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Abstract

We study a model–independent parameterization of the vector pion form factor
that arises from the constraints of analyticity and unitarity. Our description should
be suitable up to

√
s ≃ 1.2GeV and allows a model–independent determination of the

mass of the ρ(770) resonance, Mρ = (775.1 ± 0.5)MeV. We analyse the experimental
data on τ− → π−π0ντ , in this framework, and its consequences on the low–energy
observables worked out by chiral perturbation theory. An evaluation of the two pion
contribution to the anomalous magnetic moment of the muon, aµ, and to the fine
structure constant, α(M2

Z), is also performed.
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1 Introduction

The hadronic matrix elements of Quantum Chromodynamics (QCD) currents play a
basic role in the understanding of electroweak processes at the low–energy regime (typically
E ∼ 1 GeV). However our poor knowledge of the QCD dynamics at these energies introduces
annoying and serious incertitudes in the description and prediction of the processes involved.

To bypass this problem several procedures have been addressed in the literature on this
topic. On one side there is a widespread set of models that pretend to describe, in a simplified
way, the involved dynamics [1, 2]. While of importance to get a feeling of the entangled
physics, the included simplifying assumptions are usually poorly justified and, sometimes,
even inconsistent with QCD. Ad hoc parameterizations of the matrix elements have also
been extensively used [2, 3]. The problem with this technique is that, while the description
of data can be properly accounted for, it is not easy to work out the physics hidden in the
parameters.

A more promising and model–independent procedure is the use of effective actions from
QCD. At very low energies (E ≪ Mρ, with Mρ the mass of the ρ(770) resonance) the most
important QCD feature is its chiral symmetry that is realized in chiral perturbation theory
(χPT) [4], a perturbative quantum field theory that provides the effective action of QCD in
terms of the lightest pseudoscalar mesons. χPT has a long and successful set of predictions
both in strong and electroweak processes [5]. At higher energies (E ∼ Mρ), resonance chiral
theory is the analogous framework [6] where the lightest resonance fields are kept as explicit
degrees of freedom. With the addition of dynamical constraints coming from short–distance
QCD, resonance chiral theory becomes a predictive model–independent approach to work
with.

One of the simplest hadronic matrix elements of a QCD current is the vector pion form
factor FV (s) defined through,

〈 π+(p) π−(p′)| V 3
µ | 0 〉 = (p − p′)µ FV (s) , (1)

where s = q2 = (p + p′)2 and V 3
µ is the third component of the vector current associated

with the approximate SU(3)V flavour symmetry of the QCD lagrangian. The vector pion
form factor drives the hadronic part of both e+e− → π+π− and τ− → π−π0ντ processes in
the isospin limit 1. There is an extensive bibliography on the study of this form factor that
we do not review in detail here.

At very low energies, FV (s) has been calculated in χPT up to O(p6) [7, 8]. A successful
study at the ρ(770) energy scale has been carried out in the framework of the resonance
chiral theory (the effective action of QCD at the resonance region) in Ref. [9]. In this
last reference the unitarity and analyticity properties of the vector pion form factor were
implemented in order to match the low–energy result at O(p4) in χPT with the correct
behaviour at the ρ(770) peak. The result is in excellent agreement with the data coming

1If isospin symmetry is broken, there is a mixing between the third and eighth components of the vector
current. The spectral functions are then slightly different in e+e− annihilation and tau decays.
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from e+e− → π+π− and e−π± → e−π± processes. This solution, that includes the ρ(770)
contribution only, leaves just one free parameter, Mρ, and provides a suitable description of
FV (s) up to

√
s ∼ 1 GeV. If we want to be able to extend its validity at higher energies we

should take into account other contributions. To achieve this feature, the analyticity and
unitarity properties of FV (s), together with the resonance chiral theory, continue to provide
a model–independent solution for the vector pion form factor that we analyse, in detail, in
this article. The new solution includes two, a priori, unknown parameters in addition to Mρ.
These parameters happen to be related to the chiral low–energy observables in Ref. [7, 8],
the squared charged pion radius, 〈r2〉πV , and the O(s2) term in the chiral expansion cπ

V .
In the next section we construct the vector pion form factor on grounds of its analyticity

and unitarity relations. In Section 3 we study the experimental data on τ− → π−π0ντ with
our solution for the pion form factor. By a fitting procedure we determine the values of Mρ

and low–energy parameters that tau decay data demand. Section 4 is devoted to analyse the
results we have got from the fitting procedure and the consequences on the chiral observables
of χPT. A corresponding evaluation of the two–pion contribution to the hadronic part of
the anomalous magnetic moment of the muon and the fine structure constant is collected in
Section 5. We present our conclusions in Section 6.

2 Analyticity and unitarity in FV (s)

The vector pion form factor FV (s) is an analytic function in the whole complex s–plane,
but for the cut along the positive real axis, starting at the lowest threshold s = 4m2

π, where
its imaginary part develops a discontinuity. This is given by the unitarity condition

Im FV (s) =
1

2

∑

n

∫
dρn 〈 π+π− | T † |n 〉 〈n | V 3

µ | 0 〉 , (2)

where |n〉 represents on–shell intermediate states and T † is the scattering operator connecting
the intermediate state |n〉 to the final two–pion state. The first allowed intermediate states
are 2π, 4π and KK. To every intermediate state corresponds a branch point at the value
of s equal to the squared sum of masses of the corresponding particles, i.e. s = (2mπ)2,
s = (4mπ)2, and so on. In the elastic region, s < 16m2

π, the only intermediate state
considered in Eq. (2) is the one with 2π, and Watson final–state theorem [10] relates the
imaginary part of FV (s) to the partial wave amplitude t11(s) for ππ elastic scattering with
angular momentum and isospin equal to one. Thus, from Eq. (2),

Im FV (s + iε) = σπ t11(s) FV (s)∗ = ei δ1

1 sin δ1
1 FV (s)∗ , (3)

where σπ =
√

1 − 4m2
π/s. As ImFV (s + iε) is a real quantity, the phase of FV (s) must be

δ1
1(s), that is, the phase–shift of the t11(s) partial wave amplitude. Therefore,

Im FV (s + iε) = tan δ1
1 Re FV (s) . (4)
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The analyticity and unitarity properties of FV (s) are accomplished by demanding that the
form factor should satisfy a n–subtracted dispersion relation in the form

FV (s) =
n−1∑

k=0

sk

k!

dk

dsk
FV (s)|s=0 +

sn

π

∫ ∞

4m2
π

dz

zn

tan δ1
1(z) ReFV (z)

z − s − iε
, (5)

where we have used Eq. (4). This integral equation has the known Omnès solution [9, 11]

FV (s) = Qn(s) exp

{
sn

π

∫ ∞

4m2
π

dz

zn

δ1
1(z)

z − s − iε

}
, (6)

with

Qn(s) = exp

{
n−1∑

k=0

sk

k!

dk

dsk
lnFV (s)|s=0

}
. (7)

Strictly speaking the solution (6) for FV (s) is valid only below the inelastic threshold (s <
16m2

π). This is because we have only included the two–pion threshold in the unitarity relation
(2). However, the contributions from higher multiplicity intermediate states are suppressed
by phase space and ordinary chiral counting.

As in any subtracted dispersion relation like the one given by Eq. (5) there is an inter-
play between the subtraction constants (polynomial part) and the dispersive integral. By
increasing the number of subtractions (correspondingly increasing the power of z in the de-
nominator) we pull in the low–energy part of ImFV (s) in the integrand . Then the values
of ImFV (s) in the upper part of the integration are less important. At the same time the
information of this high energy region shifts to the increasing number of subtraction con-
stants that are related with the low–energy expansion of the form factor. This situation
is reflected in the solution of the integral equation (6). If we know the δ1

1(s) phase–shift
only at very low energies, an accurate evaluation of the integral in Eq. (6) would require a
high number of subtractions. This exchange of information between high and low energies
is, by no means, paradoxical. It is a strict consequence of the fact that, being an analytic
function in the complex s–plane, the behaviour of FV (s) at different energy scales is related.
Dispersion relations embody rigorously this property.

The δ1
1(s) phase–shift is rather well known, experimentally, up to E ∼ 2 GeV. Resonance

chiral theory provides a model–independent analytic expression that describes properly the
ρ(770) contribution [9] to it :

δ1
1(s) = arctan

{
Mρ Γρ(s)

M2
ρ − s

}
, (8)

with Γρ(s) the hadronic off–shell ρ width [12] (see Eq. (A.2) in the Appendix). This result,
that provides our definition of Mρ, follows from Eq. (4) and the expression for FV (s) obtained
in Ref. [9] that we collect in Appendix A. The description of data given by δ1

1(s) in Eq. (8)
is accurate enough up to E ∼ 1 GeV for values of Mρ in the ballpark of the average value
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collected in the Review of Particle Properties [13]. At higher energies heavier resonances
with the same quantum numbers pop up and to get a correct description we should use the
available experimental data from Ochs [14].

We will take the result for FV (s) in Eq. (6) with 3 subtractions. There are several reasons
to take this case. On one side the number of subtractions is high enough to weight the low–
energy behaviour of δ1

1(s) that is much well known than its high energy part. On the other
side the number of subtraction constants, three a priori unknown parameters, is low enough
to allow a reasonable parameterization. In fact one of the subtraction constants is provided
by the normalization condition on the form factor, i.e. FV (0) = 1, and there remain two
parameters that can be related to the low–energy expansion of the form factor, 〈r2〉πV and
cπ
V , as we will shortly see.

Therefore we take as the vector pion form factor provided by analyticity and unitarity
the expression

FV (s) = exp

{
α1 s +

1

2
α2 s2 +

s3

π

∫ Λ2

4m2
π

dz

z3

δ1
1(z)

z − s − iε

}
. (9)

Since Eq. (4) is only valid in the elastic region, we have introduced an upper cut in the
integration, Λ. This cut–off has to be taken high enough not to spoil the, a priori, infinite
interval of integration, but low enough that the integrand is well known in the interval.
As commented above we know best δ1

1(s) up to E < 2 GeV. We will take Λ = 2.0 GeV
though, with three subtractions, there is a negligible difference (within the errors) between
Λ = 1.5 GeV and the previous value.

The two subtraction constants α1 and α2 are related with the squared charge radius of
the pion 〈r2〉πV and the quadratic term cπ

V in the low–energy expansion of the pion form
factor

FV (s) = 1 +
1

6
〈r2〉πV s + cπ

V s2 + O(s3) , (10)

through the relations

〈r2〉πV = 6 α1 ,

cπ
V =

1

2
( α2 + α2

1 ) , (11)

that follow from the expansion of the form factor in Eq. (9) and its comparison with Eq. (10).
We will use them to predict these observables.

3 The mass of the ρ(770) resonance from a fit to τ decay

data

The fact that FV (s) is dominated by the ρ(770) vector meson up to E ∼ 1 GeV has been
extensively used to get the properties of this resonance. In order to proceed, a Breit–Wigner–
like form factor is usually introduced and fitted to the data. This procedure, however, relies
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in a modelization of the form factor that is not necessarily consistent with QCD. Here we
propose a thorough model–independent determination of the mass of the ρ(770) resonance,
Mρ, defined by Eq. (8).

FV (s) endows the hadronic dynamics in the τ− → π−π0ντ decay and the e+e− → π+π−

process. The experimental data from this last source [15, 16] has been available for long
time and deeply analysed. The decay τ− → π−π0ντ has recently been measured accurately,
in the energy region of our interest, by three experimental groups : ALEPH [17], CLEO–II
[18] and OPAL [19]. We take FV (s), as given by Eq. (9), to fit the ALEPH set of data.

An appropriate study of the form factor requires a proper description of the δ1
1(s) phase–

shift in the integration interval. As we are working with 3 subtractions the main contribution
to the integration in Eq. (9) comes from the low–energy region of the phase–shift. However if
we wish to consider FV (s) around

√
s ∼ 1 GeV the cut–off Λ should be not lower than, let us

say,
√

s ≃ 1.5 GeV, as we commented previously. Therefore we require a precise description
of δ1

1(s) in this energy region. We achieve this through the following procedure : δ1
1(s) given

by Eq. (8) provides an implementation up to
√

smatch = Mρ; hence for Mρ ≤ √
s <

∼ 1.5 GeV
(higher values of

√
s being unimportant because the three subtractions performed) we include

the Ochs set of data [14]. As a result we come out with a description of δ1
1(s), in the region

of interest, that contains all the necessary physics input.
However there are still contributions to the form factor in Eq. (9) that are not taken into

account with Ochs data. These are those of coupled channels that open at the KK threshold
[20]. Therefore, in order to have a conservative determination of the observables, we choose
to fit ALEPH data in the range 0.32 GeV <

∼

√
s <

∼ 1.1 GeV where we have a thorough control
of the contributions. The fitting procedure is carried out with the MINUIT package [21].
We find

Mρ = ( 775.13 ± 0.02 ) MeV ,

α1 = ( 1.84 ± 0.02 ) GeV−2 ,

α2 = ( 4.18 ± 0.05 ) GeV−4 ,

χ2/d.o.f. = 33.8/21 . (12)

Though the χ2/d.o.f. value found can be considered reasonable it is necessary to notice
that 80% of χ2 comes from just three points 2. Errors in Eq. (12), given by the MINUIT
program, are to be taken with care. They do not include those that come from the choices
we have made in our approach: the energy range to be fitted, number of subtractions, upper
cut of integration Λ and the matching point,

√
smatch, between Ochs data and Eq. (8).

We estimate the final errors by exploring the stability of the results with two and four
subtractions, varying the cut–off from Λ = 1.5 GeV to Λ = 2.0 GeV, extending the fitted
energy range up to

√
s ≃ 1.6 GeV and shifting

√
smatch within the Ochs data errors. Hence

we conclude the figures

2One of them at
√

s ≃ 0.70 GeV and the other two around
√

s ≃ 0.85 GeV.
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Mρ = ( 775.1 ± 0.5 ) MeV ,

α1 = ( 1.84 ± 0.05 ) GeV−2 ,

α2 = ( 4.2 ± 0.2 ) GeV−4 . (13)

The parameters α1 and α2 turn out to be highly anti–correlated. This procedure provides a
mass for the ρ(770) resonance roughly 5 standard deviations higher than the Particle Data
Group new average [13] that is Mρ = (769.3 ± 0.8) MeV but consistent with their average
from τ decays and e+e− processes, Mρ = (776.0 ± 0.9) MeV.

0.5 1 1.5

√s  (GeV)

−1

0

1

lo
g 

|F
V
|2

ALEPH data, ref. [17]

CLEO−II data , ref. [18]

Fit to Eq. (9)

Ref. [9]

Figure 1: Comparison of the result of the fit to ALEPH data with the experimental ALEPH
[17] and CLEO-II [18] data on FV (s) from τ− → π−π0ντ in the ρ(770) energy region. The
result of Ref. [9] for Mρ = 775 MeV is also shown. Up to

√
s ∼ 0.8 GeV both curves are

almost indistinguishable.

In Fig. 1 we compare the experimental data with our prescription. We also include the
parameter–free prediction (1 subtraction only) of Ref. [9] that, for completeness, we recall in
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−0.5 0 0.5 1 1.5

 s/ √(|s|)    (GeV)

−0.5

0

0.5

1

1.5

lo
g 

|F
V
|2

Fit to Eq. (9) with τ data

Ref. [9]

Figure 2: Comparison of the result of our fit with the experimental data on FV (s) from
e+e− → π+π− (time–like) [15] and e−π± → e−π± (space–like) [16]. The result of Ref. [9]

(Mρ = 775 MeV) is also shown. In the region −0.4 GeV <
∼ s/

√
|s| <

∼ 0.8 GeV both curves are
almost indistinguishable.

Appendix A. It can be seen that our fit gives a good description of data up to E ∼ 1.3 GeV.
Experimental data (in spite of the big errors in the higher energy region) seem to have a
determinate structure (mild shoulder) around E ∼ 1.3 GeV. This could be due to a heavier
ρ–like resonance as the ρ(1450). Our solution takes into account this possibility though,
because Ochs data embody these resonances up to E ∼ 1.5 GeV.

We can compare the results of our fit to tau decay data with the experimental results
coming from e+e− → π+π− (time–like) [15] and e−π± → e−π± (space–like) [16] processes.
In Fig. 2 we show these sets of data together with the same curves of Fig. 1. We conclude
that the agreement of our fit with data is good within the errors. Notice that e+e− → π+π−

data has a contribution from ω(782) that translates into a slight deformation on the right–
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〈r2〉πV (GeV−2) cπ
V (GeV−4)

Our fit 11.04 ± 0.30 3.79 ± 0.04

O(p6) χPT 11.22 ± 0.41 3.85 ± 0.60

Table 1: Low–energy observables of the vector pion form factor up to the quadratic term.
We give the results for our fit and the O(p6) χPT analysis of Ref.[8].

hand side of the ρ(770) peak. This is due to a small I = 0 component contributing to the
2π spectral function in e+e− → π+π−. This contribution does not appear in the isovector
spectral function from τ− → π−π0ντ which we are describing.

4 The low–energy observables

At E < 2mπ the vector pion form factor satisfies a low–energy expansion given by
Eq. (10). Up to the quadratic term in s we have, therefore, two low–energy observables, the
squared charge radius of the pion, 〈r2〉πV , and the quadratic term cπ

V , that are related with
the parameters α1 and α2 of the form factor (9) as given in Eq. (11).

〈r2〉πV and cπ
V have recently been determined at O(p6) in χPT [8]. While chiral symmetry

constraints successfully provide the chiral logarithms, it remains an incertitude in the poly-
nomial part that involves counterterms not predicted by the chiral framework. Therefore
it is not possible to give a plain prediction for these observables. The authors of Ref. [8]
performed, by including properly the chiral logarithms, a fit of the pion form factor, as given
by O(p6) χPT, to the data from τ− → π−π0ντ , e+e− → π+π− and e−π± → e−π± in the
low–energy region (E <

∼ 0.5 GeV). Our procedure provides the low–energy observables from
a fit to a larger energy interval in the time–like region. In Table 1 we compare our figures
with those of Ref. [8]. As can be seen the results compare very well but the errors to the
observables provided by our procedure are smaller (noticeably in cπ

V ).
As commented above the predictability of χPT at O(p6) is spoiled because chiral sym-

metry does not provide information on the finite part of the counterterms in the results
of 〈r2〉πV and cπ

V . Two combinations of O(p6) counterterms, rr
V1

(Mρ) and rr
V2

(Mρ), one on
each observable, have to be considered. In order to predict these terms one has to rely in
modelizations or dynamical assumptions like Vector Meson Dominance (VMD). This last
resource was employed in Ref. [8] to evaluate the vector resonance contributions rV

V1
(Mρ),

rV
V2

(Mρ) that is the dominant piece by far.
Numerically the O(p6) χPT expressions relating the low–energy observables with the

8



rV
V1

(Mρ) × 103 rV
V2

(Mρ) × 104

Our fit −0.79 ± 0.19 1.46 ± 0.03

O(p6) χPT −0.68 ± 0.26 1.50 ± 0.44

VMD −0.25 2.6

Table 2: Combination of O(p6) counterterms appearing in the χPT evaluation of 〈r2〉πV and
cπ
V . We give the predictions from our fit and the ones from the chiral fit and the VMD result

of Ref.[8].

polynomial terms are 3

〈r2〉πV =
[
12.312 + 1603.4 rV

V1
(Mρ)

]
(GeV−2) ,

cπ
V =

[
1.787 + 13718.7 rV

V2
(Mρ)

]
(GeV−4) . (14)

Within VMD these counterterms are obtained by integrating out vector resonances using
the resonance chiral theory framework [6]. They have been worked out, within the Proca
formalism, in Ref. [8] with the results

rV
V1

= 2
√

2
F 2

π

M2
V

fχfV ,

rV
V2

=
F 2

π

M2
V

gV fV , (15)

obtained by integrating the lightest octet of vector resonances of mass MV . The couplings
fV , gV and fχ can be phenomenologically obtained from ρ → e+e−, ρ → π+π− and φ → KK
with the results: fV = 0.20, gV = 0.09 and fχ = −0.03, and, therefore, giving values for
rV
Vi

that we collect in Table 2. We compare these VMD results with the ones obtained from
our fit and the ones provided by the O(p6) χPT fit. We notice that the result of VMD
seems to undervalue |rV

V1
(Mρ)| and overestimates rV

V2
(Mρ). As can be seen from Eq. (14)

this difference would affect most the value of cπ
V . It has to be observed though that, on

one side, to extract rV
V1

(Mρ) from 〈r2〉πV in Eq. (14) a strong cancellation driven by the term

3For a complete discussion see Ref. [8]. We take for 〈r2〉π
V

their Set I possibility. Our numbers differ
slightly from the ones given in that reference because we use for the pion decay constant Fπ = 92.4 MeV
instead of Fπ = 93.2 MeV. We neglect the small local contribution from pseudoscalars.
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(〈r2〉πV − 12.312) is involved and therefore it is very sensitive to the value of the squared
charge radius of the pion (this problem does not arise in the rV

V2
(Mρ) case); on the other

side, VMD can only offer a rough estimate because, at this order, heavier resonances could
also give a noticeable contribution while the VMD result only includes the lightest octet of
vector mesons. By neglecting these heavier states we could invert the procedure and use
our fit to predict the products of couplings fχfV and gV fV from Eq. (15). We obtain, for
example, fχ/gV = (−1.9 ± 0.6) far from the phenomenological value fχ/gV ≃ −0.33. It
looks as if the role of heavier resonances is crucial in order to describe O(p6) vector driven
contributions in χPT.

5 Two–pion contribution to the muon (g − 2) and to

α(M 2
Z)

The hadronic contribution to the anomalous magnetic moment aµ = (gµ − 2)/2 of the
muon is the main source of incertitude in its theoretical prediction. Its leading part comes
from the photon vacuum polarization insertion into the electromagnetic vertex of the muon.
It gives [22] :

ahad
µ (vac. pol.) = (692.4 ± 6.2) × 10−10 . (16)

This contribution can be evaluated in terms of the experimental hadronic total cross–section
σ(e+e− → hadrons), where e+e− → π+π− is, by far, the dominant part at low energies. The
bulk, both of the central value (∼ 75%) and the error (∼ 80%), of ahad

µ in Eq. (16) comes
from this ππ intermediate state [23].

The relevant dispersion integral to evaluate this contribution is (up to two loops) [24]

aππ
µ =

(
α(0) mµ

3 π

)2 ∫ ∞

4m2
π

ds

s2 Rππ(s) K̂(s) ,

(17)

Rππ(s) =
3 s

4 π α2(s)
σ(e+e− → π+π−) ,

where the K̂(s) function is given in Ref. [25]. In terms of FV (s) we have

aππ
µ =

(
α(0) mµ

6 π

)2 ∫ Λ2

4m2
π

ds

s2 σ3
π |FV (s)|2 K̂(s) , (18)

where we have introduced a cut–off Λ as the upper limit of integration. As K̂(s) grows mildly
at high values of s, the integration in aππ

µ in Eq. (18) is dominated by the very low–energy
region that gives the main contribution.

The hadronic contribution to the shift in the fine structure constant ∆α(s), defined
through α(s) = α(0)/(1 − ∆α(s)), can be evaluated from e+e− → hadrons data by using
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Λ (GeV) aππ
µ × 1010 ∆α(M2

Z)|ππ × 104

1.0 505 ± 6 33.8 ± 0.4

1.1 511 ± 6 34.7 ± 0.5

1.2 514 ± 6 35.1 ± 0.5

1.3 516 ± 6 35.4 ± 0.5

Table 3: Values of aππ
µ and ∆α(M2

Z)|ππ given by our fit to ALEPH τ decay data, in the whole
energy range (0.32 GeV ≤ √

s ≤ 1.6 GeV), for different values of the Λ cut–off.

a dispersion relation together with the optical theorem [26]. The last estimation has been
worked out in Ref. [22] giving

∆α(5)(M2
Z)|had = (276.3 ± 1.6) × 10−4 , (19)

where the superscript indicates that only the 5 lightest quark flavours have been considered.
The ππ contribution can be accounted for by

∆α(M2
Z)|ππ = − α(0) M2

Z

12 π

∫ Λ2

4m2
π

ds
σ3

π |FV (s)|2
s(s − M2

Z)
, (20)

where, once more, we have introduced a cut–off Λ as the upper limit of integration in order
to control the good description of the integrand. Contrarily to what happens in the aππ

µ case,
from Eq. (20) we see that the integrand is not so dominated by the low–energy region and,
therefore, higher energy contributions are relevant to evaluate ∆α(M2

Z)|ππ. In addition, and
as we will see, the ππ contribution to ∆α(M2

Z)|had in this energy region is just a modest 10%
of the full value (19).

The study on the vector form factor of the pion that we have carried out allows us to put
forward a prediction for both aππ

µ and ∆α(M2
Z)|ππ that we work out as follows. The fit to

ALEPH data that gave our results in Eq. (13) was limited to
√

s ≤ 1.1 GeV. As commented
there we took this region because we have a thorough control of the physics involved within.
At higher energies new physics input, unaccounted for, appears. As a result, in Fig. 1 it
can be seen that our fit misses barely the data above

√
s ∼ 1.2 GeV, well outside the fitted

region. The computation of the integrals in aππ
µ (18) and ∆α(M2

Z)|ππ (20) requires a good
knowledge of FV (s) up to s ≃ Λ2, therefore if we wish to reach Λ ≃ 1.3 GeV we would need
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a better description of data than the one given with the parameters in Eq. (13). To achieve
this feature we fix Mρ = 775.1 MeV, as concluded in Eq. (13), and leave α1, α2 as free
parameters. Then we fit the ALEPH data in the whole range 0.32 GeV ≤ √

s ≤ 1.6 GeV. By
studying, as above, the stability of the fitted parameters against variations in the number
of subtractions, the upper limit Λ, and the matching point

√
smatch, we conclude the values

α̃1 = (1.83 ± 0.03) GeV−2, α̃2 = (4.28 ± 0.08) GeV−4, consistent with the solution of the
restricted fit (13) but with smaller errors. The tildes on α1 and α2 are meant to prevent
their use in Eq. (11). We emphasize that α̃1 and α̃2 are not proper physical values of the
α1, α2 parameters because we have fitted a region of experimental data that is not properly
implemented theoretically. However the above values of α̃1 and α̃2 describe well data up
to

√
s ≃ 1.3 GeV and, therefore, are useful to evaluate the integrals in aππ

µ and ∆α(M2
Z)|ππ

with smaller errors. The values we get are collected in Table 3.
It has to be noticed that our errors are similar to those obtained in recent estimations

[23], though the results in this reference were obtained from a combination of e+e− → ππ
and τ− → π−π0ντ decay data while our results come from a fit to this last process up to√

s ≃ 1.6 GeV. An improvement on our errors would require an analysis of the pion vector
form factor with a more complete set of data, combining e+e− → ππ and τ− → π−π0ντ

processes.

6 Conclusions

To gain access to the resonance properties, from experimental data, a correct definition
of those properties has to be theoretically implemented. The use of modelizations, though
sometimes unavoidable, can spoil seriously the conclusions obtained from data. In this article
we have studied the vector pion form factor FV (s) within a model–independent approach.
We have introduced a parameterization of the form factor provided by the all–important
properties of its analyticity and unitarity relations. This last construction relates FV (s) to
the δ1

1(s) phase–shift of elastic ππ scattering.
To proceed we have included the δ1

1(s) phase–shift (up to
√

s ≃ 1.5 GeV) with a model–
independent parameterization, provided by the resonance chiral theory and experimental
data. Our form factor depends on two, a priori unknown, subtraction constants and the
ρ(770) mass. We have fitted ALEPH data on τ− → π−π0ντ to the form factor for E <

∼

1.1 GeV and we obtain Mρ = (775.1 ± 0.5) MeV. Our result for Mρ is bigger than the new
average of the Review of Particle Properties [13] but very much consistent with their average
from τ decays and e+e− annihilation processes. The predictions given by our results on the
low–energy observables worked out in χPT, 〈r2〉πV and cπ

V have also been computed. We find
good agreement with the results from the fit in χPT though our errors are smaller. It is
necessary to notice, though, that when these figures are worked on to determine local chiral
O(p6) counterterms, the values we get are not consistent with those obtained, through VMD,
from resonance chiral theory by integrating out the lightest octet of vector resonances. As a
conclusion it seems that room is left for the contribution of heavier resonances.
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Finally we have evaluated the ππ contribution to the anomalous magnetic moment of
the muon, aππ

µ , and the shift of the fine structure constant ∆α(M2
Z)|ππ. An improvement in

the theoretical errors of these quantities would be achieved with a more complete analysis
of the available data.

We have shown how it is possible to extract model–independent information of resonances
from experimental data by exploiting general properties of form factors, such as unitarity
and analyticity. When combined with the resonance chiral theory, the effective action of
QCD at the lightest resonance region, these properties provide a compelling framework for
the study of form factors.
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Appendix A

A theoretical construction of the vector form factor of the pion was performed in Ref. [9]
by matching the O(p4) χPT result (valid at E ≪ Mρ) with the prescription provided by the
resonance chiral theory. The procedure also took into account the analyticity and unitarity
properties of FV (s). The result only includes the contribution of the ρ(770) resonance and
gives an excellent description of data up to E ∼ 1 GeV with just one parameter, Mρ. We
have compared this prescription with ours in Figures 1 and 2.

For completeness we recall here the result of Ref. [9]:

FV (s) =
M2

ρ

M2
ρ − s − iMρΓρ(s)

exp

{
−s

96π2F 2
π

[
ReA

(
m2

π/s, m
2
π/M2

ρ

)
+

1

2
ReA

(
m2

K/s, m2
K/M2

ρ

) ]}
, (A.1)

where Γρ(s) is the hadronic off–shell width of the ρ(770) resonance [12],

Γρ(s) =
Mρs

96πF 2
π

[
σ3

πθ(s − 4m2
π) +

1

2
σ3

Kθ(s − 4m2
K)
]

, (A.2)

and

A
(
m2

P /s, m2
P/µ2

)
= ln

(
m2

P

µ2

)
+ 8

m2
P

s
− 5

3
+ σ3

P ln
(

σP + 1

σP − 1

)
, (A.3)

with σP =
√

1 − 4m2
P/s.
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[12] D. Gómez Dumm, A. Pich and J. Portolés, Phys. Rev. D62, 054014 (2000).

[13] D.E. Groom et al, Review of Particle Properties, Eur. Phys. J. C15, 1 (2000);
http://pdg.lbl.gov.

[14] W. Ochs, Univ. of Munich thesis (1973).

[15] Barkov et al., Nucl. Phys. B256, 365 (1985).

[16] Amendolia et al., Nucl. Phys. B277, 168 (1986).

[17] R. Barate et al., ALEPH Col., Z. Phys. C76, 15 (1997).

14

http://pdg.lbl.gov


[18] S. Anderson et al., CLEO-II Col., Phys. Rev. D61, 112002 (2000).

[19] K. Ackerstaff et al., OPAL Col., Eur. Phys. J. C7, 571 (1999).

[20] J.A. Oller, E. Oset and J.E. Palomar, hep–ph/0011096.

[21] F. James and M. Roos, Comput. Phys. Commun. 10, 343 (1975).
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