1)
as(my) = 0.232540.0044, (7.2)

where again the errors are purely statistical. Since it is more standard to eval-
uate the running b-quark mass at m;,, we have evolved our immediate result
mp(3.2 GeV) to this scale with the help of the renormalization group equation.

Amy, [MeV]  Aag(my) [1073]
statistical £2 +4.4
scale fi, +33 4302
oale g, 48 3
continuum +1 +33

(aGG) +2 +2.3
[ete- +3 +6.0
total +59 +352

Table 5:  Separate contributions to the errors of my(my) and as(my).
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The separate contributions to the theoretical error have been obtained by
performing the same variations as for the pole-mass scheme and have been listed
in table f. The uncertainty from higher-order corrections is now due to the
variation of the scales p,, = 3.2 + 0.5GeV and 2.6 GeV < p, < 2my. The scale
tq should not be taken lower than roughly 2.6 GeV because otherwise the O(a?)
correction ﬂf) becomes unacceptably large. Since in addition to y, for the MS
scheme we can also vary pu,,, the resulting uncertainty, especially for my, is larger
than for the pole mass. Adding all errors in quadrature, we arrive at our final
result in the AMS scheme:

mp(mp) = 4.134+0.06 GeV, (7.3)
as(my) = 0.2325 4 0307 (7.4)

Evolving the strong coupling constant to My, we find
as(Mz) = 0.1196 £ %0 (7.5)

It is gratifying to observe that the resulting values for ag(My) from the pole-
mass and M S schemes turn out to be in very good agreement. This is a further
indication that the uncertainty from unknown higher-order corrections is under
control. In addition, our results my(m;) and M, for the b-quark mass satisfy the
relation ([A4)) between the pole and MS mass within the errors. This should be
expected because the relation ([A-4) has been used to rewrite the moment sum
rules in terms of the M'S mass. Nevertheless, it again shows that variations due

to higher orders are accounted for by our error estimates.

8 Conclusions

Before we enter a discussion of our findings, let us again summarize the central
results. For the bottom quark mass in the pole-mass as well as M S scheme, we

obtain

M, = 4.60+0.02CeV, (8.1)
mp(mp) = 4.134+0.06 GeV, (8.2)

respectively. Combining both determinations of the strong coupling constant a,
we find
as(Mz) = 0.119 4+ 0.008. (8.3)
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We have not averaged the errors of the two determinations because they are not
independent.

The bottom quark mass values obtained by us are in good agreement to
previous determinations from QCD sum rules [B23,3,F4-56 and a very recent
calculation from lattice QCD [F7]. Owing to the big sensitivity of the moment
sum rules for the T system to the quark mass, and the good control over higher-
order «a; corrections, our result is more precise.

Nevertheless, the pole quark-mass value obtained by us is in disagreement to
the result found by Voloshin [R4]. In our opinion the discrepancy is due to the
importance of higher O(1/n) corrections, which in ref. [B4] were either neglected,
or numerically fitted from the sum rules. In [24] it was assumed that the leading
order correction goes like 1/n. However, from egs. (B-§) and (B-I1)), it is clear
that they rather behave like 1/4/n. Besides, we have also demonstrated that for
the region of n used in the analysis, the large-n expansion is not justified. In
addition, the second-order a; correction was only partially and partly incorrectly
taken into account. Therefore, the scale dependence of o, was not under control.

Let us shortly comment on the renormalon ambiguity of the pole mass. Dur-
ing the last years, it has been realized that beyond perturbation theory the
pole masses for the charm and bottom quarks suffer from unknown renormalon
ambiguities, leading to additional theoretical uncertainties in their determina-
tion [p§-PpJ]. On general grounds this uncertainty has been estimated to be of
O(100 MeV). Throughout our analysis, the pole mass has been defined as the
pole of the perturbatively renormalized quark propagator. Our determination
(B.1) might therefore be subject to additional uncertainties which go beyond per-
turbation theory but which we cannot assess in a precise way.

Within our errors the result obtained for ay(Myz), eq. (B.]), is compatible
with the result by Voloshin [24], though, given the shortcomings of this analysis
discussed above, his errors appear to be largely underestimated. Thus, previous
claims of a low value of as(My) from low-energy determinations which could hint
to new physics [24,B7 are unfounded. On the other hand, our central value for
as(My) is surprisingly close to the current world average as(Myz) = 0.118 £0.003
[Bd], although the error is certainly larger.

The dominant uncertainty for the determination of the b-quark mass and ay
from the T system was found to originate from the dependence on the renor-
malization scale, or, equivalently, the size of the as yet unknown higher-order

corrections. Improving the error on the a, determination will thus only be possi-
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ble if the full O(a?) correction to the moments M,, is known and if it turns out

to be reasonably small. We hope to return to this question in the future.
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Appendices

A Renormalization group functions

For the definition of the renormalization group functions we follow the notation
of Pascual and Tarrach [61], except that we define the -function such that j3; is
positive. The expansions of $(a) and y(a) take the form:

Bla) = —pra—Paa®—Psa’—..., and y(a) = matmya’®+ysa’+..., (A1)
with
1 1
b = ¢ [NCa—4Tng], B = 55 [17C] = 10CaTny — 6CxTng |, (A2)
and
3 Cr
N =50k, 7 = o [9TCa+9Ck - 20Tn;]. (A-3)

The relation between pole and running M.S mass is given by

M) = M [ 1+ a(pa) 1) (1) + a(pa)* 12 (s o) + - ], (A4)
where
1 _ n 1 Hm A
T'm /rm,O 71 nm(ﬂm) ) ( 5)
m g m
7“53) = 7’53,)0 - {72 + (= /31)7’2,)0} In m’?ﬂ ) + 51 (m —ﬁl)lﬂ2 mﬁu )
[% + /I p } 8 (A.6)

The coefficients of the logarithms can be calculated from the renormalization

group and the constant coefficients rs) and r® are found to be 29, 04,63
,0 m,0

7,27)0 = —Op, (A7)
7

B0 = (e — 24 — 203 + 3 m2) + Oy (55 + 562))

+CaCr(— g +50@) + 3C03) - Sc@m2) + 0T (- 242 (A8)
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B The effective coupling ay

In terms of the M .S coupling the effective coupling ay is given by

av(@®) = alpa) [ 1+ alpa) (@2 12) + alpa)® 12 (@ /12) + - |,
where
-2
1 1 B q
rg/) 7“%/7)0 ) lnﬁ ,
3 q ﬁ
n = g - [2+ﬁ -5+l u'

(B.2)

(B.3)

Like in eq. ([A-4) the coefficients of the logarithms are determined by the renor-

malization group and the constant coefficients 7’%,1,2)

and 7’%,2,2) are found to be

[3,24,64.69)
rify = %CA - ng , (B.4)
_ CFTnl<%5 —16¢(3 )) T 48010 } . (B.5)

Here, n; = ny — 1 is the number of light quark flavours.
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