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1. Introduction

Effective field theories (EFT) are nowadays the standard tool to investigate the low-

energy dynamics of Quantum Chromodynamics (QCD). In particular, the chiral sym-

metry is a crucial ingredient for the understanding of the light quark interactions. The

dynamics of the pseudo-Goldstone bosons from the spontaneous symmetry breaking

is provided by the corresponding EFT, Chiral Perturbation Theory (χPT), with a

perturbative expansion in powers of light quark masses and external momenta [1, 2].

This allows a systematic description of the long-distance regime of QCD, at energies

below the lightest resonance mass. The precision required in present phenomeno-

logical applications makes necessary to include corrections of O(p6). While many

two-loop χPT calculations have been already carried out [3], the large number of

unknown low-energy constants (LECs) appearing at this order puts a clear limit to
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the achievable accuracy. The determination of these χPT couplings is compulsory to

achieve further progress in our understanding of strong interactions at low energies.

In the resonance region, E ∼ MR, the chiral counting breaks down and the new

heavier degrees of freedom –the resonances– have to be explicitly incorporated into

the theory. A suitable alternative is then provided by the 1/NC expansion in the limit

of a large number of colours, NC → ∞ [4, 5, 6]. Assuming confinement, the strong

dynamics is given at large NC by tree-level diagrams with an infinite number of pos-

sible hadronic exchanges. This corresponds to the tree approximation of some local

Lagrangian, being meson loops suppressed by higher powers of 1/NC [4]. Resonance

Chiral Theory (RχT) provides an appropriate framework to incorporate these mas-

sive mesonic states within a chiral invariant phenomenological Lagrangian [7, 8, 9].

The operators of the RχT action are constructed such that they remain unchanged

under flavour transformations U(3)L ⊗U(3)R. After integrating out the heavy fields,

the χPT Lagrangian is recovered at low energies with explicit values of the chiral

LECs in terms of resonance parameters. The short-distance properties of QCD impose

stringent constraints on the RχT couplings and provide important information for

the extraction of the low-energy χPT parameters. The amplitudes are thus enforced

to follow the known high-energy QCD behaviour, introducing in the long-distance

description important information from the underlying theory [5, 6].

Clearly, we cannot determine at present the infinite number of meson couplings

which characterize the large–NC Lagrangian. However, one can perform useful ap-

proximations in terms of a finite number of meson fields. Truncating the infinite tower

of mesons to the lowest resonances with 0−+, 0++, 1−− and 1++ quantum numbers,

one gets a very successful prediction for the O(p4) χPT couplings at large NC [6].

Already at this level the comparison with experimental determinations of the O(p4)

chiral couplings shows a remarkable agreement. Some O(p6) LECs have been also

estimated in this way, by studying appropriate sets of Green functions (see ref. [9]

and references therein). All the required terms in the RχT Lagrangian that may

contribute to the O(p6) LECs at LO in 1/NC were classified in ref. [9].

Since chiral loop corrections are of next-to-leading order (NLO) in the 1/NC

expansion, the large–NC determination of the LECs is unable to control their

renormalization-scale dependence. First analyses of resonance loop contributions to

the running of L10(µ) and L9(µ) were attempted in refs. [10] and [11], respectively.

In spite of all the complexity associated with the still not so well understood renor-

malization of RχT [11, 12, 13, 14, 15, 16], these pioneering calculations showed the

potential predictability at the NLO in 1/NC .

Using dispersion relations we can avoid the technicalities associated with the

renormalization procedure [15, 17, 18]. This allows one to understand the underly-

ing physics in a much more transparent way. Still, a fully equivalent diagrammatic

calculation is possible, although the derivation and presentation is slightly more cum-

bersome [10, 11, 19]. In particular, the subtle cancellations among many unknown
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renormalized couplings found in ref. [11] and the relative simplicity of the final result

can be better understood in terms of the imposed short-distance constraints within

the dispersive approach. Following these ideas we determined, up to NLO in 1/NC,

the couplings L8(µ) and C38(µ) in ref. [17] and L10(µ) and C87(µ) in ref. [18]. In this

article we present the study of the vector form factor (VFF) of the pion, which allows

us to estimate the χPT coupling L9(µ) and the O(p6) combination C88(µ)− C90(µ)

up to NLO in 1/NC.

In order to establish the notation, the RχT Lagrangian is introduced in the next

section. The analysis of the VFF in the resonance region is performed in section 3,

while section 4 contains the determination of L9(µ) and C88(µ)−C90(µ). A summary

of our results is finally given in section 5. In order to ease the reading of the text, we

have shifted the technical details on the calculation of the spectral function, the full

VFF and the chiral coupling expressions to the Appendices.

2. The Lagrangian

We will adopt the Single Resonance Approximation (SRA), where just the lightest

resonances with non-exotic quantum numbers are considered.1 On account of the

large-NC limit, the mesons are put together into U(3) multiplets. Hence, our degrees

of freedom are the pseudo-Goldstone bosons (the lightest pseudoscalar mesons) along

with massive multiplets of the type V (1−−), A(1++), S(0++) and P (0−+). With them,

we construct the most general action that preserves chiral symmetry. Since we are

interested in determining the χPT low-energy constants and the study of the short-

distance behaviour, the chiral limit will be taken all along the paper. No information

is lost as the chiral LECs are independent of the light quark masses.

Resonance Chiral Theory must satisfy the high-energy behaviour dictated by

QCD. To comply with this requirement we will only consider operators constructed

with chiral tensors of O(p2); interactions with higher-order chiral tensors tend to vi-

olate the asymptotic short-distance behaviour prescribed by QCD [6, 14]. Likewise,

it has been shown in some cases that resonance operators with higher number of

derivatives can be simplified into terms with less derivatives, terms without reso-

nances and operators that contribute to other hadronic amplitudes, by means of the

equations of motion and convenient meson field redefinitions [7, 9, 11, 12, 13, 19].

1In ref. [20], it has been argued that large discrepancies may occur between the values of the

masses and couplings of the full large–NC theory and those from descriptions with a finite number

of resonances. Even in this case, it is found that one can obtain safe determinations of the LECs as

far as one is able to construct a good interpolator that reproduces the right asymptotic behaviour

at low and high energies. Further issues related to the truncation of the spectrum to a finite number

of resonances are discussed in ref. [21].
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The different terms in the Lagrangian can be classified by their number of reso-

nance fields:

LRχT = LG +
∑

R1

LR1
+

∑

R1,R2

LR1R2
+ ... , (2.1)

where the dots denote operators with three or more resonance fields, and the indices

Ri run over all different resonance multiplets, V , A, S and P . The term with only

pseudo-Goldstone bosons is given by [2]

LG =
F 2

4
〈 uµu

µ + χ+ 〉 . (2.2)

The second term in eq. (2.1) corresponds to the operators with one massive reso-

nance [7],

LV =
FV

2
√
2
〈 Vµνf

µν
+ 〉 +

i GV

2
√
2
〈 Vµν [u

µ, uν] 〉 ,

LA =
FA

2
√
2
〈Aµνf

µν
− 〉 ,

LS = cd〈Suµu
µ 〉 + cm〈Sχ+ 〉 ,

LP = i dm〈Pχ− 〉 . (2.3)

The Lagrangian LR1R2
contains the kinetic resonance terms and the remaining oper-

ators with two resonance fields [7, 9, 11]. We show only the terms that contribute to

the vector form factor of the pion, taking into account that here we just consider the

lowest-mass two-particle absorptive channels, with two pseudo-Goldstone bosons or

one pseudo-Goldstone and one resonance. In the energy range we are interested in,

exchanges of two heavy resonances are kinematically suppressed. Hence, the relevant

operators are

∆LSA = λSA
1 〈 {∇µS,A

µν}uν 〉 ,

∆LSP = λSP
1 〈 uα{∇αS, P} 〉 ,

∆LPV = iλPV
1 〈 [∇µP, Vµν ]u

ν 〉 ,

∆LV A = iλV A
2 〈 [V µν , Aνα]h

α
µ 〉 + iλV A

3 〈 [∇µVµν , A
να]uα 〉

+ iλV A
4 〈 [∇αVµν , A

αν ]uµ 〉 + iλV A
5 〈 [∇αVµν , A

µν ]uα 〉 . (2.4)

All coupling constants are real, the brackets 〈...〉 denote a trace of the corresponding

flavour matrices, and the standard definitions for the uµ, χ±, f
µν
± and hµν chiral

tensors of pseudo-Goldstones are provided in refs. [7, 9].
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Our Lagrangian LRχT satisfies the NC counting rules for a theory with U(3)

multiplets. Therefore, only operators that have one trace in the flavour space are

considered. Note that local terms with two traces in flavour space, which are of

NLO in 1/NC, cannot contribute at tree-level to the VFF because the final two-pion

state has isospin I = 1. The different fields, masses and momenta are of O(N0
C) in

the 1/NC expansion. Taking into account the interaction terms, one can check that

F, FV , GV , FA, cd, cm and dm are O(
√
NC) and the λR1R2

i are O(N0
C). The mass

dimension of these parameters is [F ] = [FV ] = [GV ] = [FA] = [cd] = [cm] = [dm] = E

and [λR1R2

i ] = E0.

Note that the U(3) equations of motion have been used in order to reduce the

number of operators. For instance, terms like 〈P ∇µu
µ〉 are not present in eq. (2.3),

since they can be transformed into operators that, either have been already consid-

ered, or contain a higher number of mesons by means of the equations of motion and

convenient meson field redefinitions [7].

The RχT Lagrangian (2.1) contains a large number of unknown coupling con-

stants. However, as we will see in the next section, the short-distance QCD constraints

allow us to determine many of them. In the observable at hand and with our assump-

tions, we initially have ten couplings or combinations of them (F , FV , GV , FA, cd,

λSA
1 , λSP

1 , λPV
1 , −2λVA

2 + λVA
3 and 2λVA

2 − 2λVA
3 + λVA

4 + 2λVA
5 ) and four resonance

masses (MV , MA, MS and MP ). As we will see in section 3, after imposing a good

short-distance behaviour of this observable, the number of parameters reduces to

three couplings (F , GV and FA) and three masses (MV , MA and MS). The Weinberg

sum-rules associated with the left–right correlator [22] allow us to further reduce the

number of inputs; the amplitude is finally determined in terms of just F and the three

masses MV , MA and MS. The role of the information coming from the underlying

theory is thus fundamental.

3. The vector form factor of the pion

Our observable is defined through the two pseudo-Goldstone matrix element of the

vector current:

〈 π+(p1) π
−(p2) |

1

2

(
ūγµu− d̄γµd

)
|0 〉 = F(s) (p1 − p2)

µ , (3.1)

where s ≡ (p1 + p2)
2. At very low energies, F(s) has been studied within the χPT

framework up to O(p6) [2, 23]. RχT and the 1/NC expansion have also been used

to determine F(s) at the ρ meson peak, including appropriate resummations of sub-

leading logarithms from two pseudo-Goldstone channels [24, 25]. A first systematic

study of the VFF at NLO in 1/NC was performed in ref. [11]. Although the gen-

eral structure was well established there, the present article answers and solves three

important questions raised in that previous paper:
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Figure 1: Tree-level contributions to the vector form factor of the pion. A single line

stands for a pseudo-Goldstone boson while a double line indicates a resonance.

• In ref. [11] only operators with at most one resonance field were included (except

for the kinetic resonance terms) [7]. However, as suggested in the appendix C

of that article, this assumption is not really justified and leads to problems

with the asymptotic short distance behaviour. In the present paper, we have

considered all the operators needed to describe the absorptive cuts with two

chiral pseudo-Goldstones and those with one pseudo-Goldstone and one reso-

nance, being higher thresholds with two resonances highly suppressed in the

energy region that we consider [18].

• Due to this first issue, in ref. [11] the logarithmic part of F(s) was badly

behaved at high energies. It was not possible to enforce a vanishing form factor

at s → ∞ without the inclusion of new hadronic operators in the leading

Lagrangian. The inclusion of those terms in the present article will allow us to

recover the expected high-energy dependence for the VFF in QCD [26].

• The final result of ref. [11] contained the unknown RχT couplings L̃9 and

C̃88 − C̃90, which are the analogous ones to the χPT LECs L9 and C88 − C90.

In the present work, they are fully determined by means of the high-energy

matching with QCD [14].

Within Resonance Chiral Theory the diagrams contributing to the VFF at lead-

ing order in 1/NC are shown in figure 1. They generate the result

FRχT (s) = 1 +
FVGV

F 2

s

M2
V − s

. (3.2)

Considering that the form factor is constrained to be zero at infinite momentum

transfer [26], the vector couplings should satisfy

FVGV = F 2 , (3.3)

which implies

FRχT (s) =
M2

V

M2
V − s

. (3.4)
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Figure 2: One-loop contributions to the vector form factor of the pion with absorptive

cut. A single line stands for a pseudo-Goldstone boson while a double line indicates a

resonance.

The subleading corrections can be calculated by means of dispersive relations.

Once the one-loop absorptive parts of FRχT (s) are known, one can reconstruct the

full form factor up to appropriate subtraction terms. We can separate then the leading

and subleading parts of the amplitude in the form

FRχT (s) =
M2

V

M2
V − s

+ F(s)
NLO

, (3.5)

with F(s)
NLO

containing the one-loop contribution and the subleading part δ
NLO

of

the resonance coupling combination FVGV /F
2 = 1 + δ

NLO
(for details see appendix

E):

F(s)
NLO

= δ
NLO

s

M2
V − s

+ F1ℓ(s) . (3.6)

The explicit form for the subtracted one-loop amplitude F1ℓ(s) can be found in

Appendices A and C, being fully determined by the spectral function ImF(s) through

a once-subtracted dispersion relation. It vanishes at s = 0 and has no contribution to

the real part of the pole at s = M2
V . The subleading correction to the couplings, δ

NLO
,

is fixed by means of the high-energy matching after demanding that it cancels the

bad behaviour of F1ℓ(s) = δ
NLO

+O(s−1) when s → ∞. Furthermore, the NLO term

F(s)
NLO

can be neatly separated into its different contributions from the various two-

meson absorptive channels F(s)
NLO

|m1,m2
, given by the corresponding F1ℓ(s)|m1,m2

and the consequent δ
NLO

|m1,m2
. These details are relegated to Appendices B and C.
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Although in this article we follow the procedure of refs. [17, 18], our results can be

also derived in an utterly equivalent way through a Feynman diagram computation

and the standard renormalization procedure. This derivation is slightly more complex

and its detailed explaination is relegated to appendix E.

We will consider only the effects of absorptive loops with two pseudo-Goldstones

(ππ) or with one pseudo-Goldstone and a resonance (Rπ). Two-resonance channels

RR′ have their thresholds at (MR + M ′

R)
2 >

∼ 2 GeV2 and their impact on the LEC

determination is expected to be negligible [18]. Taking this into account, we extract

our RχT form factor through the following short-distance matching procedure:

1. Determine the spectral function of the considered absorptive cuts (ππ and Rπ).

The full expressions are shown in eqs. (B.1), (B.2) and (B.3) of appendix B.

2. We demand ImF(s) to be well-behaved at high energies, i.e., it must vanish

when s → ∞. In the present work, we will actually impose this constraint

channel by channel, i.e., we will demand that each separate two-meson cut

ImF(s)|m1,m2
vanishes at s → ∞. For spin–0 mesons this must be so as its one-

loop contribution to the spectral function is essentially its VFF at LO (which

vanishes at infinite momentum) times the partial-wave scattering amplitude at

LO (which is upper bounded). For higher spin resonances the derivation is more

cumbersome as the Lorentz structure allows for the proliferation of form factors

and the unitarity relations are not that simple. Still, in many situations it has

been already found that amplitudes with massive spin–1 mesons as final states

must go to zero at high energies even faster, due to the presence of extra powers

of momenta in the unitarity relations coming from intermediate longitudinal

polarizations [18]. In summary, we will assume ImF(s)|m1,m2
→ 0 when s → ∞

for every absorptive two-meson cut under consideration, regardless of the spin

of the intermediate mesons.

In the case of the ππ cut we have found two constraints, which are consistent

with the literature,

FVGV = F 2 , 3G2
V + 2 c2d = F 2 , (3.7)

where the first one coincides with eq. (3.3), that is, with the constraint obtained

with the vector form factor at leading-order [8]. The second one was derived

in ref. [27] from the LO ππ scattering amplitude. It is interesting to remark

that the cd = 0 limit of this second relation, GV = F/
√
3, has been obtained

recently from a study of τ− → P− γ ντ decays (P = π,K) [28]. We have used

these constraints to fix FV and c2d.

For the Pπ cut, the only possible solution is to kill the whole contribution by

means of

λPV
1 = 0 , (3.8)
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which is consistent with the large-NC constraint from the vector form factor

into Pπ, studied in ref. [18].

The analysis of the Aπ cut leads to more than one real solution. We have

chosen the solutions consistent with previous works [15, 18], where the NLO

contributions in 1/NC to the ΠV V (s) correlator coming from tree-level form

factors to resonance fields were studied:

−2λVA
2 + λVA

3 = 0 , − λVA
3 + λVA

4 + 2λVA
5 =

FA

FV

,

λSA
1 = −FA GV (M2

A − 4M2
V )

3
√
2M2

Acd FV

. (3.9)

The first two constraints, in the first line, come from the analysis of the

Aπ vector form-factor. The last relation with λSA
1 is then needed to make

ImF(s)|Aπ → 0 for s → ∞.

After imposing the relations (3.7), (3.8) and (3.9) the spectral functions can

be expressed in terms of GV , FA, F and masses, as shown in eqs. (B.6), (B.7)

and (B.8).

3. The spectral function is now ready for the once-subtracted dispersion relation

provided in the appendix A in eq. (A.4), which allows to reconstruct the full

form factor up to the pole position at s = M2
V and the real part of its residue.

4. Finally, we impose that the whole FRχT (s) vanishes at short distances –not

only its imaginary part–. This fixes the real part of the residue at s = M2
V

and, consequently, the NLO correction δNLO in eq. (3.6). In order to ease the

reading of the manuscript, the complicated expressions for the well-behaved

contributions to the different channels are provided in appendix C, in eqs. (C.1),

(C.2) and (C.3).

4. The chiral couplings L9(µ) and C88(µ)− C90(µ)

The low-momentum expansion of F(s) is determined by χPT [2, 23]. The corre-

sponding expression in the chiral limit reads

FχPT (s) = 1 +
2 s

F 2

{
L9(µ) +

Γ9

32π2

(
5

3
− log

−s

µ2

)}

− 4 s2

F 4

{
C88(µ)− C90(µ)−

Γ
(L)
88 − Γ

(L)
90

32π2

(
5

3
− log

−s

µ2

)
+O

(
N0

C

)
}

+O
(
s3
)
,

(4.1)

with [2, 3]

Γ9 =
1

4
, Γ

(L)
88 − Γ

(L)
90 = −2L1

3
+

L2

3
− L3

2
+

L9

4
. (4.2)
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The couplings F 2, L9, C88/F
2 and C90/F

2 are of O(NC), while Γ9, Γ
(L)
88 /F 2 and

Γ
(L)
90 /F 2 are of O(N0

C) and represent a NLO effect.

The low-energy expansion of eqs. (3.4) and (3.5), obtained, respectively, within

Resonance Chiral Theory at leading-order and at next-to-leading order in the 1/NC

expansion, allows to determine the chiral couplings L9 and C88 − C90 at LO and at

NLO.

4.1 The large-NC limit

At leading-order in 1/NC, eq. (4.1) becomes

FχPT (s) = 1 +
2 s

F 2

{
L9 +O

(
N0

C

)}
− 4 s2

F 4
{C88 − C90 +O(NC)}+O

(
s3
)
. (4.3)

Within RχT in the large-NC limit, eq. (3.4) can be now expanded at low energies:

FRχT (s) =
M2

V

M2
V − s

= 1 +
s

M2
V

+
s2

M4
V

+O
(
s3
)
. (4.4)

The matching between (4.3) and (4.4) fixes L9 and C88 − C90 at LO [8, 9],

L9 =
F 2

2M2
V

, C88 − C90 = − F 4

4M4
V

. (4.5)

4.2 L9(µ) and C88(µ)− C90(µ) at NLO

Following the same steps as before, let us determine the related O(p4) and O(p6) low-

energy constants by matching eq. (4.1) and the low-energy expansion of eq. (3.5),

FRχT (s) = 1 +
2s

F 2

{
F 2

2M2
V

+ ξ̄(2) +
Γ9

32π2

(
5

3
− log

−s

M2
V

)}
(4.6)

−4 s2

F 4

{
− F 4

4M4
V

+ ξ̄(4) − Γ
(L)
88 − Γ

(L)
90

32π2

(
5

3
− log

−s

M2
V

)}
+O

(
s3
)
,

where the ξ̄(2n) are the relevant O(sn) coefficients of the low-energy expansion of

F
NLO

(s), once the structure coming from the χPT one-loop diagram has been sub-

tracted from the ππ channel. The separated contributions ξ̄
(2n)
m1,m2 from each absorp-

tive two-meson cut F
NLO

(s)|m1,m2
are provided in appendix D, being each of them

independent of the renormalization scale µ.

By comparing the χPT expression (4.1) to the RχT low-energy expansion (4.6),

it is straightforward to estimate the chiral LECs L9(µ) and C88(µ) − C90(µ) up to

NLO in 1/NC:

L9(µ) =
F 2

2M2
V

+ ξ̄(2) +
Γ9

32π2
ln

M2
V

µ2
,

C88(µ)−C90(µ) = − F 4

4M2
V

+ ξ̄(4) − Γ
(L)
88 − Γ

(L)
90

32π2
ln

M2
V

µ2 ,

(4.7)
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where

Γ
(L)
88 − Γ

(L)
90 =

3G2
V

8M2
V

− c2d
4M2

S

+
FVGV

8M2
V

=
F 2 − 3G2

V

8M2
S

− F 2 + 3G2
V

8M2
V

(4.8)

matches the corresponding O(p6) running at NLO in 1/NC. Note that the large–NC

relations L2 = 2L1 =
G2

V

4M2
V

, L3 = − 3G2
V

4M2
V

+
c2
d

2M2
S

and L9 =
FV GV

2M2
V

[7] have been used in

eq.(4.2). The high-energy constraints FVGV = F 2 and 2c2d = F 2 − 3G2
V of eq. (3.7)

have been employed to obtain the result on the r.h.s. of eq. (4.8).

4.3 Phenomenology

Using MV ≃ 0.77GeV and F ≃ 89MeV, one gets the large-NC estimates from

eq. (4.5): L9 ≃ 6.7 · 10−3 and C88 − C90 ≃ −4.5 · 10−5. At µ0 = 770 MeV, the

phenomenological determinations L9(µ0) = (6.9± 0.7) · 10−3 [2, 6] and L9(µ0) =

(5.93± 0.43)·10−3, C88(µ0)−C90(µ0) = (−5.5 ± 0.5)·10−5 [23], obtained respectively

from an O(p4) and an O(p6) ChPT fit, agree approximately with the LO estimates.

Large–NC estimates are naively expected to approximate well the couplings at

scales of the order of the relevant dynamics involved (µ ∼ MR). However, they always

carry an implicit error because of the uncertainty on µ. This theoretical uncertainty

is rather important in couplings generated through scalar meson exchange, such as

L8(µ). In the present case, it also has a moderate importance. The size of the NLO

corrections in 1/NC to L9(µ) and C88(µ) − C90(µ) can be estimated by regarding

their variations with µ. These are respectively given by

∂ L9(µ)

∂ log µ2
= − Γ9

32π2
= −0.8 ·10−3 ,

∂ (C88(µ)− C90(µ))

∂ logµ2
=

Γ
(L)
88 − Γ

(L)
90

32π2
≃ 0.9 ·10−5 .

(4.9)

So far, we have been working within a U(3)L ⊗ U(3)R framework, but we are

actually interested on the couplings of the standard SU(3)L ⊗ SU(3)R chiral theory.

Thus, a matching between the two versions of χPT must be performed. Nonethe-

less, on the contrary to what happens with other matrix elements (e.g. the S − P

correlator [17]), the spin–1 two-point functions do not gain contributions from the

U(3)–singlet chiral pseudo-Goldstone; the η1 does neither enter at tree-level nor in

the one-loop correlators. Therefore, the corresponding LECs are identical in both

theories at leading and next-to-leading order in 1/NC: L9(µ)
U(3) = L9(µ)

SU(3),

(C88(µ)− C90(µ))
U(3) = (C88(µ)− C90(µ))

SU(3).

The needed input parameters are defined in the chiral limit. We take the

ranges [2, 29]MV = (770± 5)MeV, MS = (1090± 110)MeV and F = (89± 2)MeV.

The resonance couplings GV and FA can be fixed in terms of F and masses if one

considers the short-distance conditions obeyed by the left–right correlator [6]. The

constraint of eq. (3.3), coming from the vector form factor of the pion, and those from

the first and second Weinberg sum rules [22] determine the vector and axial-vector
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1st Approach 2nd Approach

103 · L9 at LO 6.68 6.68

103 · ξ̄(2)ππ 0.11 −0.04

103 · ξ̄(2)Pπ 0.00 0.00

103 · ξ̄(2)Aπ 1.12 1.00

105 · (C88 − C90) at LO −4.46 −4.46

105 · ξ̄(4)ππ 0.76 0.71

105 · ξ̄(4)Pπ 0.00 0.00

105 · ξ̄(4)Aπ −0.88 −0.73

Table 1: Different contributions to the chiral couplings within the two numerical ap-

proaches explained in the text.

couplings at LO in 1/NC [15, 18],

F 2
V = F 2 M2

A

M2
A −M2

V

, G2
V = F 2M

2
A −M2

V

M2
A

, F 2
A = F 2 M2

V

M2
A −M2

V

, (4.10)

with MA > MV . Due to the large width of the a1(1260) meson, the determina-

tion of the Lagrangian parameter MA is far from trivial. From the observed rates

Γ(ρ0 → e+e−) = (7.02± 0.13) keV [29] and Γ (a1 → πγ) = (650± 250) keV [29], and

considering (4.10), one finds MA = (938 ± 13) MeV and MA = (960 ± 80) MeV.

Another large–NC determination of MA was obtained in ref. [30] from the study of

the π → eνeγ decay, which yields MA = (998 ± 49) MeV. We cannot use the in-

formation coming from Γ(ρ → 2π) = (149.4 ± 1.0) MeV [29] in order to determine

MA, since GV is constrained by eq. (3.7) to be smaller than F/
√
3, which results in

MA < 940MeV. In spite of the dispersion of values for MA, one gets a consistent

description in the range MA = (920± 20)MeV, which we will take as our input. The

resulting numerical predictions for the LECs are

L9(µ0) = (7.9± 0.4) · 10−3 ,

C88(µ0)− C90(µ0) = (−4.6± 0.4) · 10−5 , (4.11)

being µ0 the usual renormalization scale, µ0 = 770MeV.

Alternatively, one could also use the phenomenological values for GV , FA and

the axial-vector mass, instead of fixing them through the Weinberg sum-rules. Thus,

one may employ MA = (1200± 200)MeV [29], and FA = (120 ± 20)MeV, from

the observed rate Γ (a1 → πγ) = (650 ± 250) keV [29]. The constraint of eq. (3.7)

implies that GV < F/
√
3, so that we take the range GV ∈ [40, 50]MeV. For the

remaining inputs MV , MS and F , we consider the same values used before, yielding

– 12 –
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Figure 3: The RχT predictions (solid gray band) for the χPT O(p4) low-energy constant

L9(µ) (a) and the O(p6) combination C88(µ)−C90(µ) (b) are compared to their large–NC

estimates (red dashed) for different values of the renormalization scale µ. The error of the

large–NC estimate is given by the naive saturation scale uncertainty from eq. (4.9).

the predictions

L9(µ0) = (7.6± 0.6) · 10−3 ,

C88(µ0)− C90(µ0) = (−4.5± 0.5) · 10−5 . (4.12)

As it can be observed, the influence of using the first or the second approach

is not crucial at the present level of accuracy. We take the values in (4.11), which

include more theoretical constraints, as our final next-to-leading-order estimates for

the LECs.

In table 1 we present the different contributions to the LECs within the first and

second approaches. A graphical comparison of the NLO predictions and the large–NC

estimates has been made in figure 3 for different values of the renormalization scale

µ.

It is appropriate to note the appreciable increase of L9(µ0) from the large-NC

prediction, for µ0 = 770MeV. In fact, the correction δNLO in eq. (3.6) gets a contri-

bution from the Aπ channel which is still comparable to that from the ππ one. This

subleading contribution to FVGV , fixed through short-distance matching, increases

the value of L9 by 1 · 10−3, a quite sizeable shift. For details see appendix E and

ref. [31].

5. Conclusions

In this article we have completed the analysis of the VFF at NLO in 1/NC , initiated in

ref. [11], where the general framework was established. We have considered operators

with more than one resonance and have studied contributions from intermediate

channels with resonances. We get a well-behaved VFF at high-energies, which goes

to zero for q2 → ∞ [26].
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103 · L9(µ0) 105 · (C88(µ0)− C90(µ0))

This work 1st 7.9± 0.4 −4.6± 0.4

This work 2nd 7.6± 0.6 −4.5± 0.5

Ref. [2] 6.9± 0.7

Ref. [23] 5.93± 0.43 −5.5± 0.5

Ref. [25] 7.04± 0.23

Ref. [32] at O(p4) 6.54± 0.15

Ref. [32] at O(p6) 5.50± 0.40

Ref. [33] 6.3± 0.4

Table 2: Comparison of our result with other determinations, being µ0 = 770MeV.

Imposing that each individual absorptive cut vanishes at short distances, one

gets stringent constraints on the structure of the VFF, which led to a prediction

of the relevant O(p4) and O(p6) χPT couplings up to NLO in 1/NC . The required

inputs are the resonance masses MV , MA and MS, and the pion decay constant

F . As expected for such a well-known observable, the large–NC prediction provides

already an excellent estimate and the subleading corrections are relatively small. At

the reference scale µ0 = 770 MeV, we obtain

L9(µ0) = (7.9± 0.4) · 10−3 ,

C88(µ0)− C90(µ0) = (−4.6± 0.4) · 10−5 . (5.1)

As the matching of RχT with χPT is complete up to NLO in 1/NC, we fully control

the running of the LECs up to that order and, e.g., we are able to predict L9(µ) for

any desired value of µ.

This result is in reasonable agreement with previous calculations [2, 23, 25, 32,

33], see table 2, and shows once more the efficacy of RχT to describe low-energy

QCD matrix elements, specially if they are dominated by resonances. It is important

to remark not only that the amplitude is dominated by tree-level exchanges but also

the fact that the one-loop corrections are not large.

Our determination of L9(µ0) has a larger central value than the result obtained

from an O(p6) chiral fit to the VFF [23] at low energies, and it is closer to the

chiral fit determination at O(p4) [2]. On the other hand, the ALEPH τ -data analysis

performed in [25], which is also of O(p6) but takes higher-energy data into account,

yields a value of the order of 7 · 10−3, much closer to our estimate.

In future works, we plan to study the pion scalar form-factor and the LECs

L4(µ) and L5(µ), where the situation is much less clear since, in that case, one has

contributions from broad resonance states like the f0(600).
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A. Dispersion relations and loop contribution

One may use a once–subtracted dispersion relation, derived from the identity

F(s)

s
=

1

2πi

∮
dt

F(t)

t (t− s)
, (A.1)

where the integration is performed in the usual complex circuit [18]. The form-factor

in the integrand can be written as

F(t)

t
=

D(t)
(
M2

V − t
)2 , (A.2)

where D(t) is an analytical function except for the unitarity logarithmic branch cut

and the single pole of F(t)
t

at t = 0. One gets then

1

s
F(s) =

1

s
+

1

s
F1ℓ(s)− ReD′(M2

V )

M2
V − s

+
ReD(M2

V )(
M2

V − s
)2 , (A.3)

where the 1
s
term on the r.h.s. is given by the integration 1

2πi

∫ θ=0+

θ=2π−

dt
t

F(t)
(t−s)

, with

t = ǫ eiθ, around t = 0 of the function F(t)
t

≈ 1
t
+O(t0), and the different contributions

of each two-meson absorptive cut are given by the dispersive integral,

F1ℓ(s)|m1,m2
= lim

ǫ→0

[
s

π

∫ M2
V
−ǫ

0

dt
ImF(t)|m1,m2

t (t − s)
+

s

π

∫
∞

M2
V
+ǫ

dt
ImF(t)|m1,m2

t (t − s)

− 2s

πǫ
lim

t→M2
V

{
(M2

V − t)2
ImF(t)|m1,m2

t (t − s)

} ]
. (A.4)

Notice that if the threshold of the channel is above the resonance mass MV , then

this expression gets simplified into the form

F1ℓ(s)|m1,m2
= lim

ǫ→0

s

π

∫
∞

(M1+M2)2
dt

ImF(t)|m1,m2

t (t − s)
, (A.5)
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with M1 (M2) the mass of the m1 (m2) meson.

If we choose the on-shell mass scheme, without double poles in the perturbative

expansion, we have then

F(t) = 1 +
∑

m1,m2

F1ℓ(t)|m1,m2
− sReD′(M2

V )

M2
V − t

, (A.6)

where ReD′(M2
V ) can be identified with −F r

V
Gr

V

F 2 for a convenient renormalization

scheme of this combination of vector couplings [17, 18, 19] (see appendix E for further

details).

B. The spectral functions ImF(s)|m1,m2

In this appendix we show the explicit form of the the spectral functions of the different

two-particle absorptive cuts. First we present the functions obtained directly from

the Feynman diagrams before imposing any short-distance constraint, i.e., they are

badly behaved at high energies.

ImF(s)|ππ =
F 2 (M2

V − s) + sFVGV

64πF 6s2 (s−M2
V )

{
2c2d

(
M4

S log
(
1 +

s

M2
S

) (
−12M2

S − 6s
)
+ s3

+12sM4
S

)
+G2

V

(
s3−6M2

V

(
M2

V +2s
)(

log
(
1+

s

M2
V

) (
2M2

V +s
)
−2s

))}

+
s2GV (F 2 (FV + 2GV ) (M

2
V − s) + 2sFVG

2
V )

64πF 6 (s−M2
V )

2 +
s

64πF 2
, (B.1)

ImF(s)|Pπ =

√
2cdFV λ

SP
1 λPV

1

32πF 4s (s−M2
V )

{
3M4

P

(
4M2

S + s
)
− 3M2

P

(
2M2

S + s
)2 −M6

P

−6M2
S

(
M2

S −M2
P

)(
−M2

P + 2M2
S + s

)
log

(
1+

s−M2
P

M2
S

)
+ 12sM4

S + s3
}

− FVGV λ
PV
1

2

32πF 4s (s−M2
V )

{
3M2

P

(
12sM2

V +4M4
V +s2

)
+ 6M2

V

(
−3M2

P

(
M2

V +s
)

+M4
P + 5sM2

V + 2M4
V + 2s2

)
log

(
1+

s−M2
P

M2
V

)
− 3M4

P

(
4M2

V + s
)

+M6
P − s

(
24sM2

V + 12M4
V + s2

)
− 2s (s−M2

P )
3

s−M2
V

}
, (B.2)

ImF(s)|Aπ =
−GV (s−M2

A)
2

32F 4πM2
As (s−M2

V )
2

{
FA

(
(2κ+σ)M4

A+4s(κ+σ)M2
A+s2σ

)(
s−M2

V

)

−FV

(
s−M2

A

) (
(2κ+ σ)2M4

A + 2s
(
κ2 + 4σκ+ 2σ2

)
M2

A + s2σ2
)}

− GV

32F 4πM2
As (s−M2

V )

{
6 log

(
1 +

s−M2
A

M2
V

) (
FA

(
s−M2

V

) (
M2

A −M2
V

)
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(
κM2

A+σ
(
M2

V +s
))
+FV

((
M2

A−s
)(
M2

A−M2
V

)(
M2

V +s
)
σ2+2κM2

A

(
M2

A−s
)(
M2

A−M2
V

)
σ+κ2M2

A

(
3M4

A−5
(
M2

V +s
)
M2

A+
(
M2

V +2s
)(
2M2

V +s
))))

M2
V +

(
M2

A−s
)(
FA

(
s−M2

V

)(
(3κ+σ)M4

A+
(
(3σ− 6κ)M2

V +s(3κ+4σ)
)
M2

A

+σ
(
s2−6M4

V −3sM2
V

))
+FV

((
M2

A−s
)(
M4

A+4sM2
A−6M4

V +s2

+3
(
M2

A − s
)
M2

V

)
σ2 + 6κM2

A

(
M2

A − s
) (

M2
A − 2M2

V + s
)
σ

+κ2M2
A

(
7M4

A − 8
(
3M2

V + s
)
M2

A + 12M4
V + s2 + 24sM2

V

)))}

+

√
2cdλ

SA
1

32F 4πs (s−M2
V )

{
6 log

(
1 +

s−M2
A

M2
S

) (
FV

(
2κM4

S + (κ− σ)M2
S

(
s−M2

A

)
+ (κ+ σ)M2

A

(
s−M2

A

))
+ FA

(
M2

A −M2
S

) (
M2

V − s
))

M2
S

+
(
M2

A − s
) (

FV

(
3σ

(
s−M2

A

) (
M2

A − 2M2
S + s

)

+κ
(
4sM2

A−5M4
A+12M4

S+s2
))
+3FA

(
M2

A−2M2
S+s

)(
M2

V −s
))}

, (B.3)

where we have used the combination of couplings κ and σ,

κ = −2λVA
2 + λVA

3 , σ = 2λVA
2 − 2λVA

3 + λVA
4 + 2λVA

5 . (B.4)

After considering the constraints explained in section 3,

FV GV = F 2 , 3G2
V + 2 c2d = F 2 ,

λPV
1 = 0 , κ = 0 ,

κ+ σ =
FA

FV

, λSA
1 = −FA GV (M2

A − 4M2
V )

3
√
2M2

Acd FV

,

(B.5)

the imaginary part of each absorptive cut vanishes at short-distances and the follow-

ing expressions are found,

ImF(s)|ππ =
M2

V

32πF 4s2 (s−M2
V )

2

{
3M4

S

(
F 2−3G2

V

)(
M2

V −s
)
log

(
1+

s

M2
S

)(
2M2

S + s
)

+G2
VM

2
V

(
log

(
1 +

s

M2
V

) (
−6s3 − 9s2M2

V + 6M6
V + 9sM4

V

)
+ 13s3

− 6s2M2
V − 6sM4

V

)
+ 6sM4

S

(
F 2 − 3G2

V

) (
s−M2

V

)}
, (B.6)

ImF(s)|Pπ = 0 , (B.7)
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ImF(s)|Aπ =
F 2
AG

2
V (M2

V −M2
A)

32πF 6sM2
A (s−M2

V )
2

{
M4

A

(
2M2

S

(
M2

V − s
)(

log
(
1+

s−M2
A

M2
S

)
−1

)

+4sM2
V − 7M4

V − 3s2
)
+ 2M2

A

(
s2M2

V

(
3 log

(
1 +

s−M2
A

M2
V

)
− 2

)

+M4
S

(
s−M2

V

)
log

(
1 +

s−M2
A

M2
S

)
−M2

S

(
s−M2

V

)

(
s−4M2

V

(
log

(
1+

s−M2
A

M2
S

)
−1

))
−3M6

V

(
log

(
1+

s−M2
A

M2
V

)
− 1

))

+M2
V

(
s2M2

V

(
7−6 log

(
1+

s−M2
A

M2
V

))
+8M4

S

(
M2

V −s
)
log

(
1+

s−M2
A

M2
S

)

+6M6
V log

(
1+

s−M2
A

M2
V

)
+8sM2

S

(
s−M2

V

)
−6sM4

V

)
+2sM6

A+M8
A

}
. (B.8)

C. Next-to-leading-order corrections F
NLO

(s)|m1,m2

In this appendix we show the explicit form of the NLO corrections generated by the

considered two-particle absorptive cuts, eqs. (B.6), (B.7) and (B.8), which have been

calculated by using the dispersive method discussed in appendix A. Below, we have

summed up the δ
NLO

contribution to F1ℓ(s), as seen in eq. (3.6), being the different

F
NLO

(s)|m1m2
well-behaved at high energies:

F
NLO

(s)|ππ =
M2

V

64π2F 4s (s−M2
V )

2

{
− 12M6

S

(
F 2 − 3G2

V

) (
s−M2

V

)
f
(
s,M2

S

)

− 6M4
S

(
F 2 − 3G2

V

) (
s−M2

V

)(
sf

(
s,M2

S

)
+ 2 log

(−s

M2
S

)
− 2

)

+G2
VM

2
V

(
− 6

(
3s2M2

V − 3sM4
V − 2M6

V + 2s3
)
f
(
s,M2

V

)

+s2
(
−26 log

( −s

M2
V

)
+ 27

)
+ 12M4

V

(
log

( −s

M2
V

)
− 1

)

+ 3sM2
V

(
4 log

( −s

M2
V

)
− 5

))
+ 3sM2

S

(
F 2 − 3G2

V

) (
s−M2

V

)}
, (C.1)

F
NLO

(s)|Pπ = 0 , (C.2)

F
NLO

(s)|Aπ = − F 2
AG

2
V (M2

A −M2
V )

32π2F 6sM2
AM

4
V (s−M2

V )
2

{
M4

AM
4
V

(
2sM2

S

(
M2

V − s
)
g
(
s,M2

A,M
2
S

)

−6s2 log
(
1− M2

V

M2
A

)
+ log

(
1− s

M2
A

)(
3s2+2M2

S

(
M2

V − s
)
+7M4

V −4sM2
V

))

+ sM6
V

(
M2

V

(
−6

(
s2 −M4

V

)
g
(
s,M2

A,M
2
V

)
+ 6M2

V

(
log

(
1− s

M2
A

)
− 1
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+ log
(M2

A

M2
V

))
+ s

(
−7 log

(
1− s

M2
A

)
− 6 log

(M2
A

M2
V

)
+ log

(
1− M2

V

M2
A

)
+ 6

))

+8M4
S

(
M2

V − s
)
g
(
s,M2

A,M
2
S

)
−8M2

S

(
s−M2

V

)(
log

(
1− s

M2
A

)
+ log

(M2
A

M2
S

)

−1

))
+M2

AM
4
V

(
M2

V

(
6
(
s3 − sM4

V

)
g
(
s,M2

A,M
2
V

)
+ s2

(
4 log

(
1− s

M2
A

)

+2 log
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where the functions f(s,M2) and g(s,M2
1 ,M

2
2 ) have been introduced for simplicity,

f
(
s,M2

)
=

1

s

(
Li2

(
1 +

s

M2

)
− π2

6

)
,

g
(
s,M2

1 ,M
2
2

)
=

1

s

(
Li2

(
1 +

s

M2
2

− M2
1

M2
2

)
− Li2

(
1− M2

1

M2
2

))
. (C.4)

D. NLO contributions to L9(µ) and C88(µ)− C90(µ)

In this appendix we give the full expressions of the NLO contributions to L9(µ) and

C88(µ)−C90(µ), following the notation of eqs. (4.6) and (4.7), i.e., ξ̄
(2)
m1,m2 and ξ̄

(4)
m1,m2 :

ξ̄(2)ππ =
1

768π2F 2

{
F 2

(
6 log
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)
− 11

)
+G2

V

(
38− 18 log

(M2
S

M2
V

))}
, (D.1)
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(D.6)

E. Description in terms of Feynman diagrams

The subleading corrections can be calculated by means of dispersive relations. Once

the NLO absorptive parts of FRχT (s) are known, one can reconstruct the full form
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factor up to appropriate subtraction terms. Alternatively, we can compute and sep-

arate the tree-level and one-loop amplitudes in the form

FRχT (s) = 1 +
FVGV

F 2

s

M2
V − s

+
2L̃9

F 2 s +
∑

m1,m2

F(s)|m1,m2
, (E.1)

where the one-loop diagrams F(s)|m1,m2
can be rewritten by means of a once-

subtracted dispersion relation in the form

∑

m1,m2

F(s)|m1,m2
=

∑

m1,m2

F1ℓ(s)|m1,m2
+

2δ̂2

F 2 s + δ̂0
s

M2
V − s

+ δ̂−2
s

(M2
V − s)2

.

(E.2)

The finite part of the loops is contained in the once-subtracted dispersive func-

tions F1ℓ(s)|m1,m2
, fully determined by the imaginary part of ImF(s)|m1,m2

through

eq. (A.4). The real parameters δ̂−2,0,2 contain the ultraviolet divergences of the loops,

being δ̂0 and δ̂−2 the real part of the pole residues. The local RχT coupling L̃9 renor-

malizes δ̂2, the combination FVGV cancels the divergences in δ̂0 and a convenient

shift of the mass, M
(B) 2
V = M2

V + δM2
V removes the divergent part of δ̂−2. Indeed,

we will work in the on-shell scheme and the counterterm δM2
V will be chosen to

completely kill δ̂−2.

In order to finish the short-distance matching we just need to take into account

that the once-subtracted loop contribution behaves at short distances like

∑

m1,m2

F1ℓ(s)|m1,m2

s→∞−→ δ0 + O(s−1) , (E.3)

with δ0 a constant number (denoted before in the text as δ
NLO

). This leads to the

VFF high-energy constraints

FVGV

F 2 + δ̂0 = 1 + δ0 ,

L̃9 + δ̂2 = 0 . (E.4)

Hence, the VFF finally takes the well-behaved structure (3.5) employed in the

article,

F(s) = 1 + (1 + δ0)
s

M2
V − s

+
∑

m1,m2

F1ℓ(s)|m1,m2

=
M2

V

M2
V − s

+ F
NLO

(s) . (E.5)

Notice that no real double pole term δ̂−2 remains in our perturbative NLO expression

as we have chosen the on-shell mass scheme.
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