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gia, 06100 Perugia, ITALY. e-mail: grignani@ipginfn
3 e-mail: knjhnsn@mitlns.bitnet
4 e-mail: rius@mitlns.bitnet

0

http://arXiv.org/abs/hep-th/9204004v1


ABSTRACT

The conformal symmetry of the QCD Lagrangian for massless quarks is broken both by

renormalization effects and the gauge fixing procedure. Renormalized primitive divergent am-

plitudes have the property that their form away from the overall coincident point singularity

is fully determined by the bare Lagrangian, and scale dependence is restricted to δ-functions

at the singularity. If gauge fixing could be ignored, one would expect these amplitudes to be

conformal invariant for non-coincident points. We find that the one-loop three-gluon vertex

function Γµνρ(x, y, z) is conformal invariant in this sense, if calculated in the background field

formalism using the Feynman gauge for internal gluons. It is not yet clear why the expected

breaking due to gauge fixing is absent. The conformal property implies that the gluon, ghost

and quark loop contributions to Γµνρ are each purely numerical combinations of two uni-

versal conformal tensors Dµνρ(x, y, z) and Cµνρ(x, y, z) whose explicit form is given in the

text. Only Dµνρ has an ultraviolet divergence, although Cµνρ requires a careful definition to

resolve the expected ambiguity of a formally linearly divergent quantity. Regularization is

straightforward and leads to a renormalized vertex function which satisfies the required Ward

identity, and from which the beta-function is easily obtained. Exact conformal invariance is

broken in higher-loop orders, but we outline a speculative scenario in which the perturbative

structure of the vertex function is determined from a conformal invariant primitive core by

interplay of the renormalization group equation and Ward identities.

Other results which are relevant to the conformal property include the following:

1) An analytic calculation shows that the linear deviation from the Feynman gauge is not

conformal invariant, and a separate computation using symbolic manipulation confirms

that among Dµbµ background gauges, only the Feynman gauge is conformal invariant.
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2) The conventional (i.e. non-background) gluon vertex function is not conformal invari-

ant because the Slavnov–Taylor identity it satisfies is more complicated than the simple

Ward identity for the background vertex, and a superposition of Dµνρ and Cµνρ neces-

sarily satisfies a simple Ward identity. However, the regulated conventional vertex can

be expressed as a multiple of the tensor Dµνρ plus an ultraviolet finite non-conformal

remainder. Mixed vertices with both external background and quantum gluons have

similar properties.
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I. INTRODUCTION

The differential regularization procedure1 gives a simple, practical method for calcula-

tion of the renormalization group functions and the explicit forms of correlation functions

in massless ϕ4 theory. The supersymmetric Wess–Zumino model appears equally simple to

treat by this method,2 and complete calculations have been done in these theories through

three-loop order.

A problematic feature of the procedure emerged in the various one-loop calculations for

gauge theories presented in Ref. [1]. Ward identities must be studied explicitly to fix the

various mass scales which are the parameters of the regularization scheme. For example in

massless quantum electrodynamics the renormalized electron vertex function and self-energy

are (in the notation of Sections II.C and II.B of Ref. [1])

Vλ(x, y, z) = −2γbγλγaVab(x− z, y − z)

Vab(x, y) =

(
∂

∂xa
+

∂

∂ya

)[
1

x2

∂

∂yb

(
1

y2

)
1

(x− y)2

]

− 1

x2

1

(x− y)2

(
∂

∂ya

∂

∂yb
− 1

4
δab y

)
1

y2
− π2

4
δabδ(y)

lnM2
V x

2

x2

Σ(x) =
1

4
∂/

lnM2
Σx

2

x2
,

(1.1)

The Ward identity

∂

∂zλ
Vλ(x, y, z) = [δ(z − x) − δ(z − y)]Σ(x− y) (1.2)

is violated (by terms proportional to [δ(z − x) − δ(z − y)] ∂/ δ(x− y)) unless the mass scales

are chosen to satisfy ln (MΣ/MV ) = 1/4, and it is not difficult to demonstrate this.

The three-gluon vertex is a fundamental correlation function of non-Abelian gauge the-

ories. It is linearly divergent by power counting and provides a test of the compatibility of
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differential regularization with Ward identities in a more singular situation than previously

explored. In this note we report one-loop results for the three-gluon vertex. These results

are quite simple, because of the somewhat surprising property that the bare amplitude in

real space is conformal invariant (if calculated in a special gauge). It is not clear whether

the conformal property is relevant beyond one-loop and whether simple calculations of higher

loop contributions are possible. However, one can outline a certain conformal scenario based

on the combined constraints of renormalization group equations and Ward identities on these

questions.

The first aspect of the three-gluon vertex we considered were the Ward identities it

must satisfy. If the vertex is calculated by standard methods in a covariant gauge, then the

analogue of (1.2) is a complicated Slavnov–Taylor identity involving not only the divergence

of the vertex and the gluon self-energy, but also the vertex with external ghost lines and ghost

self-energy which enter non-linearly (see Section 2.5 of Ref. [3] for the explicit form of this

Slavnov–Taylor identity). Fortunately, the structure of the Ward identities is far simpler if

one-particle irreducible amplitudes are calculated in the background field formalism developed

for gauge theories by DeWitt,4 ’t Hooft,5 and Abbott,6 because the generating functional is

invariant under gauge transformations of the background. We therefore use the background

field method as the basis for our work. Although we work only to one-loop order, the method

is quite general, and it is known7, 8 that the correct S-matrix is obtained when 1PI amplitudes

are assembled in tree structures. The background field method is equivalent to ordinary field

theory in a special gauge.6

Let us now discuss conformal invariance and its effect in our work. Conformal trans-

formations in d-dimensional Euclidean space may be defined as the transformation of points
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given by

xµ → x′µ =
xµ + cµx

2

1 + 2c · x+ c2x2
, (1.3)

where cµ is a constant vector. One can show9 that conformal and Lorentz invariance imply

invariance under the discrete inversion xµ → x′µ = xµ/x
2, and that the transformation (1.3)

can be described as inversion followed by translation by cµ followed by a second inversion.

The full group containing conformal, scale, and Lorentz transformations plus translations is

O(d+ 1, 1).

If the correlation functions of a quantum field theory were conformal invariant, then

the spatial dependence of two- and three-point functions would be almost completely fixed.

Consider, for example, conserved currents Ja
µ(x) of scale dimension three in d = 4 dimensions

which obey the current commutation relations of a Lie algebra with structure constants fabc.

Then covariant two- and three-point functions obey the Ward identities

∂

∂zρ

〈
Ja

µ(x)Jb
µ(y)Jc

ρ(z)
〉

= −f cadδ(z − x)
〈
Jd

µ(x)Jb
ν(y)

〉
− f cbdδ(z − y)

〈
Ja

µ(x)Jd
ν (y)

〉
. (1.4)

With these assumptions, one can follow Schreier9 who uses the inversion property

J
′a
µ

(xσ

x2

)
= x6

(
δµν − 2xµxν

x2

)
Ja

ν (xσ) (1.5)

to show that the two-point function, if conformal invariant, must take the gauge invariant

form
〈
Ja

µ(x)Jb
ν(y)

〉
= −1

2
k δab 1

(x− y)4
∂

∂xµ

∂

∂yν
ln(x− y)2

= k δab

[
δµν

(x− y)6
− 2(x− y)µ(x− y)ν

(x− y)8

]

= − 1

12
kδab

(
∂

∂xµ

∂

∂xν
− δµν

)
1

(x− y)4

(1.6)
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where k is a constant, while conformal invariant three-point functions must be linear combi-

nations of two possible conformal tensors

〈
Ja

µ(x)Jb
ν(y)Jc

ρ(z)
〉

= fabc
(
k1D

sym
µνρ (x, y, z) + k2C

sym
µνρ (x, y, z)

)
(1.7)

where Dsym
µνρ (x, y, z) and Csym

µνρ (x, y, z) are permutation odd tensor functions, obtained from

the specific tensors

Dµνρ(x, y, z) =
1

(x− y)2(z − y)2(x− z)2
∂

∂xµ

∂

∂yν
ln(x− y)2

∂

∂zρ
ln

(
(x− z)2

(y − z)2

)
(1.8)

Cµνρ(x, y, z) =
1

(x− y)4
∂

∂xµ

∂

∂zα
ln(x− z)2

∂

∂yν

∂

∂zα
ln(y − z)2

∂

∂zρ
ln

(
(x− z)2

(y − z)2

)
(1.9)

by adding cyclic permutations

Dsym
µνρ (x, y, z) = Dµνρ(x, y, z) +Dνρµ(y, z, x) +Dρµν(z, x, y)

Csym
µνρ (x, y, z) = Cµνρ(x, y, z) + Cνρµ(y, z, x) + Cρµν(z, x, y) .

(1.10)

(Although not required for a first reading of this paper, we note that only four of the six

tensors which appear in (1.10) are linearly independent since the combination Dµνρ(x, y, z)+

1
2Cµνρ(x, y, z) is cyclically symmetric. A convenient basis, equivalent to that of Schreier, is

given by Csym
µνρ (x, y, z) and Dµνρ(x, y, z), Dνρµ(y, z, x), Dρµν(z, x, y). There are no permuta-

tion even combinations of this basis, so that the d-symbol dabc cannot appear in (1.7). It will

be seen later that k1 and k are related by the Ward identity (1.4), while k2 is an independent

constant.)

Many readers may now think that these considerations are irrelevant to the three-gluon

vertex and even suspicious, because it is well-known that correlation functions in massless

four-dimensional renormalizable field theories are not conformal invariant. Invariance fails

because a scale is introduced in the renormalization procedure in (virtually) all such theories,
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while in gauge theories conformal invariance is also broken by the gauge fixing procedure.

It turns out that the first difficulty is easier to explain than the second, at least in one-loop

order. It is true that conformal invariance fails because of renormalization, but in real space

at one-loop order renormalization affects only singular δ-functions δ(x − y)δ(y − z), while

for non-coincident points the renormalized and bare amplitudes coincide. Thus real space

one-loop amplitudes can well be conformal invariant away from short distance singularities.

Indeed Baker and Johnson10 considered the three-point current correlation function in a

theory containing spinor doublet ψi with Abelian gauge interactions. The “triangle function”

of the SU(2) current operator Ja
µ = 1

2
ψ̄iτ

a
ijγµψj was shown to have the conformal structure

(1.7 – 1.10) not only in one-loop, where it is fairly trivial, but also in two-loop order where

it vastly simplified the calculation. Conformal invariance held at the two-loop level, because

subdivergences cancel due to the Abelian Ward identity Z1 = Z2, so renormalization again

has no effect for non-coincident points.

The idea that amplitudes away from singularities have the conformal symmetry of the

bare Lagrangian is not sufficient to explain a conformal structure for the three-gluon ver-

tex function, because the gauge fixing terms in the Lagrangian break conformal invariance.

Indeed, the gluon propagator does not transform10 as expected from the formal inversion

property

A′

µ

(xσ

x2

)
= x2

(
δµν − 2xµxν

x2

)
Aµ (xσ) . (1.11)

However, one can show that the one-loop gluon vertex and self-energy in the background field

formalism satisfy Ward identities of the same simple form as (1.4), and further that the quark,

Faddeev–Popov ghost, and gluon contributions satisfy the Ward identities separately. The

quark triangle function is independent of the background method and the same in one-loop
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order as in the Abelian theory above and thus conformal invariant. Our calculations then

showed that the ghost triangle function was conformal invariant, while the gluon triangle and

seagull graphs combine into an amplitude with the conformal structure (1.7 – 1.10) if the

Feynman gauge is used for internal gluons. Separate computations show that the background

field vertex is not conformal invariant away from the Feynman gauge, and it is easy to see

that the three-gluon vertex in ordinary field theory in the Feynman gauge is not conformal

invariant. Thus the conformal property appears to be very specialized, and, apart from the

calculations themselves, we do not have any qualitative explanation for it. For example, a

functional identity which expresses the conformal variation of the generating functional does

not suggest that it vanishes without detailed calculation.

Whether by accident or part of Nature’s design, the fact that quark, ghost, and virtual

gluon contributions to the vertex are all numerical combinations of the invariant tensors

Dsym
µνρ and Csym

µνρ vastly simplifies the task of regularization. The bare amplitude Dsym
µνρ has an

ultraviolet divergent Fourier transform, but it is easily regulated using the ideas of differential

regularization. The story of the tensor Csym
µνρ is slightly more involved. Although formally

linearly divergent, its Fourier transform is ultraviolet finite but subject to shift ambiguities

similar to those of the fermion triangle anomaly. A shift term changes Csym
µνρ by a linear

polynomial in momenta which is proportional to the bare Yang–Mills vertex (see (1.12)).

Regularization is required to specify the ambiguity in Csym
µνρ , and consideration of conformal

invariance and differential regularization lead to a simple regulated form which contributes

trivially to the Ward identity (1.4). The result of these considerations is that the regulated

form of Dsym
µνρ alone determines both the Ward identity and the β-function. The quark, ghost,

and gluon contribution to these quantities are easily found from the regulated form. It is also
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reasonably straightforward to find the relation between the mass scales in a regularized vertex

and self-energy which guarantees that the Ward identity holds at the renormalized level.

The hard-nosed, unimaginative reader will note, as is correct, that conformal symmetry

per se plays no direct role in our work, and our results can be more prosaically explained by

the fact that the bare amplitudes of the background field method in Feynman gauge are linear

combinations of the two tensor structure above. However, it can hardly be mere coincidence

that these tensors are conformally covariant, although this curiosity is not now understood

from a general standpoint.

Further, differential regularization is particularly useful here simply because it is a real

space method in which regularized and bare amplitudes of primitively divergent graphs agree

for separated points. The conformal structure found for the renormalized amplitudes is inde-

pendent of the regularization method used. In any method, it would be evident in real space

if anyone cared to look. In momentum space, conformal transformations are integral trans-

formations. Both this and scale-dependent renormalization obscure the conformal properties.

To gain some perspective, we discuss further some non-conformal invariant correlators

such as the three-gluon vertex in conventional Feynman gauge field theory. Here one can write

the bare amplitude as a multiple of Dsym
µνρ (x, y, z) plus a remainder which has a finite Fourier

transform. (The coefficient of Dsym
µνρ differs from that in the conformal invariant background

field vertex.) Thus the divergent part of the amplitude is described by a conformal tensor,

and the reason is very simple. All versions of the three-gluon vertex are linearly divergent and

have the full Bose permutation symmetry. The renormalization scale (or ultraviolet cutoff)

dependence is uniquely determined by the tensor form and discrete symmetry to be a multiple

9



of the tree approximation Yang–Mills vertex, namely the linear polynomial

Vµνρ(k1, k2, k3) = δµν (k1 − k2)ρ + δνρ (k2 − k3)µ + δρµ (k3 − k1)ν (1.12)

in momentum space. The regularized form of the tensor Dsym
µνρ (x, y, z) also has the same

scale-dependence, and there is a unique multiple of this tensor which fully accounts for the

ultraviolet divergence.

The one-loop vertex function with one background gluon and two quantum gluons is a

linearly divergent subgraph of the two-loop background field vertex. Although it does not

have a full Bose symmetry, the known renormalization structure11 of the background field

formalism requires that its renormalization scale-dependence is that of (1.12). So it also can

be written as a multiple of Dsym
µνρ (x, y, z) plus a remainder which is ultraviolet convergent.

This representation may be useful in the study of the two-loop background field vertex.

In Section II, we present the background field formalism employed in our work, and in

Section III, we discuss the computations which established the conformal properties of the

background field vertex. In Section IV, we discuss the regularization of Dsym
µνρ and Csym

µνρ .

The renormalized Ward identity and the mass scale relation for the regularized vertex and

self-energy are studied in Section V. In Section VI we show how the β-function is obtained

from the regulated vertex. In Section VII we outline a speculative scenario about the role

of conformal invariance in higher-loop calculations, and there is a brief statement of the

conclusions in Section VIII. Appendix A is devoted to the study of the linear deviation from

Feynman gauge, while some results concerning mixed vertices are presented in Appendix B.

In Appendix C we summarize our work on the conformal properties in a general background

field gauge.
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II. THE BACKGROUND FIELD METHOD

We now outline the background field formalism used in our work following Abbott6 and

the treatment in Ref. [1] with some minor but not insignificant changes.

Given the gauge potentials Aa
µ(x) and the structure constants fabc of a semi-simple Lie

algebra, the Yang–Mills field strength and action are

F a
µν = ∂µA

a
ν − ∂νA

a
µ + fabcAb

µA
c
ν

S[A] =
1

4g2

∫
d4xF a

µνF
a
µν .

(2.1)

One now introduces the background/quantum split

Aa
µ(x) = Ba

µ(x) + gbaµ(x)

F a
µν = Ba

µν + g
(
Dµb

a
ν −Dνb

a
µ

)
+ g2fabcbbµb

c
ν

Dµb
a
ν = ∂µb

a
ν + fabcBb

µb
c
ν

(2.2)

where, unless otherwise specified, Dµ denotes a covariant derivative with background connec-

tion. The action S[B + gb] is separately invariant under background gauge transformations

δBa
µ = Dµθ

a ,

δbaµ = fabcbbµθ
c

(2.3)

and under quantum gauge transformations

δBa
µ = 0

δbaµ = Dµα
a + gfabcbbµα

c

≡ Dµ (B + gb)αa .

(2.4)

The gauge fixing action

Sgf [b] =
1

2a

∫
d4x

(
Dµb

a
µ

)2
(2.5)
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is invariant under background field transformations only, as is the associated Faddeev–Popov

operator

M [B, b] = DµDµ(B + gb) . (2.6)

We define the functional

e−Ω[B,J ] =

∫
[dbµ] detM exp−

{
S[B + gb]− S[B] + Sgf [b] +

∫
d4x Ja

µ(x)baµ

}
. (2.7)

The source Ja
µ(x) is given by

Ja
µ(x) =

1

g
DαB

a
αµ(x) + ja

µ(x) . (2.8)

The purpose of the first term is to cancel the linear “tadpole” in S[B+gb]−S[B], while ja
µ(x)

is the source for quantum gluons. For ja
µ(x) ≡ 0, Ω[B, J ]j=0 contains one-particle irreducible

graphs with external B fields and internal b lines beginning in one-loop order, plus some

non-1PI graphs beginning in two-loop order. The 1PI graphs can be systematically treated

by a Legendre transform and they contribute to the gauge invariant effective action of the

theory which agrees with the conventional effective action in an unconventional gauge.5, 6

The Legendre transform is not discussed here because it is not required for the one-loop

computations which are the major part of the present work. For our schematic discussion of

two-loop order in Section VII, it is necessary to note that one-loop subdiagrams with external

quantum gluons are required and these are obtained by functional differentiation of Ω[B, J ]

with respect to ja
µ followed by amputation on external b-lines.

The most important property of the background field formalism for our purpose is its

invariance under background gauge transformations (2.3). A gauge transformation of Ba
µ is

12



compensated, except in the source term involving jµ, by a gauge rotation of the integration

variable bµ, leading to the functional Ward identity

Dµ
δΩ[B, J ]

δBa
µ(x)

= −fabcjb
µ(x)

δ

δjc
µ(x)

Ω[B, J ] . (2.9)

When there are no external quantum gluons the right side vanishes. As a special case of (2.9)

one finds that the background three-gluon vertex and self-energies are related by

∂

∂zρ

δ3Ω[B, J ]j=0

δBa
µ(x)δBb

ν(y)δBc
ρ(z)

= − f cadδ(z − x)
δ2Ω[B, J ]j=0

δBd
µ(x)δBb

ν(y)

− f cbdδ(z − y)
δ2Ω[B, J ]j=0

δBa
µ(x)δBd

ν(y)

(2.10)

which is exactly of the same form as the identity (1.4) satisfied by current correlation functions.

To implement perturbation theory, one needs the explicit form of the integrand of (2.7)

S[B + gb]− S[B] + Sgf [B] +
1

g

∫
d4xDαB

a
αµb

a
µ

=

∫
d4x

[
1

2
Dµb

a
νDµb

a
ν + fabcBa

µνb
b
µb

c
ν +

1

2

(
1

a
− 1

)
(D · b)2 + Lq

] (2.11)

where

Lq = gfabc (Dµb
a
ν) bbµb

c
ν +

g2

4
fabcfadebbµb

c
νb

d
µb

e
ν (2.12)

describes quantum gluon vertices which are required in background field calculations beyond

one-loop. As in [1] we rewrite the integrand of (2.11) in terms of bµ kinetic terms and mixed

b-B interaction terms

L0 =
1

2
∂µb

a
ν∂µb

a
ν +

1

2

(
1

a
− 1

)
∂µb

a
µ∂νb

a
ν

L1 = fabcBa
µb

b
ν∂µb

c
ν

L2 =
1

2
fabcfadeBb

µB
d
µb

c
νb

e
ν

L3 = fabcBa
µνb

b
µb

c
ν

L4 =

(
1

a
− 1

)[
fabcBb

µb
c
µ∂νb

a
ν +

1

2
fabcfadeBb

µb
c
µB

d
νb

e
ν

]
.

(2.13)
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The quantum field propagator is

〈
baµ(x)bbν(y)

〉
=
δab

4π2

[
δµν

(x− y)2
+
a− 1

4
∂µ∂ν ln(x− y)2

]
. (2.14)

One sees that both propagator and interaction terms simplify in the Feynman gauge (a = 1)

which was the initial motivation for this internal gauge choice.

For computational purposes, one represents the Faddeev–Popov determinant as a func-

tional integral over anti-commuting ghosts ca(x), c̄a(x) with action

Sgh[c, c̄] =

∫
d4x

[
Dµc̄

aDµc
a + L′

g

]

=

∫
d4x

[
Lg

0 + Lg
i + L′g

] (2.15)

and
Lg

0 = ∂µc̄
a∂µc

a

Lg
i = fabcBa

µc̄
b↔∂µc

c + fabcfadeBb
µB

d
µc̄

cce

L′g = gfabcDµc̄
abbµc

c .

(2.16)

Note that
↔
∂µ is an anti-symmetric derivative, and that the ghost propagator is

〈
ca(x)c̄b(y)

〉
=

1

4π2

δab

(x− y)2
. (2.17)

The only new feature of this treatment, compared with Refs. [1] and [6] is that the tadpole

terms were simply neglected previously, because they do not contribute to 1PI diagrams. Now

the tadpole is cancelled explicitly, through the form (2.8) of the source. This makes a difference

only for some of the functional identities used in Section III and Appendix A.

There are more recent versions of the background field formalism12 which are more general

than that used here. When applied to non-Abelian gauge theories, they agree with the present

version to one-loop order, if the Landau gauge, rather than the Feynman gauge, is used for

internal gluons. In two-loop order, there are other differences. Since the three-gluon vertex

in the Landau gauge is not conformal invariant it does not seem that these formalisms are

useful for further investigation of the conformal property.
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III. BARE AMPLITUDES AND CONFORMAL TENSORS

One-particle irreducible (1PI) diagrams contributing to the one-loop correction to the

three-gluon vertex can be classified in three groups, each of which provides a different confor-

mally invariant contribution to the effective action. Graphs with (1) ghost loops, (2) fermion

loops,and (3) gluon loops are separately conformally invariant,namely they are linear combi-

nations of the conformal tensors Csym
µνρ (x, y, z) and Dsym

µνρ (x, y, z) of (1.8 – 1.10), with different

coefficients. The conformal property of the ghost and fermion diagrams are clearly associated

with invariant Lagrangians, but that of the gluon graphs presently lacks a simple explanation.

In this section we describe in some detail the calculations that led us to recognize the con-

formal property, which is a regularization-independent result requiring, however, a real space

approach.

From (2.15) one sees that the part of the ghost Lagrangian required in one-loop calcula-

tions is simply Dµc̄
aDµc

a which coincides with that of a minimally coupled scalar field in the

adjoint representation. This is conformal invariant, as one can see, for example, by combining

(1.11) for Ba
µ(x) with

c
′a(x′) = x2ca(x) (3.1)

for the ghost (and antighost). Thus the ghost contribution to the three-gluon vertex will be

conformal invariant at one-loop order. At the computational level, it is the antisymmetric

derivative
↔
∂µ in (2.16) that is crucial for the conformal property. The ghost interaction term

L′g of (2.15) is not conformal invariant.

To see which linear combination of the conformal tensors Csym
µνρ (x, y, z) and Dsym

µνρ (x, y, z)

describes the ghost contribution we examine the two 1PI diagrams of Fig. 1. Graph (1.a) van-

ishes because the Wick contractions give an algebraic factor of the type fabcBa
µ(x)Bb

µ(x) = 0.
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Graph (1.b) instead gives the following contribution to −Ω3[B], i.e. the part of the effective

action cubic in B,

(1.b) = −1

3

C

(4π2)
3 f

abc

∫
d4x d4y d4z Ba

µ(x)Bb
ν(y)Bc

ρ(z)

×
[
Tµρν(x− z, y − z) − 3

2
Vµνρ(x− z, y − z)

] (3.2)

where we have introduced the tensors

Tµνρ(x− z, y − z) = ∂x
µ

1

(x− z)2
∂y

ν

1

(y − z)2
∂x

ρ

1

(x− y)2
, (3.3a)

Vµνρ(x− z, y − z) = ∂x
µ∂

x
ν

1

(x− y)2
1

(y − z)2
↔
∂z

ρ

1

(x− z)2
, (3.3b)

C is the Casimir operator in the adjoint representation (C = N for SU(N)) and we have used

fadef beff cfd = C
2
fabc. For the contribution to the three-point function from (3.2) we get

δ3(1.b)

δBa
µ(x)δBb

ν(y)δBc
ρ(z)

= −C f
abc

(4π2)
3

[
Tµρν(x− z, y − z) + Tρνµ(x− z, y − z)

− 3

2
V sym

µνρ (x− z, y − z)

]
,

(3.4)

where V sym
µνρ is constructed as in (1.10) by adding cyclic permutations. By manipulating the

derivatives it is possible to show that (3.4) can be rewritten in terms of the conformal tensors

of (2.10) according to

δ3(1.b)

δBa
µ(x)δBb

ν(y)δBc
ρ(z)

= − C

(4π2)
3

fabc

3

[
1

2
Csym

µνρ (x, y, z) + 4Dsym
µνρ (x, y, z)

]
. (3.5)

It is worth mentioning that if the analogous quantity is computed in the usual quantum

field theoretical approach, instead of the background field method, one would get a non-

conformally invariant amplitude proportional to the quantity Tµρν(x − z, y − z) + Tρνµ(x −

z, y − z). This is to be expected since the ghost action for conventional Lorentz gauge fixing

is not conformally invariant.
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Let us now analyze the fermion loop contributions. The Euclidean fermion action is (we

assume only one flavor)

SF = i

∫
d4x ψ̄γµ (∂µ + Aµ)ψ =

∫
d4x

(
LF

0 + LF
i

)
(3.6)

where Aµ = −iAa
µT

a, T a are the Hermitian gauge group generators and {γµ, γν} = 2δµν

are Euclidean Hermitian Dirac matrices. The action (3.6) is conformally invariant and the

conformal properties of the fermion loop triangle were already studied in the Abelian case.10

In Yang–Mills theories there are two diagrams contributing to the one-loop three-gluon vertex

(Fig. 2). The fermion propagator in real space reads

〈
ψi(x)ψ̄j(y)

〉
= − i

4π4
δijγµ∂x

µ

1

(x− y)2
(3.7)

where i, j = 1, . . . , N for SU(N) are the representation indices. Both diagrams are obtained

from the Wick contractions in
〈
LF

i (x)LF
i (y)LF

i (z)
〉

which gives the contribution to Ω3[B]

(2.a) + (2.b) = −1

3

i

(4π2)
3

∫
d4x d4y d4z Ba

µ(x)Bb
ν(y)Bc

ρ(z)

×
[
Tr
{
T bT aT c

}
· tr {γλγµγσγργτγν}Tστλ(x− z, y − z)

]
.

(3.8)

The trace of three generators is

Tr
{
T aT bT c

}
=

1

4

(
dabc + ifabc

)
(3.9)

and in (3.8) the terms containing the symmetric part dabc vanish by symmetry properties of

the trace on the γ matrices. Using the trace one finds, after a simple calculation, the explicit

conformal invariant expression for the fermion loop contribution to the vertex

δ [(2.a) + (2.b)]

δBa
µ(x)δBb

ν(y)δBc
ρ(z)

=
4

3

fabc

(4π2)
3

[
−1

2
Csym

µνρ (x, y, z) + 2Dsym
µνρ (x, y, z)

]
. (3.10)
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The conformal invariance of the one-loop diagrams containing gluon loops is much more

surprising, since the gauge fixing term (2.5) breaks conformal invariance and, as discussed in

the introduction, the gluon propagator does not transform properly. The 1PI gluon diagrams

are shown in Fig. 3. It turns out that diagram (3.e) is separately conformal invariant in

Feynman gauge (a = 1) because the antisymmetric
↔
∂µ in L1 of (2.13) does “match” nicely

with the effective “scalar-like” gluon propagator of (2.14). Indeed the amplitude of (3.e) is

simply −2 times that of the ghost loop (3.5) and thus embodies the expected ghost cancellation

of two of the four degrees of freedom of bµ.

The remaining diagrams of Fig. 3 are not separately conformal invariant but their sum

is. We describe the calculations as follows. The graphs (3.a,b,c,f) vanish because symmetric

tensors in the group indices are contracted with fabc. For the graph (3.h) we have the

interesting property that, after partial integration of all derivatives, the terms in which Dirac

δ occur, i.e. terms in which two background fields are at the same point cancel exactly with

the seagull diagrams (3.d). The same type of local terms, instead cancel among themselves

in the graph (3.g). Adding up all these contributions, after a lengthy but straightforward

calculation, it is possible to express also the gluon loop contributions to the three point

function in terms of the conformal tensors

δ3 ((3.d) + (3.e) + (3.g) + (3.h)]

δBa
µ(x)δBb

ν(y)δBc
ρ(z)

=
C

(4π2)
3

fabc

3

[
7Csym

µνρ (x, y, z)− 40Dsym
µνρ(x, y, z)

]
. (3.11)

In conclusion, the one-loop correction to the three-gluon vertex, computed in the back-

ground field framework in Feynman gauge, is conformal invariant. The sum of all contributions

of the three groups of graphs for the three point function with Nf fermions is

δ3Ω[B, J ]

δBa
µ(x)δBb

ν(y)δBc
ρ(z)

=
fabc

3 (4π2)
3

[
−
(

13

2
C − 2Nf

)
Csym

µνρ (x, y, z)

+ (44C − 8Nf )Dsym
µνρ (x, y, z)

]
.

(3.12)
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The coefficients of the divergent tensor in (3.12) are exactly those necessary to satisfy the Ward

identity (2.10) and, consequently they are directly related to the well-known −11
3
C + 2

3
Nf of

the Yang–Mills β function. The details of these questions are discussed in Sections V and VI.

The unexpected conformal property of the gluon graphs requires explanation, and we

have attempted to explain it via a Slavnov–Taylor-like identity which describes the conformal

variation of the generating functional Ω[B, J ]j=0. The infinitesimal form of the conformal

transformation (1.3) is easily described13 in terms of conformal Killing vectors defined as

xµ −→ xµ + vµ(x, ǫ) ≡ xµ + ǫµx
2 − 2xµǫ · x . (3.13)

These vectors satisfy

∂µvν + ∂νvµ − 1

2
δµν∂ · v = 0

∂ · v = −8ǫ · x

vµ = 4ǫµ .

(3.14)

The standard conformal transformations of vector and scalar fields are

δ′ǫAµ = vν∂νAµ + Aν∂µvν

δ′ǫϕ = vν∂νϕ− 2ǫ · xϕ .

(3.15)

Because of the background gauge invariance of our formalism, it is more convenient to add the

field-dependent gauge transformation with parameter θa = vρB
a
ρ and use the gauge covariant

conformal variations14

δǫB
a
µ = −vνB

a
νµ

δǫb
a
µ = vνDνb

a
µ + bν∂µvν

δǫc
a = vνDνc

a − 2ǫ · x ca .

(3.16)

It is not difficult to see that S[B + bg] and S[B] are conformal invariant, and that

δǫD · ba =

(
v ·D +

1

2
∂ · v

)
D · ba + 4ǫ · b (3.17)
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leading to the simple variation of the gauge fixing term (2.5)

δǫSgf [b] =
4

a

∫
d4x ǫ · baD · ba . (3.18)

Thus the effect of a conformal transformation of Da
µ and baµ is to change the gauge fixing D ·ba

as follows

D · ba −→ D · ba + 4ǫ · ba . (3.19)

We now describe qualitatively the effect of a conformal transformation on Ω[B, J ] in (2.7).

Ignoring ghost variations for the moment, we combine transformations of the background Ba
µ

and source

δǫJ
a
µ = vνDνJ

a
µ + Ja

ν ∂µvν +
1

2
∂ · vJµ (3.20)

and make the analogous change in the integration variable bµ. The net effect in (2.7) is the

change (3.18) of the gauge fixing term. We then make the further quantum gauge transfor-

mation

baµ = b
′a
µ −Dµ[B + b]θa , θa = 4M−1 ǫ · ba (3.21)

to restore the original gauge and transfer the change to the source term. The process just

described leads to the functional identity (for connected graphs)

1

4
δǫΩ[B, J ] =

1

a

〈∫
d4x ǫ · baD · ba

〉

=

〈∫
d4x Ja(x) ·D[B + b]

∫
d4yM−1(x, y)abǫ · bb(y)

+

∫
d4x ǫ ·D[B + b]M−1(x, y = x)aa′=a

〉

=

〈∫
d4x Ja(x) ·D[B + b]ca(x)

∫
d4y c̄b(y)ǫ · bb(y)

+

∫
d4x ǫ ·D[B + b]ca(x)c̄a(x)

〉
.

(3.22)
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The first term on the second line is the induced change in the source term, and the next term

is the formal contribution of the change of the integration measure due to (3.21).

What about ghosts? We already know that the ghost action is conformal invariant if

baµ = 0, and it is easy to confirm this using (3.16). There are no other ghost variation effects

at the one-loop level, and the functional identity (3.22) correctly expresses the conformal

variation of Ω[B, J ] and the bare one-loop amplitudes it generates. An alternative way to

pass from the first to the last line of (3.22) is to apply
∫
d4x ǫ ·

(
δ/δJa

µ(x)
)

to the functional

Slavnov–Taylor identity given in (A.2). At higher order there are additional ghost effects

which we have not treated. Thus (3.22) may well be a one-loop-only result, but that is all we

need.

To see if (3.22) sheds any light on our background field results, we set ja
µ = 0. Using

(2.8) and its covariant conservation property, we rewrite (3.22) as

1

4
δǫΩ[B, J ]j=0 =

〈
fabc

∫
d4xDνB

a
νµ(x)bbµ(x)cc(x)

∫
d4y c̄d(y)ǫ · bd(y)

+

∫
d4x (ǫ ·D[B + b]ca(x)) c̄a(x)

〉
.

(3.23)

To account for the experimental results of this paper, the third variational derivative of (3.23)

with respect to Ba
µ must vanish in the Feynman gauge but not for general values of a. One

sees no direct reason for this in (3.23), other than through a detailed computation of the

contributing diagrams which would be a tedious job. As a check against possible error in

(3.23), we did study the diagrams which contribute to the second variational derivative. Here

it is not difficult to show that contributions to the first and second term in (3.23) vanish

separately. This confirms that the background field self-energy is conformal invariant, and is

consistent with the fact that the form (1.6) is obtained from direct calculation.
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Three-gluon vertices with one or more external quantum gluons are studied in the Ap-

pendices. It can be argued very simply, using Ward identities, that they cannot be conformal

invariant. It is implicit in the discussions of (1.4) – (1.7) of the Introduction, Section I, and

confirmed in Sections IV and V below, that a linear combination of conformal tensors Dsym
µνρ

and Csym
µνρ satisfies a simple Ward identity, specifically that the divergence ∂/∂zρ produces a

sum similar to (1.4) of two gauge-invariant self-energies of the form (1.6). However, the diver-

gence of the vertex function for three external quantum gluons involves the more complicated

mathematical structure of the Slavnov–Taylor identity (A.3). Thus the three-gluon vertex of

conventional field theory cannot be conformal invariant.

Mixed vertices with both background and quantum external gluons, satisfy simple Ward

identities when the divergence is taken in the background field. This follows from (2.6) and the

fact that mixed and quantum self-energies both take the gauge invariant form (1.6). However,

the divergence on a quantum vertex is again more complicated, as one can see from (A.3).

This is not quite enough to conclude that mixed vertices are not conformal invariant, because

the mixed vertices have the reduced Bose symmetry of a single conformal tensor Dµνρ(x, y, z)

and this tensor also has the curious property that the ∂/∂zρ divergence is that of a simple

Ward identity, while the ∂/∂xµ and ∂/∂yν divergences are more complicated.

The argument that the mixed vertices are not conformal invariant can be completed in

several ways, and we choose an argument which gives an additional piece of information. The

renormalization properties of the background field formalism have been studied by Kluberg–

Stern and Zuber.11 They find that the counterterm for the overall divergence of a three-gluon

vertex with any combination of external background and quantum lines takes the form of the

bare Yang–Mills vertex, that is the cubic term of (2.1). This is confirmed by our one-loop
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calculations, and it has the implication that the part of the one-loop amplitude which requires

regularization can be written as a numerical multiple of Dsym
µνρ . The remainder is ultraviolet

finite. For mixed vertices, this means that the remainder cannot simply be a non-fully sym-

metric combination of the linearly independent tensors Dµνρ and cyclic permutations, because

any such combination requires regularization. Mixed vertices are therefore not conformal in-

variant, although we hope that the fact that their divergent part is a multiple of Dsym
µνρ will

facilitate study of the Slavnov–Taylor identities and help with two-loop calculations in the

background field method.

It is relevant to ask whether other one-loop vertex functions of gauge theories can have

the conformal properties found here. The example (1.1) of the electron vertex function in

quantum electrodynamics shows that this is not the case, and we discuss this briefly here.

The inversion property of a fermion field is

ψ′(x′) = x2γ5γ · xψ(x) . (3.24)

Using this and (1.11), it is not difficult to see that the amplitude

Ṽλ(x, y, z) = −2γaγλγbVab(x− z, y − z) (3.25)

transforms properly under conformal transformation, but (1.1) does not. Indeed Ṽλ is the

one-loop electromagnetic vertex in a Lagrangian in which a fermion is coupled via ψ̄ψφ to a

massless scalar field, so conformal invariance is expected! The blame for the non-invariance

in the case of quantum electrodynamics rests squarely on the shoulder of the gauge fixing

procedure, which affects the virtual photon propagator. One can easily see from (1.1) that

the difference Vλ − Ṽλ is a total derivative and therefore ultraviolet finite. Thus we find

again that the part of a non-conformal vertex that requires regularization is conformal for

non-coincident points.
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IV. REGULARIZATION OF CONFORMAL COVARIANT TENSORS

In the previous section the bare, primitive divergent Feynman amplitudes for the three-

gluon vertex were expressed in terms of the conformal tensors Dsym
µνρ and Csym

µνρ . The regular-

ization problem for the physical amplitudes is therefore solved by regulating these tensors,

and regularization is required because the short-distance singularities make the Fourier trans-

forms diverge. Indeed, each tensor Dµνρ and Cµνρ of (1.8) and (1.9) corresponds to a formally

linear divergent loop integral in momentum space. However, the combination Csym
µνρ of (1.10)

is ultraviolet finite. Thus the various contributions to the three-gluon vertex involve a univer-

sal divergent tensor Dsym
µνρ . In this section we present two distinct regularized expressions for

Dsym
µνρ using the method of differential regularization. We also discuss the properties of Csym

µνρ

which, although finite, requires regularization to make its Fourier transform unambiguous.

In the first approach to regularize the conformal tensor Dµνρ(x, y, z), it is convenient

to write it in terms of the tensors Tµνρ(x − z, y − z) and Vµνρ(x − z, y − z) introduced in

(3.3). Note that Tµνρ has been regulated already in Ref. [1] and Vµνρ may be easily regulated

following the same basic ideas. A straightforward calculation shows that

Dµνρ(x, y, z) =
1

4
δµν (Tλρλ + Tρλλ − Tλλρ) − 1

2
Vµνρ(x− z, y − z) (4.1)

where Tαβγ ≡ Tαβγ(x− z, y − z) here and in the following.

Now, we briefly summarize the regularization of Tµνρ given in Ref. [1]. The procedure

maintains explicitly the x ↔ y, µ ↔ ν antisymmetry of the tensor and consists of moving

the derivatives to the left in order to have a piece with two total derivatives, which has a

finite Fourier transform, and some remaining terms whose singular parts lie only in the trace.

Thus, Tµνρ may be written as

Tµνρ(x, y) = Fµνρ(x, y) + Sµνρ(x, y) , (4.2)
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where we have set z = 0 for simplicity. Fµνρ(x, y), which has a well-defined Fourier transform,

is

Fµνρ(x, y) = ∂x
µ∂

y
ν

[
1

x2y2
∂x

ρ

1

(x− y)2

]
+ ∂x

µ

[
1

x2y2

(
∂ν∂ρ −

1

4
δνρ

)
1

(x− y)2

]

− ∂y
ν

[
1

x2y2

(
∂µ∂ρ −

1

4
δµρ

)
1

(x− y)2

]

− 1

x2y2

[
∂x

µ∂
x
ν ∂

x
ρ − 1

6

(
δµν∂

x
ρ + δµρ∂

x
ν + δνρ∂

x
µ

) ]
1

(x− y)2
,

(4.3)

while Sµνρ(x, y) contains the trace terms and thus derivatives of δ(x − y) times the factor

1/x4, which can be regularized in the usual way, i.e., by using the identity

1

x4
= −1

4

lnM2x2

x2
, (4.4)

yielding

Sµνρ(x, y) = −π
2

12

[
δµν

(
∂x

ρ − ∂y
ρ

)
+ δµρ (∂x

ν + 2∂y
ν ) − δνρ

(
2∂x

µ + ∂y
µ

)]
δ(x− y)

lnM2x2

x2
.

(4.5)

With the same procedure, it is easy to see that also the singular part of Vµνρ lies only in

the trace, and, when it is regularized by means of (4.4), we get

Vµνρ(x, y) =
(
∂y

ρ − ∂x
ρ

) [ 1

x2y2

(
∂µ∂ν − 1

4
δµν

)
1

(x− y)2

]

+
2

x2y2

[
∂x

µ∂
x
ν∂

x
ρ − 1

6

(
δµν∂

x
ρ + δµρ∂

x
ν + δνρ∂

x
µ

) ]
1

(x− y)2

+
π2

12

[
−δµν

(
∂x

ρ − ∂y
ρ

)
+ 2δµρ (∂x

ν − ∂y
ν ) + 2δνρ

(
∂x

µ − ∂y
µ

)]
δ(x− y)

lnM2x2

x2
.

(4.6)

Notice that the second and third rank tensor traces in (4.3) and (4.6) are independent and

a regularization with several independent mass scale parameters1 Mi is consistent with the

x↔ y, µ↔ ν antisymmetry, and could have been used. However, in the cyclically symmetric

combinations Csym
µνρ and Dsym

µνρ , which are the final objects of interest for the three-gluon vertex,
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the mass ratios lnMi/Mj appear as coefficients of the bare Yang–Mills vertex ((1.12) in p-

space). Thus the mass ratio ambiguity simply corresponds to a finite choice of regularization

scheme in differential regularization, and we have chosen the simplest scheme in which only

a single scale M appears from the beginning.

Substituting the regulated forms of Tµνρ and Vµνρ in (4.1), one finds the following regu-

lated expression for the tensor Dµνρ(x, y, z):

Dµνρ(x, y, z) =
1

2

(
∂x

ρ − ∂y
ρ

) [ 1

(x− z)2(y − z)2

(
∂µ∂ν − 1

4
δµν

)
1

(x− y)2

]

− 1

(x− z)2(y − z)2

[
∂x

µ∂
x
ν∂

x
ρ − 1

6

(
δµν∂

x
ρ + δµρ∂

x
ν + δνρ∂

x
µ

) ]
1

(x− y)2

+
1

4
δµν

(
∂x

λ∂
y
ρ + ∂x

ρ∂
y
λ − δλρ∂

x
σ∂

y
σ

) [ 1

(x− z)2(y − z)2
∂x

λ

1

(x− y)2

]

− π2

12

{
−2δµν

(
∂x

ρ − ∂y
ρ

)
+ δµρ (∂x

ν − ∂y
ν ) + δνρ

(
∂x

µ − ∂y
µ

)} [
δ(x− y)

lnM2(x− z)2

(x− z)2

]
.

(4.7)

From this equation, the regulated form of Dsym
µνρ (x, y, z) may be easily obtained by adding the

cyclic permutations Dνρµ(y, z, x) and Dρµν(z, x, y).

The Fourier transform of (4.7), computed using formal integration by parts of the to-

tal derivatives, involves a sum of essentially conventional Feynman loop integrals which are

convergent because they contain a combination of external momentum factors and traceless

tensors. Standard methods, for example, combining denominators using Feynman parameters,

can be used to evaluate the loop integrals.

We now discuss an alternative differential regularization of the singular vertex amplitude

Dµνρ(x, y, z) of (1.8). We first put Dµνρ into a form which suggests a simple regularization

by writing out (1.8) as

Dµνρ(x, y, z) =
1

3

[
(δµν − ∂µ∂ν)

1

(x− y)4

](
(x− z)ρ

(x− z)2
− (y − z)ρ

(y − z)2

)
(x− y)2

(y − z)2(x− z)2
.

(4.8)
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This form of the bare amplitude contains the product of a factor more singular than in

the original form times a vanishing factor, and it is analogous to the form used to regulate

the primitive non-planar three-loop graph for the four-point function of φ4-theory.1 We then

regulate the singular factor using (4.4) and obtain

Dµνρ(x, y, z) =
1

24

[
(δµν − ∂µ∂ν)

(
lnM2(x− y)2

(x− y)2

)]

× (x− y)2
(

∂

∂xρ
− ∂

∂yρ

)
1

(x− z)2(y − z)2
.

(4.9)

We will demonstrate that this expression gives a satisfactory regularization by show-

ing that it has a well-defined Fourier transform when the formal partial integration rule of

differential regularization is used. This regularized form is considerably simpler than the pre-

vious (4.7), although it does involve the somewhat peculiar technique of artificially raising

the degree of singularity of part of the bare amplitude. In this case we have a test of the

compatibility of this technique with Ward identities. The regulated Ward identities for the

analogous form of Dsym
µνρ are discussed in the next section, but we note here that the Ward-like

identity

∂

∂zρ
Dµνρ(x, y, z) = −

(
∂

∂x
+

∂

∂y

)

ρ

Dµνρ(x, y, z)

= − 1

24

[
(δµν − ∂µ∂ν)

lnM2(x− y)2

(x− y)2

]
(x− y)2 ( x − y)

1

(x− z)2(y − z)2

=
π2

6
(δµν − ∂µ∂ν)

lnM2(x− y)2

(x− y)2
· (δ(x− z) − δ(y − z)) ,

(4.10)

relates Dµνρ to a regulated, gauge invariant self-energy. This suggests that the divergences

of Dµνρ are indeed controlled by our procedure.

A more complete proof that the regularization (4.9) is correct requires the Fourier trans-

form

Dµνρ(p1, p2) =

∫
d4x d4y ei(p1·x+p2·y)Dµνρ(x, y, 0) . (4.11)
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To carry out the x and y integrations we insert

(x− y)2
(

∂

∂xρ
− ∂

∂yρ

)
1

x2y2
= i

∫
d4k1 d

4k2

(2π)4
e−i(k1·x+k2·y)

(
∂

∂k1σ
− ∂

∂k2σ

)2 [ (k1 − k2)ρ

k2
1 k

2
2

]

(4.12)

and

(δµν − ∂µ∂ν)
lnM2(x− y)2

(x− y)2
= −

∫
d4k3

(2π)2
e−ik3·(x−y)

(
δµνk

2
3 − k3µk3ν

)
ln

k2
3

M̄2

where the Fourier transform table of Ref. [1] has been used. We then obtain

Dµνρ(p1, p2) =
π2i

6

∫
d4k ln

(
(k + p1)

2

M̄2

)

×
[
(k + p1)

2
δµν − (k + p1)µ (k + p1)ν

]
k

[
(2k + p1 + p2)ρ

k2 (k + p1 + p2)
2

]
.

(4.13)

To test that this somewhat unconventional loop integral is finite, it is sufficient to examine

the leading terms as k → ∞ which are formally of order 1/k3 and 1/k4. These leading terms

are

(
(k + p1)

2
δµν − (k + p1)µ (k + p1)ν

)
k

(
− ∂

∂kρ

(
1

k2

)
− 1

2
(p1 + p2)λ

∂

∂kλ

∂

∂kρ

(
1

k2

))
.

(4.14)

Since 1/k2 = 0 for k 6= 0, these vanish identically, so the loop integral in (4.13) is ultraviolet

finite. Further, shifts in the loop momenta k are permitted, since the 1/k3 term is absent. If

one develops the asymptotic series in k further, one sees that the first term which contributes

to (4.13) has three powers of the external momenta. Notice that since the leading term in the

integral is proportional to at least the momenta pi, this is equivalent in coordinate space to

an amplitude which has at least three derivatives of a singular function with a well-defined

transform.
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We now study the conformal tensor Csym
µνρ (x, y, z). The individual terms of (1.9) have an

ultraviolet divergent Fourier transform. The divergence cancels in the cyclic sum of (1.10) but

there remains a shift ambiguity proportional to the bare gluon vertex (1.12). At first sight

it was surprising to find that Csym
µνρ (x, y, z) was finite, but it is actually a direct consequence

of the fact that the cutoff-dependent part of any permutation odd tensor Asym
µνρ(x, y, z) is pro-

portional to (1.12) in p-space. Suppose we had picked any pair of permutation odd conformal

tensors, say Asym
µνρ(x, y, z) and Bsym

µνρ (x, y, z), rather than Csym
µνρ and Dsym

µνρ of (1.10). Then by

examination of the cutoff-dependent part of Asym
µνρ(x, y, z) and Bsym

µνρ (x, y, z), we could select a

linear combination with finite Fourier transform.

The simplest way to confirm that Csym
µνρ has the properties stated above is to relate this

tensor to the Feynman amplitudes for the ghost and quark loop contributions to the three-

gluon vertex. From (3.5) and (3.10), one obtains

fabcCsym
µνρ (x, y, z) = −

(
4π2
)3
{

2

C

δ3(1.b)

δBa
µ(x)δBb

ν(y)δBc
ρ(z)

+
δ3 [(2.a) + (2.b)]

δBa
µ(x)δBb

ν(y)δBc
ρ(z)

}
. (4.15)

We then use standard p-space Feynman rules for these loop graphs. The result is a loop

integral with a formal linear divergence
∫
d4k kµkνkρ/k

6, but no log divergent terms with

numerator quadratic in k.

The finiteness of Csym
µνρ (x, y, z) can also be shown in real space, without calculation of the

Fourier transform. It is not difficult to show that each contribution to the cyclic sum (1.10)

for Csym
µνρ can be expressed in terms of Tµνρ and Vµνρ, for example

Cµνρ(x, y, z) = −δµν (Tλρλ + Tρλλ − Tλλρ) +
1

2
δµρ (Tνλλ − Tλνλ + Tλλν)

− 1

2
δρν (Tµλλ − Tλµλ + Tλλµ) + 2 (Tµρν + Tρνµ) − Vνρµ(y − x, z − x) − Vρµν(z − y, x− y) .

(4.16)
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We then regulate these quantities as in (4.2 – 4.6), but include different scale masses Mc

for independent traces. We then find that the overall scale-dependence cancels in Csym
µνρ but

lnMi/Mj terms multiply the real space form of (1.12) remain. This is the signal in differential

regularization of a quantity with finite but ambiguous Fourier transform, and it is very similar

to the axial fermion triangle anomaly in Section II.D of Ref. [1].

The regularized form of Csym
µνρ (x, y, z) found by the procedure above could be used as the

regularized contribution of this tensor to the three-gluon vertex, but it is a very complicated

form and we have found a much simpler form by combining ideas of conformal invariance,

differential regularization and Ward identities.

One suspects that the tensor Csym
µνρ satisfies a trivial bare Ward identity

∂

∂zρ
Csym

µνρ (x, y, z) = 0 (4.17)

because the ultraviolet divergence, which would normally be present on both sides of a non-

trivial identity of the form (1.4), has cancelled. One can confirm this by using conformal

invariance to take the limit10 as one of points goes to ∞ (for example, yµ → ∞). It is easy

to compute the ∂/∂zρ derivatives of Cµνρ(x, y, z) and its cyclic permutations directly from

(1.9) in this limit. The non-local contribution (z 6= x) vanishes trivially in the cyclic sum,

and one also shows that there is no quasi-local δ(z − x)
∑

µν(y) term, thus verifying (4.17).

We call (4.17) a bare Ward identity because the Ward identity of a regularized form of Csym
µµρ

in general contains ultra-local terms δ(z− x) (∂µ∂ν − δµν ) δ(x− y). Such terms correspond

to the intrinsic ambiguity of Csym
µνρ , and they cannot be detected at large y.

Motivated by the Ward identity (4.17), we sought a mathematical representation of a

permutation odd tensor with the conformal inversion property (1.5) of a three-point function
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of currents in which the trivial gauge property was carried by explicit derivatives in x, y, and

z. This led us to the ansatz

Qµνρ(x, y, z) = (δµa∂
x
b − δµb∂

x
a ) (δνc∂

y
d − δνd∂

y
c )
(
δρe∂

z
f − δρf∂

z
e

)

× ∂x
a∂

y
c ln(x− y)2∂x

b ∂
z
e ln(x− z)2∂y

d∂
z
f ln(z − y)2 (4.18a)

= − (δµa − ∂µ∂a)
x

(δνb − ∂ν∂b)
y
(δρc − ∂ρ∂c)

z

× ∂x
a ln(x− y)2∂y

b ln(y − z)2∂z
c ln(z − x)2 . (4.18b)

To see that (4.18a) has the correct inversion property, we note that for fixed y, z

(δµa∂
x
b − δµb∂

x
a )
[
∂x

a ln(x− y)2∂x
b ln(x− z)2

]
= ∂x

b

[
∂x

µ ln(x− y)2∂x
b ln(x− z)2 − (b↔ µ)

]
.

(4.19)

This equation has the structure jµ = ∂bFµb where Fµb is an anti-symmetric tensor with the

same conformal properties as a field strength. Thus (4.19) is conformal invariant for the

same reason that Maxwell’s equations are conformal invariant, namely ∂bFµb has the inver-

sion property of a dimension three current. In (4.18a), this same property is symmetrically

incorporated in all three variables. The form (4.18b) is obtained by “partial integration” of

one derivative in each log factor, using the gauge property.

The conformal tensor Qµνρ(x, y, z) must be a linear combination of Csym
µνρ and Dsym

µνρ , and

the trivial gauge property suggests that it must be proportional to Csym
µνρ . The derivatives

in (4.18) are very tedious to compute, so we employed a symbolic manipulation program to

calculate Qµνρ explicitly, and compare with Csym
µνρ in (1.9 – 1.10). The result is the equality

Csym
µνρ (x, y, z) =

1

16
Qµνρ(x, y, z) . (4.20)
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One remaining subtlety arises because the symbolic manipulation program ignores δ(x − y)

terms which could arise from expressions such as
(
1/(x− y)2

)
. Therefore, we checked by

hand calculation that there are no hidden quasi-local terms, so that the relation (4.20) is

correct.

Because of the many external derivatives in (4.18b), Qµνρ can be regarded as a regulariza-

tion of Csym
µνρ because it assigns a unique Fourier transform, when the partial integration rule of

differential regularization is used. We find it astonishing that the tensor Csym
µνρ whose Fourier

transform is linearly divergent by power counting can be presented in the form (4.18b) whose

Fourier transform contains six powers of external momentum and is therefore represented by

highly convergent loop integrals.

To see that this regularized version of the finite tensor Csym
µνρ makes no finite contribution

to the Ward identity we shall compute the Fourier transform of it. The Fourier transform of

Csym
µνρ is

Csym
µνρ = 2π2i

(
δµap

2
1 − p1µp1a

) (
δνbp

2
2 − p2νp2b

) (
δρcp

2
3 − p3ρp3c

)

· ∂

∂p1a

∂

∂p2b

(
∂

∂p1c
− ∂

∂p2c

)∫
d4k

k2 (k − p1)
2
(k + p2)

2

(4.21)

where p1+p2+p3 = 0. We can see from this representation that as any momentum component

vanishes, Cµνρ goes to zero so that there is no contribution to the Ward identity. It might

seem that as p2 → 0 there would be an infrared singularity of the loop integration at zero

but a careful study of (5.21) for small p2 indicates that it goes smoothly to zero as p2 → 0.

Therefore Csym
reg gives no contribution to the Ward identity.

V. WARD IDENTITY AND THE MASS SCALE SHIFT

In this section we will consider the Ward identity (2.10) which relates the three-gluon

vertex and the self-energy. The vertex is a linear combination of the tensors Dsym
µνρ (x, y, z)
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and Csym
µνρ (x, y, z). Since Csym

µνρ satisfies a trivial Ward identity, our main task is to study the

∂/∂zρ divergence of Dsym
µνρ . We will first obtain the bare form of the Ward identity, and then

study the regulated version associated with each of the regulated forms of Dsym
µνρ discussed

in Section IV. The purpose is to show that the proper relation between renormalized vertex

Vµνρ and self-energy Σµν can be achieved, as in (1.1) – (1.2) by specific choice of the mass

scale parameter of the differential regularization procedure.

The bare Ward identity satisfied by Dsym
µνρ is easily obtained by following the same ap-

proach outlined for Csym
µνρ . Exploiting conformal invariance, we take advantage of the algebraic

simplifications that occur in the limit as one of the points (we choose yµ) goes to ∞. Evalu-

ating derivatives, we find that (∂/∂zρ)Dµνρ(x, y, z) gives only a local contribution. Each of

the other cyclic permutations in (1.10) contains non-local terms (x 6= y) which cancel in the

sum leaving only δ(x− z). The net result is

∂

∂zρ
Dsym

µνρ (x, y, z) −→
y→∞

−12π2δ(x− z)

(
δµν − 2yµyν

y2

)
1

y6
. (5.1)

From this we infer, using x, µ ↔ y, ν permutation symmetry of Dsym
µνρ and translation invari-

ance, the bare Ward identity

∂

∂zρ
Dsym

µνρ (x, y, z) = π2 [δ(x− z) − δ(y − z)] (∂µ∂ν − δµν )
1

(x− y)4

≡ [δ(x− z) − δ(y − z)] Σµν(x− y) .

(5.2)

Comparing this result with the Ward identity (1.4) obeyed by current correlation func-

tions, we see that the coefficients k and k1 in (1.6) and (1.7) are related by

12π2k1 = k (5.3)

while k2 in (1.7) is an independent constant, since Csym
µνρ (x, y, z) does not contribute to the

Ward identity.
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The regulated form of the Ward identity is a more delicate matter because it tests the

treatment of the overall singularity at x ∼ y ∼ z of Dsym
µνρ (x, y, z). In any regularization

procedure, there is an unresolved ambiguity which for a linearly divergent quantity with

the discrete symmetries of Dsym
µνρ (x, y, z) is simply a finite multiple of the bare Yang–Mills

vertex. Similarly the ambiguity in a gauge invariant self-energy function is a multiple of

(∂µ∂ν − δµν ) δ(x − y). In differential regularization, these ambiguities are reflected in the

dependence of regulated amplitudes on the mass scales M which are chosen in (4.4). Thus

we study the regulated form of (5.2) with self-energy scale MΣ

∂

∂zρ
Dsym

µνρ (x, y, z) =
π2

4
(δ(x− z) − δ(y − z)) ( δµν − ∂µ∂ν)

lnM2
Σ(x− y)2

(x− y)2
, (5.4)

and we require that this be satisfied for both regularizations of Dsym
µνρ (x, y, z) given in Sec-

tion IV. For the regularized form (4.7), we use vertex mass scale MV1
, and for the form (4.9),

the scale MV2
. In each case we will find that the Ward identity is satisfied, if relations of the

form

ln

(
MV1

MΣ

)
= a1 , ln

(
MV2

MΣ

)
= a2 (5.5)

hold. Since these relations fix the ambiguity in the vertex up to an overall scale, the two

forms (4.7) and (4.9) will then coincide as renormalized amplitudes if

ln

(
MV1

MV2

)
= a1 − a2 (5.6)

Since the bare Dsym
µνρ and bare self-energy are properly related away from coincident points

x = y = z, it is sufficient to study a restricted form of (5.4) in order to fix the mass scale

ratios of (5.5). For the first regulated version (4.7) it is convenient to use the integrated form
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of (5.4)

∂

∂zρ

∫
d4y Dsym

µνρ (x, y, z) = −π
2

4
( δµν − ∂µ∂ν)

lnM2
Σ(x− z)2

(x− z)2
. (5.7)

For the regularization (4.9) a Fourier transform of (5.4) is more convenient, as we discuss

below.

Thus our first task is to insert the regulated form (4.7) and its cyclic permutations in the

left-hand side of (5.7), do the integral d4y and compute the ∂/∂zρ divergence. All integrals

can be done using the intermediate results

∫ R

d4y
1

(x− y)2
1

y2
= −π2

[
ln
x2

R2
− 1

]

∫ R

d4y
1

y4
= −1

4

∫ R

d4y
lnM2y2

y2
= π2

[
lnM2R2 − 1

]

(
∂µ∂ν − 1

4
δµν

)∫
d4y

1

(x− y)2y2
= −π2

(
δµν − 4xµxν

x2

)
1

x2

[
∂µ∂ν∂ρ − 1

6
(δµν∂ρ + δµρ∂ν + δνρ)

] ∫
d4y

1

(x− y)2y2
=

= −16π2

[
xµxνxρ −

1

6
x2 (δµνxρ + δνρxµ + δρµxν)

]
1

x6

(5.8)

An infrared cutoff R at some large value of y is required because individual terms in the

contribution of the permutation Dρµν(z, x, y) to (5.7) are infrared divergent, although this

divergence cancels in the full contribution. The last two integrals are obtained by explicit

differentiation of the first result. The second integral is evaluated using the differential reg-

ularization recipe in which the singular contribution for small y is ignored. The large y

contribution is obtained from the divergence theorem. One uses translational invariance to

replace x→ x− z in applying (5.8) to (5.7).
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We record the results of the three cyclic permutations:

∂

∂zρ

∫
d4yDµνρ(x, y, z) =

π2

6
(∂µ∂ν − δµν )

lnM2
V1

(x− y)2

(x− z)2

+
π4

9

(
∂µ∂ν − 1

4
δµν

)
δ(x− z)

∂

∂zρ

∫
d4y Dνρµ(y, z, x) = −π

2

12
(∂µ∂ν − δµν )

lnM2
V1

(x− y)2

(x− z)2

+
π4

9

(
−5

4
∂µ∂ν + 2δµν

)
δ(x− z)

∂

∂zρ

∫
d4y Dρµν(z, x, y) =

π2

6
(∂µ∂ν − δµν )

lnM2
V1

(x− z)2

(x− z)2

− π4

9

(
1

2
∂µ∂ν + δµν

)
δ(x− z) .

(5.9)

We add these contributions to obtain the final gauge invariant result

∂

∂zρ

∫
d4y Dsym

µνρ (x, y, z) = −π
2

4
( δµν − ∂µ∂ν)

[
lnM2

V1
(x− z)2

(x− z)2
+

1

12

1

(x− z)2

]
, (5.10)

which, when compared with (5.7) yields the mass scale relation

ln
M2

V1

M2
Σ

= − 1

12
. (5.11)

We next consider the second regularized form (4.9) of Dsym
µνρ . Since the Fourier transform

(4.13) is quite simple, we choose to work in momentum space. The Fourier transform of (5.4)

is

i (p1 + p2)ρD
sym
µνρ (p1, p2) = Σµν (p2) − Σµν (p1) . (5.12)

The restriction we use to fix mass scales is the analogue of the original Ward identity of

quantum electrodynamics and is obtained by applying ∂/∂p2λ to (5.12), and then setting

p2 = −p1 = −p, which is equivalent to p3 = 0. The result is

iDsym
µνλ(p,−p) = − ∂

∂pλ
Σµν(p)

= π4 ∂

∂pλ

[(
p2δµν − pµpν

)
ln

p2

M̄2
Σ

] (5.13)
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where we have used (5.4) and the Fourier transform result of Appendix A of Ref. [1] to obtain

the last line. Note that M̄Σ = 2MΣ/γ where γ = 1.781 is Euler’s constant.

From (4.11) and permutations, we find that

Dsym
µνλ(p,−p) = Dµνλ(p,−p) +Dνλµ(−p, 0) +Dλµν(0, p) . (5.14)

To evaluate Dµνλ(p,−p) is simple; we have already shown that this term obeys a kind of

Ward identity by itself. One finds directly from (4.13) using

p
∂

∂pλ

(
1

p2

)
= −4π2 ∂

∂pλ
δ(p) ,

Dµνλ(p,−p) = −2π4i

3

∂

∂pλ

[
(
p2δµν − pµpν

)
ln

p2

M̄2
V2

]
. (5.15)

Next we compute the remaining terms in (5.14) where an elementary integral must be evalu-

ated, namely

∫
d4k ln

(
k2

M̄2
V2

)
(
k2δµν − kµkν

)
k

(
(2k − p)λ

k2(k − p)2

)

= −2π2 pλpµpν

p2
+ pλδµν

(
−4π2 ln

p2

M̄2
V2

)
− (pµδλν + pνδλµ)

(
2π2 ln

p2

M̄2
V2

+ π2

) (5.16)

Thus

Dνλµ(−p, 0) +Dλµν(0, p) =

(
−π

4i

3

)
∂

∂pλ

(
p2δµν − pµpν

)
(

ln
p2

M̄2
V2

− 1

2

)
(5.17)

and so we obtain

Dsym
µνλ(p,−p) =

(
−π4i

) ∂

∂pλ

(
p2δµν − pµpν

)
(

ln
p2

M̄2
V2

− 1

6

)
(5.18)

We see that the only difference between (5.18) and (5.13) is a linear term in p which

is the expected local violation of the Ward identity due to regularization ambiguities. The

Ward identity is satisfied exactly if we fix the mass scale ratio

ln

(
M2

V2

M2
Σ

)
= −1

6
. (5.19)
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Using (5.11) we see that

ln

(
M2

V1

M2
V2

)
= − 1

12
+

1

6
=

1

12
. (5.20)

This calculation illustrates the “robustness” of the differential regularization method. Two

rather different regularizations of the same amplitude are simply related by a proper choice

of scale parameters.

VI. THE BETA-FUNCTION

Although the one-loop β(g) for non-Abelian gauge theories was calculated in Ref. [1]

using differential regularization, we shall recompute it here from the present viewpoint which

emphasizes our principal result that the gluon vertex function is the linear combination of

conformal tensors given in (3.12).

We use the notation (7.1) and the renormalization group equation (7.4), which requires

that the classical and regulated one-loop contributions to the vertex function, denoted respec-

tively by Γ0
µνρ and Γ1

µνρ are related by

M
∂

∂M
Γ1

µνρ(x, y, z) = −β(g)
∂

∂g
Γ0

µνρ(x, y, z)

= 2
β(g)

g3

{
δµν

(
∂x

ρ − ∂y
ρ

)
+ δνρ

(
∂y

µ − ∂z
µ

)
+ δρµ (∂z

ν − ∂x
ν )
}
δ(x− y)δ(y − z)

(6.1)

where the classical term is easily computed directly from S[B] in (2.1). Using (3.12) and the

fact that only the regulated tensor Dsym
µνρ is scale-dependent, we see that the left-hand side of

(6.1) is simply

M
∂

∂M
Γ1

µνρ(x, y, z) =
1

48π6
(11C − 2Nf )M

∂

∂M
Dsym

µνρ (x, y, z) . (6.2)

It is rather trivial to compute the scale derivative of the regularized form (4.7) of Dµνρ

and add permutations to obtain

M
∂

∂M
Dsym

µνρ (x, y, z) = −2π4
{
δµν

(
∂x

ρ − ∂y
ρ

)
+ δνρ

(
∂y

µ − ∂z
µ

)
+ δρµ (∂z

ν − ∂x
ν )
}
δ(x−y)δ(y−z).

(6.3)
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From (6.1) – (6.3) one immediately finds the well-known result

β(g) = − g3

48π2
(11C − 2Nf ) + O(g5) . (6.4)

It is a useful test of the ideas underlying the second regularization of Dµνρ in (4.9) to

see that the same result can be obtained from this form. The scale derivative of (4.9) gives

an expression which is difficult to interpret as a product of delta functions unless an integral

with a smooth function is performed, so it is natural to study the momentum form (4.13),

where the scale derivative is

M
∂

∂M
Dµνρ(p1, p2) = − iπ

2

3

∫
d4k

(
k2δµν − kµkν

)
k

(2k − p1 + p2)ρ

(k − p1)
2
(k + p2)

2 (6.5)

where we have made the (permitted) shift k → k − p1 of the loop momentum in (4.13).

Dimensional and symmetry arguments tell us that the integral must have the form

M
∂

∂M
Dµνρ(p1, p2) = A (p1 − p2)ρ δµν +B

[
(p1 − p2)µ δνρ + (p1 − p2)ν δµρ

]
(6.6)

where A and B are purely numerical constants. To compute A and B it is sufficient to evaluate

(6.5) with p2 = −p1. This leads to

Apρδµν +B [pµδνρ + pνδµρ] = − iπ
2

3

∫
d4k (k2δµν − kµkν) k

(k − p)ρ

(k − p)4
. (6.7)

In this form the integral is elementary, since

k
(k − p)ρ

(k − p)4
=

1

2

∂

∂pρ
k

1

(k − p)2
= −2π2 ∂

∂pρ
δ(k − p) (6.8)

so

Apρδµν +B [pµδνρ + pνδµρ] =
i2π4

3

∂

∂pρ

(
p2δµν − pµpν

)
(6.9)
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which gives

A =
i4π4

3
, B = − i2π

4

3
. (6.10)

We insert this into (6.6) and add cyclic permutations to obtain

M
∂

∂M
Dsym

µνρ (p1, p2, p3) = M
∂

∂M
[Dµνρ (p1, p2)

+Dνρµ (p2, p3 = −(p1 + p2)) +Dρµν (p3 = −(p1 + p2), p1)]

= i2π4
{
δµν (p1 − p2)ρ + δνρ (p2 − p3)µ + δρµ (p1 − p2)ν

}
.

(6.11)

If this result is inserted in the Fourier transform of (6.2) and (6.1), we again find the beta-

function (6.4).

VII. OUTLOOK BEYOND ONE-LOOP

Our approach to the three-gluon vertex has been largely “experimental,” and we do not

yet have a theoretical explanation of the gauge-specific conformal property found at one-loop

order. Nevertheless it is of some interest to consider the possible role of conformal symmetry

beyond one-loop. We discuss here an admittedly speculative scenario based on the interplay

of renormalization group equations and Ward identities. We will see that exact conformal

invariance cannot hold in higher order because of the twin problems of subdivergences and

gauge-dependence. However, one might have a situation in which, in a given order of per-

turbation theory, the three-gluon vertex or the three-point current correlation function has a

certain conformal invariant primitive core which is a linear combination of Dsym
µνρ and Csym

µνρ

plus conformal breaking terms which are determined by the renormalization group in terms

of lower-order amplitudes.
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To simplify notation let us define 1PI two- and three-point functions in the background

field formalism as

δ2

δBa
µ(x)δBb

ν(y)
(S[B] + Ω[B, J ]j=0) ≡ δabΓµν(x− y)

δ3

δBa
µ(x)δBb

ν(y)δBc
ρ(z)

(S[B] + Ω[B, J ]j=0) ≡ fabcΓµνρ(x, y, z) .

(7.1)

The Ward identity (2.10) then becomes

∂

∂zρ
Γµνρ(x, y, z) = [δ(y − z) − δ(x− z)] Γµν(x− y) (7.2)

We use the results of Kluberg–Stern and Zuber11 and Abbott6 on the renormalization

properties of the background method to determine the renormalization group equations sat-

isfied by Γµν and Γµνρ. First we note that our background field Ba
µ(x) has no anomalous

dimension to all orders in perturbation theory because Ba
µ(x) is related to Aa

µ(x) of Refs. [6]

and [11] by

Ba
µ(x) = gbareA

a
µ(x)bare

= g Zg

√
ZA A

a
µ(x)ren

= g Aa
µ(x)ren

(7.3)

since Zg

√
ZA = 1. It is also known that renormalization of the gauge parameter a is required

to make the two-point function of the quantum field baµ multiplicatively renormalizable in any

gauge except Landau gauge. These facts suggest that the renormalization group equations

take the form

[
M

∂

∂M
+ β(g)

∂

∂g
+ δ(g)a

∂

∂a

]
Γµν(x− y) = 0 (7.4)

[
M

∂

∂M
+ β(g) + δ(g)a

∂

∂a

]
Γµνρ(x, y, z) = 0 (7.5)
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where β(g) = g3β1 + g5β2 + . . . and δ(g) = g2δ1 + g4δ2 + . . . and the subscripts 1 and 2 are

the loop-order of the expansion coefficients of β(g) and δ(g). We remind readers that in our

conventions the ℓ-loop contributions to Γµν and Γµνρ carry the power g2ℓ−2.

Although (7.4) – (7.5) are generally valid we use them here only for separated points.

Therefore the classical contributions can be dropped, and the differential regularization of the

overall singularity in a given order of perturbation theory is irrelevant. Thus the result of

Section II.G of Ref. [1] for Γµν in one-loop order can be written as

Γµν(x) = − β(g)

π2g3
(δµν − ∂µ∂ν)

1

x4
, x 6= 0 . (7.6)

Let us bring in some information about higher-order terms in Γµν . Using the structure of

(7.4) and the fact that β1 and β2 are gauge-independent, one sees that Γµν is described by

Γµν(x) = − 1

π2
(δµν − ∂µ∂ν)

[
1

x4

(
β(g)

g3
− g4β1β2 lnM2x2

)]
(7.7)

through three-loop order. The last term is the result of uncancelled subdivergences in three-

loop order, and the only allowed gauge dependence in (7.7) is the coefficient β3.

What can be said about Γµνρ? First let us refer to the calculation of the linear deviation

from the Feynman gauge in Appendix A, and denote by Rµνρ(x, y, z) the variational derivative

of the final result (A.7) which is a one-loop contribution to ∂
∂aΓ1

µνρ at a = 1. Note also that

Rµνρ satisfies a trivial Ward identity, e.g. ∂z
ρRµνρ(x, y, z) = 0. It then follows from (7.5) that

the two-loop contribution to the vertex function Γ2
µνρ in Feynman gauge satisfies

M
∂

∂M
Γ2

µνρ = −g2δ1Rµνρ . (7.8)

We shall write down the following solution of (7.8)

Γ2
µνρ(x, y, z) =

1

6
g2
{
δ1 ln

[
− ( x y x)

/
M6
]
Rµνρ(x, y, z) +Nµνρ(x, y, z)

}
(7.9)
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where Nµνρ is a permutation odd tensor which is independent of scale M . This solution

may not be unique, but it does illustrate one way in which our conformal scenario can work.

Note that a small change in the scale parameter corresponds to a perturbative correction

to the Feynman gauge condition, a = 1 + O(g2), and especially that the scale-dependent

term satisfies a trivial Ward identity. Thus the only a priori constraint on Nµνρ is that it

satisfies the Ward identity (7.2) with the two-loop contribution Γ2
µν on the right-hand side.

One solution of this is the conformal tensor

Nµνρ = − 1

π4
β2D

sym
µνρ + γ2C

sym
µνρ (7.10)

where we have used (5.3), and the constant γ2 is undetermined because Csym
µνρ satisfies a

trivial Ward identity. The analysis presented here cannot substitute for the very difficult job

of a complete two-loop calculation, yet it incorporates all the general properties which the

true amplitudes must satisfy. The tensor Nµνρ could be the conformal invariant core of the

two-loop vertex function.

Note that it is the fact that Γ1
µνρ is gauge-dependent that forces the scale-dependence

in (7.9) and indicates that subdivergences do not cancel in Γ2
µνρ. The situation would be

the same even if the linear deviation from Feynman gauge was conformal invariant, so that

Rµνρ ∼ Csym
µνρ . In the Landau gauge, a = 0, the problematic ∂/∂a term in (7.5) disappears, and

there can be no subdivergences in Γ2
µνρ. However the calculations described in Appendix C

indicate that Γ1
µνρ is not conformal invariant in Landau gauge. It is still possible that Γ2

takes the conformal form (7.10) in this gauge, but this does not seem to be interesting.

As a separate question, one can also study the conformal properties of gauge invariant

operators such as the color singlet currents JµAB = q̄AγµqB in a colored quark theory where
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the quark fields qA(x) are labelled by explicit flavor indices A (with color and spin labels

suppressed). The three-point function of such currents should have similar properties to that

of the SU(2) currents Ja
µ = 1

2 ψ̄iτ
a
ijγµψj in the model discussed by Baker and Johnson in which

each field ψi(x), with i = 1, 2, is coupled to an Abelian gauge field. In both cases, current

correlation functions are independent of the gauge condition chosen for the internal gauge

field. Since, as we saw in Section III, a conformal transformation can be compensated by a

gauge transformation, the correlators of the Ja
µ have the property that conformal invariance

may be broken by the renormalization procedure, but gauge-fixing is not a problem.

Let us factor out fermion flavor indices as in (7.1) and use a notation in which the space-

time part of the two- and three-point current correlators are denoted by Γ̂µν(x − y) and

Γ̂µνρ(x, y, z). For non-coincident points, these gauge-independent amplitudes obey renormal-

ization group equations of the simple form

[
M

∂

∂M
+ β(g)

∂

∂g

]
Γ̂µν(x− y) = 0 (7.11)

[
M

∂

∂M
+ β(g)

∂

∂g

]
Γ̂µνρ(x, y, z) = 0 (7.12)

and the Ward identity (7.2) holds. One can see that β(g) ∂
∂g

acts on Γ̂2
µν as Γ̂2

µνρ to produce

terms of order g4 in these equations, thus showing that Γ̂3
µν and Γ̂3

µνρ are scale-dependent

because of subdivergences. However these same equations show that subdivergences cancel

in two-loop contributions.

To proceed further, we discuss the Abelian model,10 although we expect that the current

correlators of the colored quark theory are similar. From the work of DeRafael and Rosner,15

one can see that Γ̂µν(x) has the form (7.7) through three–loop order, where β(g) is the beta-

function of quantum electrodynamics. The results of Baker and Johnson show that the vertex
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Γ̂µνρ is conformal invariant through two-loop order and can be expressed as

Γ̂µνρ(x, y, z) = − 1

π4

[(
b1 + b2g

2
)
Dsym

µνρ (x, y, z) +
(
a1 + a2g

2
)
Csym

µνρ (x, y, z)
]
+ O(g4) (7.13)

where a1 and a2 are numbers whose exact values are not relevant here.

We represent the unknown three-loop contribution as the sum of a scale-dependent part

and a primitive core

Γ̂3
µνρ(x, y, z) = g4

[
S3

µνρ(x, y, z,M) +N3
µνρ(x, y, z)

]
. (7.14)

Then S3
µνρ must satisfy the twin constraints

M
∂

∂M
S3

µνρ =
2

π4
b1
[
b2D

sym
µνρ + a2C

sym
µνρ

]
(7.15)

∂

∂zρ
S3

µνρ(x, y, z,M) = −b1b2
π2

[δ(z − x) − δ(z − y)] (δµν − ∂µ∂ν)
lnM2(x− y)2

(x− y)4
.(7.16)

It is plausible that a combined solution of (7.15) – (7.16) can be obtained. Then the tensor

N3
µνρ is constrained only by the simple Ward identity for which one solution is the conformal

tensor

N3
µνρ = − 1

π4
b3D

sym
µνρ + γ3C

sym
µνρ , (7.16)

which would represent the primitive conformal core of the three-loop vertex function.

The last topic to be discussed here is an idea for an unconventional gauge fixing and

renormalization procedure for gauge theories, which appears to lead to renormalization group

equations without the troublesome a ∂
∂a term of (7.4) – (7.5). Further study is certainly

required to see if this procedure is consistent. If so, then exact conformal invariance can hold

at two-loop order for the background gluon vertex function, and the situation in higher-order

becomes similar to that of the current correlation function discussed above.
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The need to renormalize the gauge parameter a appears first in the one-loop quantum

two-point function Γb
µν(x). In momentum space the conventional renormalized amplitude is16

Γb
µν(p) = p2δµν +

(
1

a
− 1

)
pµpν + g2 [c1 + c2(a− 1)]

(
p2δµν − pµpν

)
ln

p2

M̄2
(7.17)

where c1 and c2 are known numerical constants. This amplitude was obtained via dimensional

regularization, but differential regularization would give the same result without the appear-

ance of explicit divergences and counter terms. Because the one-loop (order g2) contribution

is transverse, this amplitude satisfies the renormalization group equation (to one-loop order)

[
M

∂

∂M
+ δ(g)a

∂

∂a
− 2γ(g)

]
Γb

µν(p) = 0 (7.18)

with

γ(g) = −1

2
δ(g) = −g2 [c1 + c2(a− 1)] (7.19)

and this is the result expected from the renormalized Lagrangian of Kluberg–Stern and Zuber

(see Appendix B).

We now consider the combination of a conventional and a new non-local gauge fixing

term

S̃gf =
1

2a

∫
d4x(D · b)2 +

αg2

8π2

∫
d4x d4y D · b(x) lnM2(x− y)2

(x− y)2
D · b(y) . (7.20)

The last integral is finite at x ≈ y if interpreted with the partial integration rule of differential

regularization. The last term gives an additional contribution to the momentum space two-

point function proportional to pµpν ln p2/M̄2 as we can see from the Fourier transform rule

of Appendix A of Ref. [1]. The new renormalized two-point function is

Γ̃b
µν(p) = Γb

µν(p) + αg2pµpν ln
p2

M̄2
. (7.21)
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We now choose α = [c1 + c2(a− 1)]/a and obtain

Γ̃b
µν(p) =

{
1 + g2 [c1 + c2(a− 1)] ln

p2

M̄2

}[
p2δµν +

(
1

a
− 1

)
pµpν

]
. (7.22)

This amplitude satisfies the simpler renormalization group equation (to order g2):

[
M

∂

∂M
− 2γ(g)

]
Γ̃b

µν(p) = 0 (7.23)

with γ(g) as given in (7.19).

As in Ref. [1], this equation is obtained essentially by inspection. The standard method

of deriving renormalization group equations from the cutoff dependence of renormalization

constants can also be implemented in differential regularization17 by introducing a short-

distance cutoff and showing that the surface terms usually neglected in the Fourier transform

are actually cancelled by counterterms. In the present situation there is a transverse coun-

terterm δZ 1
2

∫
d4x bµ [ δµν − ∂µ∂ν ] bν associated with the one-loop contribution to (7.17),

and it seems clear that the surface term associated with the non-local part of (7.20) has the

local form δZ ′
∫
d4x 1

2 (∂ · b)2 with δZ = δZ ′ if the relation α [c1 + c2(a− 1)] /a is enforced.

Thus one would find a net wavefunction renormalization of the local kinetic terms of bµ in

agreement with (7.23).

We now discuss the application of (7.20) in the background formalism. As written,

however, it is not applicable because the non-local term is not background gauge invariant.

But it can be covariantized if we make the replacement

1

4π2

ln(x− y)2M2

(x− y)2
→ ln

(
−DµDµ/M̄

2
)

(7.24)

where Dµ is the background covariant derivative in the adjoint representation. When Bµ = 0,

the left- and right-hand sides of (7.24) coincide, as can be seen by Fourier transformation. It
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appears that the usual argument7, 8 that the background field method gives the correct S-

matrix can be extended to cover a non-local Bµ-dependent gauge fixing term, and we proceed

to analyze the implications for the three-gluon vertex.

Let us denote by Γ̃µνρ the background field vertex function calculated with the new

gauge fixing action (7.20). We will discuss only the two-loop contribution Γ̃2
µνρ which is of

order g2, and the lowest order in which the non-local part of (7.20) has an effect. We assume

that the appropriate renormalization group equation is the same as (7.12). The question of an

anomalous dimension for Bµ(x) in the new procedure may need reexamination, but it is certain

that the one-loop anomalous dimension vanishes which is sufficient to allow us to examine

the consequences of (7.20) at two-loop order away from the coincident point singularity. The

β(g) ∂
∂g term makes no contribution to to order g2, and we find only the simple condition

M
∂

∂M
Γ̃2

µνρ(x, y, z) = 0 (7.25)

which has the direct interpretation that subdivergences cancel among all the graphical con-

tributions to Γ̃2
µνρ(x, y, z). A complete two-loop calculation of Γ̃2

µνρ is very difficult, but the

cancellation of subdivergences is a computationally simpler question, and it is a useful test of

the idea under discussion. A positive result in no way guarantees that Γ̃2
µνρ(x, y, z) is confor-

mal invariant in the Feynman gauge a = 1 or a perturbative modification of this gauge, but

there is no reason why this cannot be the case.

The non-local gauge fixing term discussed above removed the a ∂
∂a

term from the renor-

malization group equation only to one-loop order for Γ̃µν and to two-loop order for Γ̃µνρ. It

seems plausible that the procedure works quite generally if the non-local term in (7.20) is

chosen appropriately as a series expansion in g2, and this is an interesting subject for further

investigation.
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The conformal scenario we have outlined in this section is very far from proven, but it

does indicate a way in which the conformal property can combine with the renormalization

group and Ward identities to determine the full structure of vertex functions.

VIII. CONCLUSIONS

In this section we present a partial review of the results of this work, in which the

logical relation of the ideas underlying the conformal property is emphasized. Conformal

invariance holds for renormalized amplitudes only when the twin difficulties of renormaliza-

tion scale effects and gauge fixing can be circumvented. The first requires that we study

real space amplitudes away from coincident points and choose amplitudes in which subdiver-

gences cancel. The second problem is avoided for gauge-independent correlation functions.

However, the standard renormalization program in gauge theories requires consideration of

gauge-dependent amplitudes. Here the situation is somewhat different for two-, three- and

four-point correlation functions.

In gauge field theory, self-energies and two-point current correlators are constrained by

gauge invariance and canonical dimension to have the structure

( δµν − ∂µ∂ν)
1

(x− y)4

[
c0 +

∑

n=1

cn
(
lnM2(x− y)2

)n
]

. (8.1)

If subdivergences are absent, cn = 0 for n ≥ 1, then one obtains the conformal invariant form

(1.6). In other words, conformal invariance gives no information beyond gauge invariance

and cancellation of subdivergences. We expect that this last condition holds through two-

loop order (for currents or external gluons), and that logarithmic corrections beyond that are

determined by the renormalization group equations.
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For vertex functions of vector fields or conserved currents, conformal symmetry gives re-

strictions well-beyond gauge and scale invariance, requiring that amplitudes are combinations

of the tensors Csym
µνρ and Dsym

µνρ of (1.10). Any such combination obeys a simple Ward identity

of the form (1.4) or (2.10), and this suggests that the background field formalism is relevant.

However, a simple Ward identity is not sufficient for conformal invariance, and we have found

explicit examples of gauge and scale invariant, but not conformal, tensors in our study of the

background field vertex in a general gauge.

Our most striking result is that the one-loop background field vertex in Feynman gauge

is conformal invariant, so that the quark, ghost, and gluon loop contributions are each linear

combinations of Csym
µνρ and Dsym

µνρ . The practical consequence of the conformal property is

the relative ease of regularization, essentially because only Dsym
µνρ has an ultraviolet divergent

Fourier transform. It is not difficult to show that the renormalized Ward identity can be

satisfied by adjustment of mass scale parameters, MV in the regularized form of Dsym
µνρ and

MΣ in the self-energy. Calculation of the β-function is also a simple matter.

One may also study three-gluon vertex functions with one or more external quantum

gluons, of which some are required for higher-loop computations in the background field for-

malism. Such vertex functions satisfy Slavnov–Taylor identities which are more complicated

than the simple Ward identity (1.4), and essentially for this reason one can rule out conformal

invariance. Nevertheless, one can show easily that at one-loop order the regulated form of

these vertex functions can be expressed as a multiple of the regulated Dsym
µνρ plus a remainder

which is ultraviolet convergent. A complete one-loop study of the differential regularization

of these vertices, which includes the vertex function of conventional (non-background) gauge

field theory, is an open problem whose solution should be facilitated by the observation above.
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Another open problem is the possible conformal property of the background field four-

gluon correlator, which is related to the three-gluon vertex by a Ward identity. Conformal

symmetry is not a very restrictive property for a four-point function. Nevertheless, it would be

useful to know whether the basic primitive divergent one-loop amplitudes with two, three, or

four external background gluons share the property of conformal invariance for non-coincident

points in Feynman gauge. One can predict that the quark and ghost loop contributions to

the four-point function are conformal invariant.

At present we do not have a real explanation of the gauge specific conformal property

we found, nor do we know that it has any significance beyond the technical virtue of ease

of regularization. Further exploration of the conformal scenario outlined in Section VII may

illuminate such questions.
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APPENDIX A

DEVIATION FROM THE FEYNMAN GAUGE

It is natural to ask whether the conformal properties found for the background self-energy

and vertex are valid for general values of the gauge parameter a. A complete calculation, using

the propagator (2.14) and the interaction vertices L1, . . . ,L4 of (2.13) is feasible for the self-

energy and it gives exactly the same result as the Feynman gauge calculation of (7.6) and is

thus independent of a. This is of course to be expected, since the one-loop beta-function does

not depend on the gauge parameter.

An analytic calculation of the three-gluon vertex in a general gauge is very tedious and we

chose to study whether conformal invariance is preserved for a small deviation from Feynman

gauge. To this purpose one can expand the functional Ω[B, J ]j=0 in a series in a

Ω[B, J ] = Ω[B, J ]

∣∣∣∣
a=1

+
∂Ω[B, J ]

∂a

∣∣∣∣
a=1

(a− 1) + . . . (A.1)

and then analyze the conformal properties of the first coefficient of the expansion ∂Ω
∂a

∣∣∣∣
a=1

=

Ω(1). Such a coefficient coincides with the vacuum expectation value of the gauge fixing term

and by means of a standard Ward-identity [Abers–Lee] of Yang–Mills theories it is possible

to relate it to other Green’s functions which can be more easily computed.

One can easily adapt to the background field formalism, the derivation of the functional

Slavnov–Taylor identity given by Abers and Lee.18 The result is

∫
db detM exp−

{
S[B + b] − S[B] + Sgf [b] +

∫
d4x Ja

µb
a
µ

}

·
{

1

a
Ga[B, b](x) +

∫
d4y Jb

µ(y)Dy
µ[B + b]

[
M−1(y, x)

]ba
}

= 0

(A.2)
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where Ga[B, b] is the gauge fixing functional, and we must choose Ja
µ = DνB

a
νµ as in Section

II, in order to eliminate the linear “tadpole” terms in S[B + b] − S[B]. Equation (A.2) can

be rewritten in terms of ghost fields as the functional “expectation value”

〈
1

a
Dµb

a
µ(x) + f bcd

∫
d4y Jb

µ(y)bcµ(y)cd(y)c̄a(x)

〉
= 0 , (A.3)

where we have used the covariant conservation of the current. From (A.3) it is now easy

to obtain a Ward identity for Ω(1)[B, J ] by taking the Dx
ν derivative, then a variation with

respect to Ja
ν (x) and finally integrating in d4x, we arrive at

Ω(1) [B,DνBνµ] = −1

2

∫
d4x

〈
Dµb

a
µDνb

a
ν

〉

= −1

2
f bcd

∫
d4x d4y DρB

b
ρµ(y)

〈
bcµ(y)cd(y)Dx

ν c̄
a(x)baν(x)

〉
.

(A.4)

in which it is understood that only connected graphs are included on the right-hand side.

The linear deviation of the gluon vertex can now be obtained from all graphs contributing to

the third variational derivative of (A.4) with respect to B. (The second variational derivative

vanishes because the bilinear part of the effective action is the same in any gauge).

We focus our attention on the triangle diagrams with three external fields and neglect

seagull diagrams, because the triangles will give us a sufficient condition to disprove conformal

invariance for this linear deviation from the Feynman gauge. These triangle diagrams are

obtained from the Wick contractions of the quantum fields in the double-integral term in

(A.4) with the vertices L1, L3 and Lg
i of the interaction Lagrangian. In several diagrams

there is an effective two-point vertex from the fields ∂ν c̄
a(x)baν(x) in (A.4), and this leads to

the integral
∫
d4x

1

(x− y)2
∂x

µ

1

(x− z)2
= 2π2 (z − y)µ

(z − y)2
. (A.5)
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One can show that the sum of all graphs gives the following contribution to Ω
(1)
3 :

− 1

2 (4π2)
3Cf

abc

∫
d4x d4y d4z

[
Ba

µ(x)∂y
ρB

′b
ρν(y)B

′c
νσ(z)

· (y − z)σ

(y − z)2
1

(y − x)2
↔
∂x

µ

1

(x− z)2
−B

′a
µν(x)∂y

ρB
′b
ρσ(y)B

′c
σµ(z)

1

(y − z)2(z − x)2
(y − x)ν

(y − x)2

]

(A.6)

where B
′a
µν(x) = ∂νB

a
ν − ∂νB

a
µ is the linearized field strength. This quantity is ultraviolet

finite due to the presence of three external derivatives. One might then suspect that if (A.6)

is conformal invariant, its variational derivative with respect to Ba
µ(x), Bb

ν(y), Bc
ρ(z) would be

proportional to the ultraviolet convergent tensor in Csym
µνρ . However, partial integration of the

three external derivatives produces both genuine “triangular terms” depending on (x − y)2,

(y − z)2 and (z − y)2 and “semi-local terms” containing δ(z − y) etc. (which we drop here).

The triangular part could then be a combination of Csym
µνρ and Dsym

µνρ with the divergent part

of Dsym
µνρ cancelled by the neglected semi-local terms and seagull graphs.

After partial integration of the external derivatives and tedious algebra to simplify the

result, we find that (A.6) can be rewritten as

− 4C

(4π2)
3 f

abc

∫
d4x d4y d4z Ba

µ(x)Bb
ν(y)Bc

ρ(z)

×
{
δµν(x− z)ρ

[
(x− z)2 + (y − z)2 + (x− y)2

(x− y)4(z − y)4(x− z)4

− 6

(z − x)4(x− y)6
+

2

(z − y)4(x− y)6

− 4

(x− y)4(z − x)6
+

4(z − y)2

(z − x)6(x− y)6

]

− 2
(x− z)µ

(x− z)4
(x− y)ν

(x− y)4
(y − z)ρ

(y − z)4
− 8

(x− y)µ(z − y)ν(x− z)ρ

(x− y)6(y − z)6

− 4
(x− y)µ(x− z)ν(x− z)ρ

(x− y)6(x− z)2(z − y)2

[
1

(z − y)2
+

1

(x− z)2

]

+ 4
(x− z)µ(z − y)ν(x− z)ρ

(z − y)6(x− y)2(x− z)2

[
1

(x− y)2
+

1

(x− z)2

]}
.

(A.7)
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As a check of the computations one can show that (A.7) is gauge invariant. Nevertheless,

close inspection shows that its (symmetrized) variational derivative cannot be expressed in

terms of the conformal tensors Csym
µνρ and Dsym

µνρ and consequently is not conformal invariant.

Both analytic calculation and symbolic manipulation confirm this, so we can conclude that for

small deviations from the Feynman gauge the conformal properties of the three-gluon vertex

are lost.
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APPENDIX B

MIXED THREE GLUON VERTICES

In this Appendix we discuss further the structure of one-loop vertex functions with both

background and quantum external gluons. An argument was given in Section III that these

vertices are not conformal invariant, but they can be expressed as a multiple of the conformal

tensor Dsym
µνρ plus an ultraviolet finite remainder. Our explicit real space computations support

this picture, but we do not give full details here, since our main concern is to show that the

coefficient of the Dsym
µνρ leads, after regularization of this tensor, to a renormalization scale

dependence in agreement with the work of Kluberg–Stern and Zuber.11 In our notation,

the result of these authors for the renormalized action involving three-gluon vertices in the

background field formalism is:

SR =

∫
d4x

{
1

g2Z2
g

LYM

(
B + gZgZ

1/2
3 b

)
+

1

2a

(
Dµb

a
µ

)2
}

(B.1)

where g0 = gZg is the bare coupling constant and Z3 is the wavefunction renormalization

factor of the quantum gauge field, baµ(x)bare = Z
1/2
3 baµ(x). In the second term, one sees that

renormalization of the gauge fixing parameter a is also needed, with a0 = Zaa and Za = Z3.

From Eq. (B.1) we see that the counterterm for the overall divergence of any three-gluon

vertex has the form of the bare Yang–Mills vertex. In differential regularization this implies

that the part of the one-loop amplitudes which requires regularization is a numerical coefficient

times the singular part of the tensor Dsym
µνρ (x, y, z). Indeed, this is the only possibility for

vertices with three background or three quantum gluons, because of Bose symmetry, but the

result is not obvious for mixed vertices.
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The Feynman rules for the quantum gluon vertices are given by Lq and L′g in Eqs. (2.12)

and (2.16). It is straightforward to apply differential regularization to the 1PI diagrams which

contribute to the one-loop amplitude for the mixed vertices, and identify the coefficient of

the scale dependent term which is proportional to the semi-local scale dependent part of the

regulated tensor Dsym
µνρ in (4.7).

In the mixed vertex with two background and one external quantum gluon, both ghost

seagull graphs vanish separately, due to the antisymmetry of the group structure constants

fabc. The contribution of the two gluon seagull diagrams is just the divergent part of

Dsym
µνρ (x, y, z) times a numerical coefficient, while the triangle graphs yield a multiple of

Dsym
µνρ (x, y, z) plus an ultraviolet finite piece. We give here only the mass scale dependence of

the final result

M
∂

∂M

δ3Ω[B, J ]j=0

δja
µ(x)δBb

ν(y)δBc
ρ(z)

= g fabc C

(4π2)
3

32

3
M

∂

∂M
Dsym

µνρ (x, y, z) . (B.2)

In the mixed vertex with one background and two quantum gluons the contributions

from all diagrams combine to yield a multiple of the divergent part of Dsym
µνρ (x, y, z), plus an

ultraviolet finite remainder from the triangle graphs. The formal scale dependence of the

one-loop vertex is

M
∂

∂M

δ3Ω[B, J ]j=0

δja
µ(x)δjb

ν(y)δBc
ρ(z)

= g2 fabc C

(4π2)
3

20

3
M

∂

∂M
Dsym

µνρ (x, y, z) . (B.3)

The renormalized action given by Eq. (B.1) suggests that the renormalization group equation

for a three-gluon vertex function with nb external quantum gluons, Γ
(nb)
µνρ , takes the form

[
M

∂

∂M
+ β(g)

∂

∂g
+ δ(g)a

∂

∂a
− nbγ(g)

]
Γ(nb)

µνρ = 0 (B.4)
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where γ(g) = g2γ1 + g4γ2 + . . . in the notation of Section VII. We have already discussed the

three background gluon vertex in Section VI, where we computed the one-loop coefficient of

β(g) by means of the renormalization group equation (7.4).

Then we can apply Eq. (B.4) to the vertex with two background and one external quan-

tum gluons. We combine the classical term of order 1/g with the one-loop result (B.2) and

use the scale derivative of the regulated tensor Dsym
µνρ , given by Eq. (6.3). Since the gauge

fixing action does not contain BBb terms, the δ(g)a ∂
∂a term does not contribute to lowest

order. In the final result to order g, M ∂
∂M acting on the one-loop amplitude is balanced by

g3β1
∂
∂g

− g2γ1 applied to the classical term. Using the value of β1 in (6.4) we obtain the

anomalous dimension in the Feynman gauge

γ1 = − 5

48π2
C (B.5)

which agrees with the known result.3

Finally we apply a similar test of the renormalization group Eq. (B.4) to the combined

classical and one-loop Bbb vertex. Here the β(g) ∂
∂g term does not contribute to order g2,

and the scale derivative is balanced by g2δ1a
∂
∂a − 2g2γ1 applied to the classical term. The

result confirms that δ1 = −2γ1 which agrees with the general argument that δ(g) = −2γ(g)

(which follows from Za = Z3), and also with the relation found from the study of bb two-point

function in Section VII.

Using these results for β1 and γ1, the renormalization group equation for the three quan-

tum gluon vertex function to one-loop implies that its mass scale dependence in the Feynman

gauge must be

M
∂

∂M

δ3Ω[B, J ]j=0

δja
µ(x)δjb

ν(y)δjc
ρ(z)

= g3 fabc C

(4π2)
3

8

3
M

∂

∂M
Dsym

µνρ (x, y, z) . (B.7)

In this case we have not performed the explicit graphical computation to test this result.
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APPENDIX C

THREE-GLUON VERTEX IN A GENERAL GAUGE

It is clearly of interest to see if conformal invariance holds for any value of the gauge

parameter a different from the Feynman gauge value a = 1. The case of the Landau gauge

(a = 0) is especially interesting, because the simplified renormalization group equations in

this gauge permit exact conformal invariance at the two-loop level as discussed in Section VII.

The analytic calculation of the three-gluon vertex in a general gauge is very tedious so

we have used symbolic manipulation based on a core REDUCE program written by J. I. La-

torre. It uses symbolic logic to calculate partial derivatives of any translation invariant tensor

function of three points xµ, yν , zρ.

We compute analytically the Wick contractions for all triangle graphs involving the tri-

linear interaction terms L1, L3, L4 of Eq. (2.13), using the general gauge propagator (2.14).

The contribution to the cubic part of the effective action can be expressed as

Ωijk[B] =
C

(4π2)
3 f

abc

∫
d4x d4y d4z Ba

µ(x)Bb
ν(y)Bc

ρ(z)A
ijk
µνρ(x, y, z) (C.1)

where i, j, k indicates which vertices contribute to a given triangle. The program computes

the derivatives in Aijk
µνρ(x, y, z) and then adds the permutations that are necessary to produce

the fully permutation odd contributions Sijk
µνρ(z, y, z) to the three-gluon vertex function. Each

Sijk
µνρ(x, y, z) is a cubic function of the gauge parameter a. It is easily seen that possible 1/a

poles from the interaction vertex L4 cancel, because L4 always generates the divergence of

the propagator

∂x
µ 〈bµ(x)bν(y)〉 = a

1

4π2
∂x

µ

1

(x− y)2
(C.2)
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which cancels the 1/a singularity. As explained in Appendix A, we neglect both seagull graphs

and δ-functions in the triangle graphs because they are not needed to test the conformal

property for x 6= y 6= z.

We express the full vertex amplitude as a series in (a− 1):

J0
µνρ + (a− 1)J1

µνρ + (a− 1)2J2
µνρ + (a− 1)3J3

µνρ (C.3)

and we perform the following consistency checks of the computation.

1) Each term J i
µνρ(x, y, z) satisfies the divergenceless property

∂

∂zρ
J i

µνρ(x, y, z) = 0 , i = 0, . . .3 , (C.4)

which is required since the Ward identity (2.10) vanishes for non-coincident points x 6=

y 6= z.

2) The J0
µνρ piece agrees with the Feynman gauge result we obtained analytically in Sec-

tion III.

3) The J1
µνρ term agrees with the analytic calculations of linear deviation from Feynman

gauge (see Appendix A).

These highly non-trivial checks give confidence in the computer result, so we go on to analyze

the conformal properties of the tensors J i
µνρ(x, y, z) in Eq. (C.3). J0

µνρ(x, y, z) is conformal

invariant, as we already knew since it is the only contribution when a = 1. For the coefficient

of the (a− 1)3 term in (C.3) we find the conformal tensor

J3
µνρ(z, y, z) =

1

8
Csym

µνρ (x, y, z) . (C.5)
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This result may be easily explained, since the piece cubic in the gauge parameter a

involves only the term a∂µ∂ν ln(x−y)2 in the quantum gluon propagator, which has the correct

conformal inversion property, and propagators are connected for large a only by vertices from

the Yang–Mills action S[B + gb], which is conformal invariant. This implies that J3
µνρ must

be a linear combination of Csym
µνρ and Dsym

µνρ .

Finally, we analyze the linear and quadratic terms in Eq. (C.3). J1
µνρ(x, y, z) has the non-

conformal structure given in Eq. (A.7) and J2
µνρ(x, y, z) is a far more complicated expression,

so we chose to study the structure of these tensors in the limit as one of the points (yν) goes

to infinity. In this limit, both conformal tensors Csym
µνρ and Dsym

µνρ have the form

c1
y6

(
δνσ − 2yνyσ

y2

)
1

x4

{
δµρxσ − δµσxρ − δρσxµ + c2

xµxρxσ

x2

}
(C.6)

where we have set z = 0 for simplicity and the coefficients c1 and c2 depend on the conformal

tensor (c1 = 8, c2 = 4 for Csym
µνρ ; c1 = −4, c2 = −2 for Dsym

µνρ ).

We study only the terms containing δµρ in J1
µνρ and J2

µνρ, because they give us a sufficient

condition to disprove conformal invariance away from the Feynman gauge. The leading term

as yν goes to infinity is of order 1/y4, which is absent in the conformal tensor structure, but

it has the same form in both tensors J1
µνρ and J2

µνρ and therefore it can be eliminated in a

suitable combination of them, namely J1
µνρ − 8J2

µνρ. However, when we study the next-to-

leading order, which is 1/y6, we see that this linear combination of J1
µνρ and J2

µνρ does not

have the correct structure of a conformal tensor given by (C.6). We can then conclude that no

linear combination of J1
µνρ and J2

µνρ can be a combination of conformal tensors and therefore

among Dµb
a
µ background gauges only in the Feynman gauge the one-loop three-gluon vertex

function is conformal invariant.
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FIGURE CAPTIONS

Fig. l: 1PI diagrams involving ghosts which contribute to the one-loop three-gluon vertex.

Fig. 2: 1PI diagrams involving fermion loops which contribute to the three-gluon vertex.

Fig. 3: 1PI diagrams involving gluon loops which contribute to the three-gluon vertex.
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