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Abstract: With the newly available data sets on hadronic τ decays from the B-factories

BABAR and BELLE, and future data from BESIII, precise information on the decay

distributions will soon become available. This calls for an improvement of the decay spectra

also on the theoretical side. In this work, the distribution function for the decay τ → ντKπ

will be presented with the relevant Kπ vector and scalar form factors being calculated in the

framework of the resonance chiral theory, also taking into account additional constraints

from dispersion relations and short-distances. As a by-product the slope and curvature of

the vector form factor F Kπ
+ (s) are determined to be λ

′

+ = 25.6 · 10−3 and λ
′′

+ = 1.31 · 10−3

respectively. From our approach it appears that it should be possible to obtain information

on the low lying scalar K∗

0 (800) as well as the second vector K∗(1410) resonances from the

τ decay data. In particular, the exclusive branching fraction of the scalar component is

found to be B[τ → ντ (Kπ)S−wave] = (3.88 ± 0.19) · 10−4.
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1 Introduction

Already more than a decade ago it was realised that the hadronic decays of the τ lepton

could serve as an ideal system to study low-energy QCD under rather clean conditions

[1–5]. In the following years, detailed investigations of the τ hadronic width as well as

invariant mass distributions have allowed to determine many QCD parameters, a most

prominent example being the QCD coupling αs. Especially the experimental separation

of the Cabibbo-allowed decays and Cabibbo-suppressed modes into strange particles [6–8]

opened a means to also determine the quark-mixing matrix element |Vus| [9–11] as well

as the mass of the strange quark [12–19], additional fundamental parameters within the

Standard Model, from the τ strange spectral function.

The dominant contribution to the Cabibbo-suppressed τ decay rate is due to the decay

τ → ντKπ. The corresponding distribution function has been measured experimentally in

the past by ALEPH [8] and OPAL [7]. With the large data sets on hadronic τ decays from

the B-factories BABAR and BELLE, which are currently under investigation, and good

prospects for additional data from BESIII in the future, a refined theoretical understanding

of the spectral functions is called for. For the decay in question, the general expression for

the differential decay distribution takes the form [20]

dΓKπ

d
√

s
=

G2
F |Vus|2M3

τ

32π3s

(
1− s

M2
τ

)2
[(

1+2
s

M2
τ

)
q3
Kπ |F Kπ

+ (s)|2+3∆2
Kπ

4s
qKπ|F Kπ

0 (s)|2
]

, (1)

where we have assumed isospin invariance and have summed over the two possible decays

τ− → ντK
0
π− and τ− → ντK

−π0, with the individual decay channels contributing in the

ratio 2 :1 respectively. In this expression, F Kπ
+ (s) and F Kπ

0 (s) are the vector and scalar Kπ

form factors respectively which will be explicated in more detail below, ∆Kπ ≡ M2
K −M2

π ,

and qKπ is the Kaon momentum in the rest frame of the hadronic system,

qKπ(s) =
1

2
√

s

√(
s − (MK + Mπ)2

)(
s − (MK − Mπ)2

)
· θ

(
s − (MK + Mπ)2

)
. (2)

By far the dominant contribution to the decay distribution originates from the K∗(892)

meson. In the next section, an effective description of this contribution to the vector form

factor F Kπ
+ (s) will be presented in the framework of chiral perturbation theory with reso-

nances (RχPT) [21, 22], quite analogously to a similar description of the pion form factor

given in refs. [23–25]. To also include a second vector resonance, the effective chiral descrip-

tion can be straightforwardly augmented by an additional K∗(1410) meson. Finally, the

scalar Kπ form factor F Kπ
0 (s) has very recently been updated in ref. [26]. In section 3, we

shall present our main results for the distribution function dΓKπ/d
√

s and total decay rates

and investigate the influence of the different vector and scalar form factor contributions.
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2 The vector form factor F
Kπ

+ (s)

A theoretical representation of the vector form factor F Kπ
+ (s), which is based on funda-

mental principles, can be provided by an effective field theory description, in complete

analogy to the description of the pion form factor presented in refs. [23–25]1. This ap-

proach employs our present knowledge on effective hadronic theories, short-distance QCD,

the large-NC expansion as well as analyticity and unitarity. For the pion form factor the

resulting expressions provide a very good description of the experimental data [23–25].

Close to s equal zero, F Kπ
+ (s) is well described by the χPT result at one loop [29],

which takes the form:

F Kπ
+ (s) = 1 +

2

F 2
π

Lr
9 s +

3

2

[
H̃Kπ(s) + H̃Kη(s)

]
. (3)

The one-loop function H̃(s) is related to the corresponding function H(s) of [29] by H̃(s) ≡
H(s) − 2Lr

9 s/(3F 2
π ) = [sM r(s) − L(s)]/F 2

π . Explicit expressions for M r(s) and L(s) can

be found in ref. [30]. The vector form factor is an analytic function in the complex s

plane, except for a cut along the positive real axis, starting at sKπ ≡ (MK + Mπ)2, where

its imaginary part develops a discontinuity. In the elastic region below roughly 1 GeV,

F Kπ
+ (s) admits the well-known Omnès representation [31]

F Kπ
+ (s) = P (s) exp

(
s

π

∞∫

sKπ

ds′
δ
1/2
1 (s′)

s′(s′ − s − i0)

)
, (4)

with P (s) being a real polynomial to take care of the zeros of F Kπ
+ (s) for finite s and δ

1/2
1 (s)

is the P-wave I = 1/2 elastic Kπ phase shift.

Precisely following the approach of ref. [23], and matching the Omnès formula (4) with

the χPT calculation of F Kπ
+ (s) in the presence of vector resonances [21], one finds the

following representation of the form factor F Kπ
+ (s):

F Kπ
+ (s) =

M2
K∗e

3

2
Re[H̃Kπ(s)+H̃Kη(s)]

M2
K∗ − s − iMK∗ΓK∗(s)

. (5)

The one-loop function H̃(s) depends on the chiral scale µ, and in eq. (5), this scale should be

taken as µ = MK∗. In ref. [32], the off-shell width of a vector resonance was defined through

the two-point vector current correlator, performing a Dyson-Schwinger resummation within

RχPT [21,22]. Following this scheme the energy-dependent width ΓK∗(s) is found to be

ΓK∗(s) =
G2

V MK∗s

64πF 4
π

[
σ3

Kπ(s) + σ3
Kη(s)

]
, (6)

1For an alternative dispersive approach to the pion form factor see also refs. [27, 28].
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where GV is the chiral vector coupling which appears in the framework of χPT with

resonances [21], the phase space function σKπ(s) is given by σKπ(s) = 2qKπ(s)/
√

s, and

σKη(s) follows analogously with the replacement Mπ → Mη. Re-expanding eq. (5) in s

and comparing with eq. (3), one reproduces the short-distance constraint for the vector

coupling GV = Fπ/
√

2 [22] which guarantees a vanishing form factor at s to infinity, as

well as the lowest-resonance estimate2 for the O(p4) chiral coupling [21]

Lr
9(MK∗) =

F 2
π

2M2
K∗

= 5.34 · 10−3 , (7)

where Fπ = 92.4 MeV and the average mass of the charged and neutral K∗(892), MK∗ =

893.9 MeV have been used. This result is in very good agreement to a recent determination

of Lr
9 from the pion form factor [34] which found Lr

9(MK∗) = (5.69 ± 0.41) · 10−3.
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Figure 1: Kπ scattering P-wave phase-shift data of ref. [35], together with our fit described

in the text.

From eq. (5), one obtains a description of the P-wave Kπ phase shift δ
1/2
1 (s):

δ
1/2
1 (s) = arctan

(MK∗ΓK∗(s)

M2
K∗ − s

)
. (8)

Improving the K∗-meson width ΓK∗(s) with the pertinent Blatt-Weisskopf barrier factor

D1(rqKπ(M2
K∗))/D1(rqKπ(s)) [36], where D1(x) = 1+x2 and r is the interaction radius, we

2A recent one-loop calculation of the pion form factor in RχPT [33] has found that the NLO corrections

to this lowest-resonance approximation are very small.
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can perform a fit of eq. (8) to the phase-shift data of Aston et al. [35]. The fit parameters

MK∗ , GV and r are found to be

MK∗ = 895.9 ± 0.5 MeV , GV = 64.6 ± 0.4 MeV , r = 3.5 ± 0.6 GeV−1 , (9)

where the given errors are purely statistical and the corresponding fit is displayed in figure 1.

We observe that the obtained K∗ mass is in complete agreement with the fit re-

sult of ref. [35], and also with the PDG average for the mass of the neutral K∗ meson

MK∗ = 896.1± 0.3 MeV [37], the relevant channel in this case. Our result for GV is nicely

compatible with the short-distance constraint GV = Fπ/
√

2 ≈ 65.3 MeV found in ref. [22].

Furthermore, our fit result for r and our χ2/NDF ≈ 18.5/12 are similar to the ones ob-

tained by Aston et al. [35]. However, the result for GV found above would correspond to

a K∗ width

ΓK∗ ≡ ΓK∗(M2
K∗) = 55.8 ± 0.8 MeV , (10)

which is about 10% larger than the finding of [35] and the PDG average ΓK∗ = 50.7 ±
0.6 MeV [37]. At the origin of this discrepancy may lie the role played by a heavier vector

resonance, namely the K∗(1410), on which we shall comment further below. As concluded

in ref. [25], GV goes down a few percent when a second multiplet is included into the

analysis of the elastic ππ scattering amplitude, providing GV = 61.9± 1.5 MeV [25] which

would result in ΓK∗ = 51.2 ± 0.7 MeV, in excellent agreement with the PDG average.

Next, we can compare the low-energy expansion of the vector form factor (5) with recent

experimental measurements of its slope and curvature. Let us define a general expansion

of F Kπ
+ (s) as

F Kπ
+ (s) ≡ F Kπ

+ (0)

[
1 + λ

′

+

s

M2
π

+
1

2
λ

′′

+

s2

M4
π

+
1

6
λ

′′′

+

s3

M6
π

+ . . .

]
, (11)

where λ
′

+, λ
′′

+ and λ
′′′

+ are the slope, curvature and cubic expansion parameter respectively.

Numerically, when employing the following isospin averages for the meson masses Mπ =

138.0 MeV, MK = 495.7 MeV and the mass of the charged K∗ meson, MK∗ = 891.66 MeV

[37], which is relevant for the leptonic decays of the K meson, these are found to be:

λ
′

+ = 25.6 · 10−3 , λ
′′

+ = 1.31 · 10−3 , λ
′′′

+ = 9.74 · 10−5 . (12)

The parametric uncertainties on these results are rather small. However, it is difficult to

estimate the systematic uncertainties and therefore we have chosen not to attach errors

to the results of eq. (12). Recent experimental results on the slope λ
′

+ and the curvature

λ
′′

+ have been collected in table 1. One observes that our results of eq. (12) are in nice

agreement with the very recent measurement by KLOE [38], and in reasonable agreement

with ISTRA [39] as well as NA48 [40], however about 2.5 σ away from the KTEV result [41].

4



Collaboration λ
′

+ [10−3] λ
′′

+ [10−3]

ISTRA 04 [39] 23.2 ± 1.6 0.84 ± 0.41

KTEV 04 [41] 20.64 ± 1.75 3.20 ± 0.69

NA48 04 [40] 28.0 ± 2.4 0.2 ± 0.5

KLOE 06 [38] 25.5 ± 1.8 1.4 ± 0.8

Table 1: Recent experimental results on the slope λ
′

+ and the curvature λ
′′

+ of the vector

form factor F Kπ
+ (s) in units of 10−3.

Since the τ lepton can also decay hadronically into the second vector resonance K∗
′ ≡

K∗(1410), this particle should be included in our parametrisation of the vector form factor

F Kπ
+ (s). A parametrisation which is motivated by the RχPT framework [21, 22] can be

written as follows:

F Kπ
+ (s) =

[
M2

K∗ + γ s

M2
K∗ − s − iMK∗ΓK∗(s)

− γ s

M2
K∗

′ − s − iMK∗
′ΓK∗

′(s)

]
e

3

2
Re[H̃Kπ(s)+H̃Kη(s)] .

(13)

The relation of the parameter γ to the RχPT couplings takes the form γ = FV GV /F 2
π − 1,

when one assumes a vanishing form factor at large s in the NC to infinity limit. It is

difficult, to asses a precise value for γ, but from the work of ref. [25], we infer that it

should be small and positive (0 < γ ≪ 1). We shall come back to the parameter γ below.

The width of the second resonance cannot be set unambiguously. Therefore, we have

decided to endow the K∗(1410) contribution with a generic width as expected for a vector

resonance. Hence, ΓK∗
′ (s) will be taken to have the form

ΓK∗
′ (s) = ΓK∗

′

s

M2
K∗

′

(
σ3

Kπ(s)

σ3
Kπ(M2

K∗
′ )

)
. (14)

3 The differential decay distribution

As a last ingredient for a prediction of the differential decay distribution of the decay

τ → ντKπ according to eq. (1), we require the scalar form factor F Kπ
0 (s). This form factor

was calculated in a series of articles [42–44] in the framework of RχPT, again also employing

constraints from dispersion theory as well as the short-distance behaviour, which then lead

to a determination of the strange quark mass ms in [44]. Quite recently, the determination

of F Kπ
0 (s) was updated in [26] by employing novel experimental constraints on the form

factor at the Callan-Treiman point ∆Kπ, and here we shall also make use of this update.

A remaining question is which value to use for the form factors F Kπ
+ (s) and F Kπ

0 (s)

at the origin. From our chiral description of the vector form factor (5), one would obtain

5



F Kπ
+ (0) = 0.978. An average over recent determinations from lattice QCD and effective

field theory approaches [45–50], however, yields

F Kπ
+ (0) = F Kπ

0 (0) = 0.972 ± 0.012 , (15)

somewhat lower and also compatible with the original estimate by Leutwyler and Roos [51].

Furthermore, this is the value to which the scalar form factor had been normalised in

ref. [26]. Nevertheless, what is required in the hadronic τ decays is only the product

|Vus|F Kπ
+ (0) which experimentally is known more precisely. Thus, in what follows, to

normalise the form factors, we shall employ the most recent average for this number [52]:

|Vus|F Kπ
+ (0) = 0.2173 ± 0.0008 . (16)

0.6 0.8 1 1.2 1.4 1.6

√s [GeV]

0.001

0.01

0.1

1

10

10
14

*d
Γ/

d√
s

Total spectrum

K
*
 contribution

K
*
(1410) contribution

Scalar contribution

K
*
 plus Scalar contr.

Figure 2: Main result for the differential decay distribution of the decay τ → ντKπ,

together with the individual contributions from the K∗ and K∗(1410) vector mesons as

well as the scalar component residing in the scalar form factor F Kπ
0 (s).

Our main result for the differential decay distribution is displayed as the solid line in

figure 2, together with the individual contributions. Let us discuss our inputs and the

individual contributions in more detail. Since the K∗ meson in τ decays is the charged

one, in contrast to the fit result of eq. (9), for the K∗ mass we have employed the PDG

value MK∗− = 891.66 ± 0.26 MeV [37]. However, for GV and the barrier factor parameter

r, the fit results of (9) have been used. The resulting contribution of the K∗ meson to the

6



spectral distribution is shown as the long-dashed line in figure 2. Integrating this part over

the phase space and varying the input parameters, one finds

B[τ → ντK
∗(892)] = (1.253+0.062

− 0.076 ± 0.019)% = (1.253 ± 0.078)% . (17)

The first uncertainty represents an estimate of higher order chiral corrections. To this end,

in the exponential of eq. (5), we have replaced the factor 1/F 2
π by 1/(FKFπ) or by 1/F 2

0

with F0 = 87 MeV being the pion decay constant at the leading order, which should give an

idea about unaccounted further chiral corrections. The remaining uncertainty arises from

a variation of the fit parameters GV and r of eq. (9) and the value (16) for |Vus|F Kπ
+ (0).

Next, the contribution from the scalar form factor F Kπ
0 (s) in figure 2 is displayed

as the dotted line. Its most important contribution arises in the region below the K∗

resonance where the low-lying scalar K∗

0 (800) resonance is active. Integrating over the

scalar contribution, we obtain

B[τ → ντ (Kπ)S−wave] = (3.88 ± 0.19) · 10−4 , (18)

where the error dominantly is due to a variation of the form factor shape as discussed in

refs. [26, 43, 45]. Since the scalar resonances are not well described by Breit-Wigners and

there is also a strong interference between the dynamically generated K∗

0(800) and the

pre-existing (at NC → ∞) K∗

0(1430) resonance, we prefer not to resolve the Kπ S-wave

contribution into individual components. (For some remarks on the K∗

0(800), also known

as the κ, see section 7 of ref. [42].) The sum of the scalar and K∗ contributions in figure 2

is shown as the dashed-dotted line.

The last remaining contribution is the one due to the second vector resonance K∗(1410).

For its mass and width, we have employed the PDG values MK∗(1410) = 1414 MeV and

ΓK∗(1410) = 232 MeV [37]. The K∗(1410) contribution turns out to depend very sensitively

on the mixing parameter γ defined in eq. (13), for which an estimate can be obtained on the

basis of the total branching fraction B[τ → ντKπ]. Adding the results of the most recent

compilation [6], one finds B[τ → ντKπ] = (1.33±0.05) %. Then adjusting γ such that the

experimental total branching fraction, including its uncertainty, is reproduced, we obtain

γ = 0.013 ± 0.017, in agreement with the expectation of the last section, that γ should

be small and positive. The contribution of the K∗(1410) resonance with the central value

of γ is shown as the short-dashed line in figure 2. Even though this contribution appears

rather small, because of the interference with the leading K∗ resonance, its influence in the

energy region above the K∗ resonance is roughly as important as the scalar component.

This is also reflected in the corresponding total branching fraction which turns out to be

B[τ → ντ (K
∗(892) + K∗(1410))] − B[τ → ντK

∗(892)] ≈ 3.9 · 10−4 , (19)

however, with rather large uncertainties, but much bigger than the K∗(1410) branching

ratio by itself whose central value reads B[τ → ντK
∗(1410)] = 2.1 · 10−6. We notice that

7



the central result (19) is similar to the scalar branching fraction (18) and compatible to an

estimate presented by the ALEPH collaboration [8] which yielded B[τ → ντK
∗(1410)] =

(1.5+1.4
−1.0) · 10−3, but where, however, the scalar component had been neglected.

4 Conclusions

Upcoming much improved results on the branching fractions and differential distributions

of hadronic τ decays from the B-factories BABAR and BELLE, as well as in the near

future from BESIII, necessitate an analogous improvement also on the theoretical side. A

step in this direction is taken in the work at hand, where we have presented a description

of the decay spectrum of the decay τ → ντKπ (1) in the framework of RχPT [21,22].

Our approach follows the lines of an analogous description for the pion form factor

[23–25], which employs all present knowledge of effective theories, short-distance QCD, the

large-NC expansion as well as analyticity and unitarity, and was successful in describing

the experimental data for the pion form factor. Our central result for the Kπ vector

form factor, also including the second vector resonance K∗(1410) in this channel, has been

presented in eq. (13). As a by-product, we have determined the slope and curvature of

F Kπ
+ (s),

λ
′

+ = 25.6 · 10−3 , λ
′′

+ = 1.31 · 10−3 , (20)

in very good agreement with the recent KLOE results [38]. The required scalar Kπ form

factor F Kπ
0 (s) has been employed from the recent update [26], following the previous anal-

yses [42, 43].

Our central result for the differential decay distribution dΓKπ/d
√

s of eq. (1) is displayed

in figure 2, where also the separate contributions originating from the K∗, the K∗(1410),

and the scalar component have been shown separately.3 As can be observed from this

figure, the S-wave Kπ contribution is most prominent in the energy region below the K∗

resonance, and dominated by the dynamically generated K∗

0 (800) resonance (also known

as the κ). Thus, by analysing experimental data in this energy range, valuable information

about the still much debated K∗

0 (800) resonance can be obtained. Integrating the scalar

component over the phase space, we obtain

B[τ → ντ (Kπ)S−wave] = (3.88 ± 0.19) · 10−4 , (21)

which is already rather precise, so that it will be difficult to improve this accuracy experi-

mentally.

The contribution of the second vector resonance K∗(1410) dominantly depends on the

mixing parameter γ. However, this parameter can be inferred from the total τ → ντKπ

3A Fortran routine to generate this distribution can be obtained on request from the authors.
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branching fraction, resulting in the estimate γ = 0.013±0.017. Even though the K∗(1410)

contribution by itself is small, through interference with the K∗ resonance, in the range

around 1.4 GeV it becomes about as important as the scalar resonance in this region, the

K∗

0 (1430). Therefore, with a dedicated experimental analysis in the region above the K∗

peak, it should be possible to also obtain information on the K∗(1410).

In summary, in this work we have started a dedicated effort to improve the description

of exclusive strangeness-changing hadronic τ -decays. We are convinced that our description

of the decay spectrum for the decay τ → ντKπ will proof valuable in the analysis of the

high-statistics data on hadronic τ decays, acquired at the B-factories BABAR and BELLE.

We plan to return to this subject with other decay channels in the future.
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