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Abstract

The perturbative quark–mass corrections to the τ hadronic width are
analysed to O(α3

sm
2
q), using the presently available theoretical information.

The behaviour of the perturbative series is investigated in order to assess
the associated uncertainties. The implications for the determination of the
strange quark mass from τ decay data are discussed.
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1. Introduction

The inclusive character of the total τ hadronic width renders possible an
accurate calculation of the ratio [1–5]

Rτ ≡
Γ [τ− → ντ hadrons (γ)]

Γ [τ− → ντe−ν̄e (γ)]
, (1)

using standard field theory methods. The result turns out to be very sensitive to
the value of αs(M

2
τ ). Moreover, the uncertainties in the theoretical calculation

are quite small and dominated by the perturbative errors. This has been used to
perform a very precise determination of the QCD coupling at low energies [5].

Quark masses play a rather minor rôle in Rτ . Owing to the tiny values of mu

and md, their associated corrections are very small [3] (∼ −0.1%). The strange
quark contribution to the total τ hadronic width is suppressed by the Cabibbo
factor |Vus|

2, which puts the induced ms correction also at the per cent level.
However, if one analyses separately the semi-inclusive decay width of the τ into
Cabibbo–suppressed modes (i.e. final states with an odd number of kaons), the
relatively large value of ms induces an important effect of a size similar to the
massless perturbative correction and of opposite sign [3]. The corresponding Rτ,S

prediction is then very sensitive to the strange quark mass and could be used to
extract information on this important, and nowadays controversial, parameter.
A very preliminary value of ms, extracted from the ALEPH τ decay data, has
been already presented in recent workshops [6, 7].

The determinations of light quark masses are usually obtained from analy-
ses of the divergences of the vector and axial–vector current two–point function
correlators or related observables [8–13]. These correlators are proportional to
quark masses and, therefore, are very sensitive to their numerical values. Unfor-
tunately, one needs phenomenological information on the associated scalar and
pseudo-scalar spectral functions, which are not well known at present. The obvi-
ous advantage of a possible determination of ms analysing quark mass effects in
τ decays is that the experimental error can be systematically reduced in foreseen
facilities like tau–charm or B factories. There is then some hope to achieve a
precise determination of ms from such analyses.

Recently the O(α3
s) corrections to the J = 0 quark correlators have been

calculated [14], and have been found to be rather large. The influence of these
O(α3

s) corrections on the determination of quark masses and the uncertainties
coming from the truncation of the QCD perturbative series depend very much on
the observable. One can see for instance that the QCD perturbative series behaves
geometrically to O(α3

s) for the divergence of pseudo-scalar (scalar) currents if
resummed perturbatively in terms of αs(s) [12, 13]. This convergence improves
[13] using other resummations like the Principle of Minimal Sensitivity (PMS) [15]
or the one advocated in Ref. [4].
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The hadronic τ decay width has also a J = 0 contribution, which, as we shall
see, behaves rather badly. However, the largest quark–mass correction originates
in a piece of the left–handed current correlation function, involving the J = 0+1
combination, which shows a much better perturbative convergence.

The purpose of this paper is to study the perturbative behaviour of the correc-
tions to Rτ which are proportional to m2

q , in order to assess the associated uncer-
tainties. These are the leading theoretical uncertainties in the ms determination.
The O(αsm

2
q) contributions were already studied in Ref. [3]. In Ref. [16] the con-

tributions of O(α2
sm

2
q) to the relevant correlators were worked out. More recently,

some partial information on O(α3
sm

2
q) corrections has become available [14,17]. A

much detailed analysis of all contributions up to dimension four will be presented
elsewhere.

2. Theoretical Framework

The theoretical analysis of Rτ involves the two–point correlation functions for
the vector V µ

ij = ψ̄jγ
µψi and axial–vector Aµ

ij = ψ̄jγ
µγ5ψi colour–singlet quark

currents (i, j = u, d, s):

Πµν
ij,V (q) ≡ i

∫

d4x eiqx〈0|T (V µ
ij (x)V

ν
ij (0)†)|0〉, (2)

Πµν
ij,A(q) ≡ i

∫

d4x eiqx〈0|T (Aµ
ij(x)A

ν
ij(0)†)|0〉. (3)

They have the Lorentz decompositions

Πµν
ij,V/A(q) = (−gµνq2 + qµqν) Π

(1)
ij,V/A(q2) + qµqν Π

(0)
ij,V/A(q2), (4)

where the superscript (J) in the transverse and longitudinal components denotes
the corresponding angular momentum J = 1 (T) and J = 0 (L) in the hadronic
rest frame.

The imaginary parts of the two–point functions Π
(J)
ij,V/A(q2) are proportional

to the spectral functions for hadrons with the corresponding quantum numbers.
The semi-hadronic decay rate of the τ can be written as an integral of these
spectral functions over the invariant mass s of the final–state hadrons:

Rτ = 12π
∫ M2

τ

0

ds

M2
τ

(

1 −
s

M2
τ

)2 [(

1 + 2
s

M2
τ

)

ImΠ(1)(s) + ImΠ(0)(s)
]

. (5)

The appropriate combinations of correlators are

Π(J)(s) ≡ |Vud|
2
(

Π
(J)
ud,V (s) + Π

(J)
ud,A(s)

)

+ |Vus|
2
(

Π
(J)
us,V (s) + Π

(J)
us,A(s)

)

. (6)

We can decompose the predictions for Rτ into contributions associated with
specific quark currents:

Rτ = Rτ,V +Rτ,A +Rτ,S . (7)
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Rτ,V and Rτ,A correspond to the contributions from the first two terms in Eq. (6),
while Rτ,S contains the remaining Cabibbo–suppressed contributions.

Exploiting the analytic properties of the correlators Π(J)(s), Eq. (5) can be
expressed as a contour integral in the complex s plane running counter–clockwise
around the circle |s| = M2

τ :

Rτ = −πi
∮

|s|=M2
τ

ds

s

(

1 −
s

M2
τ

)3 {

3

(

1 +
s

M2
τ

)

DL+T (s) + 4DL(s)

}

. (8)

We have used integration by parts to rewrite Rτ in terms of the logarithmic
derivative of the relevant correlators,

DL+T (s) ≡ −s
d

ds

[

Π(0+1)(s)
]

, DL(s) ≡
s

M2
τ

d

ds

[

sΠ(0)(s)
]

, (9)

which satisfy homogeneous renormalization group equations.
Using the Operator Product Expansion to organise the perturbative and non-

perturbative contributions to the correlators into a systematic expansion [18] in
powers of 1/s, the total ratio Rτ can be expressed as an expansion in powers of
1/M2

τ , with coefficients that depend only logarithmically on Mτ [3]:

Rτ = 3
(

|Vud|
2 + |Vus|

2
)

SEW

{

1+δ′EW +δ(0)+
∑

D=2,4,...

(

cos2 θCδ
(D)
ud + sin2 θCδ

(D)
us

)

}

,

(10)

where δ
(D)
ij = (δ

(D)
ij,V + δ

(D)
ij,A)/2 is the average of the vector and axial–vector cor-

rections of dimension D, SEW and δ′EW contain the known [19, 20] electroweak
corrections, and sin2 θC ≡ |Vus|

2/(|Vud|
2 + |Vus|

2).
The dimension–zero contribution is the purely perturbative correction neglect-

ing quark masses, which, owing to chiral symmetry, is identical for the vector and
axial–vector correlators. It is fully generated by the Adler function DL+T (s), be-
cause DL(s) vanishes in the chiral limit. The correction δ(0) has been investigated
in great detail in Ref. [4]. We will follow a similar procedure to analyse the per-
turbative quark–mass corrections of dimension two.

3. Dimension–Two Corrections

For the sake of simplicity, let us take here mu = md = 0. The arguments we
shall put forward don’t depend on it. In this limit, the vector and axial–vector
correlators get the same quark–mass corrections, i.e. DJ

us,A(s) = DJ
us,V (s) ≡

DJ
us(s) (J = L+ T, L). The dimension–two contributions can be written in the

form:

DL+T
us (s)|D=2 =

3

4π2

m2
s(−ξ

2s)

s

∑

n=0

d̃L+T
n (ξ) an(−ξ2s) , (11)

DL
us(s)|D=2 = −

3

8π2

m2
s(−ξ

2s)

M2
τ

∑

n=0

d̃L
n(ξ) an(−ξ2s) , (12)
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where a = αs/π, ξ is an arbitrary scale factor (of order unity) and the coefficients
d̃J

n(ξ) are constrained by the homogeneous renormalization group equations sat-
isfied by the corresponding functions DJ

us(s):

ξ
d

dξ
d̃J

n(ξ) =
n
∑

k=1

[2γk − (n− k)βk] d̃
J
n−k(ξ) , (13)

for n ≥ 1 and
d

dξ
d̃J

0 (ξ) = 0 (14)

i.e.

d̃J
0 (ξ) = dJ

0 ,

d̃J
1 (ξ) = dJ

1 + 2γ1d
J
0 log ξ ,

d̃J
2 (ξ) = dJ

2 +
[

2γ2d
J
0 + (2γ1 − β1)d

J
1

]

log ξ + γ1(2γ1 − β1)d
J
0 log2 ξ ,

d̃J
3 (ξ) = dJ

3 +
[

2γ3d
J
0 + (2γ2 − β2)d

J
1 + 2(γ1 − β1)d

J
2

]

log ξ (15)

+
[

(−γ1β2 + 2γ2(2γ1 − β1)) d
J
0 + (γ1 − β1)(2γ1 − β1)d

J
1

]

log2 ξ

+
2

3
γ1(γ1 − β1)(2γ1 − β1)d

J
0 log3 ξ ,

d̃J
4 (ξ) = dJ

4 + · · ·

The factors βk and γk are the expansion coefficients of the QCD β and γ functions,

µ
da

dµ
= β(a) a , β(a) =

∑

k=1

βk a
k , (16)

µ
dm

dµ
= −γ(a)m, γ(a) =

∑

k=1

γk a
k , (17)

which are known to four loops [21–23]. The coefficients dJ
n ≡ d̃J

n(1) are only
known to order α2

s for J = L+ T and α3
s for J = L [8, 14, 17, 24–28].

For three flavours and in the MS scheme, one has:

β1 = −
9

2
; β2 = −8 ; β3 = −

3863

192
;

β4 = −
140599

2304
−

445

16
ζ3 ≈ −94.456 079 ; (18)

γ1 = 2 ; γ2 =
91

12
; γ3 =

8885

288
− 5 ζ3 ≈ 24.840 410 ;

γ4 =
2977517

20736
−

9295

216
ζ3 +

135

8
ζ4 −

125

6
ζ5 ≈ 88.525 817 ; (19)
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dL+T
0 = 1 ; dL+T

1 =
13

3
; dL+T

2 =
21541

432
+

323

54
ζ3 −

520

27
ζ5 ≈ 37.083 047 ;

dL
0 = 1 ; dL

1 =
17

3
; dL

2 =
9631

144
−

35

2
ζ3 ≈ 45.845 949 ; (20)

dL
3 =

4748953

5184
−

91519

216
ζ3 −

5

2
ζ4 +

715

12
ζ5 ≈ 465.846 304 .

Notice the rather bad perturbative behaviour of the D = 2 corrections to the
correlation functions DJ

us. Remember that a(M2
τ ) ≃ 0.11.

Inserting the expansions (11) and (12) in Eq. (8), the D = 2 corrections to
Rτ,S can be expressed as

δ(2)
us = −8

m2
s(M

2
τ )

M2
τ

∆[a(M2
τ )] , ∆[a] ≡

1

4

{

3 ∆L+T [a] + ∆L[a]
}

, (21)

where
∆J [a(M2

τ )] =
∑

n=0

d̃J
n(ξ)B

(n)
J (aξ) , (22)

and the contour integrations are contained in the functions

B
(n)
L+T (aξ) ≡

−1

4πi

∮

|x|=1

dx

x2
(1 + x) (1 − x)3

(

m(−ξ2M2
τ x)

m(M2
τ )

)2

an(−ξ2M2
τ x), (23)

B
(n)
L (aξ) ≡

1

2πi

∮

|x|=1

dx

x
(1 − x)3

(

m(−ξ2M2
τ x)

m(M2
τ )

)2

an(−ξ2M2
τ x) . (24)

Since the quark mass ratio is flavour independent, the integrals B
(n)
J (aξ) regulate

also the small corrections proportional to mu and md, which we are neglecting.
These functions depend only on βi, γj, aξ ≡ αs(ξ

2M2
τ )/π and log ξ. Moreover,

they satisfy the following homogeneous renormalization group equations:

ξ
d

dξ
B

(n)
J (aξ) =

∑

k=1

(nβk − 2γk) B
(n+k)
J (aξ) . (25)

4. Perturbative aξ Expansion

The usual perturbative approach expands the B
(n)
J (aξ) functions in powers of

aξ. This gives,

B
(0)
J (aξ) = 1 − γ1

[

2 log ξ +HJ
1

]

aξ

−

[

2γ2 log ξ − γ1(2γ1 + β1) log2 ξ +
(

γ2 − 2γ2
1 log ξ

)

HJ
1

−
γ1

2

(

γ1 −
β1

2

)

HJ
2

]

a2
ξ

5



−

[

2γ3 log ξ − (2γ2(2γ1 + β1) + γ1β2) log2 ξ +
2

3
γ1(γ1 + β1)(2γ1 + β1) log3 ξ

+
(

γ3 − 4γ1γ2 log ξ + γ2
1(2γ1 + β1) log2 ξ

)

HJ
1

+

(

1

2
β1γ2 +

1

4
β2γ1 − γ1γ2 + γ2

1

(

γ1 −
β1

2

)

log ξ

)

HJ
2

+
γ1

12
(2γ1 − β1)(γ1 − β1)H

J
3

]

a3
ξ + · · · (26)

B
(1)
J (aξ) = aξ −

[

2γ1 log ξ +

(

γ1 −
β1

2

)

HJ
1

]

a2
ξ

−

[

2γ2 log(ξ) − γ1(2γ1 + β1) log2 ξ +

(

γ2 −
β2

2
− γ1(2γ1 − β1) log ξ

)

HJ
1

−
1

2

(

γ1 −
β1

2

)

(γ1 − β1)H
J
2

]

a3
ξ + · · · (27)

B
(2)
J (aξ) = a2

ξ −
[

2γ1 log ξ + (γ1 − β1)H
J
1

]

a3
ξ + · · · (28)

B
(3)
J (aξ) = a3

ξ − · · · (29)

where

HL+T
n ≡

−1

4πi

∮

|x|=1

dx

x2
(1 + x) (1 − x)3 logn (−x) , (30)

HL
n ≡

1

2πi

∮

|x|=1

dx

x
(1 − x)3 logn (−x) . (31)

To O(α4
s), the needed integrals are

HL+T
0 = 1 , HL+T

1 =
1

6
, HL+T

2 =
25

18
−
π2

3
,

HL+T
3 =

85

36
−
π2

6
, HL+T

4 =
721

54
−

25

9
π2 +

π4

5
, (32)

HL
0 = 1 , HL

1 = −
11

6
, HL

2 =
85

18
−
π2

3
,

HL
3 = −

575

36
+

11

6
π2 , HL

4 =
3661

54
−

85

9
π2 +

π4

5
. (33)

The perturbative expansions ∆J [a] then take the form

∆J [a(M2
τ )] =

∑

n=0

[

d̃J
n(ξ) + h̃J

n(ξ)
]

an
ξ , (34)
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where the coefficients h̃J
n(ξ) depend on d̃J

m<n(ξ), βm<n and γm≤n; thus, they are
known up to O(a3) and O(a4) for J = L+ T and J = L respectively. For ξ = 1,
one has [hJ

n ≡ h̃J
n(1)]:

hL+T
0 = 0 ; hL+T

1 = −
1

3
; hL+T

2 =
113

72
−

17

12
π2 ≈ −12.412 495 ;

hL+T
3 =

114517

2592
−

4391

144
π2 −

3659

648
ζ3 +

1690

81
ζ5 ≈ −241.926 329 ; (35)

hL+T
4 =

26864009

13824
−

3110783

5184
π2 −

1073

1920
π4 +

3051761

15552
ζ3 −

123745

2592
π2ζ3

−
171845

243
ζ5 +

29575

162
π2ζ5 −

35

24
dL+T

3 ≈ −3 229.101 787−
35

24
dL+T

3 ;

hL
0 = 0 ; hL

1 =
11

3
; hL

2 =
625

8
−

17

12
π2 ≈ 64.143 060 ;

hL
3 =

1435691

864
−

7927

144
π2 −

5225

24
ζ3 ≈ 856.673 579 ; (36)

hL
4 =

693706385

20736
−

2295071

1728
π2 −

10877

17280
π4 −

1429525

144
ζ3 +

5595

32
π2ζ3 +

264275

288
ζ5

≈ 11 377.111 254 .

The contour integration generates rather large numerical factors, which show
an opposite behaviour for the transverse and longitudinal pieces. In the ∆L+T ex-
pansion the hL+T

n contributions cancel to some extent with the original correlation–
function coefficients dL+T

n ,

∆L+T [a(M2
τ )] = 1 + 4 a(M2

τ ) +
(

22219

432
−

17

12
π2 +

323

54
ζ3 −

520

27
ζ5

)

a(M2
τ )2

+
(

dL+T
3 +

114517

2592
−

4391

144
π2 −

3659

648
ζ3 +

1690

81
ζ5

)

a(M2
τ )3 + · · ·

= 1 + 4 a(M2
τ ) + 24.671 a(M2

τ )2 +
(

dL+T
3 − 241.926

)

a(M2
τ )3 + · · · (37)

However, both dL
n and hL

n contributions are large and positive, which gives rise
to a badly behaved expansion for ∆L:

∆L[a(M2
τ )] = 1 +

28

3
a(M2

τ ) +
(

20881

144
−

17

12
π2 −

35

2
ζ3

)

a(M2
τ )2

+

(

13363099

5184
−

7927

144
π2 −

π4

36
−

17318

27
ζ3 +

715

12
ζ5

)

a(M2
τ )3 + · · ·

= 1 + 9.333 a(M2
τ ) + 109.989 a(M2

τ )2 + 1322.520 a(M2
τ )3 + · · · (38)
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The bold–guess estimate dL
4 ∼ dL

3 (dL
3 /d

L
2 ) ≈ 4733 would result in a huge O(a4)

coefficient dL
4 + hL

4 = 16 110.
Since ∆L+T has a larger weight on the total contribution to δ(2)

us , the final
combination of the transverse and longitudinal pieces has a better behavioura:

∆[a(M2
τ )] = 1 +

16

3
a(M2

τ ) +
(

10775

144
−

17

12
π2 +

1

9
ζ3 −

130

9
ζ5

)

a(M2
τ )2

+

(

3

4
dL+T

3 +
14050201

20736
−

5275

144
π2 −

π4

144
−

47401

288
ζ3 +

13195

432
ζ5

)

a(M2
τ )3

+ · · ·

= 1 + 5.333 a(M2
τ ) + 46.000 a(M2

τ )2 +
(

149.185 +
3

4
dL+T

3

)

a(M2
τ )3 + · · ·

(39)

Nevertheless, the convergence of this perturbative series is very poor for the
range of the strong coupling relevant in τ decays, a(M2

τ ) ∼ 0.11. With dL+T
3 ∼

dL+T
2 (dL+T

2 /dL+T
1 ) ≈ 317, the O(a3) correction would be of the same size as the

O(a) and O(a2) contributions.

5. Resummation of Running Effects along the Integration Contour

At the moment, we can do very little about the apparent growth of the dJ
n

coefficients, specially for J = L. We clearly need a deeper understanding of the
perturbative DJ

us(s)|D=2 expansions. However, we can try to control better the
large contributions contained in the hJ

n factors.
The integration along the circle x = eiφ gives rise to a long running of the

quark mass and the QCD coupling. The expansion of m2(−ξ2M2
τ x) a

n(−ξ2M2
τ x)

in powers of aξ generates imaginary logarithms logn (−x) = in(φ−π)n, which are
large in some parts of the integration range. The radius of convergence of such
expansion is actually quite small [4]. However, there is no need to perform this
ill–defined power expansion.

Using in Eqs. (23) and (24) the exact solution for m(−s) and a(−s) obtained

from the renormalization group equations, theB
(n)
J (aξ) integrals can be calculated

to all orders in αs, apart from the unknown βn>4 and γn>4 contributions, which
are likely to be small. Thus, a more appropriate approach is to directly use the
expansions (22), in terms of the original d̃J

n coefficients, and to fully keep the

known four–loop information on the functions B
(n)
J (aξ).

Tables 1 and 2 show the exact results for B
(n)
L+T (a) and B

(n)
L (a) (n = 0, 1, 2, 3)

with ξ = 1 obtained at different orders in the β and γ expansions, together with

a The O(a2) correction agrees with the numerical result recently reported in Ref. [29], which
is larger than the value originally quoted in Ref. [16]. This larger O(a2) correction has been
also confirmed by K. Chetyrkin and A. Kwiatkowski [30].
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the final values of ∆J [a], for a = 0.1 (ξ = 1). For comparison the numbers coming
from the truncated perturbative expressions at O(a3) are also given.

Table 1: Exact results for B
(n)
L+T (a) (n = 0, 1, 2, 3) obtained at the k–loop (k =

1, 2, 3, 4) approximation (βj>k = γj>k = 0), together with the final value of

∆L+T [a] =
∑2

n=0 d
L+T
n B

(n)
L+T (a), for a = 0.1 and ξ = 1. For comparison the

numbers coming from the truncated expressions at O(a3) are also given.

Loops B
(0)
L+T (a) B

(1)
L+T (a) B

(2)
L+T (a) B

(3)
L+T (a) ∆L+T [a]

1 0.890 32 0.069 65 0.004 52 0.000 186 1.360
2 0.817 19 0.056 66 0.002 78 −0.000 008 1.166
3 0.791 43 0.052 96 0.002 36 −0.000 048 1.108
4 0.782 37 0.051 68 0.002 22 −0.000 060 1.089

O(a3) 0.793 63 0.064 73 0.008 92 0.001 000 1.405

Table 2: Exact results for B
(n)
L (a) (n = 0, 1, 2, 3) obtained at the k–loop (k =

1, 2, 3, 4) approximation (βj>k = γj>k = 0), together with the final value of

∆L[a] =
∑3

n=0 d
L
nB

(n)
L (a), for a = 0.1 and ξ = 1. For comparison the numbers

coming from the truncated expressions at O(a3) are also given.

Loops B
(0)
L (a) B

(1)
L (a) B

(2)
L (a) B

(3)
L (a) ∆L[a]

1 1.399 08 0.184 73 0.022 55 0.002 588 4.686
2 1.540 13 0.202 47 0.024 21 0.002 692 5.052
3 1.578 53 0.206 17 0.024 44 0.002 690 5.120
4 1.589 10 0.207 06 0.024 46 0.002 681 5.133

O(a3) 1.644 46 0.218 94 0.021 92 0.001 000 4.356

These numerical results show a reasonable convergence of the B
(n)
J (a) inte-

grals, as higher–order βk and γk contributions are taken into account. Increasing
the number of loops one gets a small decrease (increase) of the transverse (lon-
gitudinal) contribution. It is also clear that the truncated O(a3) expressions
overestimate (underestimate) ∆L+T (∆L). Taking the full four–loop information
into account, we get the following perturbative behaviour:

∆L+T [0.1] = 0.7824 + 0.2239 + 0.0823 − 0.0000601 dL+T
3 + · · · (40)

∆L[0.1] = 1.5891 + 1.1733 + 1.1214 + 1.2489 + · · · (41)

The L+T series converges very well. Owing to the negative running contributions
the ∆L+T [a] series behaves better than the original perturbative expansion of
DL+T

us (s)|D=2. Unfortunately, the longitudinal series is much more problematic.
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The bad perturbative behaviour of DL
us(s)|D=2 gets reinforced by the running

effects, giving rise to a badly defined series.
The combined final expansion,

∆[0.1] = 0.9840 + 0.4613 + 0.3421 +
(

0.3122 − 0.000045 dL+T
3

)

+ · · · (42)

looks acceptable for the firsts terms because ∆L+T is weighted by a larger factor.
In fact, this series behaves better than the one in Eq. (39), obtained with the
usual perturbative truncation of the contour integrals. Nevertheless, after the
third term the series appears to be dominated by the longitudinal contribution,
and the bad perturbative behaviour becomes again manifest.

Using the full four–loop result we have certainly gained in convergence for the
∆L+T series [compare the fourth term in the series (37) and (40) for a = 0.1],
which is otherwise the one we don’t know the O(a3) coefficient. We can take
advantage that the O(a3) correction to ∆[a] is almost completely given by the
known ∆L contribution. Using dL+T

3 ∼ dL+T
2 (dL+T

2 /dL+T
1 ) ≈ 317, the fourth term

in (42) becomes 0.298, i.e. a 5% reduction only. Taking the size of the O(a3)
contribution to ∆L as an educated estimate of the perturbative uncertainty, we
finally get

∆[0.1] = 2.1 ± 0.3 . (43)

6. Renormalization–Scale Dependence

The expansion (22) depends order by order on ξ and this dependence cancels
out only when we sum the infinite series. In practice, we only know a few first
terms of the series (three for ∆L+T [a] and four for ∆L[a]); so we should worry
how much the predictions depend on our previous choice ξ = 1. Obviously, ξ
should be close to one in order to avoid large logarithms; but variations within a
reasonable range, let us say from 0.75 to 2, should not affect too much the final
results. Smaller values of ξ would put the QCD coupling in the non-perturbative
regime and are therefore not acceptable.

Figures 1, 2 and 3 show the sensitivity to the selection of renormalization
scale of the final predictions for ∆L+T , ∆L, and ∆, respectively, for a(M2

τ ) = 0.1.
The behaviour of ∆L+T is quite good. The predicted value remains very stable

in the whole range ξ ∈ [0.75, 2], showing that the perturbative series is very
reliable. Below ξ ∼ 1/2, the perturbative expansion breaks down, as expected,
because the coupling aξ is already outside the radius of convergence of the series.

The longitudinal series, on the other side, has a quite wild dependence on the
renormalization scale. Changing ξ from 1 to 2, amounts to a reduction of ∆L of
about 65%. Thus, the theoretical uncertainty is very large in this case.

The ξ dependence of the complete expansion ∆, reflects obviously the be-
haviour of its two components. The larger weight of ∆L+T keeps the result still
acceptable, within the range of ξ considered, but the sizeable ∆L contribution
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spoils the stability and generates a monotonic decrease of the prediction for in-
creasing values of ξ. Taking this variation into account, the theoretical error in
Eq. (43) should be increased to about 0.6, i.e. a 30% uncertainty in the final
prediction.

6. Discussion

The bad perturbative behaviour of the longitudinal contribution does not
allow to make an accurate determination of the strange quark mass from Rτ,S.
Nevertheless, taking

∆[0.1] = 2.1 ± 0.6 , (44)

ms(M
2
τ ) could be still obtained with a theoretical uncertainty of about 15%,

which is not so bad.
Notice that it is the phase–space integration of the original correlation func-

tions the responsible for the different behaviour of the longitudinal and trans-
verse components. Therefore, the perturbative convergence could probably be
improved through an appropriate use of weight factors in Eqs. (5) and (8). This
requires an accurate measurement of the final hadrons mass distribution in the τ
decay, which so far has only been performed for the dominant Cabibbo–allowed
modes [31]. The measurement of Rus(s) could be feasible at the forthcoming
flavour factories, where a very good kaon identification is foreseen.

From the theoretical point of view, the analysis of weighted moments of the
final hadrons mass distribution proceeds in a completely analogous way [32]. A
detailed study will be presented in a forthcoming publication.
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Figure Captions

• Figure 1.- Variation of ∆L+T [0.1] with the renormalization–scale factor ξ,
to four loops.

• Figure 2.- Variation of ∆L[0.1] with the renormalization–scale factor ξ, to
four loops.

• Figure 3.- Variation of ∆[0.1] with the renormalization–scale factor ξ, to
four loops.
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Figure 1: Variation of ∆L+T [0.1] with the renormalization–scale factor ξ, to four
loops.
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Figure 2: Variation of ∆L[0.1] with the renormalization–scale factor ξ, to four
loops.
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Figure 3: Variation of ∆[0.1] with the renormalization–scale factor ξ, to four
loops.


