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Abstract

We quantify the important effect of strong final state interactions
in the weak K → 2π amplitudes, using the measured π-π phase shifts
with J = 0 and I = 0, 2. The main results of this analysis, with
their implications for ε′/ε and the ∆I = 1/2 rule, have been already
presented in a previous paper [1]. Here we provide a detailed formal
derivation of those results and further discuss the Standard Model
prediction of ε′/ε.
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1 Introduction

It is well known that, at centre–of–mass energies around the kaon mass,
the strong S–wave π–π scattering generates a large phase-shift difference
(δ0

0 − δ2
0) (M2

K) = 45◦ ± 6◦ between the I = 0 and I = 2 partial waves [2].
In the usual description of K → 2π decays, this effect is explicitly taken
into account, through the following decomposition of the relevant isospin
amplitudes with I = 0 and I = 2:

AI ≡ A [K → (ππ)I ] ≡ AI eiδI

0 . (1.1)

It is also known [3–12] that final state interactions (FSI) play an important
role in the observed enhancement of the I = 0 decay amplitude, A0/A2 ≈
22.2. The presence of such a large phase-shift difference clearly signals a
corresponding dispersive FSI effect in the moduli of the isospin amplitudes,
because the real and imaginary parts are related by analyticity and unitarity.

The size of the induced FSI correction can be roughly estimated from
the available one-loop analyses of K → 2π [12–14] in Chiral Perturbation
Theory (χPT). At lowest order in the momentum expansion, O(p2), the
decay amplitudes do not contain any strong phase. Those phases originate in
the final rescattering of the two pions and, therefore, are generated by chiral
loops which are of higher order in momenta. Since the strong phases are quite
large, one should expect large higher–order unitarity corrections. The one-
loop calculations [12–14] show in fact that the pion loop diagrams provide
an important enhancement of the A0 amplitude, of about 40%. However,
the phase-shift δ0

0 predicted by the one-loop calculation is still lower than
its measured value, which indicates that a further enhancement could be
expected at higher orders.

Although the importance of FSI in K → 2π has been known for more than
a decade, their impact on the direct CP-violating parameter ε′/ε has been
overlooked in the so–called Standard Model predictions of this parameter,
presented in refs. [15] and [16]. Not surprisingly, those predictions fail to
reproduce the experimental measurements [17].

The lattice investigations of kaon decay amplitudes have been only able,
up to now, to compute the one-pion 〈π|H∆S=1|K〉 matrix elements. In order
to get the physical two-pion decay amplitudes, they rely on the lowest–order
χPT relation between K → π and K → 2π, which, as mentioned before,
does not include any FSI and underestimates the I = 0 K → 2π amplitude
by at least 40%.

In refs. [15], the large–NC limit is used to fix the CP–violating K → 2π
decay amplitudes. Since the strong phases δI

J are zero at leading order in
the 1/NC expansion, the FSI enhancement has not been taken into account,
either. Other approaches [18, 19] include some one-loop corrections and find
larger values for the A0 amplitude. Although those are model–dependent
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estimates, they provide an indication of the importance of higher–order pion–
loop contributions.

A proper way to account for the FSI effects has been addressed in ref. [1],
where it has been shown that the strong rescattering of the two final pi-
ons generates a large enhancement of ε′/ε. The resulting Standard Model
prediction [1, 20],

Re (ε′/ε)|SM = (17 ± 6) × 10−4 , (1.2)

is in good agreement with the present experimental world average [21]

Re (ε′/ε)|exp = (19.3 ± 2.4) × 10−4 . (1.3)

In the following we provide a detailed discussion of the approach advo-
cated in ref. [1] and further study its implications for ε′/ε and the ∆I = 1/2
rule. The paper is organized as follows. In section 2 we formulate the Omnès
problem for a general amplitude with two pions in the final state and derive
its solution (for any number of subtractions). It is shown how the Omnès
dispersive factor, solution of the Omnès problem, provides an all–order re-
summation of the infrared chiral logarithms that contribute to FSI. This is
a universal process–independent factor, which only depends on the quantum
numbers (I and J) of the final two–pion state. There is of course a poly-
nomial (local) ambiguity, which encodes the process–dependent ultraviolet
dynamics.

To clarify the physics involved in the Omnès resummation, we present
in section 3 explicit results for the scalar pion form factor. This quantity is
known to two loops in the chiral expansion and, therefore, provides a sim-
ple example where the power of our approach can be easily shown and the
uncertainties quantified. The much more involved case of K → 2π transi-
tions is discussed in section 4, while section 5 presents the Standard Model
prediction of ε′/ε. We conclude in section 6 with a few summarizing com-
ments. We have relegated to the appendices the details on experimental π–π
phase shifts, one-loop χPT results for K → 2π and some remarks on recent
literature on the subject.

2 Omnès approach to FSI

Let us consider a generic amplitude (or form factor) AI
J(s), with two pions

in the final state which have total angular momentum and isospin given by
J and I, respectively, and invariant mass s ≡ q2 ≡ (p1 + p2)

2. As indicated
by the name, FSI refer to the final dynamics of the two pions and not to the
particular process leading to this final state. Therefore, we will not specify
the physical amplitude and will look for a way to resum the strong π–π
interactions to all orders in the chiral expansion.
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Let us define the amplitude AI
J(s) being analytic on the complex s plane

except for a cut L ≡ [4M2
π ,∞) along the real positive s axis. For real

values s < 4M2
π the amplitude is real; this implies that the values of the

amplitude above and below the cut are complex conjugate of each other:
AI

J(s + iǫ) = AI
J(s − iǫ)∗. Above the threshold, s ≥ 4M2

π , AI
J(s) has a

discontinuity across the cut and develops an absorptive (imaginary) part.
Cauchy’s theorem implies that AI

J(s) can be written as a dispersive inte-
gral along the physical cut:

AI
J(s) =

1

π

∫

L
dz

Im AI
J(s)

z − s − iǫ
+ subtractions . (2.1)

The convergence of the dispersive integral is dictated by the specific form
of the function AI

J(s). Depending on the particular asymptotic behaviour
of AI

J(s) at the extremes of the cut L, a number of subtractions has to be
performed to make the integral convergent.

Let us further assume that AI
J(s) corresponds to some weak or electro-

magnetic transition, in the presence of strong interactions. Thus, above the
cut, AI

J(s+iǫ) = 〈(ππ)I
J |O|i(q)〉 where O could be some effective (low–energy)

electroweak Hamiltonian or a current. Working to first order in the small
electroweak coupling, the unitarity condition allows then to write the imagi-
nary part of AI

J(s) as a sum over the contributions from all possible on–shell
intermediate states which couple to the initial and the final state (properly
normalized in momentum space):

Im AI
J(s + iǫ) =

1

2

∑

n

〈(ππ)I
J |T †|n〉 〈n|O|i(q)〉 , (2.2)

where T is the scattering T–operator. To derive this result, one makes use
of Time–Reversal invariance; we will comment later on the proper way to
bypass this assumption when analyzing CP–violating observables.

Note that since Im AI
J is real, also the r.h.s. of eq. (2.2) is real. Below

the first inelastic threshold, only the elastic channel contributes to the sum;
one gets then:

Im AI
J =

(

Im AI
J

)

2π
= e−iδI

J sin δI
J AI

J = eiδI

J sin δI
J AI∗

J

= sin δI
J |AI

J | = tan δI
J ReAI

J , (2.3)

implying that the phase of the decay amplitude AI
J(s+iǫ) = |AI

J(s)| exp
(

iδI
J

)

is equal to the phase of T I
J , the ππ → ππ partial–wave scattering amplitude

(Watson’s theorem [22]). Eq. (2.3) expresses the imaginary part of the am-
plitude AI

J(s) in terms of the amplitude itself, or its real part, and the ππ
phase–shift δI

J(s).
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Inserting eq. (2.3) in the dispersion relation (2.1), one obtains an integral
equation for A(s) of the Omnès type,

AI
J(s) =

n−1
∑

k=0

(s − s0)
k

k!

dkAI
J

dsk

∣

∣

∣

∣

∣

s=s0

+
(s − s0)

n

π

∫ ∞

4M2
π

dz

(z − s0)n

tan δI
J (z) ReAI

J(z)

z − s − iǫ
,

(2.4)
which has the well–known Omnès [4, 23–25] solution:

AI
J(s) = QI

J,n(s, s0) exp
{

II
J,n(s, s0)

}

, (2.5)

where

II
J,n(s, s0) ≡ (s − s0)

n

π

∫ ∞

4M2
π

dz

(z − s0)n

δI
J(z)

z − s − iǫ
, (2.6)

QI
J,0(s, s0) ≡ 1 and

QI
J,n(s, s0) ≡ exp

{

n−1
∑

k=0

(s − s0)
k

k!

dk

dsk
log

{

AI
J(s)

}∣

∣

∣

s=s0

}

, (n ≥ 1) .

(2.7)
Strictly speaking, this equation is only valid below the first inelastic

threshold (s ≤ 16M2
π). However, the contributions from higher–mass in-

termediate states are suppressed by phase space. The production of a larger
number of meson pairs is also of higher order in the chiral expansion.

We have written the most general result, for a given number of subtrac-
tions n, performed at a generic subtraction point s0 outside the physical cut.
The dispersive integral II

J,n(s, s0) is uniquely determined up to a polynomial
ambiguity (that does not produce any imaginary part of the amplitude),
which depends on the number of subtractions and the subtraction point.
This can be readily seen through the use of the following iterative formula
for the real part of II

J,n(s, s0):

Re II
J,n(s, s0) = Re II

J,n−1(s, s0) − (s − s0)
n−1 lim

s→s0

Re II
J,n−1(s, s0)

(s − s0)n−1
, (2.8)

where the second term on the r.h.s. depends on s only through the polynomial
factor (s − s0)

n−1. The non–polynomial part of II
J,n(s, s0), containing the

infrared chiral logarithms, does not have any dependence on the number of
subtractions or the subtraction point. The polynomial ambiguity is of course
canceled by the subtraction function QI

J,n(s, s0).
Thus, the Omnès solution predicts the chiral logarithmic corrections in

a universal way, independently of the number of subtractions or the sub-
traction point, and provides their exponentiation to all orders in the chiral
expansion. The polynomial ambiguity of II

J,n(s, s0) and the subtraction func-
tion QI

J,n(s, s0) can be fixed, at a given order in the chiral expansion, by
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matching the Omnès formula (2.5) with the χPT prediction of AI
J(s). It

remains a polynomial ambiguity at higher orders.
A special case, which turns out to be relevant in the treatment of the

weak K → 2π amplitudes, is the one where the amplitude AI
J(s) has a zero

of a given order p at some point s = ζ . In this case, once the zero is factorized
through the relation AI

J (s) = (s− ζ)p AI
J(s), the dispersive representation of

eq. (2.5) is valid for the function AI
J(s), so that

AI
J(s) = (s − ζ)p AI

J(s) = (s − ζ)p Q
I
J,n(s, s0) exp

{

II
J,n(s, s0)

}

, (2.9)

with Q
I
J,n(s, s0) the analogous of the expansion QI

J,n(s, s0) of eq. (2.7) for the

function AI
J(s) and II

J,n(s, s0) as defined in (2.6).

3 The scalar pion form factor

The scalar form factor of the pion is the simplest quantity where the Omnès
problem can be solved [26, 27] in order to resum final state interactions of a
two-pion state with total angular momentum J = 0 and isospin I = 0. It is
defined by the matrix element of the SU(2) quark scalar density

〈πi(p′)|ūu + d̄d|πk(p)〉 ≡ δik F π
S (t) . (3.1)

At low momentum transfer, χPT provides a systematic expansion of F π
S (t)

in powers of t ≡ (p′ − p)2 and the light quark masses [28, 29]:

F π
S (t) = F π

S (0)
{

1 + g(t) + O(p4)
}

. (3.2)

The value at t = 0 coincides with the pion sigma term. It can be written as
an expansion in powers of the light quark masses as follows:

F π
S (0) =

(

∂

∂mu
+

∂

∂md

)

M2
π = 2B0 + O(mq) , (3.3)

where B0 is a coupling of the lowest–order χPT Lagrangian which is related to
the quark–antiquark vacuum condensate. The O(p2) correction g(t) contains
contributions from one-loop diagrams and tree–level terms of the O(p4) χPT
Lagrangian. It is given by [28, 29]:

g(t) =
t

f 2

{(

1 − M2
π

2t

)

J̄ππ(t) +
1

4
J̄KK(t) +

M2
π

18t
J̄ηη(t) + 4(Lr

5 + 2Lr
4)(µ)

+
5

4(4π)2

(

ln
µ2

M2
π

− 1

)

− 1

4(4π)2
ln

M2
K

M2
π

}

, (3.4)

with f ≈ fπ = 92.4 MeV.
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Only two terms of the strong χPT Lagrangian of O(p4) contribute to g(t).
The µ dependence of their corresponding chiral couplings Lr

4(µ) and Lr
5(µ)

exactly cancels the one from the chiral loops appearing through the logarithm
ln (µ2/M2

π). At the standard reference value µ = Mρ, [Lr
5 + 2Lr

4](Mρ) =
(0.8 ± 1.1) × 10−3 [30–32].

The functions J̄ππ(t), J̄KK(t) and J̄ηη(t) are ultraviolet finite and, together
with the logarithms, they are produced by the one-loop exchange of ππ, KK̄
and ηη intermediate states. They have the form:

J̄PP (t) =
1

(4π)2

{

2 − σP ln
(

σP + 1

σP − 1

)}

; σP ≡
√

1 − 4M2
P

t
. (3.5)

Below the first inelastic threshold, the absorptive part of the scalar form
factor is generated by ππ exchange, through the one-loop function J̄ππ(t).
Thus, all non-analytic contributions originate from the final rescattering of
the two pions and could be studied within the chiral SU(2) ⊗ SU(2) frame-
work [28], where the K and η modes are integrated out. In fact, for values
of t such that t ≪ 4M2

P ,

J̄PP (t) =
1

(4π)2

[

1

6

t

M2
P

+
1

60

t2

M4
P

+ . . .

]

, (3.6)

implying that, below the PP̄ threshold, J̄PP (t) has a very smooth behaviour
and is strongly suppressed. In the case of the pion scalar form factor this
means that at values of t ≪ 4M2

K , 4M2
η the one-loop functions J̄KK(t) and

J̄ηη(t) only give small analytic corrections, which are numerically negligible
with respect to the local (Lr

5 + 2Lr
4)(Mρ) contribution.

The two loop corrections to the pion form factor have been already com-
puted [33]. However, we prefer to keep the discussion at the one-loop level
only, in order to make easier the comparison with K → ππ where two-loop
corrections are not yet available.

Let us consider now the Omnès problem for F π
S (t) and fix the subtraction

polynomial performing a matching with the one-loop χPT result. We can
write the Omnès solution in the form:

F π
S (t) = Ω0(t, t0) · F π

S (t0) ≈ Ω0(t, t0) · F π
S (0) {1 + g(t0)} . (3.7)

Thus, knowing the form factor at some low–energy subtraction point t0,
where the momentum expansion can be trusted, the Omnès factor Ω0(t, t0)
provides an evolution of the result to higher values of t, through the expo-
nentiation of infrared effects related to FSI. The once–subtracted solution
reads:

Ω
(1)
0 (t, t0) = exp

{

t − t0
π

∫ z̄

4M2
π

dz

z − t0

δ0
0(z)

z − t − iǫ

}

≡ ℜ(1)
0 (t, t0) eiδ0

0
(t) . (3.8)
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We have split the integral into its real and imaginary part, making explicit
that the phase of the Omnès factor is just the original phase-shift δ0

0(t). The

Omnès exponential generates its corresponding dispersive factor ℜ(1)
0 (t, t0).

The integral has been cut at the upper edge z̄, which represents the first
inelastic threshold. Above z̄ the representation (3.8) is no longer valid and
a coupled–channel analysis is required to solve the Omnès problem. From
the behaviour of the S–wave ππ phase-shift δ0

0(z) (see appendix A), it is
immediate to infer that the elastic integral evaluated up to z̄ ∼ 1 GeV2 will
slightly underestimate the exact result obtained with the inclusion of inelastic
contributions. We shall discuss this point in more detail later.

The solution for F π
S (t) given in eq. (3.7), being a physical quantity,

must be independent of the subtraction point t0, while the Omnès factor
and the amplitude in front of it do depend on t0. For illustrative pur-
poses, we take t = M2

K (the scale relevant for K → ππ) and show in Ta-
ble 1 the resulting value of |F π

S (M2
K)/F π

S (0)| for different subtraction points
t0 = 0, M2

π , 2M2
π , 3M2

π , 4M2
π and M2

K . The upper limit of the integration
range has been fixed at z̄ = 1 GeV2. Our Omnès integral (3.8) is not defined
for t0 = M2

K , because it lies above the threshold of the non–analyticity cut;
however, by its definition in eq. (3.7), Ω(M2

K , t0 = M2
K) = 1 holds.

t0 g(t0) ℜ(1)
0 (M2

K , t0) ℜ(2)
0 (M2

K , t0) |F π
S (M2

K)/F π
S (0)|

n = 1 n = 2

0 0 (1.23) 1.45 (1.55) 1.56 (1.23) 1.45 (1.55) 1.56

M2
π 0.042 (1.21) 1.40 (1.47) 1.44 (1.26) 1.46 (1.53) 1.50

2M2
π 0.091 (1.17) 1.34 (1.38) 1.31 (1.28) 1.46 (1.51) 1.43

3M2
π 0.15 (1.12) 1.26 (1.26) 1.13 (1.29) 1.45 (1.45) 1.30

4M2
π 0.26 (1.03) 1.11 — (1.30) 1.40 —

M2
K 0.54 − 0.46 i ≡ 1 ≡ 1 1.61 1.61

Table 1: The one-loop function g(t0), the Omnès factor ℜ(n)
0 (t, t0) and the

modulus of F π
S (t)/F π

S (t0) are shown at t = M2
K for different values of the

subtraction point t0 ∈ [0, M2
K ] and for n = 1, 2 subtractions. At a given t0,

the first value (within brackets) is obtained with the O(p2) χPT prediction
for δ0

0 , while the fit to the experimental phase-shift data has been used in the
second one. The integrals have been cut at z̄ = 1 GeV2.

The dominant contributions to g(t0) come from the logarithms and the
ππ one-loop function J̄ππ(t). The corrections from J̄KK(t0) and J̄ηη(t0) stay
within 1% of the total one–loop correction at all non-zero subtraction points,
while the local [Lr

5 + 2Lr
4](Mρ) term gives a contribution smaller than 10%.
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The χPT calculation of F π
S (t0) is obviously better at lower values of t0 where

the one-loop correction g(t0) is smaller. At t0 = 4M2
π a sizeable 26% effect is

already found, while at t0 = M2
K the correction is so large than one should

worry about higher–order contributions. The Omnès exponential allows us
to predict F π

S (M2
K) in a much more reliable way, through the evolution of

safer results at lower t0 values.
The resulting values for the scalar form factor remain very stable within

the whole range of subtraction points. Increasing the value of t0 one just
moves higher–order χPT corrections from the Omnès factor to the amplitude
F π

S (t0). At t0 = M2
π the one-loop corrections are still almost zero, while the

Omnès factor contains all the higher–order effects. At the highest possible
subtraction point t0 = 4M2

π , i.e. the threshold of the non–analyticity cut,
the bulk of the higher–order corrections has been moved to F π

S (t0), while
the Omnès factor approaches one, the value that it assumes at t0 = M2

K , by
construction.

Together with the more accurate results obtained with the experimental
phase-shifts, we have shown in Table 1 (within brackets) the corresponding
numerical values using the lowest–order χPT prediction for δ0

0(z) in eq. (A.4).
As expected, the O(p2) χPT approximation to δ0

0(z) underestimates the dis-
persive integral and, therefore, the true results, which are obtained with the
experimental phase-shifts.

As shown in Table 2, the dispersive correction factors ℜ(1)
0 (M2

K , t0) in-
crease with increasing values of the upper integration limit z̄. This clearly
indicates that we are underestimating the FSI effect. However, one cannot
trust the numerical results obtained for z̄ > 1 GeV2 because a coupled–
channel analysis is required above the inelastic threshold.

ℜ(1)
0 (M2

K , t0) ℜ(2)
0 (M2

K , t0)

z̄ = 1 z̄ = 2 z̄ = 3 z̄ = 1 z̄ = 2 z̄ = 3

t0 = 0 1.45 1.58 1.62 1.56 1.58 1.59

t0 = M2
π 1.40 1.51 1.55 1.44 1.46 1.47

t0 = 2M2
π 1.34 1.44 1.47 1.31 1.32 1.33

t0 = 3M2
π 1.26 1.35 1.38 1.13 1.14 1.14

t0 = 4M2
π 1.11 1.19 1.21 — — —

Table 2: Dependence of ℜ(n)
0 (M2

K , t0) on the upper edge z̄ (in GeV2 units) of
the dispersive integral, for various choices of t0 and n = 1, 2. The fit to the
experimental data for δ0

0 has been used.

We can suppress the sensitivity to the high integration range by using
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a twice–subtracted dispersion relation. The corresponding Omnès factor is
given by:

Ω
(2)
0 (t, t0) = exp

{

(t − t0)
g′(t0)

1 + g(t0)
+

(t − t0)
2

π

∫ z̄

4M2
π

dz

(z − t0)2

δ0
0(z)

z − t − iǫ

}

≡ ℜ(2)
0 (t, t0) eiδ0

0
(t) . (3.9)

Table 2 shows that with n = 2 the numerical results remain indeed stable
under variations of z̄. Moreover, as shown in Table 1, the O(p2) approxima-
tion to δ0

0(z) works now much better, giving results in good agreement with
the ones obtained from the experimental phase-shifts.

Notice, that Ω
(2)
0 (t, t0) is not defined at t0 = 4M2

π , because the derivative
g′(t0) has a discontinuity at the threshold of the physical cut. Since F π

S (t)
is an analytic function in the cut s–plane, its Taylor expansion around the
subtraction point t0 (≤ 4M2

π) has a convergence radius |t0 − 4M2
π |, which

becomes zero at t0 = 4M2
π . Thus, subtraction points close to this threshold

singularity [34] should be avoided [35].
Since the derivative g′(t0) has been fixed at the one-loop level only (i.e.

has been estimated at the lowest non-trivial order), there is a correspond-
ing uncertainty which gets somehow increased by its exponentiation. This
explains why the predicted values of |F π

S (M2
K)/F π

S (0)| in Table 1 are less
stable for n = 2 than for n = 1 under changes of the subtraction point
t0. A twice–subtracted Omnès solution requires a more precise knowledge
of the subtraction function. With n = 2, the scalar form factor slightly de-
creases for increasing values of t0, in the same way as ℜ(1)

0 (t, t0), the tree–level
once–subtracted solution, does. This could be easily improved by using the
available two-loop χPT results [33]. Nevertheless, since chiral corrections are
smaller at lower values of t0, we can safely conclude that the true value of
|F π

S (M2
K)/F π

S (0)| is between 1.5 and 1.6. Taking the experimental phase-shift
uncertainties into account, we finally get:

|F π
S (M2

K)/F π
S (0)| = 1.55 ± 0.10 . (3.10)

The naive one-loop χPT prediction, |F π
S (M2

K)/F π
S (0)| = 1.61, turns out to

be within the 1σ range of our final result (3.10). The advantage of using the
dispersive Omnès resummation is that one can pin down the true value with
an acceptable accuracy (7%), in spite of having a 60% one-loop correction.

4 K → ππ amplitudes

The analysis of K → ππ transition amplitudes is technically more compli-
cated. Since the electroweak scale MW , where the short–distance quark tran-
sition takes place, is much larger than the long–distance hadronic scale, there
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are large short–distance logarithmic contributions which can be summed up
using the Operator Product Expansion [36] and the renormalization group.
One gets an effective ∆S = 1 Lagrangian, defined in the three–flavour the-
ory [37, 38],

L∆S=1
eff = −GF√

2
Vud V ∗

us

∑

i

Ci(ν) Qi(ν) , (4.1)

which is a sum of local four–fermion operators Qi, constructed with the light
degrees of freedom, modulated by Wilson coefficients Ci(ν) which are func-
tions of the heavy masses MW , MZ , mt, mb and mc that have been integrated
out. The overall renormalization scale ν separates the short– (M > ν) and
long– (m < ν) distance contributions, which are contained in Ci(ν) and
Qi, respectively. The physical amplitudes are of course independent of ν;
thus, the explicit scale (and scheme) dependence of the Wilson coefficients
should cancel exactly with the corresponding dependence of the Qi matrix
elements between on-shell states. We have explicitly factored out the Fermi
coupling GF and the Cabibbo–Kobayashi–Maskawa (CKM) matrix elements
Vij containing the usual Cabibbo suppression of K decays.

Our knowledge of ∆S = 1 transitions has improved qualitatively in recent
years, thanks to the completion of the next-to-leading logarithmic order cal-
culation of the Wilson coefficients [39,40]. All gluonic corrections of O(αn

s t
n)

and O(αn+1
s tn) are already known, where t ≡ ln (M1/M2) refers to the log-

arithm of any ratio of heavy mass scales M1, M2 ≥ ν. Moreover, the full
mt/MW dependence (at lowest order in αs) has been taken into account. In
order to predict physical amplitudes, however, one is still confronted with the
calculation of hadronic matrix elements of the four–quark operators. This is
a very difficult problem, which so far remains unsolved.

The chiral symmetry properties of the effective Lagrangian (4.1) deter-
mine its corresponding χPT realization, in terms of the QCD Goldstone
bosons

Φ =











√

1
2
π0 +

√

1
6
η π+ K+

π− −
√

1
2
π0 +

√

1
6
η K0

K− K̄0 −
√

2
3
η











, (4.2)

parametrized through the exponential U = exp(
√

2iΦ/f). At a given order
in the momentum expansion, chiral symmetry fixes the allowed chiral opera-
tors and, therefore, the structure of the physical weak amplitudes. The only
remaining problem is the calculation of the chiral couplings from the effective
short–distance Lagrangian.

The effect of strangeness–changing non-leptonic weak interactions with
∆S = 1 is incorporated [41] in the low–energy chiral theory as a perturba-
tion to the strong effective Lagrangian. At lowest order, the most general
effective bosonic Lagrangian, with the same SU(3)L⊗SU(3)R transformation
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properties as the short–distance Lagrangian (4.1), contains three terms:

L∆S=1
2 = −GF√

2
VudV

∗
us

{

g8 f 4 〈λLµL
µ〉 + g27 f 4

(

Lµ23L
µ
11 +

2

3
Lµ21L

µ
13

)

+ e2f 6gEW 〈λU †QU〉
}

. (4.3)

The flavour–matrix operator Lµ = −iU †DµU represents the octet of V − A
currents at lowest order in derivatives, Q = diag(2

3
,−1

3
,−1

3
) is the quark

charge matrix, λ ≡ (λ6 − iλ7)/2 projects onto the s̄ → d̄ transition [λij =
δi3δj2] and 〈A〉 denotes the flavour trace of A.

The chiral couplings g8 and g27 measure the strength of the two parts
of the effective Lagrangian (4.1) transforming as (8L, 1R) and (27L, 1R), re-
spectively, under chiral rotations. Chiral symmetry forces the lowest–order
Lagrangian to contain at least two derivatives (Goldstone bosons are free
particles at zero momenta). In the presence of electroweak interactions,
however, the explicit breaking of chiral symmetry generated by the quark
charge matrix Q induces the O(p0) operator 〈λU †QU〉 [42,43], transforming
as (8L, 8R) under the chiral group. In the usual chiral counting e2 ∼ O(p2)
and, therefore, the gEW term is also of order p2. One additional term [44]
proportional to the quark mass matrix, which transforms as (8L, 1R), has
not been written since it does not contribute to the physical K → ππ ma-
trix elements [12, 13, 45]. At next–to–leading order in the chiral expansion,
i.e. O(p4), a set of additional weak counterterms will contribute [12, 13, 46]
together with the strong chiral operators Li introduced in [29].

The Lagrangian (4.3) gives the lowest–order contribution to the K → 2π
matrix elements. At generic values of the squared centre–of–mass energy
s = (pπ1 + pπ2)

2, the I = 0, 2 amplitudes are given by

A0(s) = −GF√
2
VudV

∗
us

√
2f

{(

g8 +
1

9
g27

)

(s − M2
π) − 2

3
f 2e2gEW

}

,

A2(s) = −GF√
2
VudV

∗
us

2

9
f
{

5 g27 (s − M2
π) − 3f 2e2gEW

}

. (4.4)

We have made the usual isospin decomposition:

A[K0 → π+π−] ≡ A0 +
1√
2
A2 ,

A[K0 → π0π0] ≡ A0 −
√

2A2 , (4.5)

A[K+ → π+π0] ≡ 3

2
A2 ,

where the amplitudes AI ≡ AI exp
{

iδI
0

}

contain the strong phase-shifts,
which are zero at tree level.
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For the discussion of the CP–conserving amplitudes we will neglect3 the
tiny electroweak correction proportional to e2gEW . Taking the measured
phase-shifts into account, eqs. (4.4) allow us to extract the lowest–order weak
couplings from the experimental information on K → 2π decays [50]:

∣

∣

∣

∣

g8 +
1

9
g27

∣

∣

∣

∣

≃ 5.1 , |g27/g8| ≃ 1/18 . (4.6)

The huge difference between these two couplings shows the well–known en-
hancement of the octet |∆I| = 1/2 transitions.

Let us now apply the Omnès procedure to the ∆S = 1 decay amplitudes.
This is more subtle than for the scalar pion form factor, because we need
to consider an off-shell kaon of mass squared s = (pπ1 + pπ2)

2, instead of a
physical momentum transfer s. Since we are just studying the corrections
induced by FSI between the two pions, the kaon can be formally considered
as an external source, provided all SU(3) symmetry constraints are satisfied.
As we saw explicitly for the scalar form factor, the FSI corrections that are
summed up through the Omnès exponential are actually an SU(2) effect,
generated by pion loops. Intuitively, we are just correcting a local weak
K → ππ transition with a chain of pion–loop bubbles, incorporating the
strong ππ → ππ rescattering to all orders in the chiral expansion.

In the absence of e2gEW corrections, the tree–level isospin amplitudes
have a zero at s = M2

π , because the on-shell amplitudes should vanish in
the SU(3) limit [44, 47, 51, 52]. We must take this important constraint into
account, when making the Omnès summation of FSI effects, factorizing the
zero explicitly as indicated in eq. (2.9). This is what was done in ref. [1],
using a once–subtracted Omnès factor, to evolve the tree-level χPT results
from s0 = M2

π to the physical point s = M2
K .

At higher orders in χPT there are small corrections proportional to (M2
K−

M2
π) instead of (s − M2

π), which originate in the explicit breaking of chiral
symmetry provided by the quark mass matrix. According to the general one-
loop analysis presented in appendix B, those tiny effects can be neglected to
a very good approximation. However, there is no need to do it. In full
generality, the isospin amplitudes can be decomposed as

AI(s) = ãI(s)
(

s − M2
π

)

+ δãI(s)
(

M2
K − M2

π

)

, (4.7)

where δãI(s) is zero at lowest order4. Since there is a single strong phase,
for a given isospin, the unitarity relation (2.3) is also valid for the individual
functions ãI(s) and δãI(s). Therefore, the Omnès problem can be solved

3 A general analysis of isospin breaking and electromagnetic corrections to K → 2π
transitions is presented elsewhere [47–49].

4 To make the decomposition (4.7) unique, we require the function δãI(s) to depend
on s only logarithmically.
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separately for the two pieces. Combining them, we can write our result for
the physical on-shell amplitude in the simpler form:

AI ≡ AI(M
2
K) =

(

M2
K − M2

π

)

aI(M
2
K)

=
(

M2
K − M2

π

)

ΩI(M
2
K , s0) aI(s0) (4.8)

=
(

M2
K − M2

π

)

ℜI(M
2
K , s0) aI(s0) eiδI

0
(M2

K
) ,

where aI(s) ≡ ãI(s) + δãI(s).

The once–subtracted Omnès factor Ω
(1)
I (M2

K , s0) is universal, i.e. the
same for f(s) = F π

S (s), ãI(s) or δãI(s), because it only depends on the
strong phase-shift δI

0(s) [see eq. (3.8)]. This is no longer true with two sub-

tractions [eq. (3.9)], because Ω
(2)
I (s, s0) contains an explicit dependence on

f ′(s0)/f(s0). Nevertheless, given the smallness of the non-leading δãI(s)
contribution, it is a very good numerical approximation to take also a global
Omnès exponential for aI(s) in the twice-subtracted case.

Let us define a0(s) ≡ a
(8)
0 (s) + a

(27)
0 (s), thus separating the (8L, 1R) and

(27L, 1R) contributions to the isoscalar amplitude. The complete one-loop
χPT results for the different decay amplitudes are given in appendix B.
Their s dependences can be written in a rather transparent way:

a
(8)
0 (s) = a

(8)
0 (0)

{

1 + g
(8)
0 (s) + O(p4)

}

,

a
(27)
0 (s) = a

(27)
0 (0)

{

1 + g
(27)
0 (s) + O(p4)

}

, (4.9)

a2(s) = a2(0)
{

1 + g2(s) + O(p4)
}

,

where

g
(8)
0 (s) =

s

f 2

{(

1 − M2
π

2s

)

J̄ππ(s) − 1

4

(

1 − M2
K

s

)

J̄KK(s) +
M2

π

18s
J̄ηη(s)

+ C8
5 (µ) +

3

4(4π)2

(

ln
µ2

M2
π

− 1

)

+
1

4(4π)2
ln

M2
K

M2
π

}

, (4.10)

g
(27)
0 (s) =

s

f 2

{(

1 − M2
π

2s

)

J̄ππ(s) − 3

2

(

1 − M2
K

s

)

J̄KK(s) − M2
π

2s
J̄ηη(s)

+ C27
5 (µ) − 1

2(4π)2

(

ln
µ2

M2
π

− 1

)

+
3

2(4π)2
ln

M2
K

M2
π

}

, (4.11)

g2(s) =
s

f 2

{

−1

2

(

1 − 2M2
π

s

)

J̄ππ(s)

+ C̄27
5 (µ) − 1

2(4π)2

(

ln
µ2

M2
π

− 1

)}

. (4.12)

The corrections coming from the δãI terms, included in these results,
are very small. Denoting by g̃I(s) the corresponding functions for the un-
corrected ãI amplitudes, the differences ∆gI(s) ≡ gI(s) − g̃I(s) only get
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contributions from the KK̄ and ηη loop functions which, as shown in sec-
tion 3, are numerically suppressed at low values of s. Moreover, they get
an additional suppression factor M2

π (see appendix B). Since the KK̄ and
ηη intermediate states cannot give rise to I = 2, one gets ∆g2(s) = 0 (δã2

does not have any s dependence at this order), while the isoscalar differences

are given by ∆g
(8)
0 (s) = M2

π [9J̄KK(s) + 8J̄ηη(s)]/(36f 2) and ∆g
(27)
0 (s) =

M2
π [3J̄KK(s) − 4J̄ηη(s)]/(2f 2). Even at s = M2

K , these differences are com-

pletely negligible: ∆g
(8)
0 (M2

K) ∼ 1 × 10−3 and ∆g
(27)
0 (M2

K) ∼ −2 × 10−4.
Notice the strong similarity with the scalar form factor result in eq. (3.4).

The isoscalar functions g
(8)
0 (s) and g

(27)
0 (s) get exactly the same J̄ππ(s) con-

tribution than the scalar form factor function g(s), while the corresponding
contribution to g2(s) has opposite sign. The polynomial factors in front of the
ππ loop function, (s − M2

π/2) and (M2
π − s/2) for I = 0 and 2 respectively,

clearly identify the corresponding lowest–order χPT phase-shifts, given in
eq. (A.4) [Im J̄ππ(s) = θ(s − 4M2

π) σπ(s)/(16π)].
In addition, at µ2 = M2

K , one recognizes the same local infrared log-
arithmic enhancement of all isoscalar g functions, ln (M2

K/M2
π)/(4π)2; the

corresponding factor in g2 decreases the I = 2 amplitude. For arbitrary val-
ues of the chiral scale µ, this logarithmic correction is split in ln (µ2/M2

π) and
ln (M2

K/M2
π) terms, which are slightly different for the different g functions.

However, all isoscalar g functions contain exactly the same infrared ln M2
π

contribution.
Thus, the s dependence of the weak decay amplitudes is indeed dominated

by infrared effects related to the FSI of the two final pions. Moreover, in the
isoscalar case, by comparison with the scalar form factor, we see explicitly
that this is a universal effect related to the quantum numbers of the ππ state.

The particular dynamics leading to this final state gives rise also to local
contributions, which are different in each case. We saw in section 3 that
at the usual reference scale µ = Mρ the contribution from the local term
[Lr

5 + 2Lr
4](Mρ) is small. For the weak amplitudes this needs to be fur-

ther investigated; the usual factorization models [46] amount to C8
5(Mρ) =

C27
5 (Mρ) = C̄27

5 (Mρ) = 0.
The main effects of the short–distance dynamics, not related to FSI, are

contained in the particular values of the different amplitudes aI(s) at s = 0.
This physics needs to be analyzed independently, because it cancels out from
the Omnès relation. The Omnès factor only allows us to relate the amplitudes
at two different values of s, but does not give any information on their global
normalization.

Taking a low subtraction point where higher–order corrections are ex-
pected to be small, we can just multiply the tree–level formulae (4.4) with
the experimentally determined Omnès exponentials, as done in ref. [1]. For
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I = 0 we already have the result obtained in the previous section,

ℜ0(M
2
K , 0) = 1.55 ± 0.10 , (4.13)

which improves the lowest-order estimates made in refs. [1, 4] at s0 = M2
π .

In the I = 2 channel the inelasticity effect is absent at least up to 1.6
GeV. Evaluating the once-subtracted dispersive integral over the measured
phase-shifts up to z̄ = (1.6 GeV)2, we get

ℜ(1)
2 (M2

K , 0) = 0.92 ± 0.03 , (4.14)

to be compared with the earlier estimates ℜ(1)
2 (M2

K , M2
π) = 0.96 (z̄ = 1 GeV2)

[53] and ℜ(1)
2 (M2

K , M2
π) = 0.89 ± 0.03 [8]. The error bar in (4.14) takes into

account uncertainties in the fits to the phase–shift data and higher energy
contributions.

The corrections induced by FSI in the moduli of the decay amplitudes
AI generate an additional enhancement of the ∆I = 1/2 to ∆I = 3/2 ratio,

ℜ0(M
2
K , 0)/ℜ2(M

2
K , 0) = 1.68 ± 0.12 . (4.15)

This factor multiplies the enhancement already found at short distances. This
is a quite large correction, which improves previous calculations of AI(M

2
K).

Taking the ℜI correction into account, the experimental AI amplitudes imply
the following corrected values for the lowest–order ∆S = 1 chiral couplings:

∣

∣

∣

∣

g8 +
1

9
g27

∣

∣

∣

∣

≈ 3.3 , |g27| ≈ 0.31 . (4.16)

These “experimental” numbers are not very far from the short–distance es-
timates obtained in the first of refs. [54].

5 Standard Model prediction of ε′/ε

One further subtlety has to be taken into account in the discussion of CP–
violating isospin amplitudes. The derivation of eq. (2.2) for the absorptive
parts makes use of Time–Reversal invariance, so that the procedure can be
strictly applied only to CP–conserving amplitudes. This is not a problem,
however, because we are working to first order in the weak Fermi coupling.

The CP–odd phase is hidden in the Wilson coefficients of the short–
distance ∆S = 1 Lagrangian (4.1), which can be decomposed as

Ci(ν) = zi(ν) + τ yi(ν) ; τ = − Vtd V ∗
ts

Vud V ∗
us

. (5.1)

15



Since CP violation is only originated by the short–distance ratio of CKM
matrix elements τ , we can always write

AI = ACP
I + τ A /CP

I (5.2)

and apply the Omnès procedure to the amplitudes ACP
I and A /CP

I , which
respect Time–Reversal invariance.

The CP-conserving piece of τ A /CP

I is negligible in comparison with ACP
I .

Therefore, in a more standard notation, ReAI ≈ ACP
I and ImAI = Im(τ) A

/CP

I ,
where “real” and “imaginary” refer to CP–even and CP–odd since the ab-
sorptive phases have been already factored out through AI = AI eiδI

0 .
The most striking consequence of the correction factors ℜ0,2 is a sizeable

modification of the numerical short–distance estimates5 for the direct CP–
violation parameter ε′/ε. A handy way of writing this quantity, used in all
theoretical short–distance calculations up to date, can be as follows [15]

ε′

ε
= Im (V ∗

tsVtd) eiΦ
[

P (1/2) − P (3/2)
]

, (5.3)

where the phase Φ = Φε′−Φε ≃ 0 and the quantities P (1/2) and P (3/2) contain
the contributions from the hadronic matrix elements of four–quark operators
with ∆I = 1/2 and 3/2 respectively:

P (1/2) = r
∑

i

yi(ν) 〈Qi(ν)〉0 (1 − ΩIB) ,

P (3/2) =
r

ω

∑

i

yi(ν) 〈Qi(ν)〉2 . (5.4)

Here, 〈Qi〉I ≡ 〈(ππ)I |Qi|K〉, r and ω are given by

r =
GF

2|ε|
ω

ReA0

, ω =
ReA2

ReA0

, (5.5)

and the parameter

ΩIB =
1

ω

(ImA2)IB

ImA0
(5.6)

parametrizes isospin breaking corrections.
A detailed analysis of ǫ′/ǫ, within the Standard Model, will be given in

ref. [20]. Here we just want to illustrate the important role of FSI and how
their proper inclusion modifies the ǫ′/ǫ prediction in a very important way.

Since the hadronic matrix elements are quite uncertain theoretically, the
CP–conserving amplitudes ReAI , and thus the factors r and ω, are set to

5 The correction factors ℜ(1)
I

(M2
K

, M2
π) were already considered in ref. [55] to estimate

ǫ′/ǫ within the SU(2)L ⊗ SU(2)R ⊗ U(1) model of CP violation.
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their experimentally determined values; this automatically includes the FSI
effect. All the rest in the numerator is theoretically predicted via short–
distance calculations, because the leading contributions come [18] from the
operators Q6 and Q8 whose matrix elements cannot be directly measured
from K → 2π decay rates.

As a consequence, since the relevant matrix elements 〈Q6,8〉I are usually
taken from large–NC estimates [15] or lattice calculations [16], which do not
include FSI corrections, this procedure produces a mismatch with the FSI
included phenomenologically in the values of r and ω. This can be easily
corrected, introducing in the numerator the dispersion factors ℜI that we
have estimated. This implies [1] a large enhancement of the predicted value
of ε′/ε by roughly a factor of 2.

To a very good approximation, the Standard Model prediction for ε′/ε
can be written, up to global factors, as [15]

ε′

ε
∼
[

B
(1/2)
6 (1 − ΩIB) − 0.4 B

(3/2)
8

]

, (5.7)

where B
(1/2)
6 and B

(3/2)
8 parametrize the matrix elements of the QCD penguin

operator Q6 and the electroweak penguin operator Q8, respectively, in units
of their vacuum insertion approximation values. These parameters are usu-
ally taken to be (from 1/NC considerations [15] and Lattice calculations [16])

B
(1/2)
6 = 1.0 ± 0.3 and B

(3/2)
8 = 0.8 ± 0.2, while the isospin–breaking factor

is set to ΩIB ≈ 0.25 [56] with large uncertainties [57, 58]. With those in-
puts, there is a rather large numerical cancellation between the two terms in
eq. (5.7), which results in a predicted central value [15,16] ε′/ε ≈ 7.0× 10−4.

Since those estimates do not include FSI effects, their values should be
multiplied by the appropriate factors ℜI . Notice, that the Omnès procedure
can be also applied to the individual matrix elements 〈Qi〉I . In order to
avoid any possible double counting, we will take as the starting point of our
analysis the large–NC estimate for the relevant matrix elements [38]:

B
(1/2)
6

∣

∣

∣

NC→∞
= 1 ; B

(3/2)
8

∣

∣

∣

NC→∞
≈ 1.0 . (5.8)

FSI only appear at next-to-leading order in the 1/NC expansion and, there-
fore, correct the leading values (5.8).

The corrected ε′/ε prediction can be easily obtained, taking into account
the following points:

1. The penguin operator Q6 transforms as (8L, 1R) under chiral transfor-
mations. At lowest order in the chiral expansion, it corresponds to
the first operator in eq. (4.3) (from eq. (5.8) one actually gets the Q6

contribution to the chiral coupling g8, in the large–NC limit). The FSI

corrections induced by pion chiral loops modify B
(1/2)
6 as follows

B
(1/2)
6 = B

(1/2)
6

∣

∣

∣

NC→∞
× ℜ0(M

2
K , 0) = 1.55 .
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2. The electroweak penguin operator Q8 corresponds to the chiral operator
proportional to gEW in eq. (4.3). As shown in (4.4), it contributes
to the two isospin amplitudes, although we only need here the I =
2 piece 〈Q8〉2. The K → 2π matrix element is not proportional to
M2

K −M2
π because the needed SU(3) breaking is provided by the quark

charge matrix (the chiral operator is identically zero for Q = I). The
presence or not of this factor does not change the Omnès summation
(the corresponding zero just factors out whenever is present). One gets
then

B
(3/2)
8 = B

(3/2)
8

∣

∣

∣

NC→∞
× ℜ2(M

2
K , 0) = 0.92 .

3. The isospin–breaking correction coming from π0–η mixing has been
recently calculated at O(p4) in the chiral expansion, with the result
ΩIB = 0.16± 0.03 [59]. This value is smaller than the previous lowest–

order estimate ΩIB ≈ 0.25 [56]. The term B
(1/2)
6 ΩIB in eq. (5.7) should

be multiplied by ℜ2 and not by ℜ0, because it corresponds to two final
pions with I = 2. Thus,

B
(1/2)
6 ΩIB = B

(1/2)
6

∣

∣

∣

NC→∞
ΩIB × ℜ2(M

2
K , 0) = 0.15 .

The large FSI correction to the I = 0 amplitude gets reinforced by the
mild suppression of the I = 2 contributions. The net effect is a large en-
hancement of eq. (5.7), by a factor 2.4, pushing the predicted central value
from 7.0 × 10−4 [15, 16] to

ε′/ε = 17 × 10−4 , (5.9)

which compares well with the present experimental world average [21] in
eq. (1.3).

A more careful analysis, taking into account all hadronic and quark–
mixing inputs [20] gives the result quoted in eq. (1.2) for the Standard Model
prediction of ε′/ε.

6 Discussion

Many attempts have been made to compute the isospin amplitudes AI from
first principles [3,15,16,18,19,50,54,60–66]. Although those calculations have
provided encouraging results, we are still far from getting accurate predic-
tions. Nevertheless, a qualitative understanding of the K → ππ transition
amplitudes is now emerging.

The strong rescattering of the two final pions generates important cor-
rections to the kaon decay amplitudes, enhancing the I = 0 piece by about
50% and originating a mild suppression of the I = 2 one. FSI alone cannot
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explain the measured ratio of ∆I = 1/2 to ∆I = 3/2 transition amplitudes,
but they constitute a very important ingredient which reinforces the enhance-
ment already found at short distances. Combined with the 1/NC and χPT
expansions, the calculation of the Omnès factors Ω0,2(M

2
K , 0) allows for a

reliable estimate of ε′/ε [1, 20].
The lowest–order approximation in the 1/NC expansion does not provide

a good starting point to analyze the CP–conserving K → 2π amplitudes,
because the anomalous dimensions of the most important operators Qi are
zero at this order [54]. Thus, at lowest order in 1/NC one misses the dominant
physics leading to the well–known short–distance enhancement. That makes
difficult to perform precise predictions for the K → 2π decay rates.

The situation is different for the CP–violating amplitudes, which are com-
pletely dominated by Q6 and Q8. These are precisely the only operators
which have a non-zero anomalous dimension at leading order in the 1/NC

expansion. The large–NC approximation works rather well for those opera-
tors [54,60] and their matrix elements can be safely estimated within a 30%
accuracy, once the large infrared logarithms related to FSI are properly taken
into account.

In the large–NC limit the four–quark operators factorize into currents
which have a known chiral realization at very low energies. The factorization
of the operators Q6 and Q8 leads to scalar (pseudo-scalar) currents which
are not directly measurable; their matrix elements are determined with χPT
techniques at leading (next-to-leading for Q8) non-trivial order in the mo-
mentum expansion. This fixes the Q6 and Q8 contribution to the ∆S = 1
χPT couplings in the large–NC limit [1, 20]. A reliable determination of the
corresponding K → 2π transition amplitudes can then be performed at low
s values where chiral loop corrections are smaller. Once this is accomplished,
the Omnès dispersive factors allow us to evolve this result to the physical
s = M2

K point, resumming the large chiral corrections associated with FSI.
The usual vacuum insertion estimate of 〈Q6〉0, adopted in some Standard

Model calculations of ε′/ε [15,16], corresponds to the lowest non-trivial order
in both the 1/NC and χPT expansions. This naive estimate misses the
large enhancement generated by one-loop χPT corrections [12–14], which
originates mainly in the strong rescattering of the two final pions with I =
J = 0. The FSI correction destroys the accidental numerical cancellation
between the Q6 and Q8 contributions in eq. (5.7), producing a large increase
in the resulting prediction of ε′/ε. The size of the FSI effect can be already
determined with the one-loop χPT calculation. The Omnès resummation is
only needed to perform a reliable estimate of higher–order corrections and
pin down their associated uncertainties.

More work is still needed in order to get a precise quantitative description
of kaon decays. In the meanwhile, our analysis demonstrates that it is at least
possible to pin down the value of ε′/ε with an accuracy of about 30%. Within
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the present uncertainties, the resulting Standard Model theoretical prediction
is in good agreement with the measured experimental value, without any need
to invocate a new physics source of CP violation.
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A Experimental π–π phase shifts

For the experimental phase shifts of π–π scattering with J = 0 and total
isospin I = 0 or 2 we used a simple parametrization by A. Schenk [67] that
works in the elastic region. A more involved coupled–channel analysis is
needed above the first inelastic threshold [68]. For generic I and J , the
parametrization provided in [67] is given by:

tan δI
J(s) =

√

s − 4M2
π

s

(

s − 4M2
π

4M2
π

)J (

4M2
π − sI

J

s − sI
J

)

×






aI
J + b̃I

J

(

s − 4M2
π

4M2
π

)

+ cI
J

(

s − 4M2
π

4M2
π

)2






. (A.1)

The threshold expansion of the scattering amplitude is reproduced by setting

b̃I
J = bI

J − aI
J

4M2
π

sI
J − 4M2

π

+ (aI
J)3δJ0 . (A.2)

For given I, J there are four parameters: aI
J , bI

J , cI
J and sI

J . The numerical
values of aI

J , bI
J (which parametrize the threshold behaviour of the scattering

amplitude) have been determined by means of χPT, while the remaining two
parameters have been extracted from the experimental data. The details of
the analysis can be found in the original work [67]. Here we only compile the
numerical values of the parameters. For isospin I = 0 and I = 2, in S–wave,
the values of the threshold parameters are:

a0
0 = 0.20 ; b0

0 = 0.24 ; a2
0 = −0.042 ; b2

0 = −0.075 . (A.3)
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For the other parameters cI
J and sI

J we have taken the range of values deter-
mined in [67] in order to take into account the experimental uncertainties.

For I = 0, we used c0
0 = 0.008, 0.0, −0.015 and

√

s0
0 = 840, 865, 890 MeV.

For I = 2, we used c2
0 = 0 and s2

0 = −9202, −6852, −5552 MeV2. The three
values for each single parameter correspond to the three solid curves shown in
Figure 1 for each isospin. The central line corresponds to the best fit in [67],
while the other two extremes enclose the region covered by the experimental
data considered in [67].
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Figure 1: Phase shifts δ0;2
0 (s) used in our numerical analyses. The solid lines

enclose the range covered by the experimental data, while the dashed lines
show the unitarized lowest–order χPT prediction.

The lowest–order χPT prediction of the phase shifts is also shown with a
dashed line in Figure 1. This corresponds to the expression

tan δ0;2
0 (s) =

1

32πf 2
σπ(s)

(

2s − M2
π ; 2M2

π − s
)

; σπ(s) ≡
√

1 − 4M2
π

s
,

(A.4)
which is a unitarization of the usual χPT prediction, valid at low values
of s where tan δ ∼ δ. The lowest–order χPT prediction fails already at
relatively low energies ∼ 500 MeV, specially for I = 0. In the I = 0 case it
underestimates the experimental phase shift, while in the I = 2 case it gives
a too large, in absolute value, phase shift.
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B K → ππ matrix elements at one loop

The one-loop contribution to the physical CP–conserving K → ππ isospin
amplitudes has been computed in Refs. [12, 13]. In this appendix the same
amplitudes are calculated at a generic value of the squared invariant mass
s = (pπ1 + pπ2)

2. The complete next–to–leading correction is of order p4 in
the chiral expansion and includes one-loop contributions generated by the
lowest–order p2 Lagrangian (4.3) and tree–level contributions coming from
order p4 counterterms [12, 13, 46].

In the analysis of the CP–conserving amplitudes we have neglected the
tiny electroweak corrections which are proportional to e2gEW at leading order
in the chiral expansion. We then decompose the isospin amplitudes as follows

AI(s) = ãI(s)
(

s − M2
π

)

+ δãI(s)
(

M2
K − M2

π

)

, (B.1)

where δãI(s) is zero at lowest order. In addition, we define ã0 ≡ ã
(8)
0 + ã

(27)
0

and δã0 ≡ δã
(8)
0 + δã

(27)
0 , thus explicitly separating the octet and 27–plet

contributions to the I = 0 amplitude.
At O(p4) the octet I = 0 function ã

(8)
0 takes the form

ã
(8)
0 = −GF√

2
VudV

∗
us

√
2fπ g8

{

1 − 1

2

(
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)

B(M2
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1
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1

6
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1

6
µK − 7

36
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π
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π
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K

(
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µη

9

)

+
1

f 2
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−16(2M2
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π) Lr
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K C8

1 (µ)

+ M2
π C8

4(µ) − M4
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M2
K

C8
6 (µ) + s C8

5(µ)
]
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, (B.2)

while δã
(8)
0 is given by

δã
(8)
0 = −GF√

2
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∗
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2fπ g8
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π

2M2
K(M2
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. (B.3)

At the one–loop level, the 27–plet I = 0 function ã
(27)
0 is

ã
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0 = −GF√
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∗
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and
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Finally, the I = 2 ã2 function is
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while δã2 is given by
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The one-loop function B(M2
1 , M2

2 , p2) is defined as follows
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for p2 > (M1 + M2)
2 and p2 ≤ (M1 − M2)

2, while
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(B.9)

for (M1 − M2)
2 < p2 ≤ (M1 + M2)

2 and −π/2 < arctan (x) < π/2. The
function λ(x, y, z) is given by

λ(x, y, z) = (x + y − z)2 − 4xy . (B.10)

The function B(M2
1 , M2

2 , p2) is related to the function J̄(s) introduced in
ref. [29] in the following way

f 2 B(M2
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For M1 = M2 ≡ m one gets

f 2 B(M2, M2, p2) = −J̄(s) +
1

16π2

(

ln
M2

µ2
+ 1

)

, (B.12)

where J̄(s) for M1 = M2 has been given in eq. (3.5).
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The parameters µP (P = π, K, η) contain a logarithmic dependence on
the chiral renormalization scale µ generated by one-loop corrections. They
are defined as

µP =
M2

P

32π2f 2
ln

M2
P

µ2
. (B.13)

The explicit µ–dependence of µP and the functions B(M2
1 , M2

2 , p2) is canceled
by the local contributions Lr

i (i = 4, 5), C8
i (i = 1, . . . 6), C27

i (i = 1, . . . 6)
and C̄27

i (i = 1, . . . 5).

C Comments on recent literature

The ideas put forward in our first letter [1] have been further discussed in
several recent papers by other authors. We would like to make here some
brief comments on these works.

C.1

It has been pointed out in ref. [34] that the Omnès exponential depends
on the chosen subtraction point. In that reference the FSI enhancement
is minimized, by taking the highest subtraction point below the physical
cut, s0 = 4M2

π . This trivial fact is then used to argue that our evaluation
of FSI corrections is unreliable. Our detailed analysis of the subtraction
point dependence in section 3 shows that this claim is unfounded. Taking
a higher value of s0 one is just shifting FSI corrections from the Omnès
exponential to the amplitude in front, but the physical result is of course the
same. At s0 = 4M2

π there is a large one-loop correction to the amplitude,
which has been overlooked in ref. [34]. Moreover, s0 = 4M2

π is a bad choice
of subtraction point, because the corresponding Taylor expansion has zero
convergence radius [35].

Ref. [34] states that it is not precisely known at which value of s existing
lattice estimates correspond to. It is suggested that future lattice calculations
could obtain the K → ππ weak matrix elements at threshold (s0 = 4M2

π)
and the ℜI(M

2
K , s0) correction factors could then be used to get the physical

amplitudes.
The s ambiguity mentioned in ref. [34] is not present in the low-energy

chiral expansion. Our ε′/ε calculation is based on a large–NC evaluation of
the couplings of the ∆S = 1 χPT Lagrangian. Once these chiral couplings
are determined the K → ππ amplitudes can in principle be computed at
any value of s. Higher–order chiral corrections are of course smaller at lower
values of momenta, which makes advisable to use the chiral expansion al low
s values.
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C.2

At lowest order in χPT, the four–quark operator Q8 induces the O(p0) chiral
term proportional to the coupling gEW . The corresponding one–loop cor-
rection has been analyzed in ref. [49], where a small positive contribution is

obtained. This result agrees with a recent dispersive calculation of B
(3/2)
8 [69],

which finds B
(3/2)
8 = 1.11 ± 0.16 ± 0.23.

FSI generate instead a small suppression of the I = 2 amplitude. How-
ever, there are other chiral corrections not related to FSI which appear at the
one-loop level; they are included in the value of a2(0). Since for I = 2 the FSI
effect is small, other correction could be equally important and even reverse
the sign of the correction for the physical amplitude a2(M

2
K). A detailed

one-loop analysis will be presented elsewhere [47].

C.3

A simplified (the dispersive integral over the phase-shift is not exponentiated)
version of our ℜI factors has been used in ref. [70], which advocates a different
and conceptually incorrect interpretation of the chiral corrections related to
FSI.

In this reference a non-subtracted dispersion relation is used. The re-
sulting divergence in II

0,0(s) is regulated cutting the dispersive integral at
the upper edge z̄, and making the ad-hoc identification z̄ = ν2, with ν the
short–distance scale governing the Wilson coefficients of the effective four–
quark Hamiltonian (4.1). This generates a ν dependence in the dispersive
integral which is claimed to cancel the renormalization–scale dependence of
the Wilson coefficients.

The choice z̄ = ν2 and the associated identification of infrared and ul-
traviolet logarithms is arbitrary and cannot be correct. The FSI logarithms
have nothing to do with the underlying short–distance physics. The Omnès
factor ΩI(s, s0) relates the isospin amplitudes at two different points s0 and
s, but is unable to fix the global normalization. The short–distance informa-
tion is hidden in aI(0) which, moreover, is independent of the scale ν. Thus,
the cancellation of ν dependences must be accomplished even in the absence
of FSI.

The argument can be better seen analyzing the scalar form factor, which
has the same FSI logarithms but a different short–distance contribution. In
fact, instead of working with hadronic matrix elements of the scalar current,
we can take the corresponding matrix elements of the divergence of the asso-
ciated vector current. Both quantities are trivially related by a quark–mass
factor, through a Ward identity. The FSI phenomena and the associated χPT
logarithms are of course identical; but now, there is no anomalous dimension.
Since there is no short–distance renormalization scale ν, the identification
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z̄ = ν2 is then meaningless.
The same argumentation can be repeated with the Omnès summation of

FSI effects in the pion vector form factor [25]. Again, this is a renormalization–
group invariant quantity (no anomalous dimension) and does not make any
sense to identify FSI phenomena with non-existing short–distance logarithms.
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