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Abstract

We re-investigate the impact of isospin violation for extracting the s-wave ππ scat-
tering phase shift difference δ0(MK) − δ2(MK) from K → ππ decays. Compared
to our previous analysis in 2003, more precise experimental data and improved
knowledge of low-energy constants are used. In addition, we employ a more ro-
bust data-driven method to obtain the phase shift difference δ0(MK) − δ2(MK) =
(52.5 ± 0.8 exp ± 2.8 theor)

◦.
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1. If isospin were conserved the Fermi-Watson final-state interaction theorem would allow
to extract the s-wave pion pion phase shift difference δ0(MK) − δ2(MK) directly from
K → ππ decay rates. However, the K → ππ amplitudes are sensitive to isospin violation
including electromagnetic corrections, especially the I = 2 amplitude A2. This is due to
the large ratio A0/A2 ∼ 22 (octet enhancement in nonleptonic weak decays) that enhances
isospin-violating corrections to A2.

It has been a long-standing problem to reconcile the phase shift difference extracted
from K → ππ decays with other determinations of pion pion phase shifts. This problem has
become especially acute after the precise determination of ππ phase shifts from combining
dispersion theory with chiral perturbation theory [1]. Our previous analysis of isospin
violation in K → ππ decays [2] (similar results were obtained in Ref. [3]) led to δ0(MK) −
δ2(MK) = (60.8 ± 2.2 exp ± 3.1 theor)

◦, substantially bigger than the dispersion theoretical
result [1] δ0(MK) − δ2(MK) = (47.7 ± 1.5)◦.

We have decided to reanalyse the problem for several reasons.

• The experimental situation has substantially improved since 2003 for both the K+

and KS lifetimes and for the branching ratios of K → ππ decays [4–6]. It was already
observed in Ref. [7] that the new experimental information reduces the phase shift
difference by more than three degrees (with higher statistical significance), bringing
it closer to the dispersion theoretical value.

• New information has also become available on some of the low-energy constants
(LECs) involved, both in the strong [8] and in the electromagnetic sector [9]. The
effect on the phase shift difference is difficult to quantify but it is definitely smaller
than the uncertainty assigned to the LECs in Ref. [2]. As one example, the new
estimates of electromagnetic LECs [9] lead to a shift of the lowest-order π0 − η
mixing parameter ε(2) from 1.06 ·10−2 to 1.29 ·10−2 [10]. This shift reduces the phase
shift difference by 0.2◦.

• As will be detailed below, the theoretical analysis of Ref. [2] can also be improved by
relying to a lesser extent on the NLO calculation of K → ππ decay amplitudes. Using
less information potentially increases the uncertainty but this will be compensated
by a less biased comparison with the data. The resulting estimate of isospin violation
is expected to be more robust than the original estimate and it leads to a further
decrease of the phase shift difference by nearly two degrees.

• Based on a method proposed in Ref. [11] making use of the optical theorem, effects of
O(e2p4) were partially accounted for in Ref. [2]. Since a complete calculation of such
effects is beyond present capabilities, we have decided to keep track of the associated
theoretical uncertainty, but without including the partial corrections in the mean
value for the phase shift difference.
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2. We start by recalling the procedure of Ref. [2] for extracting the phase shift difference.
The amplitudes A+− = A(K0 → π+π−), A00 = A(K0 → π0π0) and A+0 = A(K+ → π+π0)
are parametrized as

A+− = A0 eiχ0 +
1√
2

A2 eiχ2

A00 = A0 eiχ0 −
√

2A2 eiχ2 (1)

A+0 =
3

2
A+

2 eiχ+

2 .

In the absence of CP violation, the amplitudes A0, A2, A
+
2 are real and positive by definition.

In the isospin limit, A2 = A+
2 and the phases χI coincide with the strong ππ phase shifts

δI at the kaon mass.

To NLO in the chiral expansion, the phases χ0, χ2 cannot be calculated reliably: the
resulting phases are substantially too small. To obtain the strong phase shift difference
δ0(MK)− δ2(MK), a two-step procedure was employed [2]. Using the NLO expressions for
the absolute values A0, A2, A

+
2 , the lowest-order couplings g8, g27 were determined from the

experimental rates together with the phase shift difference χ0 − χ2. Comparing the NLO
amplitudes with and without including isospin violation, the differences

γI = χI − δI(MK) (I = 0, 2) (2)

were calculated to obtain the final phase shift difference δ0(MK) − δ2(MK) in the isospin
limit.

There are two related potential pitfalls associated with this procedure. Although the
theoretical NLO expressions for the phases χI cannot be trusted they enter the dispersive
and absorptive parts of the amplitudes A0, A2, A

+
2 implicitly. Moreover, although both the

χI and the δI cannot be calculated reliably to NLO in the chiral expansion the differences
γI were assumed to be trustworthy. Both steps are therefore subject to a theoretical bias
that is difficult to control at the level of accuracy considered.

The main idea of the alternative procedure proposed here is to use only the isospin-
violating parts of the NLO amplitudes as theory input and to determine δ0(MK)− δ2(MK)
directly from the data. In contrast to the chiral corrections for the full amplitudes, the
isospin-violating corrections are much smaller and therefore less subject to the bias dis-
cussed in the previous paragraph.

The amplitudes are now parametrized as

A+− = A0 eiδ0(MK) +
1√
2

A2 eiδ2(MK) + ∆AIB
+−

A00 = A0 eiδ0(MK) −
√

2 A2 eiδ2(MK) + ∆AIB
00 (3)

A+0 =
3

2
A2 eiδ2(MK) + ∆AIB

+0 .

All isospin violation is contained in the amplitudes ∆AIB
+−

, ∆AIB
00 , ∆AIB

+0. They can be
extracted from the NLO amplitudes of Ref. [2]. Since isospin violation was neglected in
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the 27-plet amplitudes because of the ∆I = 1/2 rule [2, 3] the amplitudes ∆AIB
n (n =

+−, 00, +0) scale linearly with the lowest-order octet coupling g8. They also depend on
higher-order LECs in addition to the loop contributions.

The moduli of the amplitudes in the isospin limit1 are denoted as A0, A2. We will not
use the theoretical expressions for these amplitudes but instead determine them together
with the phase shift difference δ0(MK)− δ2(MK) directly from the rates. For this purpose,
we write the moduli of the amplitudes (3) as

|A+−| =

∣

∣

∣

∣

A0 +
1√
2

A2 ei(δ2(MK)−δ0(MK)) + ∆AIB
+−

e−iδ0(MK)

∣

∣

∣

∣

|A00| =
∣

∣

∣
A0 −

√
2A2 ei(δ2(MK)−δ0(MK)) + ∆AIB

00 e−iδ0(MK)
∣

∣

∣
(4)

|A+0| =

∣

∣

∣

∣

3

2
A2 ei(δ2(MK)−δ0(MK)) + ∆AIB

+0 e−iδ0(MK)

∣

∣

∣

∣

.

In order to determine A0, A2 and δ0(MK)− δ2(MK) from the three rates, we therefore also
need the I = 0 phase δ0(MK) as input. We use the value obtained in Ref. [1]:

δ0(MK) = (39.2 ± 1.5)◦ . (5)

From the structure of the moduli (4) one may already anticipate that the precise value of
δ0(MK) will have little impact on the phase shift difference.

3. We use the same experimental input as in Ref. [7], which is reproduced in Table 1.

Parameter Value Correlation Reference
BR(KS → π+π−(γ))
BR(KS → π0π0)

0.69196(51)
0.30687(51)

−0.9996 [4]

τS 0.08958(5) ns [5]
BR(K+ → π+π0)
τ+

0.2064(8)
12.384(19) ns

−0.032 [6]

Table 1: Experimental input taken from Ref. [7].

In addition to the experimental input, we need the isospin-violating amplitudes ∆AIB
n .

With the central values of the various LECs and displaying explicitly the linear dependence
on the octet coupling g8, we find

∆AIB
+−

= g8 [2.25 − 0.83 i] · 10−10 GeV

∆AIB
00 = g8 [−0.58 − 2.77 i] · 10−10 GeV (6)

∆AIB
+0 = g8 [−2.12 − 1.10 i] · 10−10 GeV .

1We define the isospin limit in terms of the neutral meson masses [2].
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Updating the fit in Ref. [2] with the new data, we get a mean value g8 = 3.6 (see also
Ref. [7]). We are going to assign a 20% uncertainty to g8, much bigger than the fit error.

Using the isospin-violating amplitudes (6) with g8 = 3.6 and δ0(MK) = 39.2◦ [1], the
experimental rates in Table 1 give rise to

A0 = 2.7030(8) · 10−7 GeV

A2 = 0.1249(3) · 10−7 GeV (7)

δ0(MK) − δ2(MK) = (52.54 ± 0.83)◦ .

The errors are purely experimental but they take the correlations in Table 1 into account.
The resulting correlations for the fitted quantities are small, at most −16% for the corre-
lation between A2 and δ0(MK) − δ2(MK).

The octet enhancement in K → ππ decays is characterized by the amplitude ratio

A0

A2

= 21.63(4) , (8)

again with experimental error only.

4. For assessing the theoretical uncertainties, we concentrate on the phase shift difference.

The uncertainty induced by the error of δ0(MK) in (5) can be disposed of quickly.
Varying the I = 0 phase shift as δ0(MK) = (39.2 ± 3.0)◦ (2 σ) affects the phase shift
difference only in the second decimal place for δ0(MK)− δ2(MK). Of course, this has to do
with the smallness of the isospin-violating amplitudes (6). The uncertainty in the phase
shift difference is therefore completely negligible.

The overall scale of the isospin-violating amplitudes (6) is determined by the lowest-
order coupling g8. We assign a generous error of 20%, i.e., g8 = 3.6 ± 0.8. As already
emphasized, this uncertainty is much larger than the fit error [2, 7] but it is meant to
account also at least partially for effects of O(e2p4) (see below). Varying g8 by 20% gives
rise to an uncertainty ±1.1◦ for the phase difference.

As in Ref. [2], we estimate the uncertainty associated with the various LECs by varying
both the short-distance scale for the Wilson coefficients (0.77 GeV ≤ µSD ≤ 1.3 GeV)
and the chiral renormalization scale (0.6 GeV ≤ νχ ≤ 1 GeV). The central values in (7)
correspond to µSD = 1 GeV, νχ = 0.77 GeV. As already mentioned, the changes in the
LECs from 2003 till today are well within the range expected from varying the two scales.
It turns out that the error associated with the short-distance scale is asymmetrical: the
phase difference happens to be minimal for µSD = 1 GeV and the increase from varying
µSD is at most 0.5◦. From the dependence on the chiral renormalization scale, the error
for the phase difference is bigger and nearly symmetrical around the central value for νχ =
0.77 GeV: the phase difference varies by ±1.2◦.

Finally, we consider higher-order effects of O(e2p4). In Ref. [2] we made use of the optical
theorem and ππ scattering amplitudes to O(e2p2) [12,13] to estimate the absorptive part of
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the K → ππ amplitudes to O(e2p4). Based on that we quantified the O(e2p4) corrections
to γ2 (and to δ0(MK) − δ2(MK)) to be +2.6◦ and included them in our final estimate.
However, since a complete calculation of K → ππ to O(e2p4) is not available, here we
assume a more prudent attitude of not including this correction in the central value. We
rather take this result as a first measure of the size of higher-order corrections. We have
also reached a similar conclusion on the size of these effects with no reference to the optical
theorem analysis. Within the method introduced in this letter, we have parametrized
higher-order corrections via three different scale factors multiplying the isospin-breaking
amplitudes ∆AIB

+−,00,+0. We have repeated the fit for different choices of the scale factors
ranging independently between 0.5 and 1.5, finding that the output δ0(MK) − δ2(MK)
changes by at most 2.2◦, which will be used as our final estimate of higher-order effects.

Altogether, our new procedure for confronting theory with experiment leads to the
following final value for the phase shift difference in the isospin limit:

δ0(MK) − δ2(MK) = (52.5 ± 0.8 exp ± 1.1 g8

+0.5
−0.0 SD ± 1.2χ ± 2.2O(e2p4))

◦

= (52.5 ± 0.8 exp ± 2.8 theor)
◦ . (9)

5. If isospin violation is neglected (except in the physical pseudoscalar masses for phase
space), i.e. taking ∆AIB

n = 0, the fit to the experimental rates gives

[δ0(MK) − δ2(MK)]Isospin = (47.3 ± 1.0)◦ (10)

and
[

A0

A2

]

Isospin

= 22.41(5) . (11)

The substantial experimental improvements achieved with the most recent kaon data have
reduced the phase shift difference from the value (48.6 ± 2.6)◦ obtained in 2003 in the
isospin limit [2] (and about 58◦ some 30 years ago [5]). The value (10) would be in perfect
agreement with determinations from ππ scattering data:

[δ0(MK) − δ2(MK)]ππ =

{

(47.7 ± 1.5)◦ [1]

(50.9 ± 1.2)◦ [14]
(12)

However, owing to the large A0/A2 ratio in K → 2π decays, isospin-breaking corrections
to the dominant ∆I = 1/2 amplitude generate sizeable contributions to A2 [compare the
results (8) and (11)], modifying also the amplitude phases. Our 2003 analysis of isospin
breaking in K → 2π decays concluded that these effects increase the phase shift difference
significantly. Including some O(e2p4) corrections through the optical theorem, we found
the result δ0(MK)− δ2(MK) = (60.8± 2.2 exp ± 3.1 theor)

◦ [2]. The large difference with the
ππ determinations (12) has been a pending puzzle since then.

In this letter we have reanalysed the K → 2π phase shift determination, taking advan-
tage of the improved experimental situation. Moreover, we have modified the theoretical
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analysis in order to be less sensitive to theoretical uncertainties. Since the absorptive con-
tributions that generate the strong amplitude phases start to appear at the one-loop level,
a NLO theoretical calculation of the amplitudes only provides the phase shifts at leading
order, which are therefore subject to large uncertainties. To minimize theoretical errors,
we have only used as theory input the calculation of the isospin-breaking contributions
∆AIB

n . In this way, we can determine all other quantities (the phase shift difference and
the amplitudes in the isospin limit) directly from a fit to the data. The residual theoretical
uncertainties associated with the isospin-breaking contributions have been estimated con-
servatively in two different ways, as explained in the previous section. Our final result in
Eq. (9) is lower than our 2003 determination. Both the new data (as already observed in
Ref. [7]) and the different treatment of theory input tend to lower the resulting value: 3.3◦

from experiment and altogether 5◦ from theory. This updated determination of the phase
shift difference from K → 2π decays turns out to be in agreement with the ππ results in
(12), although with a larger uncertainty.
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