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1 Introduction

Chiral perturbation theory [1–3] (χPT) is the effective theory of QCD at small external mo-
menta. In the low-energy regime, the leading singularities of QCD Green functions of quark
currents are generated by the octet of light pseudoscalar mesons (π,K, η), the explicit de-
grees of freedom in the effective theory. χPT is constructed by exploiting the chiral sym-
metry of QCD in the limit of massless light quarks (we consider here the three-flavour case
with mu = md = ms = 0), its spontaneous symmetry breaking according to the pattern
SU(3)L × SU(3)R → SU(3)V and its explicit breaking due to nonvanishing quark masses.

The structure of the effective Lagrangian is determined by chiral symmetry and the discrete
symmetries of QCD. It is organized as an expansion in derivatives of the Goldstone fields and in
powers of the light quark masses (mq). In the standard scenario the two expansions are related
(mq ∼ O(M2) ∼ O(p2)) and the mesonic effective chiral Lagrangian takes the form

Leff =
∑

n≥1

LχPT
2n , LχPT

2n ∼ O(p2n) . (1.1)

The intrinsic scale Λχ of this expansion is set by the lightest mesonic non-Goldstone states
(Λχ ∼ MV ∼ 1 GeV). The effective Lagrangian depends on a number of low-energy constants
(LECs), which are not determined by symmetry considerations, encoding the underlying QCD
dynamics. Applications of current interest require working to NNLO (O(p6)) [4]. Since LχPT

6

involves 90 LECs for three light flavours [5–7], a theoretical assessment of the size of those
couplings is mandatory for phenomenology.

Determining the LECs from QCD is a difficult nonperturbative problem. However, both
empirical evidence and theoretical arguments suggest that the most important contributions to
the LECs in the strong chiral Lagrangian come from physics at the scale Λχ, i.e. the physics
of low-lying resonances. In general, the LECs can be characterized as coefficients of the Taylor
expansion of QCD correlators around zero momentum, once the non-expandable singularities
due to Goldstone modes have been removed. If the appropriate correlators are order parameters
of spontaneous chiral symmetry breaking (vanishing to all orders in QCD perturbation theory),
they fall off at high momenta with an inverse power determined by the operator product expan-
sion (OPE). Therefore, the LECs are expected to be sensitive to the intermediate-momentum
region where the low-lying hadronic resonances turn the polynomial behaviour of the correlator
into an inverse-power behaviour, as required by the QCD short-distance constraints.

The natural framework to incorporate systematically the above considerations is provided
by the 1/NC expansion of QCD [8,9]. Earlier studies of resonance saturation for O(p4) couplings
[10–12] can be embedded in this framework [13–15]. A number of more recent works has already
applied large-NC techniques to estimate subsets of the O(p6) LECs [16–21]. A few studies at
next-to-leading order in the 1/NC expansion have also been performed [22]. In this work we
aim to study systematically resonance contributions to the full LχPT

6 to leading order in 1/NC.
We first recall the salient features common to most procedures based on the 1/NC expansion,
describing along the way several approximations used in this work. We then comment on the
specific aspects that characterize the interaction between Goldstone modes and resonance fields.
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Matching at large NC

In principle, the matching of QCD with χPT is straightforward in the NC → ∞ limit
(QCD∞). To leading order in the 1/NC expansion, any correlator of quark bilinears 〈J1...Jn〉
is given by a sum of tree-level diagrams involving interactions of an infinite tower of narrow
meson states with appropriate quantum numbers 1. Hadron masses and couplings are adjusted
so as to satisfy chiral Ward identities and to match the QCD asymptotic behaviour at large
momenta. The Taylor expansion of the correlator around vanishing momenta, after removing
the Goldstone poles, allows one to read off the corresponding chiral LECs.

In practice, since a solution to QCD∞ is not available, one has to make a set of approxi-
mations in implementing the matching outlined above. The main approximations involve trun-
cating the hadronic spectrum to a finite number of states and choosing the appropriate set
of short-distance constraints to determine the hadronic parameters. In this work we truncate
the spectrum to the lowest-lying resonance multiplets with given JPC . We consider explicitly
the channels V(1−−), A (1++), S (0++), P(0−+). This choice has to be considered a working
hypothesis that can be extended if needed. It is based on the observations that (i) the low-lying
hadronic spectrum has the largest impact on the LECs; (ii) the QCD asymptotic behaviour sets
in at energies E ∼ 1.5 GeV (for correlators that are order parameters of spontaneous chiral
symmetry breaking the fall-off is well reproduced by a few hadronic states [13]); (iii) retaining
only lowest-lying states leads to a successful phenomenology for O(p4) couplings [10].

In this work we disregard the lightest P(0−+) singlet because the η′ meson plays a special
role in the large-NC counting [3,23,24]. The contributions of η′ exchange to the LECs of O(p6)
are worked out in an accompanying paper [25].

Concerning the short-distance constraints, the minimal requirement is that the Green func-
tions obey the asymptotic behaviour dictated by QCD to leading power in the inverse large
momenta. In addition, although not derived from first principles, it is heuristically inferred [26]
and phenomenologically supported that form factors of QCD currents should vanish smoothly
at large momenta. It should be kept in mind, however, that there are intrinsic limitations of
the matching program when only a finite number of resonance multiplets are included (e.g.,
Refs. [19, 21]).

Lagrangian formulation

The matching strategy outlined above can be pursued within or without a Lagrangian de-
scription of the chiral invariant Goldstone-resonance interactions. One useful aspect of the
Lagrangian formulation is that, within a given set of assumptions on the large-NC spectrum,
it provides a common framework to study many observables or correlators at the same time as
opposed to constructing different hadronic ansätze on a case-by-case basis. Another important
feature of the Lagrangian approach is that the resonance fields can be integrated out at the
level of the generating functional as opposed to expanding resonance propagators in individual
Green functions. This allows one to obtain all resonance contributions to the O(p6) chiral LECs
once and for all, even before specific values of the resonance couplings have been determined by
the short-distance analysis.

In the strict large-NC limit the hadronic Lagrangian L∞ has to be used at tree level only. Its

1Crossing and unitarity imply that the correlators can be obtained by tree-level insertions of an appropriate
hadronic Lagrangian [9].
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couplings are determined in such a way that the corresponding Green functions reproduce the
asymptotic behaviour of QCD∞. Although the construction of L∞ is a formidable task, progress
can be made if one considers a limited set of hadronic states and if one focuses on the subset of
L∞ that, upon integrating out heavy fields at tree level, contributes to the chiral Lagrangian up
to a given chiral order only. This limits both the number of resonance fields and the chiral order
of the respective terms in the resonance Lagrangian. The first systematic studies in this direction
go back to Refs. [10, 11] where the most general L∞ contributing to LχPT

4 was constructed and
the equivalence of different representations for spin-one fields was demonstrated, once the Green
functions generated by L∞ are forced to satisfy the correct asymptotic behaviour dictated by
QCD.

In this paper we perform the first steps towards a systematic study of resonance contributions
to LχPT

6 within the truncated large-NC matching described above. The program involves several
tasks:

i. Construct the most general chiral invariant Lagrangian describing the interactions of Gold-
stone modes with V, A, S, P meson resonance fields that contributes to LχPT

6 after in-
tegrating out the resonance fields. Apart from kinetic and mass terms for the resonance
fields, it has the following structure:

L∞ = LGB
(2)+(4)+(6) + LRi

(2) + LRi

(4) + LRiRj

(2) + LRiRjRk

(0) , (1.2)

where LGB
(2)+(4)+(6) = LGB

(2) + LGB
(4) + LGB

(6) is the Goldstone chiral Lagrangian up to O(p6).

L[...]
(n) is a term of chiral order pn involving the resonances specified in [...], i.e. up to cubic

terms in resonance fields. Higher-derivative operators can be added to the Lagrangian.
Although they cannot contribute to LχPT

6 such operators may be required in order to satisfy
short-distance constraints [27]. By using field redefinitions, we identify the minimal set
of resonance couplings contributing to LχPT

6 . It is important to distinguish between LχPT
2n

and LGB
(2n) for n > 1 (LχPT

2 ≡ LGB
(2) ) although both have the same structure and operators.

LχPT
2n denotes the full chiral Lagrangian whereas LGB

(2n) is part of the large-NC inspired

Lagrangian (1.2) where the meson resonances are still active degrees of freedom.

We adopt here the antisymmetric tensor representation for spin-one mesons [2, 10]. Al-
though we do not explicitly prove the equivalence with the Proca formalism to O(p6),
we expect that our results are representation independent once the Lagrangian couplings
are forced to satisfy QCD short-distance constraints. In this way we reproduce the well-
known results for the low-energy constants of O(p4): the antisymmetric tensor representa-
tion provides the simplest possible framework where short-distance constraints imply [11]
the absence of LGB

(4) in Eq. (1.2). At O(p6) this issue remains to be clarified (see also

subsection 3.1).

ii. Integrate out resonance fields and express the O(p6) LECs in terms of resonance masses
and couplings.

iii. Determine or at least constrain the resonance couplings by enforcing the correct asymptotic
behaviour of appropriate QCD Green functions.
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In this work we complete the first two goals outlined above. In Sec. 2 we explain how
chiral symmetry constrains the structure of the Lagrangian describing the interaction between
Goldstone bosons and resonance fields. We proceed in Sec. 3 to eliminate the resonance fields
with the help of their equations of motion to obtain a parametrization of the LECs of O(p6).
Sec. 4 is committed to explore the consequences of short-distance constraints for the resonance
couplings. We incorporate known constraints from all relevant two-point functions. In Sec. 5,
we reanalyse the three-point functions 〈V AP 〉 and 〈S P P 〉 [20, 21] within the present scheme.
In Sec. 6 we collect our conclusions. Several appendices complement the results achieved in this
article.

2 Chiral resonance Lagrangian

In this section we construct the most general Lagrangian L∞ of Goldstone and resonance fields
consistent with SU(3)L × SU(3)R chiral symmetry, parity (P), charge conjugation (C) and the
NC → ∞ limit. We only retain those operators in L∞ that contribute to chiral LECs of up to
O(p6) after integrating out the resonance fields. Since chiral symmetry plays a major role in
constraining the structure of the Lagrangian we shortly review the formalism of broken chiral
symmetry and nonlinear realizations of the chiral group below.

2.1 Building blocks

With massless light quarks (q⊤ = (u, d, s)), the QCD Lagrangian (omitting the heavy-quark
part)

L0
QCD = −1

4
Ga

µνG
µν
a + i q̄Lγ

µDµqL + i q̄Rγ
µDµqR (2.1)

is invariant under global SU(3)L×SU(3)R transformations of the left- and right-handed quarks
in flavour space: qL,R → gL,R qL,R , gL,R ∈ SU(3)L,R. The chiral group G = SU(3)L ×SU(3)R is
spontaneously broken to the diagonal subgroup SU(3)V . According to Goldstone’s theorem [28],
eight pseudoscalar massless bosons appear in the theory.

The Goldstone fields ϕ parametrize the elements u(ϕ) of the coset space SU(3)L ×SU(3)R/
SU(3)V , transforming as

u(ϕ) → u(ϕ′) = gRu(ϕ)h(g, ϕ)−1 = h(g, ϕ)u(ϕ)g−1
L (2.2)

under a general chiral rotation g = (gL, gR) ∈ G in terms of the SU(3)V compensator field
h(g, ϕ). An explicit parametrization of u(ϕ) is given by

u(ϕ) = exp

{

i√
2F

Φ

}

, (2.3)

with

Φ =















1√
2
π0 +

1√
6
η8 π+ K+

π− − 1√
2
π0 +

1√
6
η8 K0

K− K̄0 − 2√
6
η8















.
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The nonlinear realization of G on massive non-Goldstone fields depends on their transfor-
mation properties under the unbroken subgroup SU(3)V [29]. In this work we consider massive
states transforming as octets (R8) or singlets (R0):

R8 → h(g, ϕ)R8 h(g, ϕ)−1 , R0 → R0 , (2.4)

with the notation R8 = 1/
√

2
∑

i λiRi. In the large-NC limit, octet and singlet become degen-
erate in the chiral limit (with common mass MR), and we collect them in a nonet field

R =
∑

i

λiRi/
√

2 +R0/
√

3 1 . (2.5)

In order to calculate Green functions of vector, axial-vector, scalar and pseudoscalar densities,
it is convenient to include in the QCD Lagrangian external hermitian sources ℓµ, rµ, s, p:

LQCD = L0
QCD + q̄Lγ

µℓµ qL + q̄Rγ
µrµ qR − q̄L(s− ip) qR − q̄R(s+ ip) qL . (2.6)

The extended Lagrangian is invariant under local G transformations, with external sources
transforming as

ℓµ −→ gLℓµg
†
L + igL∂µg

†
L ,

rµ −→ gRrµg
†
R + igR∂µg

†
R ,

s+ ip −→ gR(s+ ip)g†L . (2.7)

Given the fundamental building blocks u(ϕ), R, ℓµ, rµ, s, p, the hadronic Lagrangian is given by
the most general set of monomials invariant under Lorentz, chiral, P and C transformations.
Invariant monomials to leading order in 1/NC can be constructed by taking single traces of
products of chiral operators X that either transform as

X → h(g, ϕ)X h(g, ϕ)−1 (2.8)

or remain invariant under chiral transformations. The possible occurrence of multiple-trace
terms will be discussed in subsection 2.2 and App. A.

The building blocks can be labeled according to chiral power counting. Booking as usual
u(ϕ) and R as O(1), ∂µ, ℓµ, rµ as O(p), and s, p as O(p2), the independent building blocks X
of lowest dimension are:

uµ = i{u†(∂µ − irµ)u− u(∂µ − iℓµ)u
†} [O(p)] ,

χ± = u†χu† ± uχ†u [O(p2)] ,

fµν
± = uF µν

L u† ± u†F µν
R u [O(p2)] ,

hµν = ∇µuν + ∇νuµ [O(p2)] , (2.9)

with χ = 2B(s + ip) and non-Abelian field strengths F µν
R = ∂µrν − ∂νrµ − i[rµ, rν], F µν

L =
∂µℓν − ∂νℓµ − i[ℓµ, ℓν ]. The covariant derivative is defined by

∇µX = ∂µX + [Γµ, X] (2.10)

in terms of the chiral connection Γµ = {u†(∂µ − irµ)u + u(∂µ − iℓµ)u†}/2 for any operator X
transforming as in Eq. (2.8). Higher-order chiral tensors can be obtained by taking products of
lower-dimensional building blocks or by acting on them with the covariant derivative.
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2.2 Constructing L∞

Having identified the building blocks and accounting for their behaviour under P, C and chiral
transformations, one can proceed with the construction of L∞. In the Goldstone sector one
recovers the usual χPT effective Lagrangian [3, 5, 6], excluding operators subleading in 1/NC.
To distinguish L∞ from the χPT Lagrangian, we use the notation LGB

(2n) for the Goldstone

Lagrangian of O(p2n) instead of LχPT
(2n) .

The interactions of resonances can be classified by (i) the number of massive fields and (ii)
the number of derivatives and quark mass insertions in a given monomial. Since we are only
interested in resonance contributions to the chiral Lagrangian up to O(p6) only a few types of
monomials can occur. One way to see which terms can occur is as follows: solving the resonance
equations of motion in an expansion in the resonance masses, the fields Ri are expressed as a
series of chiral monomials times inverse powers of MRi

, with chiral monomials starting at O(p2).
Therefore, for bookkeeping purposes, we can book the resonance fields as O(p2) and construct
chiral Lagrangians with resonance fields up to O(p6). These considerations lead us to write

L∞ = LGB
(2) + LGB

(4) + LGB
(6)

+ LR
kin + LR

(2) + LR
(4) + LRR

(2) + LRRR
(0) , (2.11)

where LGB
(n) is the Goldstone chiral Lagrangian of O(pn), LR

kin is the resonance kinetic term, and

L[...]
(n) is a sum of monomials involving the number of resonances specified in [...] with chiral build-

ing blocks of order pn. In general, higher-derivative operators can be added to the Lagrangian.
They do not contribute to LχPT

6 , but may be required in order to satisfy short-distance con-
straints [27].

The Lagrangian (2.11) brings up the question of double counting. As in every effective field
theory, the LECs carry information about physics at higher scales. Since the low-lying reso-
nances are represented as explicit fields in the Lagrangian (2.11) the LECs in LGB

(4)+(6) should
only be sensitive to even higher scales beyond the lightest meson resonances. Within the ap-
proximation of including only the lightest resonance multiplets in the analysis of QCD Green
functions, one may even expect those truncated LECs to be negligible. At O(p4) it could ac-
tually be shown [11] that all local terms in LGB

(4) (using the antisymmetric tensor representation

for spin-one mesons) have to vanish in order not to upset the asymptotic behaviour of QCD
correlators. A corresponding result at O(p6) still has to be achieved. In the following we do not
consider nonvanishing contributions from LGB

(6) explicitly (see, however, subsection 3.1).

Using the antisymmetric tensor formalism for spin-one fields, the kinetic terms for resonances
read

LR
kin =

∑

R=S,P

1

2
〈∇µR∇µR −M2

RR
2〉 −

∑

R=V,A

1

2
〈∇λRλµ ∇νR

νµ − M2
R

2
RµνR

µν〉 . (2.12)

The Lagrangian LR
(2) for resonance nonets of the type Ri = V (1−−), A(1++), S(0++), P (0−+) is

7



of the form [10]

LV
(2) =

FV

2
√

2
〈V µνf+ µν〉 +

i GV√
2

〈V µνuµuν〉 ,

LA
(2) =

FA

2
√

2
〈Aµνf−µν〉 ,

LS
(2) = cd 〈S uµuµ〉 + cm 〈S χ+〉 ,

LP
(2) = i dm 〈P χ−〉 , (2.13)

where we have adopted the standard notation for the resonance couplings FV , GV , FA, cd,
cm and dm. The Lagrangian LR

kin + LR
(2) is sufficient to describe all resonance contributions to

LχPT
(4) [10].

In order to obtain the resonance contributions to LχPT
(6) , we have worked out the operators

contributing to LR
(4) (70 monomials), LRR

(2) (38 monomials), and LRRR
(0) (7 monomials). In the

construction of this basis we have eliminated redundant operators by use of:

• Partial integration;

• Equations of motion (EOM) for the lowest-order Goldstone Lagrangian:

∇µuµ =
i

2

(

χ− − 1

NF
〈χ−〉

)

, (2.14)

with NF the number of light flavours (NF = 3 in our case);

• The identity

∇µhµν = ∇νh
µ
µ +

[

uµ , i f+µν −
1

2
[uµ, uν ]

]

− ∇µf−µν ; (2.15)

• The Bianchi identity

∇µΓνρ + ∇νΓρµ + ∇ρΓµν = 0 , Γµν =
1

4
[uµ, uν] −

i

2
f+µν . (2.16)

For the Lagrangian density linear in resonance fields we find a total of 70 independent operators:

LR
(4) =

22
∑

i=1

λV
i OV

i +
17
∑

i=1

λA
i OA

i +
18
∑

i=1

λS
i OS

i +
13
∑

i=1

λP
i OP

i . (2.17)

The corresponding monomials OR
i are reported in Tables 1 – 4.

For the Lagrangian quadratic in the resonance fields we find a total of 38 operators:

LRR
(2) =

∑

(ij)n

λRiRj
n ORiRj

n , (2.18)
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i Operator OV
i i Operator OV

i

1 i 〈 Vµν u
µuαu

αuν 〉 12∗ 〈 Vµν uα f
µν
+ uα 〉

2 i 〈 Vµν u
αuµuνuα 〉 13∗ 〈 Vµν ( uµ f να

+ uα + uα f
να
+ uµ ) 〉

3 i 〈 Vµν { uα, uµuαu
ν } 〉 14∗ 〈 Vµν ( uµuα f

αν
+ + fαν

+ uαu
µ ) 〉

4 i 〈 Vµν { uµuν , uαuα } 〉 15∗ 〈 Vµν ( uαu
µ fαν

+ + fαν
+ uµuα ) 〉

5∗ i 〈 Vµν f
µα
− f νβ

− 〉 gαβ 16∗ i 〈 Vµν [∇µf να
− , uα ] 〉

6∗ 〈 Vµν { fµν
+ , χ+ } 〉 17∗ i 〈 Vµν [∇αf

µν
− , uα ] 〉

7∗ i 〈 Vµν f
µα
+ f νβ

+ 〉 gαβ 18∗ i 〈 Vµν [∇αf
αµ
− , uν ] 〉

8∗ i 〈 Vµν {χ+ , u
µuν } 〉 19∗ i 〈 Vµν [ fµα

− , hν
α ] 〉

9∗ i 〈 Vµν u
µ χ+ u

ν 〉 20∗ 〈 Vµν [ fµν
− , χ− ] 〉

10∗ 〈 Vµν [ uµ , ∇νχ− ] 〉 21† i 〈Vµν ∇α∇α (uµ uν) 〉
11∗ 〈 Vµν { fµν

+ , uαuα } 〉 22† 〈 Vµν ∇α∇α fµν
+ 〉

Table 1: Monomials contributing to LV
(4). Operators that can be dismissed on the basis of field

redefinitions and the OPE are marked with ∗ and †, respectively (see Sec. 2.3).

with RiRj = V V,AA, SS, PP, SA, SP, SV, PV, PA, VA. The operators are listed in Tables 5,
6, 7.

Finally, for the Lagrangian cubic in resonance fields there are 7 independent operators (see
Table 8):

LRRR
(0) =

∑

(ijk)

λRiRjRk ORiRjRk . (2.19)

The form of the EOM (2.14) implies that the number of traces is not conserved over the
course of constructing the effective Lagrangian. In principle, this could be circumvented at the
cost of ignoring the EOM and writing the Lagrangian in terms of ∇µuµ

2. More fundamentally,
this circumstance reflects the fact that the counting of traces in the effective theory is in general
not in direct correspondence with the order in 1/NC of a term. A well-known example is the
term L7〈χ−〉2 that receives contributions from the exchange of the η′ [3, 10, 23, 30, 31].

As stated above, we do not include this particle explicitly in our Lagrangian. However, we
devote App. A to the clarification of the role of the multiple-trace terms (see also Ref. [25]). The
analysis shows that 4 of the 7 multiple-trace terms need not be considered because they lead
to subleading contributions in 1/NC. The same is true of a possible contribution ∝ 〈P 〉〈χ−〉 to
LP

(2).

2Indeed, one recovers our Lagrangian when first considering the most general expression involving exclusively
terms with single traces and only afterwards using the equation of motion.
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i Operator OA
i i Operator OA

i

1 〈Aµν ( uµuα h
να + hνα uαu

µ ) 〉 9∗ 〈Aµν ( uµuα f
να
− + f να

− uαu
µ ) 〉

2 〈Aµν ( uαu
µ hνα + hνα uµuα ) 〉 10∗ 〈Aµν ( uαu

µ f να
− + f να

− uµuα ) 〉
3 〈Aµν ( uµ hνα uα + uα h

να uµ ) 〉 11∗ 〈Aµν ( uµ f να
− uα + uα f

να
− uµ ) 〉

4∗ 〈Aµν [ fµν
+ , χ− ] 〉 12∗ i 〈Aµν [ fµα

+ , hν
α ] 〉

5∗ i 〈Aµν [χ− , u
µuν ] 〉 13∗ i 〈Aµν [∇αfµν

+ , uα ] 〉
6∗ 〈Aµν { uµ , ∇νχ+ } 〉 14∗ i 〈Aµν [ fµα

+ , f νβ
− ] 〉 gαβ

7∗ 〈Aµν { fµν
− , uαu

α } 〉 15∗ i 〈Aµν [∇αf
να
+ , uµ ] 〉

8∗ 〈Aµν uα f
µν
− uα 〉 16∗ 〈Aµν { fµν

− , χ+ } 〉
17† 〈Aµν ∇α∇α fµν

− 〉

Table 2: Monomials contributing to LA
(4). Operators that can be dismissed on the basis of field

redefinitions and the OPE are marked with ∗ and †, respectively (see Sec. 2.3).

i Operator OS
i i Operator OS

i

1 〈S uµu
µ uνu

ν 〉 10∗ i 〈S { fµν
+ , uµuν } 〉

2 〈S uµ uνu
ν uµ 〉 11∗ i 〈S uµ f

µν
+ uν 〉

3 〈S uµuνu
µuν 〉 12∗ 〈S {∇α f

µα
− , uµ } 〉

4 i 〈S uµ 〉 〈∇µ χ− 〉 13∗ 〈S χ+ χ+ 〉
5 〈S χ− 〉 〈χ− 〉 14∗ 〈S χ− χ− 〉
6∗ 〈S {χ+ , u

µuµ } 〉 15∗ 〈S f+µν f
µν
+ 〉

7∗ 〈S uµ χ+ u
µ 〉 16∗ 〈S f−µν f

µν
− 〉

8∗ i 〈S { uµ , ∇µ χ− } 〉 17† 〈S∇α∇α (uµ u
µ) 〉

9‡ 〈S 〉 〈χ− 〉 〈χ− 〉 18† 〈S∇µ∇µ χ+ 〉

Table 3: Monomials contributing to LS
(4). Operators that can be dismissed on the basis of field

redefinitions, the OPE and large NC are marked with ∗, † and ‡, respectively (see Sec. 2.3 and
App. A).

2.3 Minimal operator basis for the resonance Lagrangian

The operator basis constructed in subsection 2.2 is still redundant in the following sense. Many
of the resonance couplings contribute to the LECs of O(p6) in certain combinations only. The
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i Operator OP
i i Operator OP

i

1 〈P { hµν , uµuν } 〉 7∗,‡ i 〈P uµu
µ 〉 〈χ− 〉

2 〈P uµ h
µν uν 〉 8∗ 〈P [ fµν

− , uµuν ] 〉
3 i 〈P χ+ 〉 〈χ− 〉 9∗ i 〈P [∇µ f

µν
+ , uν ] 〉

4∗ i 〈P {χ−, uµu
µ } 〉 10∗ i 〈P {χ+ , χ− } 〉

5∗ i 〈P uµ χ− u
µ 〉 11∗ i 〈P [ fµν

+ , f−µν ] 〉
6∗ 〈P {∇µ χ+ , uµ } 〉 12‡ i 〈P 〉 〈∇µ∇µ χ− 〉

13† i 〈P ∇µ∇µ χ− 〉

Table 4: Monomials contributing to LP
(4). Operators that can be dismissed on the basis of field

redefinitions, the OPE and large NC are marked with ∗, † and ‡, respectively (see Sec. 2.3 and
App. A).

i Operator ORR
i , R = V,A Operator OSS

i Operator OPP
i

1 〈RµνR
µν uαuα 〉 〈S S uµu

µ 〉 〈P P uµu
µ 〉

2 〈Rµν u
αRµν uα 〉 〈S uµ S u

µ 〉 〈P uµ P u
µ 〉

3 〈Rµα R
να uµ uν 〉 〈S S χ+ 〉 〈P P χ+ 〉

4 〈Rµα R
να uν u

µ 〉
5 〈Rµα ( uαRµβ uβ + uβ R

µβ uα ) 〉
6 〈Rµν R

µν χ+ 〉
7 i 〈RµαR

αν f+βν 〉 gβµ

Table 5: Independent monomials of type OV V
i , OAA

i , OSS
i and OPP

i .

i Operator OSP
i Operator OSV

i Operator OSA
i

1 〈 {∇µ S , P } uµ 〉 i 〈 {S , Vµν } uµuν 〉 〈 {∇µ S , A
µν } uν 〉

2 i 〈 {S , P }χ− 〉 i 〈S uµ V
µν uν 〉 〈 {S , Aµν } fµν

− 〉
3 i 〈S P 〉 〈χ− 〉‡ 〈 {S , Vµν } fµν

+ 〉

Table 6: Independent monomials of type OSP
i , OSV

i and OSA
i . The operator OSP

3 (marked
with ‡) can be dismissed on the basis of large NC (see App. A).

number of those combinations turns out to be considerably smaller than the number of original
couplings. An elegant way to identify and to eliminate this redundancy is to make use of field

11



i Operator OV A
i Operator OPA

i Operator OPV
i

1 〈 [V µν , Aµν ]χ− 〉 i 〈 [P , Aµν ] fµν
+ 〉 i 〈 [∇µ P , Vµν ] uν 〉

2 i 〈 [V µν , Aνα ] hα
µ 〉 〈 [P , Aµν ] uµuν 〉 i 〈 [P , Vµν ] fµν

− 〉
3 i 〈 [∇µ Vµν , A

να ] uα 〉
4 i 〈 [∇α Vµν , A

αν ] uµ 〉
5 i 〈 [∇α Vµν , A

µν ] uα 〉
6 i 〈 [V µν , Aµα ] f−βν 〉 gαβ

Table 7: Independent monomials of type OV A
i , OPA

i and OPV
i .

R1R2R3 Operator O(R1,R2,R3)

SV V 〈S VµνV
µν 〉

SAA 〈S AµνA
µν 〉

SSS 〈S S S 〉
SPP 〈S P P 〉
V V V i 〈 Vµν V

µρ V νσ 〉 gρσ

V AP i 〈 [Vµν , A
µν ] P 〉

V AA i 〈 Vµν A
µρAνσ 〉 gρσ

Table 8: Independent monomials of type ORRR.

redefinitions. The idea behind field redefinitions is very simple: when considering the generating
functional of Green functions, the fields Ri are nothing but integration variables. Therefore,
any change of variables, consistent with the symmetries and the spectrum of the original field
theory, does not affect the Green functions generated by functional integration.

Here we will see that redefinitions of the resonance fields will simplify the content of L∞

enormously. We will be able to take advantage of these shifts to discard most of the operators
of LR

(4), without generating new contributions to the O(p6) chiral Lagrangian. However, since
we explicitly ignore operators generated by the field redefinitions that do not contribute to the
O(p6) chiral Lagrangian, Green functions on the basis of the simplified Lagrangian L∞ are in
principle different from those produced by the full resonance Lagrangian.

2.3.1 Linear field redefinitions

We consider here transformations of the type

Ri −→ Ri + gij F(2)(Rj) , (2.20)

12



where the gij are arbitrary constants and F(2)(Rj) are chiral monomials of O(p2), linear in the
resonance field Rj , and with the same Lorentz, C, P and hermiticity properties as Ri. Applying
these field redefinitions to a given monomial in the Lagrangian increases its chiral order. Many
terms in L∞ in Eq. (2.11) therefore generate monomials that can only influence LECs of O(p8)
or higher. The exceptions are the mass terms and LR

(2), for which one has schematically:

−1

2
M2

R〈R2〉 −→ −1

2
M2

R〈R2〉 + LRR
(2) ,

LR
(2) −→ LR

(2) + LR
(4) . (2.21)

By appropriate choices of the constants gij in Eq. (2.20) we can therefore eliminate monomials
belonging to LR

(4), while redefining some of the couplings appearing in LRR
(2) .

We have found 18 possible redefinitions for vector, 17 for axial-vector, 11 for scalar and 10
for pseudoscalar nonet fields. The complete list is reported in App. B. Using the above 56 field
transformations we can eliminate 47 of the 70 operators of the type OR

i . There are 9 monomials
that do not appear at all in the above field transformations:

OV
21,OV

22,OA
17,OS

17,OS
18,OP

13 and OS
4 ,OS

9 ,OP
12. (2.22)

Therefore, they can certainly not be transformed away. Those of the first group in Eq. (2.22)
can, however, all be discarded due to the bad high-energy behaviour they generate (see Sec. 4).
Of the three remaining (multiple-trace) terms in Eq. (2.22) it is shown in App. A that OS

4 (along
with OS

5 and OP
3 ) should be retained while the other two (OS

9 , OP
12) only lead to contributions

subleading in 1/NC and can therefore be dismissed.

For the remaining terms one has to make a choice. We have adopted the strategy to eliminate
preferentially terms with χ’s and leave those with many derivatives in the list because the latter
(some will not even contribute to “simple” Green functions) have the worst possible high-
energy behaviour and should therefore be more easily eliminated with the help of high-energy
constraints. In our analysis, we have kept the following 15 operators (70 - 47 - 8 = 15) in the
Lagrangian LR

(4):

OV
1 ,OV

2 ,OV
3 ,OV

4 ,OA
1 ,OA

2 ,OA
3 ,OS

1 ,OS
2 ,OS

3 ,OS
4 ,OS

5 ,OP
1 ,OP

2 ,OP
3 . (2.23)

2.3.2 Nonlinear field redefinitions

We may also consider transformations of the type

Ri −→ Ri + gijk F(0)(RjRk) , (2.24)

where gijk are again arbitrary constants. The F(0)(RjRk) are chiral monomials of O(p0) involving
the fields Rj , Rk and with the same Lorentz, C, P and hermiticity properties as Ri. The relevant
transformations of monomials in L∞ are

−1

2
M2

R〈R2〉 −→ −1

2
M2

R〈R2〉 + LRRR
(0) ,

LR
(2) −→ LR

(2) + LRR
(2) , (2.25)
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thus allowing one to remove either bilinear or trilinear couplings. We have found 13 independent
transformations of the type (2.25). They could in principle be used to eliminate all cubic
operators (seven) and six out of the 38 bilinear operators. However, in contrast to the previous
case of linear field transformations both the bilinear and trilinear terms are of leading chiral
order. We have therefore chosen to keep all monomials in LRR

(2) and LRRR
(0) for the time being.

However, the redundancy will manifest itself in certain combinations of the λ
RiRj

i and λRiRjRk

that always occur together in the LECs of O(p6) (see App. D).

In summary, this leaves us with a minimal Lagrangian of the form given in Eq. (2.11) where
LGB

(4,6), LR
(4) and LSP

(2) are replaced with their minimal versions. Explicitly,

LGB
(4,6)|minimal = 0 (see, however, subsection 3.1) ,

LR
(4)|minimal =

4
∑

i=1

λV
i OV

i +
3
∑

i=1

λA
i OA

i +
5
∑

i=1

λS
i OS

i +
3
∑

i=1

λP
i OP

i , (2.26)

LSP
(2) |minimal =

2
∑

i=1

λSP
i OSP

i .

Note that OSP
3 has been dismissed on the basis of large NC (cf. App. A).

3 The chiral Lagrangian from resonance exchange

In this section we sketch the derivation of resonance exchange contributions to the chiral La-
grangian up to O(p6), deferring most definitions and results to App. C. The mesonic chiral
Lagrangian in the notation of Eq. (1.1) takes the form

LχPT = LχPT
2 + LχPT

4 + LχPT
6 + ... (3.1)

The leading-order term

LχPT
2 =

F 2

4
〈uµu

µ + χ+〉 (3.2)

contains only two LECs, the meson decay constant in the chiral limit F and the constant B
in χ = 2B(s + ip) that is related to the quark condensate. These parameters characterize the
spontaneous breaking of chiral symmetry and they are insensitive to physics at shorter distances.

Higher orders in the chiral expansion bring in information from higher energy scales that
have been integrated out by evolving down to low energies. This information is encoded in the
LECs, the coupling constants of the higher-order Lagrangians:

LχPT
4 =

10
∑

i=1

Li O(4)
i , LχPT

6 =
90
∑

i=1

Ci O(6)
i . (3.3)

The numbering refers to NF = 3 light flavours and we have omitted in the sums the contact
terms involving external fields only. Explicit expressions for the operators O(4)

i and O(6)
i can be

found in Refs. [3, 6].
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The chiral expansion scale Λχ ∼ MV indicates that the LECs receive contributions from
energies at or above MV . It is therefore natural to expect that the most important contributions
to the LECs will come from the lightest meson resonances. This was in fact confirmed for the
LECs of O(p4) that appear to be saturated by resonance exchange [10]. A qualification is
in order here. To leading order in 1/NC (tree-level exchange only), no scale dependence is
generated for the LECs. The saturation by resonance exchange at O(p4) appears to be valid for
a renormalization scale between 0.5 and 1 GeV. Here we are going to perform the integration
of the resonance fields up to O(p6) in the chiral expansion assuming that a similar saturation
holds up to this order.

To make the expressions more compact, we rewrite the resonance couplings in the Lagrangian
L∞ in Eq. (2.11) as

LR
(2) + LR

(4) =
∑

R=S,P

〈

R (gR
2 + gR

4 )
〉

+
∑

R=V,A

〈

Rµν (gR
2 + gR

4 )µν
〉

, (3.4)

and analogously for the part LRR
(2) bilinear in resonance fields (see App. C for the precise defini-

tions).

Integrating out the resonance fields at tree level amounts to solving the EOM of the fields
perturbatively up to the requested order. Inserting the solutions into L∞ and keeping only those
pieces contributing up to O(p6) in the chiral expansion, we write the final results in the form

LR−exchange
(4+6) = LSP + LV A + LSPV A . (3.5)

The Lagrangians LSP , LV A and LSPV A are also given in App. C.

The Lagrangian (3.5) is of course of the general form LχPT
4 + LχPT

6 and we can identify the
expressions for the LECs Li and Ci in terms of resonance masses and couplings. The results for
Li are well known [10] and will not be reproduced here. The main result of this paper are the
resonance exchange contributions to the LECs Ci of O(p6) collected in App. D.

The final results for the LECs Ci display the dependence on resonance couplings and masses.
At this point, the information is still rather limited. On the one hand, Table D.1 shows which
LECs are not sensitive at all to resonance exchange and may therefore be expected to be
negligible in the spirit of our approach. Closer inspection of Table D.1 reveals that there are in
addition several linear relations among the LECs, e.g., C20 = −3C21 = C32 = C35/6 = C94/8,
C24 = 6C28 = 3C30, etc. Finally, some of the LECs of O(p6) are found to depend only on
resonance couplings that already occur at O(p4) [10]. In fact, neglecting the contact terms,
there are only three of them which have already been analysed [20,21]: C12, C38, C87. With some
more effort, one finds that the same applies also to C1 + 4C3, 3C1 − 4C4, C1/12−C28 + rSC32,
C88 − C90 [21], C91, C93, etc.

The information in Table D.1 comes from the matching of chiral resonance theory to χPT.
Still missing is the matching of chiral resonance theory to QCD that will give us information on
the resonance couplings and then in turn on the LECs. This matching procedure is the subject
of Sec. 4.
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3.1 Proca fields

In this paper we are only concerned with the chiral Lagrangian of even intrinsic parity. In
the resonance Lagrangian L∞ in Eq. (2.11) we have tacitly assumed that also there only even-
intrinsic-parity couplings are relevant. This is however not the full story because resonance
exchange with two odd-intrinsic-parity vertices can also produce contributions to LECs in the
even-intrinsic-parity sector. At O(p6) only spin-1 exchange can contribute here but only with
Proca vector fields instead of antisymmetric tensor fields [32]. The relevant Lagrangian with
Proca fields V µ, Aµ consists of three terms only 3 :

Lε = gV
1 Oε

V 1 + gV
2 Oε

V 2 + gA
1 Oε

A , (3.6)

where

Oε
V 1 = i εµνρσ 〈 V µ uν uρ uσ 〉 ,

Oε
V 2 = εµνρσ 〈V µ { uν , f ρσ

+ }〉 ,
Oε

A = εµνρσ 〈Aµ {uν , f ρσ
− }〉 . (3.7)

Integrating out the vector and axial-vector Proca fields produces an additional contribution to
the resonance-induced chiral Lagrangian of O(p6). In the standard basis for NF = 3 [6] we find :

Lodd×odd
(6) =

(gV
1 )2

2M2
V

[

O(6)
42 − 2O(6)

44 − O(6)
46 + 2O(6)

47

]

+
2 gV

1 g
V
2

M2
V

[

O(6)
48 + 2O(6)

50 − O(6)
52

]

+
2 (gV

2 )2

M2
V

[

O(6)
53 + O(6)

55 − 2O(6)
56 − O(6)

59

]

+
2 (gA

1 )2

M2
A

[

O(6)
70 + O(6)

72 − 2O(6)
73 − O(6)

76

]

. (3.8)

The corresponding contributions have been added to the LECs Ci in Table D.1.

Some additional remarks are in order here. A short-distance analysis would be required
to investigate whether the Proca-type couplings gV

1 , gV
2 and gA

1 are actually nonzero. In fact,
general quantum field theory (the Froissart theorem applied to π0 Compton scattering [32])
does indeed require gV

2 6= 0. The coupling gV
2 can be estimated from V → Pγ decays and it

was in fact included in the O(p6) analysis of γγ → π0π0 [33]. As already noted, antisymmetric
tensor field exchange cannot produce the terms proportional to (gV

2 )2 in Eq. (3.8) for purely
kinematical reasons. In other words, adopting the antisymmetric tensor fields everywhere would
require the explicit addition of the terms ∼ (gV

2 )2 to the resonance Lagrangian. With the role of
vector and antisymmetric tensor fields interchanged, an analogous situation occurs at O(p4) [11].
A corresponding short-distance analysis is not yet available for gV

1 and gA
1 .

3Nonlinear resonance couplings and those involving spin-0 resonance fields start to contribute at O(p8) only.
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4 Short-distance constraints on the resonance couplings

QCD imposes severe constraints on both couplings and operators of the effective field theory
that implement the strong interactions in the nonperturbative low-energy region. The chiral
symmetry of massless QCD, for instance, determines the structure of the operators both in χPT
and in resonance chiral theory, as we have seen in Sec. 2. To determine the couplings themselves
is much more involved as it would amount to solve the theory in the nonperturbative regime. On
the other hand, we know how to describe QCD at high energies, in its perturbative domain. As
the spectral functions of both vector and axial-vector current correlators show, the perturbative
continuum describes them reasonably well above the resonance region. Hence we can conclude
that for E & 2 GeV we know how to handle, both qualitatively and quantitatively, the strong
interaction.

Our large-NC Lagrangian L∞ in Eq. (2.11) is intended to describe the strong interactions
in the energy region of the light-flavour resonances (MV . E . 2 GeV). It is true that the
phenomenologically known spectrum of resonances in this domain is only partially represented
in L∞, as we are neglecting the η′ (see Ref. [25]) and include the lightest nonets of resonances
only. However, the inclusion of a more complete set of states is a systematic procedure that can
be carried out in successive steps. In addition, heavier degrees of freedom tend to be suppressed
by inverse powers of their mass, for instance in their contributions to the LECs.

In the last years there has been increasing interest in the development of a hadronic de-
scription of the energy region where resonances are active degrees of freedom, with different
goals in mind. The Minimal Hadronic Ansatz [13] has unveiled interesting aspects of the strong
dynamics and its role in the determination of matrix elements of operators of the effective elec-
troweak Hamiltonian. Studies within two-, three- [16–21] or even four-point functions [34] have
allowed to implement QCD dynamics in different approaches. The common features of these
techniques are, on one side, the use of large-NC ideas and on the other hand, performing a
matching procedure between the resonance region and the perturbative regime of QCD. The
promising phenomenological results achieved so far encourage us to focus on these two aspects.

Green functions are the fundamental objects of any quantum field theory. Here we are
only interested in the colour-singlet Green functions of QCD currents, whose short-distance
behaviour can be determined within QCD. More specifically, we concentrate on the spectral
functions of two-current correlators and on three-point Green functions that we discuss in turn.

4.1 Spectral functions of two-current correlators

Within perturbative QCD the leading-order behaviour of the spectral functions of two-current
correlators is well known (see Ref. [2] and references therein). This knowledge allows, through
the use of dispersion relations, the construction of low-energy theorems in terms of sum rules.

Those spectral functions have also been employed from another point of view. In the large-
NC limit, the QCD result is saturated with an infinite number of intermediate hadronic states.
Hence, from the QCD behaviour one can extract information on general aspects of the individual
contributions at large momenta and, in consequence, on the high-energy behaviour of form
factors of QCD currents. As an example of this last procedure, let us consider the spectral
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function of the isovector component of the vector-vector current correlator ImF
(1)
V (t). At leading

order in QCD it is known to behave like a constant : ImF
(1)
V (t) = NC/12 π [35]. To recover this

result, each of the infinite number of hadronic contributions to this spectral function is expected
to vanish at high t, in particular the two-pion contribution in terms of the vector form factor of
the pion Fπ(t).

This result for the high-energy behaviour of form factors of QCD currents is also known as the
Brodsky-Lepage condition [26] although their reasoning involves parton dynamics. As a general
statement it says that form factors of QCD currents should vanish at high momentum transfer.
This result is well supported phenomenologically and it has been widely applied [11,14,36,37].
Here a question arises concerning form factors with resonances as asymptotic states. Of course,
such form factors are not observable quantities. Consequently, phenomenology does not give
us any information about their asymptotic behaviour. On the other hand, large NC suggests
that these form factors should be treated on the same footing as those with pseudo-Goldstone
bosons in the final states because at leading order in the 1/NC expansion resonances are stable.
However, at this order there should also be an infinite number of stable resonances in the theory.
Since we will always limit the number of resonances to a few we will adopt the pragmatic
point-of-view that the Brodsky-Lepage condition must be satisfied for form factors with actual
asymptotic states but not necessarily for form factors of resonances. One exception is the case
of the 〈SPP 〉 Green function where we consider also pion-to-resonance transition form factors.

Using these and analogous ideas on the high-energy behaviour of form factors and scattering
amplitudes we now come back to Eq. (2.22) and explain why the couplings of those operators
must vanish.

• The contribution of OS
17 to the scalar form factor F ij

S (t) (where i, j are flavour indices)
grows linearly with t for large t. This is inconsistent with the quark counting rules unless
OS

17 is absent. Moreover, by analysing the correlator Πij
SS−PP (t), one sees that both OS

18

and OP
13 contribute, for high t, terms linear in t and constant. The OPE implies that the

correlator goes like 1/t2 for high t. Setting to zero the linear and constant terms gives
conditions that are satisfied only if both operators OS

18 and OP
13 are absent.

• The terms OV
21,OV

22 and OA
17 can be discarded by using exactly the same high-energy

constraints as in Ref. [11]. Starting with elastic meson-meson scattering in the forward
direction, OV

21 is inconsistent with a once-subtracted dispersion relation. Once this term is
dropped, the vector pion form factor requires OV

22 to be absent. Finally, the unsubtracted
dispersion relation for the left-right two-point function then eliminates OA

17.

Altogether we therefore have

λP
13 = 0 ,

λS
17 = λS

18 = 0 ,

λA
17 = 0 ,

λV
21 = λV

22 = 0 . (4.1)

For the parameters of the leading-order resonance Lagrangian the same type of requirements
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j p2
kp1 + p2ip1

Figure 1: Momentum configuration for the Green functions Πijk
123.

leads to the well-known conditions [11, 14, 38–41]

FV GV = F 2 , F 2
V − F 2

A = F 2 ,

F 2
V M

2
V = F 2

AM
2
A , (4.2)

4cdcm = F 2 , 8(c2m − d2
m) = F 2 .

4.2 Three-point functions of QCD currents

The Green functions of interest are

Πijk
123(p1, p2) = i2

∫

d4x d4y ei (p1·x+ p2·y)
〈

0
∣

∣T
{

J i
1(x) J

j
2(y) J

k
3 (0)

} ∣

∣ 0
〉

, (4.3)

where the QCD currents J i
a are defined as

Si = q λi q , P i = q i γ5 λ
i q , V i

µ = q γµ
λi

2
q , Ai

µ = q γµ γ5
λi

2
q , (4.4)

with the normalization 〈λiλj〉 = 2 δij. The momenta are assigned as shown in Fig. 1. We are
particularly interested in those Green functions that are order parameters of the spontaneous
breaking of chiral symmetry. They do not receive contributions from perturbative QCD at large
momentum transfer in the chiral limit. As a consequence, their behaviour at short distances is
smoother than expected on purely dimensional grounds.

Chiral Ward identities, discrete and SU(3) symmetries constrain the structure of these Green
functions [42]. Their short-distance behaviour can be determined within perturbative QCD in
terms of an OPE for different kinematical regimes, namely Π(λp1, p2), Π(p1, λp2), Π(λp1, λp2)
and Π(λp1, p2 − λp1), for large λ. We will only consider the leading orders both in 1/λ and in
the perturbative expansion of QCD. Consequently, our results hold up to O(αS) corrections.

The procedure is then straightforward. We first compute the corresponding three-point
Green functions within our approach based on the Lagrangian L∞. For the different kinematical
regimes specified above, we then match the results with those of the OPE. In this way we obtain
information on the couplings of the Lagrangian and therefore on the LECs Ci. The specific
details of the matching have to be worked out in each case [16–18,20, 21].
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5 Resonance exchange for 〈VAP〉 and 〈SPP〉 correlators

In this section we reanalyse the three-point functions 〈V AP 〉 and 〈SPP 〉 in the present frame-
work. In previous treatments, the chiral resonance approach was either not used at all [21] or
with a selected set of couplings only [20].

A virtue of the resonance Lagrangian framework lies in the fact that chiral symmetry is
built in from the start. As a consequence the chiral symmetry relations arising at special
kinematical points hold automatically and, moreover, the corresponding high-energy behaviour
is also inherited. An example is the relation between the 〈SPP 〉 correlator and the 〈SS −PP 〉
two point function discussed in [21]. In the framework of Ref. [21], the relation between 〈SPP 〉
and 〈SS − PP 〉 leads to independent constraints on the chosen ansatz. Here, not only is the
relation automatically satisfied but also the high-energy behaviour is correct once the proper
high-energy behaviour of the two-point function has been implemented. The relation between
the 〈V A|π〉 matrix element and the two-point function 〈V V − AA〉 is a similar case [16, 17].
This should also be of great advantage for the study of four- and higher-point functions. For
this reason the relations in Eqs. (4.1) and (4.2) will be used throughout the present section.

The role of the terms that have been removed by use of field redefinitions is less clear a
priori. However, in the examples considered below we demonstrate explicitly that the omission
of these terms can be justified by the asymptotic constraints.

5.1 〈V AP 〉 Green function

Chiral Ward identities, SU(3)V , parity and time reversal [16,17] provide the general expression
for the 〈V AP 〉 Green function 4:

(ΠVAP )ijk
µν (p, q) = (−2)f ijk

{

〈ψψ〉0
[

(p+ 2q)µqν
q2(p+ q)2

− gµν

(p+ q)2

]

+Pµν(p, q)F(p2, q2, (p+ q)2) + Qµν(p, q)G(p2, q2, (p+ q)2)

}

, (5.1)

where the transverse tensors Pµν and Qµν are defined by :

Pµν(p, q) = qµpν − (p · q)gµν ,

Qµν(p, q) = p2qµqν + q2pµpν − (p · q)pµqν − p2q2gµν . (5.2)

The 〈V AP 〉 correlator was studied in Ref. [20] in a resonance Lagrangian framework. In this
context the functions F and G were found to be of the general structure

F(p2, q2, (p+ q)2) =

〈

ψψ
〉

0

(p2 −M2
V )(q2 −M2

A)

[

a0 +
b1 + b2 p

2 + b3 q
2

(p+ q)2
+
c1 + c2 p

2 + c3 q
2

(p+ q)2 −M2
P

]

,

G((p2, q2, (p+ q)2)) =

〈

ψψ
〉

0

(p2 −M2
V )q2

[

d1 + d2 q
2

(p+ q)2 (q2 −M2
A)

+
f

(p+ q)2 −M2
P

]

. (5.3)

4Note that our convention for the correlator differs by a factor of (-2) compared to Refs. [17,20], whereas the
definitions of the functions F and G coincide.
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The comparison with the present resonance Lagrangian in its minimal form according to sub-
section 2.3 shows that the analysis of Ref. [20] included all relevant terms with the exception
of the three-resonance coupling λV AP . In Fig. 2 we show the Feynman diagrams derived from
the resonance Lagrangian of Sec. 2 in its minimal form. Since we are also using the same no-
tation for the couplings in the resonance Lagrangian, the results for the coefficients a0, . . . , f
may simply be taken over from Ref. [20] except in the case of c1 which receives an additional
contribution proportional to λV AP ,

c1 = −c2M2
V − c3M

2
A + 8 λV AP FV FAdm/F

2 . (5.4)

The various short-distance conditions discussed in Ref. [20] impose constraints on all but pre-
cisely this coefficient,

2a0 = −b2 = 2c2 = 2c3 = f = −1 , b3 = d2 = 0 , b1 = M2
A −M2

V , d1 = 2M2
A , (5.5)

implying that the conclusions of Ref. [20] remain unaffected. The predictions for the chiral
LECs may be expressed in terms of the coefficients a0, . . . , f . Therefore they coincide with the
ones of Ref. [20], with the exception of the coupling constant C82 that receives a contribution
from λV AP :

C82 = −F
2(5M2

V + 4M2
A)

32M4
VM

2
A

− F 2

32M2
AM

2
P

− FV FAdm

2M2
VM

2
AM

2
P

λV AP . (5.6)

The predictions for this and the other LECs are of course contained in Table D.1 of the present
work. Taking into account the restrictions on the resonance couplings imposed by Eq. (5.5), we
find, as in Ref. [20]:

√
2λ0 = −4λV A

1 − λV A
2 − λV A

4

2
− λV A

5 =
1

2
√

2
(λ′ + λ′′) , (5.7)

√
2λ′ = λV A

2 − λV A
3 +

λV A
4

2
+ λV A

5 =
MA

2MV
,

√
2λ′′ = λV A

2 − λV A
4

2
− λV A

5 =
M2

A − 2M2
V

2MVMA
,

λPV
1 = −4λPV

2 = −F
√

M2
A −M2

V

4
√

2dmMA

, λPA
1 =

F
√

M2
A −M2

V

16
√

2dmMV

,

where the relations in Eq. (4.2) have been used. Inserting these relations in Table D.1 one
recovers the predictions for the coupling constants C78, C87, C88, C89 and C90 in Ref. [20].

One may ask the question what would have become of these results if instead one had
performed the calculation with the full resonance Lagrangian before the field redefinitions. We
have in fact performed this calculation and the answer to the question is simple: the above
result for the 〈V AP 〉 correlator remains valid also in this case. The reason is that the potential
additional contributions also lead to conflicts with the OPE and are thus required to vanish.

5.2 〈SPP 〉 Green function

In Ref. [21] the 〈SPP 〉 Green function was analysed with a general meromorphic ansatz to
comply with the large-NC limit of QCD. From SU(3)V and C invariance, the 〈SPP 〉 Green
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Figure 2: Feynman diagrams contributing to ΠV AP in the minimal resonance Lagrangian. π
stands for a Goldstone boson, V , A and P denote vector, axial-vector and pseudoscalar reso-
nances, respectively.
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function is given in terms of a single scalar function:

Πijk
SPP (p, q) = dijk ΠSPP

(

p2, q2, (p+ q)2
)

. (5.8)

Bose symmetry implies that the function is symmetric in its second and third arguments. Ac-
cording to the results of Ref. [21] it is of the form

ΠSPP (s, t, u) = 8B3F 2M2
SM

4
P

1 + P1 + P2 + P3 + P4

[M2
S − s][−t][−u][M2

P − t][M2
P − u]

, (5.9)

where the Pn are polynomials of degree n in the variables s, t and u

P1 = c010(t+ u) , (5.10)

P2 = c011tu ,

P3 = [c111s+ c021(t+ u)]tu ,

P4 = [c211(s
2 − (t− u)2) + c121(s(t+ u) − (t− u)2)]tu .

As discussed in Ref. [21], the restrictions on the form of the polynomials arise from the require-
ments that the asymptotic behaviour of the function ΠSPP in the various limits be no worse
than what follows from the OPE and that the scalar and pseudoscalar (transition) form factors
with at least one pion vanish asymptotically. The computation within the chiral resonance
framework in its minimal version according to subsection 2.3 is straightforward. The relevant
diagrams are given in Fig. 3 and they yield the result

ΠSPP (p2
1, p

2
2, q

2) = − 64B3

{

−F 2

8 q2 p2
2

+
c2m

p2
1 −M2

S

(

1

q2
+

1

p2
2

)

− d2
m

(

1

q2 (p2
2 −M2

P )
+

1

p2
2 (q2 −M2

P )

)

− cm cd q · p2

q2p2
2 (p2

1 −M2
S)

+
2 cm dm λ

SP
1

p2
1 −M2

S

(

− q · p1

q2 (p2
2 −M2

P )
+

p1 · p2

p2
2 (q2 −M2

P )

)

+
4cm dm λ

SP
2

p2
1 −M2

S

(

1

q2 −M2
P

+
1

p2
2 −M2

P

)

+
4 d2

m λ
PP
3

(q2 −M2
P ) (p2

2 −M2
P )

− 4 cm d
2
m λ

SPP

(p2
1 −M2

S) (q2 −M2
P ) (p2

2 −M2
P )

}

. (5.11)

In addition to the couplings from the Lagrangian LR
(2) in Eq. (2.13), ΠSPP is found to depend

on the resonance couplings λSP
i (i = 1, 2), λPP

3 and λSPP . Inspection reveals that this result
is of the desired form, up to a contribution ∝ (λSP

1 + dm/cm)(s(t + u) − t2 − u2) to P2 that
is in conflict with demanding that the scalar form factor involving a Goldstone boson and a
pseudoscalar resonance fades away at high momenta. The conflict is resolved by the condition

λSP
1 = −dm

cm
. (5.12)
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Figure 3: Feynman diagrams contributing to ΠSPP in the minimal resonance Lagrangian. π
stands for a Goldstone boson, S and P denote scalar and pseudoscalar resonances, respectively.
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Inserting this relation in Table D.1 along with the relations in Eq. (4.2) one recovers the pre-
dictions for C12, C34 and C38 from Ref. [21].

In the resonance Lagrangian approach a new feature arises. The OPE expansion for the
〈SPP 〉 function demands that its leading term behaves as ΠSPP (λ2s, λ2t, λ2u) ∼ O(1/λ2), while
one can see that our result of Eq. (5.11) is of O(1/λ4). This should come as no surprise since the
terms with the potential to generate O(1/λ2) contributions to the 〈SPP 〉 Green function (λS

8,14

and λP
6,10) have been discarded when constructing the minimal resonance Lagrangian. It turns

out, however, that the attempt to generate c211, c121 6= 0 by retaining those terms is bound to
fail because the restrictions imposed by Eq. (5.10) require λS

8 = λS
14 = λP

6 = λP
10 = 0 nonetheless.

(Note that there arise contributions proportional to λS
8 (t3 + u3) and λP

6 s
2(t+ u) in P3.)

It is relevant to notice that, as already commented in Ref. [21], the procedure we are devising
does not apply to all Green functions with the same settings. Contrary to the 〈V AP 〉 case,
higher-order corrections furnish the Wilson coefficients of the 〈SPP 〉 function with anomalous
dimensions and therefore the matching in the NC → ∞ limit that we intend to enforce (with
a finite number of meson states in the spectrum) is not fully feasible in the 〈SPP 〉 case. Thus
we take the softer approach of demanding that asymptotically our Green functions behave no
worse than given by the OPE expansion at leading order, as implemented in Ref. [21].

6 Conclusions

The LECs of χPT encode the dynamical information on the massive hadronic states of QCD,
which are not present explicitly in the effective Goldstone Lagrangian. The most important
contributions to the LECs are expected to originate from the low-lying mesonic resonances
because contributions from heavier hadrons are suppressed by inverse powers of their masses.

In the large-NC limit of QCD, the correlators of colour-singlet quark-antiquark currents
are given by tree-level exchanges of infinite towers of narrow mesons. Crossing and unitarity
imply that these sums correspond to the lowest-order approximation of some effective mesonic
Lagrangian. The construction of this general Lagrangian, with an infinite number of hadronic
states, is beyond our present abilities. However, truncating the hadronic spectrum to the lowest-
lying multiplets with JPC = 1−−, 1++, 0−+ and 0++, one obtains a very good approximation at
low energies. The couplings of this resonance Lagrangian should be determined by imposing that
the corresponding Green functions reproduce the asymptotic behaviour of QCD∞. Integrating
out all massive fields at the level of the generating functional, one obtains the low-energy effective
Lagrangian of the Goldstone modes. Therefore, from the resonance chiral Lagrangian one can
determine the LECs of χPT as functions of resonance parameters.

In this paper we have constructed the most general SU(3)L ×SU(3)R invariant Lagrangian,
containing Goldstone bosons and the lowest-lying JPC = 1−−, 1++, 0−+ and 0++ multiplets, that
contributes to LχPT

6 after integrating out the resonance fields. Since any resonance exchange
involves a suppression factor 1/M2

R from the resonance propagator, we only need to consider
terms involving one, two or three resonance fields, coupled to chiral monomials of O(p4), O(p2)
and O(p0), respectively. This can also be seen by expanding the classical equations of motion
of the resonance fields in inverse powers of the heavy masses, which shows that for p2 ≪ M2

R

the resonance fields scale as R ∼ O(p2/M2
R).
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The number of possible chiral structures is rather large. Using partial integration, the lowest-
order equations of motion and algebraic identities to eliminate linearly dependent terms, we have
identified a basis of 70 monomials in LR

(4), 38 in LRR
(2) and 7 in LRRR

(0) . This basis is, however, highly

redundant for the purpose of determining the LECs of O(p6) because only certain combinations
of the resonance couplings occur in the LECs. This can be understood through appropriate
redefinitions of the resonance fields that leave the generating functional invariant. We have
found a large number of linear field redefinitions of the type (2.20), allowing us to eliminate 47
terms of the resonance Lagrangian LR

(4) by transforming them into structures of higher chiral

order that do not contribute to LχPT
6 . We have chosen to eliminate preferentially terms with

χ’s, while keeping those with many derivatives. Higher-derivative structures generate a worse
short-distance behaviour and, therefore, will be most easily eliminated through high-energy
QCD constraints. In fact, six surviving operators can be discarded because they induce an
unacceptable high-energy behaviour of two-point functions. In addition, there are two constants
in LR

(4) that only lead to contributions subleading in 1/NC. We have finally kept a total of 15

terms in LR
(4): four vector, three axial-vector, five scalar and three pseudoscalar operators.

Once the relevant resonance Lagrangian has been determined, we have performed the func-
tional integration of the resonance fields and obtained their contribution to the LECs of O(p6).
The results, given in App. D, still show the presence of redundant terms; many resonance cou-
plings appear only in definite combinations. Again, this can be understood through additional
non-linear field redefinitions of the type (2.24), which could be used to eliminate all seven tri-
linear couplings and six bilinear operators. One further bilinear coupling can be dismissed on
the basis of large NC . Altogether, 46 independent combinations of resonance couplings appear
in the LECs of O(p6).

We have adopted the usual chiral formulation of spin-1 fields in terms of antisymmetric ten-
sors. For completeness, we have added possible contributions to LχPT

6 from odd-parity vector
and axial-vector terms, with O(p3) chiral monomials in the Proca field formulation. This intro-
duces three additional couplings, not present in the antisymmetric formalism at this order in
the momentum expansion. The equivalence of different formalisms for vector fields, once short-
distance constraints are taken into account, was demonstrated at O(p4) in Ref. [11]. One of
the three Proca-type couplings contributing at O(p6) is already known to be nonvanishing [32].
In the antisymmetric tensor formulation, corresponding local terms of O(p6) would have to be
added to the chiral resonance Lagrangian. For the other two couplings, a short-distance analysis
remains to be done.

The large-NC counting is more transparent in the U(3)L × U(3)R effective theory, where
multiple-trace terms are suppressed by corresponding powers of 1/NC . However, one needs
then to consider the special role of the U(1)A anomaly, which is a very important physical
effect not present at leading order in 1/NC . This can be incorporated through a more involved
counting in powers of p2 ∼ mq ∼ 1/NC . Integrating out the singlet Goldstone field, one recovers
the more standard SU(3)L × SU(3)R chiral framework. This procedure is sketched in App. A,
hereby elucidating the role of the multiple-trace terms encountered in our resonance Lagrangian.
A more systematic analysis of the η′ contributions to the O(p6) LECs will be given in [25].

The complete list of resonance contributions to the chiral couplings of O(p6) constitutes our
main result. It shows which LECs are not sensitive at all to resonance exchange and, therefore,
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may be expected to be negligible. Moreover, there are interesting relations among different
couplings, which can be useful for phenomenological applications, e.g., C20 = −3C21 = C32 =
C35/6 = C94/8 or C24 = 6C28 = 3C30, etc. In a few cases, e.g., C1 + 4C3, 3C1 − 4C4, C12,
C1/12 − C28 + rSC32, C38, C87, C88 − C90, C91, C93, etc., the O(p6) LECs only depend on
resonance couplings already present at O(p4).

Our program towards a systematic analysis of resonance contributions still involves a missing
step: the determination of the resonance couplings through appropriate short-distance QCD
constraints. These couplings could be fixed by enforcing a systematic matching procedure
between the Green functions of QCD∞ and their corresponding correlators in the effective low-
energy theory. The matching cannot be exact, i.e. it is not possible to perform it for all possible
Green functions, because that would require to introduce an infinite number of hadronic states.
Nevertheless, it is certainly possible to accomplish a matching good enough to correctly describe
a wide set of interesting physical observables. We have shown two known examples, the 〈V AP 〉
and 〈SPP 〉 three-point functions, which provide very useful constraints on some low-energy
couplings. A thorough study of other three-point correlators is under way.
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A Multiple-trace terms and η
′ exchange

The form of the EOM (2.14) implies that the number of traces is not conserved over the course
of constructing the effective Lagrangian. In principle, this could be circumvented at the cost
of ignoring the EOM and writing the Lagrangian in terms of ∇µu

µ. More fundamentally, this
circumstance reflects the fact that the counting of traces in the effective theory is in general not
in direct correspondence with the order in 1/NC of a term 5.

This discrepancy is generated by the occurrence of an intermediate singlet pseudoscalar (the
η′) which in the present context is treated as massive, as is reflected by the Goldstone manifold
being SU(3). To arrive at a classification of contributions with respect to their order in 1/NC

one should instead start from a Lagrangian which involves the singlet field as an explicit degree

5There are cases where such a mismatch is introduced artificially by using Cayley-Hamilton identities to trade
terms with fewer traces for terms with more traces. If desired, this is repaired easily and shall not be our concern
here.
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of freedom. In this case the leading-order Lagrangian reads [43]

L̃ =
F 2

0

4
〈ũµũ

µ + χ̃+〉 +
F 2

0

3
M2

0 ln2(det ũ), (A.1)

where the tildes refer to building blocks made of an effective field ũ(x) ∈ U(3). The additional
degree of freedom, ln(det ũ), comes with a nonzero chiral limit mass M0 that prevents it from
causing a ‘U(1) problem’ [44]. It is well known, however, that this mass vanishes in the large-
NC limit, M2

0 = O(1/NC). The structure of the above effective Lagrangian implies a balance
between the scales set by the momenta, quark masses and 1/NC ,

p2 ∼ mq ∼ M2
0 . (A.2)

The validity of the theory relies on the assumption that all of these scales are small in comparison
to the intrinsic scale of QCD. While that is a nontrivial assumption, the benefit lies in the fact
that the large-NC counting rules are now ‘canonical’: terms with single traces are of order NC

while additional traces reduce the order in 1/NC by unity. Factors of ln(det ũ) also lead to a
suppression in 1/NC, which can be understood in a framework where singlet external fields are
present [30, 31, 45].

Contact with the standard effective theory is established when treating the mass M2
0 as large

in comparison to the octet meson masses and momenta squared, such that by the EOM

ũ = u{1 +
1

12M2
0

〈χ−〉 + O(p4)}, (A.3)

with det u = 1. Proceeding in this manner, one recovers the well-known η′ contribution to the
coupling constant L7 [3],

L
(η′)
7 = − F 2

0

48M2
0

. (A.4)

As emphasized in Refs. [3,23], some care is needed in performing the large-NC limit for L7, that
is still an open question. We refer to Refs. [24, 25] for detailed expositions in which sense L7

can be counted as O(N2
C) even though it is the coefficient of the double-trace term 〈χ−〉2. On

the other hand, contributions to L1 − 1
2
L2, L4 and L6 do not occur. These LECs are therefore

booked as O(1) at large-NC , in accordance with the double-trace structure of the corresponding
monomials in the chiral SU(3) Lagrangian of O(p4) [3].

Similarly, one also has the possibility to set up a resonance Lagrangian in the framework
where the singlet field is explicitly present [31]. Apart from additional terms that involve factors
of ln(det ũ) one has terms of the same form as those in Eq. (2.13). Proceeding as above one
generates the following multiple-trace terms,

cm〈Sχ̃+〉 → cm〈Sχ+〉 −
cm

6M2
0

〈Sχ−〉〈χ−〉 + . . . (A.5)

cd〈Sũµũ
µ〉 → cd〈Suµu

µ〉 +
cd

3M2
0

i〈Suµ〉∂µ〈χ−〉 + . . .

i dm〈P χ̃−〉 → i dm〈Pχ−〉 −
dm

6M2
0

i〈Pχ+〉〈χ−〉 + . . . ,
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which are obviously in direct correspondence to those generated by the application of the EOM
in Eq. (2.14). Again the occurrence of the factor M−2

0 = O(Nc) leads to an enhancement in
1/NC , which is why we do not dispose of those terms. In an accompanying paper [25], the η′

contributions to the LECs of O(p4) [3] and O(p6) are studied in a more systematic manner.

In the following we discuss in more detail how one arrives at our effective Lagrangian if one
starts from a resonance Lagrangian including the η′. In the diagram below, this Lagrangian sits
in the upper left corner (L̃R

eff):

L̃R
eff

η′/−→ LR(η′)
eff

↓ R/ ↓ R/ (A.6)

L̃(R)
eff

η′/−→ L(η′,R)
eff

The notation is the following: a superscript R denotes a Lagrangian with explicit resonance
fields, whereas superscripts in brackets denote contributions from the resonances and/or η′ in
the coupling constants. The presence of the η′ (the chiral group being U(3)) is indicated by
a tilde ( ˜ ). A slash (/) symbolizes the process of integrating out a field. The final effective

Lagrangian of this work is L(η′,R)
eff in the lower right corner. Here, we want to analyse the

transition from the upper left to the upper right.

Let us start with the low-energy expansion of L̃R
eff . As indicated above, the relevant expansion

is the one where powers of momenta, quark masses and 1/NC are treated as small, according to

p2 ∼ mq ∼ 1/NC = O(δ), (A.7)

where a counting parameter δ has been introduced [30]. The expansion for our Lagrangian thus
takes the form

L̃R
eff = L̃R

0 + L̃R
1 + L̃R

2 +O(δ3). (A.8)

The leading-order term L̃R
0 is of course nothing but the Lagrangian L̃ in (A.1) and it is in fact

independent of the resonance fields R. The term L̃R
1 has been given in Ref. [31] and involves

several terms of order NCp
4 as well as one contribution (in L̃P

1 ) of order N0
Cp

2 proportional to
ln(det ũ) 〈P 〉, viz.

L̃P
1 = . . .− 2id0 ln(det ũ) 〈P 〉. (A.9)

Here, the resonance fields have implicitly been counted as order
√
NCp

2. The factor of
√
NC

arises simply because of the normalization of the resonance fields, whereas the power of p2 can
be understood when treating the resonance masses as large (i.e. of order 1) and solving the
EOM. In simplifying the expression for the Lagrangian L̃R

1 , the EOM for the Goldstone fields
has been used to eliminate terms involving ∇µũ

µ. In the present case it takes the form

2∇µũ
µ = iχ̃− − 4i

3
M2

0 ln det ũ (A.10)

as one derives from the Lagrangian (A.1).
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We now consider the terms of O(δ2). The Lagrangian L̃R
2 collects the contributions of order

NCp
6, N0

Cp
4 and N−1

C p2,

L̃R
2 = L̃R

2 |NCp6 + L̃R
2 |N0

C
p4 + L̃R

2 |N−1

C
p2 . (A.11)

The recipe to determine the first of these terms is to consult the tables of the present paper and
identify all the terms that only involve a single trace; in those replace the effective field u by ũ
and, finally, equip the associated coupling constants with tildes, i.e.

L̃R
2 |NCp6 = λ̃V

1 i〈Vµν ũ
µũαũ

αũν〉 + . . . (A.12)

with all the above λ̃R
i = O(

√
NC). We will not attempt to give the next term explicitly, but

simply indicate exemplary contributions:

L̃R
2 |N0

C
p4 = λ̃S

n〈S〉〈χ̃+〉 + . . .+ λ̃S
n′〈S〉2 + . . .+ λ̃S

n′′ ln det ũ〈Sχ̃−〉 + . . . ,

λ̃S
n(′(′)) = O(N

− 1

2

C ). (A.13)

Finally, the last piece of the O(δ2) Lagrangian consists of a single term

L̃R
2 |N−1

C
p2 = λ̃S

m ln2(det ũ)〈S〉, (A.14)

with λ̃S
m = O(N

− 3

2

C ). Again, the EOM has been used to eliminate ∇µũ
µ terms. The difference to

the standard framework lies in the fact that the application of the EOM does not generate factors
of 〈χ−〉 but instead factors of ln det ũ and thereby intertwines the three types of contributions
to L̃R

2 .

Let us now turn to the transition from the upper left to the upper right of our diagram.
There are several contributions to be considered:

1. When integrating out the η′ the term L̃R
0 = L̃ generates several purely η′ contributions to

low-energy constants, L
(η′)
7 is an example. For these we refer to Ref. [25].

2. In the Lagrangian L̃R
1 the first class of contributions is generated by replacing the field ũ

by u which produces the Lagrangian (2.13). Note that the difference of ũ and u is of order
p2 when the η′ mass M0 is treated as large.

3. Retaining terms up to O(p6) only, the three terms generated by that difference are those
given in Eq. (A.5).

4. These would have been all contributions from L̃R
1 would it not be for the term ∝ d0

in Eq. (A.9). Closer inspection reveals, however, that contributions of this term can be
neglected without significant loss of information because it exclusively leads to nonleading
contributions in 1/NC. This can be seen from the solution of the singlet field’s EOM,

ln det ũ =
1

4M2
0

{〈χ−〉 +
12id0

F 2
0

〈P 〉} + O(p4). (A.15)

Upon integrating out the pseudoscalar resonance P , d0 generates a contribution ∝ 〈χ−〉,
relatively suppressed by d0dm/F

2
0 = O(1/NC).
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5. It remains to work out the contributions from L̃R
2 . Again, the singly traced O(NCp

6)
terms are in direct correspondence with the single-trace terms in the tables of the present
work. For these one finds the trivial matching relations

λR
i = λ̃R

i . (A.16)

As far as the remaining terms are concerned they either lead to genuinely suppressed
contributions (λ̃S

n , λ̃
S
n′, etc.) or to contributions that are suppressed relatively to the lead-

ing η′ exchange contributions. For instance, the contribution of λ̃S
m ln2(det ũ)〈S〉 to the

term 〈χ−〉2〈χ+〉 is of O(NC), whereas the leading-order contributions to this term are of
O(N3

C) [25]. For this reason we will simply neglect these terms altogether.

To summarize, the transition from the upper left to the upper right of our diagram has lead to
a resonance Lagrangian that consists of single-trace terms only, up to three double-trace terms
OS

4 , OS
5 and OP

3 as given explicitly in Eq. (A.5).

B Field redefinitions

In this appendix we report some details of our analysis of linear field redefinitions. Let us start
by listing the allowed redefinitions for resonance fields.

Redefinitions for vector meson fields

1) Vµν −→ Vµν + g [Aµν , χ− ] ,

2) Vµν −→ Vµν + i g ( [Aµα , f−βν ] − [Aνα , f−βµ ] ) gαβ ,

3) Vµν −→ Vµν + i g
( [

Aνα , h
α
µ

]

− [Aµα , h
α
ν ]
)

,

4) Vµν −→ Vµν + i g ( [∇µP , uν ] − [∇νP , uµ ] ) ,

5) Vµν −→ Vµν + i g [P , f−µν ] ,

6) Vµν −→ Vµν + i g {S , [ uµ , uν ] } ,

7) Vµν −→ Vµν + g {S , f+µν } ,

8) Vµν −→ Vµν + ig (uµ S uν − uν S uµ) ,

9) Vµν −→ Vµν + g { Vµν , uα u
α } , (B.1)

10) Vµν −→ Vµν + g { Vµν , χ+ } ,

11) Vµν −→ Vµν + g uα Vµν u
α ,

12) Vµν −→ Vµν + i g ( [f+µα , Vβν ] − [f+να , Vβµ] ) gαβ ,

13) Vµν −→ Vµν + g ( uα Vµα uν + uν Vµα u
α − uα Vνα uµ − uµ Vνα u

α ) ,

14) Vµν −→ Vµν + g ( [ [uµ, u
α] , Vνα ] − [ [uν, u

α] , Vµα ] ) ,

15) Vµν −→ Vµν + g ( { {uµ, u
α} , Vνα } − { {uν, u

α} , Vµα } ) ,

16) Vµν −→ Vµν + i g ( [∇µAνα − ∇ν Aµα , u
α ] ) ,

17) Vµν −→ Vµν + i g [∇αAµν , u
α ] ,

18) Vµν −→ Vµν + i g ( [∇αAαν , uµ ] − [∇α Aαµ , uν ] ) .
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Redefinitions for scalar fields

1) S −→ S + g {∇µA
µν , uν } ,

2) S −→ S + g {Aµν , f−µν } ,

3) S −→ S + i g {V µν , uµ uν } ,

4) S −→ S + g {V µν , f+µν } ,

5) S −→ S + i g uµ V
µν uν ,

6) S −→ S + g {∇µP , u
µ } , (B.2)

7) S −→ S + i g {P , χ− } ,

8) S −→ S + i g P 〈χ− 〉 ,
9) S −→ S + g {S , uα u

α } ,

10) S −→ S + g {S , χ+ } ,

11) S −→ S + g uα S u
α .

Redefinitions for axial-vector fields

1) Aµν −→ Aµν + g [Vµν , χ− ] ,

2) Aµν −→ Aµν + i g ( [Vµα , f−βν ] − [Vνα , f−βµ ] ) gαβ ,

3) Aµν −→ Aµν + i g
( [

Vνα , h
α
µ

]

− [Vµα , h
α
ν ]
)

,

4) Aµν −→ Aµν + i g [P , f+µν ] ,

5) Aµν −→ Aµν + g [P , [ uµ , uν ] ] ,

6) Aµν −→ Aµν + g ( {∇µS , uν } − {∇νS , uµ } ) ,

7) Aµν −→ Aµν + g {S , f−µν } ,

8) Aµν −→ Aµν + g {Aµν , uα u
α } ,

9) Aµν −→ Aµν + g {Aµν , χ+ } , (B.3)

10) Aµν −→ Aµν + g uαAµν u
α ,

11) Aµν −→ Aµν + i g ( [f+µα , Aβν ] − [f+να , Aβµ] ) gαβ ,

12) Aµν −→ Aµν + g (uαAµα uν + uν Aµα u
α − uαAνα uµ − uµAνα u

α ) ,

13) Aµν −→ Aµν + g ( [ [uµ, u
α] , Aνα ] − [ [uν, u

α] , Aµα ] ) ,

14) Aµν −→ Aµν + g ( { {uµ, u
α} , Aνα } − { {uν, u

α} , Aµα } ) ,

15) Aµν −→ Aµν + i g ( [∇µ Vνα − ∇ν Vµα , u
α ] ) ,

16) Aµν −→ Aµν + i g [∇α Vµν , u
α ] ,

17) Aµν −→ Aµν + i g ( [∇α Vαν , uµ ] − [∇α Vαµ , uν ] ) .
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Redefinitions for pseudoscalar fields

1) P −→ P + i g [Aµν , f+µν ] ,

2) P −→ P + g [Aµν , uµ uν ] ,

3) P −→ P + i g [∇µV
µν , uν ] ,

4) P −→ P + i g [V µν , f−µν ] ,

5) P −→ P + g {∇µS , u
µ } , (B.4)

6) P −→ P + i g {S , χ− } ,

7) P −→ P + i g S 〈χ− 〉 ,
8) P −→ P + g {P , uα u

α } ,

9) P −→ P + g {P , χ+ } ,

10) P −→ P + g uα P u
α .

Applying the redefinitions of the resonance fields Ri to LR
(2) generates monomials ORj

n of LR
(4).

The results are reported in Tables B.1, B.2, B.3. Note that when considering redefinitions of V
and S, we cannot eliminate both entries in a given line in the tables at the same time because
the ratios FV /GV and cd/cm are fixed.
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i
FV

2
√

2
〈V µνf+ µν〉 generates

i GV√
2

〈V µνuµuν〉 generates

1 OA
4 OA

5

2 OA
14 OA

9 −OA
10

3 OA
12 OA

1 −OA
2

4 2OP
9 −OP

11 OP
1 − 2OP

2 −OP
4 + 2OP

5 − 3OP
8

5 OP
11 OP

8

6 OS
10 OS

2 −OS
3

7 OS
15 OS

10

8 OS
11 OS

1 −OS
3

9 OV
11 OV

4

10 OV
6 OV

8

11 OV
12 OV

2

12 OV
7 OV

14 −OV
15

13 OV
13 OV

4 −OV
3

14 OV
14 −OV

15 OV
1 + OV

2 −OV
3

15 OV
14 + OV

15 OV
1 −OV

2

16 OA
12 + OA

14 − 2OA
15 OA

2 −OA
3 + OA

5 + OA
10 −OA

11

17 OA
4 − 2OA

13 OA
2 −OA

3 + OA
5 + OA

10 −OA
11

18 OA
7 − 2OA

8 + 2OA
10 − 2OA

11 OA
1 − 2OA

2 + OA
3 + OA

7

+2OA
12 + 2OA

13 − 2OA
14 −2OA

8 −OA
9 + 2OA

10 −OA
11

Table B.1: Results of applying redefinitions of V fields to LV
(2).
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i
FA

2
√

2
〈Aµνf−µν〉 generates dm 〈P χ−〉 generates

1 OV
20 OA

4

2 OV
5 OA

5

3 OV
19 2OV

10 + OV
20

4 OP
11 OV

20

5 OP
8 OS

8 −OS
14 + OS

5 /3

6 OS
12 + OS

16 OS
14

7 OS
16 OS

5

8 OA
7 OP

4

9 OA
16 OP

10

10 OA
8 OP

5

11 OA
14

12 OA
11

13 OA
9 −OA

10

14 OA
9 + OA

10

15 2OV
5 − 2OV

18 + OV
19

16 2OV
17 −OV

20

17 2OV
5 + 2OV

16 −OV
19

Table B.2: Results of applying redefinitions of A and P fields to LA
(2) and LP

(2).
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i cd 〈S uµuµ〉 generates cm 〈S χ+〉 generates

1 OA
1 + OA

3 + OA
7 −OA

9 −OA
11 2OA

6 + OA
16

2 OA
7 OA

16

3 OV
4 OV

8

4 OV
11 OV

6

5 OV
1 OV

9

6 OP
1 + 2OP

2 − 2OP
7 /3 + OP

4 + OP
8 2OP

6 + OP
10 − 2OP

3 /3

7 OP
4 OP

10

8 OP
7 OP

3

9 OS
1 OS

6

10 OS
6 OS

13

11 OS
2 OS

7

Table B.3: Results of applying redefinitions of S fields to LS
(2).
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C Integrating out resonance fields

To arrive at the resonance exchange Lagrangian (3.5), we first perform the linear field redef-
initions of Sec. 2.3 and then rewrite the interaction Lagrangians (2.13), (2.17) and (2.18) as
follows:

LR
(2) + LR

(4) =
∑

R=S,P

〈

R (gR
2 + gR

4 )
〉

+
∑

R=V,A

〈

Rµν (gR
2 + gR

4 )µν
〉

, (C.1)

LRR
(2) =

∑

R=S,P

[〈

R2 hR
2

〉

+ λRR
2 〈RuµRu

µ 〉
]

+ λSP
1 〈{∇µS, P } uµ 〉 + i λSP

2 〈 {S, P} χ− 〉

+
∑

R=V,A

[ 〈

Rµν Rαβ Θµναβ
2R

〉

+
〈

Rµν uγ Rαβ uδ Λµναβγδ
2R

〉]

+
〈

[Vµν , Aαβ ] Θµναβ
V A

〉

+
〈

[∇γVµν , Aαβ ] Υµναβγ
V A

〉

+ 〈 {S, Vµν } Ωµν
2SV 〉 + 〈 [P,Aµν ] Ωµν

2PA 〉 + iλSV
2 〈S uµ V

µν uν 〉

+ λSA
1 〈 {∇µS,A

µν } uν 〉 + λSA
2 〈 {S,Aµν } fµν

− 〉

+ i λPV
1 〈 [∇µP, Vµν ] uν 〉 + i λPV

2 〈 [P, Vµν ] fµν
− 〉 . (C.2)

Finally, LRRR
(0) in Eq. (2.19) must be included. The explicit expressions for gR

n , (gR
n )µν , h

R
2 ,... can

be read off from Tables 1 – 7:

gS
2 = cd uµu

µ + cm χ+ ,

gP
2 = i dm χ− ,

(

gV
2

)

µν
=

FV

2
√

2
f+µν + i

GV

2
√

2
[uµ, uν ] ,

(

gA
2

)

µν
=

FA

2
√

2
f−µν ,

gS
4 = λS

1 uµu
µuνu

ν + λS
2 uµuνu

νuµ + λS
3 uµuνu

µuν + i λS
4 uµ 〈∇µχ−〉 + λS

5 χ− 〈χ−〉 ,
gP
4 = λP

1 {hµν , u
µuν} + λP

2 uµh
µνuν + i λP

3 χ+ 〈χ−〉 ,
(

gV
4

)

µν
= i λV

1 uµuαu
αuν + i λV

2 uαuµuνu
α + i λV

3 {uα, uµuαuν} + i λV
4 {uµuν , uαu

α} ,
(

gA
4

)

µν
= λA

1 (uµu
αhνα + hναu

αuµ) + λA
2 (uαuµhνα + hναuµu

α)

+ λA
3 (uµhναu

α + uαhναuµ) ,
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hR
2 = λRR

1 uµu
µ + λRR

3 χ+ , R = S, P ,

Θµναβ
2R = λRR

1 gµαgνβuγuγ + λRR
3 gνβuµuα + λRR

4 gνβuαuµ + λRR
6 gµαgνβχ+

+ i λRR
7 gναfµβ

+ , R = V,A,

Λµναβγδ
2R = λRR

2 gµαgνβgγδ + λRR
5 gµα

(

gνγgβδ + gβγgνδ
)

, R = V,A,

Θµναβ
V A = λV A

1 gµαgνβχ− + i λV A
2 gναhβµ + i λV A

6 gµαfβν
− ,

Υµναβγ
V A = i λV A

3 gγµgναuβ + i λV A
4 gγαgνβuµ + i λV A

5 gµαgνβuγ ,

Ωµν
2SV = i λSV

1 uµuν + λSV
3 fµν

+ ,

Ωµν
2PA = i λPA

1 fµν
+ + λPA

2 uµuν . (C.3)

The final result of integrating out the resonance fields up to O(p6) is contained in the
Lagrangian of Eq. (3.5), with

LSP =
∑

R=S,P

[

1

2M4
R

〈

∇µg
R
2 ∇µgR

2

〉

+
1

2M2
R

〈

gR
2 g

R
2

〉

+
1

M2
R

〈

gR
2 g

R
4

〉

+
1

M4
R

〈

gR
2 g

R
2 h

R
2

〉

+
λRR

2

M4
R

〈

gR
2 uµ g

R
2 u

µ
〉

]

+
λSP

1

M2
S M

2
P

〈 {

∇µg
S
2 , g

P
2

}

uµ
〉

+
i λSP

2

M2
S M

2
P

〈 {

gS
2 , g

P
2

}

χ−

〉

, (C.4)

LV A = −
∑

R=V,A

[

2

M4
R

〈

∇λ
(

gR
2

)

λµ
∇ν

(

gR
2

)νµ
〉

+
1

M2
R

〈

(

gR
2

)

µν

(

gR
2

)µν
〉

+
2

M2
R

〈

(

gR
2

)

µν

(

gR
4

)µν
〉

− 4

M4
R

〈

(

gR
2

)

µν

(

gR
2

)

αβ
Θµναβ

2R

〉

− 4

M4
R

〈

(

gR
2

)

µν
uγ

(

gR
2

)

αβ
uδ Λµναβγδ

2R

〉

]

+
4

M2
V M

2
A

〈 [

(

gV
2

)

µν
,
(

gA
2

)

αβ

]

Θµναβ
V A

〉

+
4

M2
V M

2
A

〈 [

∇γ

(

gV
2

)

µν
,
(

gA
2

)

αβ

]

Υµναβγ
V A

〉

, (C.5)
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LSPV A = − 2

M2
S M

2
V

〈{

gS
2 ,
(

gV
2

)

µν

}

Ωµν
2SV

〉

− 2

M2
P M

2
A

〈[

gP
2 ,
(

gA
2

)

µν

]

Ωµν
2PA

〉

−i 2 λSV
2

M2
S M

2
V

〈

gS
2 uµ

(

gV
2

)µν
uν

〉

− 2 λSA
1

M2
S M

2
A

〈 {

∇µg
S
2 ,
(

gA
2

)µν }
uν

〉

− 2 λSA
2

M2
S M

2
A

〈 {

gS
2 ,
(

gA
2

)µν }
f−µν

〉

− i
2 λPV

1

M2
P M

2
V

〈 [

∇µg
P
2 ,
(

gV
2

)µν]
uν

〉

−i 2 λPV
2

M2
P M

2
V

〈 [

gP
2 ,
(

gV
2

)µν ]
f−µν

〉

+
4 λSV V

M2
S M

4
V

〈

gS
2

(

gV
2

)

µν

(

gV
2

)µν
〉

+
4 λSAA

M2
S M

4
A

〈

gS
2

(

gA
2

)

µν

(

gA
2

)µν
〉

+
λSSS

M6
S

〈

gS
2 g

S
2 g

S
2

〉

+
λSPP

M2
S M

4
P

〈

gS
2 g

P
2 g

P
2

〉

− i
8 λV V V

M6
V

gρσ

〈

(

gV
2

)

µν

(

gV
2

)µρ (
gV
2

)νσ
〉

+ i
4 λV AP

M2
P M

2
V M

2
A

〈[

(

gV
2

)

µν
,
(

gA
2

)µν
]

gP
2

〉

− i
8 λV AA

M2
V M

4
A

gρσ

〈

(

gV
2

)

µν

[ (

gA
2

)µρ
,
(

gA
2

)νσ ]
〉

. (C.6)

D Resonance contributions to the LECs of O(p6)

In Sec. 3 we integrated out the resonance fields up to O(p6) in the chiral Lagrangian. By
identifying the result at O(p6) with the χPT Lagrangian

LχPT
6 =

94
∑

i=1

Ci O(6)
i , (D.1)

we extract the LECs Ci. Notice that we find contributions for only 64 of the couplings, reflect-
ing the absence of genuine multiple-trace terms in the resonance Lagrangian. Moreover, the
couplings C91, . . . , C94 correspond to local operators that involve external fields only (contact
terms). The results are given in Table D.1.

i CR
i

1 − c2
d

4M4
S

+
G2

V

8M4
V

−
√

2λ
A
2 + rV

(

λ
V A
2 − λ

V A
4

2
− λ

V A
5

)

3
λ

A
2

2
√

2
+ rV

(

−λ
V A
2

4
+

λ
V A
4

8
+

λ
V A
5

4

)

4
G2

V

8M4
V

− 3λ
A
2

2
√

2
+ rV

(

3λ
V A
2

4
− 3λ

V A
4

8
− 3λ

V A
5

4

)

5
cd cm

2M4
S

+ λ
S
1 +

rV λ
SV
2√
2

+ 2 rS (λ
SS
1 )′ + r2

S (λ
SS
3 )′
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i CR
i

8
cd cm

2M4
S

+ λ
S
2 + 2 rS λ

SS
2 + r2

V (λ
V V
6 )′

10 −cd cm

M4
S

+ λ
S
3 − rV λ

SV
2√
2

− r2
V (λ

V V
6 )′

12
−cd cm

2M4
S

14
−d2

m

4M4
P

+ (λ
SS
1 )′ + 2 rS (λ

SS
3 )′

17
−d2

m

4M4
P

+ λ
SS
2

19
−2CR

32

3
+ (λ

SS
3 )′

20 CR
32

21
−CR

32

3

22
c2
d

8M4
S

+
G2

V

16M4
V

+ λ
P
1 +

rV λ
PV
1

2
√

2
+

rS λ
SP
1

2

24 6CR
28

25
c2
d

4M4
S

− 3G2
V

8M4
V

+
3λ

A
2√
2

+ λ
P
2 + rS λ

SP
1 + rV

(

−λ
PV
1√
2

− 3λ
V A
2

2
+

3λ
V A
4

4
+

3λ
V A
5

2

)

26 −4CR
28 −

d2
m

2M4
P

− c2
d

4M4
S

− cd cm

2M4
S

− c2
m

4M4
S

+
G2

V

4M4
V

−
√

2 λ
A
2 − λ

SP
1

+rV

(

λ
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+
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+
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2
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V

4M4
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94 8CR
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Table D.1: Explicit expressions for the nonvanishing resonance contributions to the Ci. For ease of

notation, the λ–type couplings have been rescaled: λ
R,R′,...
i = λR,R′,...

i /(µRµR′ · · · ), with µS = M2
S/cm,

µP = M2
P /dm, µV = M2

V /FV and µA = M2
A/FA. Further, rS = cd/cm, rV = GV /FV . A number of

coupling constants are conveniently written in terms of CR
28 and CR

32, which is manifestly displayed in
the table. For additional symbols see text.
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The following abbreviations have been used:

(λ
SS

1 )′ = λ
SS

1 + rS λ
SSS

,

(λ
SS

3 )′ = λ
SS

3 + λ
SSS

,

(λ
SP

2 )′ =
λ

PP

3

2
+ λ

SP

2 +
λ

SPP

2
,

(λ
SV

3 )′ =
−λSV

1

2 rV
+ λ

SV

3 ,

(λ
PP

1 )′ = λ
PP

1 − rS λ
PP

3 ,

(λ
PV

2 )′ =
λ
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2

2 rV
+ λ

PV

2 +
λ

V A

1√
2

− λ
V AP

√
2
,

(λ
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1 )′ = λ
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1 +
λ
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2
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,
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V V
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V V

1 + rS

(

−
√

2 λ
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1
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SV V

)
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V V
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V V

3 +
rV λ

V V V

√
2

,
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V V

4 − rV λ
V V V

√
2

,

(λ
V V

6 )′ = −
√

2λ
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1

rV

+ λ
V V
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SV V

,

(λ
V V

7 )′ = λ
V V
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λ

V V V

√
2
,

(λ
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1 )′ = λ
AA

1 + rS

(

−2
√

2 λ
SA

2 + λ
SAA
)

,

(λ
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3 )′ = λ
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3 + rV

(

2 λ
V A

6 +
λ

V AA

√
2

)

,

(λ
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4 )′ = λ
AA

4 − rV

(

2 λ
V A

6 +
λ

V AA

√
2

)

,

(λ
AA

6 )′ = λ
AA

6 − 2
√

2λ
SA

2 + λ
SAA

,

(λ
AA

7 )′ = λ
AA

7 + 2 λ
V A

6 +
λ

V AA

√
2
. (D.2)

Eq. (D.2) shows explicitly that several couplings appear always together in the given combi-
nations. This redundancy can be understood through non-linear redefinitions of the resonance
fields of the type given in Eq. (2.24). For instance, the field redefinition

S −→ S +
λSSS

M2
S

SS (D.3)
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generates a contribution from the scalar mass term, which eliminates the operator OSSS. At
the same time, it generates contributions to OSS

1 and OSS
3 originating in the cd and cm terms

of LS
(2) in (2.13). As a result, the couplings λSSS, λSS

1 and λSS
3 can only appear through the

combinations
(

λ̄SS
1

)′
and

(

λ̄SS
3

)′
.

Similarly, the field redefinitions

S −→ S − λPP
3

cm
PP , P −→ P +

(

λSPP

2M2
P

+
λPP

3

2cm

M2
S

M2
P

)

{P, S} , (D.4)

eliminate the operator OSPP through the contributions generated from the scalar and pseu-
doscalar mass terms. The contributions originating in the cd, cm and dm terms in (2.13) elimi-
nate also the operator OPP

3 and modify the couplings λPP
1 and λSP

2 . The net result is that λPP
1 ,

λPP
3 , λSP

2 and λSPP can only contribute to the O(p6) couplings CR
i through the combinations

(

λ̄PP
1

)′
and

(

λ̄SP
2

)′
.

All trilinear couplings λRiRjRk and 6 bilinear ones λ
RiRj

k can be eliminated with this type of
field redefinitions. One gets then the combinations of couplings in (D.2).
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