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Abstract

We update previous analyses of the Zee-Babu model in the light of new data, e.g., the mixing angle

θ13, the rare decay µ→ eγ and the LHC results. We also analyse the possibility of accommodating

the deviations in Γ(H → γγ) hinted by the LHC experiments, and the stability of the scalar

potential. We find that neutrino oscillation data and low energy constraints are still compatible

with masses of the extra charged scalars accessible to LHC. Moreover, if any of them is discovered,

the model can be falsified by combining the information on the singly and doubly charged scalar

decay modes with neutrino data. Conversely, if the neutrino spectrum is found to be inverted and

the CP phase δ is quite different from π, the masses of the charged scalars will be well outside the

LHC reach.
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I. INTRODUCTION

The observed pattern of neutrino masses and mixing remains one of the major puzzles

in particle physics. Moreover, massive neutrinos provide irrefutable evidence for physics

beyond the Standard Model (SM) and many theoretical possibilities have been proposed

to account for the lightness of neutrinos (see [1–4] for some reviews). With the running of

the LHC, it is timely to explore neutrino mass models in which the scale of new physics is

close to the TeV. In particular, radiative mechanisms are especially appealing, since small

neutrino masses are generated naturally due to loop factors. On the other hand, new physics

effects can be sizable also in low energy experiments, for instance lepton flavour violating

rare decays of charged leptons, `α → `βγ, providing complementary probes for such models.

In this paper we consider the Zee-Babu model (ZB) of neutrino masses1, which just adds

two (singly and doubly) charged scalar singlets to the SM. Neutrino masses are generated

at two loops and are proportional to the Yukawa couplings of the new scalars and inversely

proportional to the square of their masses. This is phenomenologically quite interesting

because the new scalars cannot be very heavy or have very small Yukawa couplings, otherwise

neutrino masses would be too small. As a consequence, such scalars may be accessible at

the LHC, and in principle they could explain the slight excess over the SM prediction found

by ATLAS in the diphoton Higgs decay channel H → γγ (currently CMS does not see any

excess, see section III for the latest data). They also mediate a variety of lepton flavour

violating (LFV) processes, leading to rates measurable in current experiments.

The phenomenology of the ZB model has been widely analyzed: neutrino oscillation data

was used to constrain the parameter space of the model, LFV charged lepton decay rates

calculated and collider signals discussed [10–12]. Non-standard neutrino interactions in the

ZB model have also been thoroughly studied, in correlation with possible LHC signals and

LFV processes [13]. In [12], some of us performed an exhaustive numerical study of the full

parameter space of the model using Monte Carlo Markov Chain (MCMC) techniques, which

allow to efficiently explore high-dimensional spaces. However, in the last few years there

1 The model was first proposed in [5] and studied carefully in [6]. Similar models with a doubly charged

scalar and masses generated at two loops were discussed in [7] (two-loop neutrino mass models containing

doubly-charged singlets have also been recently discussed in connection with neutrinoless double beta

decay [8, 9]).
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have been several experimental results which motivate an up-to-date analysis including all

relevant data currently available. Therefore, in this work we update previous analysis in

the light of the recent measurement of the neutrino mixing angle θ13 [14–16], the new MEG

limits on µ → eγ [17], the lower bounds on doubly-charged scalars coming from LHC data

[18, 19], and, of course, the discovery of a 125 GeV Higgs boson by ATLAS and CMS [20, 21].

Moreover, we also study the possibility of accommodating deviations from the SM prediction

for the Higgs diphoton decay channel, and the effects of the new couplings of the model in

the stability of the scalar potential. A possible enhancement of the Higgs diphoton decay

rate in the ZB model together with the vacuum stability of the scalar potential has been

studied in [22], however a consistent updated analysis including all constraints is lacking.

The outline of the paper is the following. In section II we briefly review the main features

of the ZB model, discussing perturbativity and naturality estimates for the allowed ranges

of the free parameters of the model. We summarize present constraints from recent neutrino

oscillation data, low energy lepton-flavour violating processes, universality and stability of

the scalar potential. We also review the collider phenomenology of the ZB model, discussing

current limits from LHC, and briefly comment on the prospects for non-standard neutrino

interactions. In section III we analyze in detail the contributions of the ZB charged scalars to

both, Γ(H → γγ) and Γ(H → Zγ). After some analytic estimates in section IV, we present

the results of our MCMC numerical analysis in section V and we conclude in section VI.

Renormalization group equations for the ZB model and relevant loop functions are collected

in the appendices.

II. THE ZEE-BABU MODEL

We follow the notation of [12]. As mentioned above, the Zee-Babu model only contains,

in addition to the SM, two charged singlet scalar fields

h±, k±± , (1)

with weak hypercharges ±1 and ±2 respectively (we use the convention Q = T3 + Y ).

The scalar potential is given by

V = m′2HH
†H +m′2h |h|2 +m′2k |k|2 + λH(H†H)2 + λh|h|4 + λk|k|4

+ λhk|h|2|k|2 + λhH |h|2H†H + λkH |k|2H†H +
(
µh2k++ + h.c.

)
, (2)
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being H the SU(2) doublet Higgs boson, while the leptons have Yukawa couplings to both

H and the new charged scalars:

LY = LL Y eH + L̃Lf`h
+ + ecg e k++ + h.c. , (3)

where LL and e are the SM SU(2) lepton doublets and singlets, respectively, and L̃L ≡

iτ2L
c
L = iτ2CLL

T
, with τ2 Pauli’s second matrix. Due to Fermi statistics, fab is an antisym-

metric matrix in flavour space while gab is symmetric.

Notice that we can assign lepton number −2 to both scalars, h+ and k++, in such a way

that total lepton number L (or B−L) is conserved in the complete Lagrangian, except for the

trilinear coupling µ of the scalar potential; thus, lepton number is explicitly broken by the µ-

coupling. It is important to remark that lepton number violation requires the simultaneous

presence of the four couplings Y , f , g and µ, because if any of them vanishes one can always

assign quantum numbers in such a way that there is a global U(1) symmetry. This means

that neutrino masses will require the simultaneous presence of the four couplings.

Regarding the physical free parameters in the ZB model, our convention is the following:

without loss of generality, we choose the 3 × 3 charged lepton Yukawa matrix Y to be

diagonal with real and positive elements. We also use fermion field rephasings to remove

three phases from the elements of the matrix g and charged scalar rephasings to set µ real

and positive, and to remove one phase from f . In summary we have 12 moduli (3 from

Y , 3 from f and 6 from gab), 5 phases (3 from g and 2 from f) and the real and positive

parameter µ, plus the rest of real parameters in the scalar potential. As discussed in [12],

this choice is compatible with the standard parametrization of neutrino masses and mixings.

After electroweak symmetry breaking, the masses of charged leptons are ma = Yaav, with

v ≡ 〈H0〉 = 174 GeV, the VEV of the standard Higgs doublet, while the physical charged

scalar masses are given by

m2
h = m′2h + λhHv

2 , m2
k = m′2k + λkHv

2 . (4)

In principle, the scale of the new mass parameters of the ZB model (mh,mk and µ)

is arbitrary. However from the experimental point of view it is interesting to consider

new scalars light enough to be produced in the second run of the LHC. Also theoretical

arguments suggest that the scalar masses should be relatively light (few TeV), to avoid

unnaturally large one-loop corrections to the Higgs mass which would introduce a hierarchy
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problem. Therefore, in this paper we will focus on the masses of the new scalars, mh,mk,

below 2 TeV.

The Yukawa couplings of the new scalars of the model enter in the neutrino mass for-

mula and in several LFV processes, and are strongly bounded for the scalar masses we are

considering except in a few corners of the parameter space where we require that the theory

remains perturbative. Since one-loop corrections to Yukawa couplings are order

δf ∼ f 3

(4π)2
, δg ∼ g3

(4π)2
. (5)

one expects from perturbativity f, g � 4π, although, as we will see, for the scalar masses

considered here, phenomenological constraints are always stronger.

The couplings of the charged scalars in the scalar potential, apart from the stability

constraints described in section II E, are essentially free. However, for the theory to make

sense as a perturbative theory we also impose the limit2 λh,k,kH,hH,hk < 4π.

The trilinear coupling among charged scalars µ, on the other hand, is different, for it has

dimensions of mass and it is insensitive to high energy perturbative unitarity constraints.

However, it induces radiative corrections to the masses of the charged scalars of order

δm2
k, δm

2
h ∼

µ2

(4π)2
. (6)

Requiring that the corrections in absolute value are much smaller than the masses we can

derive a naive upper bound for this parameter, µ� 4πmin(mh,mk), but it is difficult to fix

an exact value of µ for which the contributions to the scalar masses are unacceptably large,

leading to a highly fine-tuned scenario.

A large value of µ, as compared with scalar masses, is also disfavoured because it could

lead to a deeper minimum of the scalar potential for non-vanishing values of the charged

fields, therefore breaking charge conservation. This phenomenon has also been studied in the

context of supersymmetric theories (see for instance [25–27]). As an example, by looking

at the particular direction |H| = |h| = |k| = r, and requiring that the charge breaking

minimum is not a global minimum, V (r 6= 0) > 0, one obtains

µ2 < (λH + λh + λk + λhH + λkH + λhk)
(
m′2H +m′2h +m′2k

)
. (7)

2 Notice that there could be order one differences in the perturbativity constraints on the different couplings

λi from perturbative unitarity of the matrix elements [23, 24]. We can neglect them for the purpose of

this work, keeping in mind that they could be relevant when perturbativity is “pushed” to the limit (as

needed to explain H → γγ enhancement, see sec. III).
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Figure 1: Diagram contributing to the neutrino Majorana mass at two loops.

Assuming no cancellations between the λ’s or mass terms, neglecting λH and m′2H , and using

the perturbative limit for the rest of the couplings λi <∼ 4π one finds a very conservative

bound on µ

µ <∼
√

20πmax(mk,mh) ∼ 8 max(mk,mh) (8)

Tighter limits can be obtained by looking at all directions in the potential and/or allowing

for cancellations.

Given that the neutrino masses depend linearly on the parameter µ, as we will see in

the next section, the ability of the model to accommodate all present data is quite sensitive

to the upper limit allowed for µ. Thus we choose to implement such limit in terms of a

parameter κ,

µ < κmin(mh,mk) , (9)

and discuss our results for different values of κ = 1, 5, 4π. Notice that we are using the

naturality upper bound (expressed in terms of min(mh,mk)), which in general is much more

restrictive than the upper bound obtained by requiring that the minimum of the potential

does not break charge conservation (expressed in terms of max(mh,mk)).

A. Neutrino masses.

The lowest order contribution to neutrino masses involving the four relevant couplings

appears at two loops [5, 6] and its Feynman diagram is depicted in fig. 1.

The calculation of this diagram gives the following mass matrix for the neutrinos (defined
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as an effective term in the Lagrangian Lν ≡ −1
2
νcLMννL + h.c.)

(Mν)ij = 16µfiamag
∗
abIabmbfjb , (10)

where Iab is the two-loop integral, which can be calculated analytically [28]. However, since

mc,md are the masses of the charged leptons, necessarily much lighter than the charged

scalars, we can neglect them and obtain a much simpler form

Icd ' I =
1

(16π2)2

1

M2

π2

3
Ĩ(r) , M ≡ max(mh,mk) , (11)

where Ĩ(r) is a function of the ratio of the masses of the scalars r ≡ m2
k/m

2
h,

Ĩ(r) =

1 + 3
π2 (log2 r − 1) for r � 1

1 for r → 0
, (12)

which is close to one for a wide range of scalar masses. Within this approximation the

neutrino mass matrix can be directly written in terms of the Yukawa coupling matrices, f ,

g, and Y

Mν =
v2µ

48π2M2
Ĩ f Y g†Y TfT . (13)

A very important point is that since f is a 3 × 3 antisymmetric matrix, det f = 0 (for

3 generations), and therefore detMν = 0. Thus, at least one of the neutrinos is exactly

massless at this order.

The neutrino Majorana mass matrix Mν can be written as

Mν = UDνU
T , (14)

where Dν is a diagonal matrix with real positive eigenvalues, and U is the Pontecorvo-Maki-

Nakagawa-Sakata (PMNS) leptonic mixing matrix. We are left with only two possibilities

for the neutrino masses, mi:

• Normal hierarchy (NH): the solar squared mass difference is ∆S = m2
2, the atmospheric

mass splitting ∆A = m2
3 and m1 = 0, with m3 � m2 .

• Inverted hierarchy (IH): ∆S = m2
2 −m2

1, ∆A = m2
1 and m3 = 0, with m1 ≈ m2.

The standard parametrization for the PMNS matrix is

U =


c13c12 c13s12 s13e

−iδ

−c23s12 − s23s13c12e
iδ c23c12 − s23s13s12e

iδ s23c13

s23s12 − c23s13c12e
iδ −s23c12 − c23s13s12e

iδ c23c13




1

eiφ/2

1

 , (15)
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Process Experiment (90% CL) Bound (90% CL)

µ− → e+e−e− BR< 1.0× 10−12 |geµg∗ee| < 2.3× 10−5
(
mk
TeV

)2
τ− → e+e−e− BR< 2.7× 10−8 |geτg∗ee| < 0.009

(
mk
TeV

)2
τ− → e+e−µ− BR< 1.8× 10−8 |geτg∗eµ| < 0.005

(
mk
TeV

)2
τ− → e+µ−µ− BR< 1.7× 10−8 |geτg∗µµ| < 0.007

(
mk
TeV

)2
τ− → µ+e−e− BR< 1.5× 10−8 |gµτg∗ee| < 0.007

(
mk
TeV

)2
τ− → µ+e−µ− BR< 2.7× 10−8 |gµτg∗eµ| < 0.007

(
mk
TeV

)2
τ− → µ+µ−µ− BR< 2.1× 10−8 |gµτg∗µµ| < 0.008

(
mk
TeV

)2
µ+e− → µ−e+ GMM̄ < 0.003GF |geeg∗µµ| < 0.2

(
mk
TeV

)2
Table I: Constraints from tree-level lepton flavour violating decays [3].

where cij ≡ cos θij, sij ≡ sin θij and since one of the neutrinos is massless, there is only one

physical Majorana phase, φ, in addition to the Dirac phase δ.

B. Low energy constraints.

In order to provide neutrino masses compatible with experiment, the Yukawa couplings

of the charged scalars cannot be too small and their masses cannot be too large. This

immediately gives rise to a series of flavour lepton number violating processes, as for instance

µ− → e−γ or µ− → e+e−e−, with rates which can be, in some cases, at the verge of the

present experimental limits. Therefore, we can use these processes to obtain information

about the parameters of the model and hopefully to confirm or to exclude the model in a

near future by exploiting the synergies with direct searches for the new scalars at LHC.

In this section we follow the notation of [12], where all the relevant formulae can be

found, and update the new bounds. We collect the relevant tree-level lepton flavour violating

constraints, from `−a → `+
b `
−
c `
−
d decays and µ+e− ↔ µ−e+ transitions, in table I.

Universality constraints are summarized in table II where we have combined the mea-

surements presented in [29] for the different couplings. There seems to be a 2σ discrepancy

in Gexp
τ /Gexp

e , which we interpret as a bound. If confirmed and interpreted within the ZB

model, one obtains that |fµτ |2 − |feµ|2 = 0.05 (mh/TeV)2. As we will see in section IV, for

NH spectrum feµ ∼ fµτ/2, therefore one needs mh ∼ 4 fµτTeV, which is easily achieved. For

8



SM Test Experiment Bound (90%CL)

lept./hadr. univ.
∑

q=d,s,b |V
exp
uq |2 = 0.9999± 0.0006 |feµ|2 < 0.007

(
mh
TeV

)2
µ/e universality

Gexpµ

Gexpe
= 1.0010± 0.0009 ||fµτ |2 − |feτ |2| < 0.024

(
mh
TeV

)2
τ/µ universality Gexpτ

Gexpµ
= 0.9998± 0.0013 ||feτ |2 − |feµ|2| < 0.035

(
mh
TeV

)2
τ/e universality Gexpτ

Gexpe
= 1.0034± 0.0015 ||fµτ |2 − |feµ|2| < 0.04

(
mh
TeV

)2
Table II: Constraints from universality of charged currents obtained combining the experimental

results compiled in table 2 of [29].

Experiment Bound (90%CL)

δae = (12± 10)× 10−12 r
(
|feµ|2 + |feτ |2

)
+ 4

(
|gee|2 + |geµ|2 + |geτ |2

)
< 5.5× 103 (mk/TeV)2

δaµ = (21± 10)× 10−10 r
(
|feµ|2 + |fµτ |2

)
+ 4

(
|geµ|2 + |gµµ|2 + |gµτ |2

)
< 7.9 (mk/TeV)2

BR(µ→ eγ) < 5.7× 10−13 r2|f∗eτfµτ |2 + 16|g∗eegeµ + g∗eµgµµ + g∗eτgµτ |2 < 1.6× 10−6 (mk/TeV)4

BR(τ → eγ) < 3.3× 10−8 r2|f∗eµfµτ |2 + 16|g∗eegeτ + g∗eµgµτ + g∗eτgττ |2 < 0.52 (mk/TeV)4

BR(τ → µγ) < 4.4× 10−8 r2|f∗eµfeτ |2 + 16|g∗eµgeτ + g∗µµgµτ + g∗µτgττ |2 < 0.7 (mk/TeV)4

Table III: Constraints from loop-level lepton flavour violating interactions and anomalous magnetic

moments [3, 17].

IH spectrum, however, fµτ ∼ 0.2feµ (fµτ ∼ (0.15 − 0.3) feµ if we vary the angles in their

3σ range), and therefore, if this measurement is confirmed, the IH scheme in the ZB model

would be disfavoured.

Finally, one-loop level lepton flavour violating constraints coming from `−a → `−b γ decays3

and anomalous magnetic moments of electron and muon are collected in table III, including

the recent limit on BR(µ→ eγ) from the MEG Collaboration [17].

Given that lepton number is not conserved, another interesting low energy process that

could arise in the ZB model is neutrinoless double beta decay (0ν2β). However, since the

singly and doubly charged scalars do not couple to hadrons and are singlet under the weak

SU(2) (therefore, do not couple to W gauge bosons), the 0ν2β rate is dominated by the

Majorana neutrino exchange [34] and it is proportional to the |(Mν)ee|2 matrix element. In

3 As was shown in [30], doubly charged scalars can give logarithmic enhanced contributions to muon-

electron conversion in nuclei. Moreover, planned experiments will improve current limits by four orders

of magnitude [31–33]; however, at present, limits are still not competitive with µ→ eγ.
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the NH case,

(MNH
ν )ee =

√
∆Sc

2
13s

2
12e

iφ +
√

∆As
2
13 . (16)

Using neutrino oscillation data, one obtains 0.001 <∼ eV|(MNH
ν )ee| <∼ 0.004 eV and there-

fore it is outside the reach of present and near future 0ν2β decay experiments.

In the IH case,

(MIH
ν )ee =

√
∆A + ∆Sc

2
13s

2
12e

iφ +
√

∆Ac
2
13c

2
12 . (17)

Then, 0.01 eV <∼ |(MNH
ν )ee| <∼ 0.05 eV and, therefore, it is observable in planned 0ν2β decay

experiments.

C. Non-standard interactions.

The heavy scalars of the ZB model induce non-standard lepton interactions at tree level,

which have been thoroughly analyzed in [13]. In particular, by integrating out the singly

charged scalar h+, the following dimension-6 operators are generated:

LNSId=6 = 2
√

2GF ε
ρσ
αβ(ναγ

µPLνβ)(`ργµPL`σ), (18)

where ` refer to the charged leptons and the standard NSI parameters ερσαβ are given by

ερσαβ =
fσβf

∗
ρα√

2GFm2
h

. (19)

Regarding neutrino propagation in matter, the relevant NSI parameters are εmαβ = εeeαβ. Since

the couplings fσβ are antisymmetric, in the ZB model only εmµτ , ε
m
µµ and εmττ are non zero.

NSI can also affect the neutrino production in a neutrino factory, via the processes µ →

eνβνα. Source effects in the νµ → ντ and νe → ντ channels are produced by the NSI

parameters

εsµτ = εeµτe =
fµef

∗
eτ√

2GFm2
h

, (20)

εseτ = εeµµτ =
fµτf

∗
eµ√

2GFm2
h

, (21)

respectively. Notice that εmµτ = −εs∗µτ , since both NSI parameters are related to the couplings

feµ and feτ .

As we discuss in section V, the ratios of Yukawa couplings feµ/fµτ and feτ/fµτ are entirely

determined by the neutrino mixing angles and Dirac phase of the PMNS matrix U – see
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eqs. (37) and (38) –, so the impact of the improved bounds on BR(µ → eγ) can be easily

estimated: given that the limit is now ∼ 0.05 times smaller than in the study of [13], and

the contribution of the singly charged scalar h+ to BR(µ → eγ) depends on |f ∗eτfµτ |2, the

current constraints on |fαβ| are roughly a factor 2 tighter than before. Therefore, since the

strength of the NSI depends on ερσαβ ∝ fσβf
∗
ρα, generically we expect that the allowed size

of the NSI is reduced by a factor ∼ 1/4. According to [13]4, this implies that in the most

favorable case of IH neutrino mass spectrum, εseτ and εsµτ are in the range 3× (10−5− 10−4),

which is in a range difficult to probe, but it might be in a future neutrino factory with a ντ

near detector [35].

D. Bounds on the masses of the charged scalars.

Regarding limits on singly-charged bosons decaying to leptons, the best limit still comes

from LEP II, mh > 100 GeV.

ATLAS and CMS have placed limits on doubly-charged boson masses from searches of

dilepton final states, using data samples corresponding to
√
s = 7 TeV with an integrated

luminosity of 4.7 fb−1 and 4.9 fb−1, respectively [18, 19]. The authors of [36] show that,

with current data at 8 TeV and 20 fb−1, all the bounds are expected to become about

∼ 100 GeV more stringent if no significant signal is seen. Further tests on the nature of the

doubly charged scalar (i.e., singlet or triplet of SU(2)L) can be obtained by analysing tau

lepton decay distributions which are sensitive to the chiral structure of the couplings [37].

The main production mechanisms of doubly-charged bosons at hadron colliders are pair

production via an s-channel exchange of a photon or a Z-boson, and associated production

with a charged boson via the exchange of a W-boson (see [38, 39] for a general analysis

of the production and detection at LHC of doubly charged scalars belonging to different

electroweak representations). In the Zee-Babu model, the associated production is absent,

because the new scalars are SU(2)L singlets.

The ATLAS analysis [18] focuses on the ee, µµ, eµ channels and assumes that the rest of

4 Notice that although the analysis of [13] has been done for κ = 1, the impact on NSI of the new bounds

from BR(µ→ eγ) (and in general from any LFV decay `α → `βγ) is independent of the value of κ chosen,

because they constraint directly |f∗ασfσβ |/m2
h, which is the same combination that appears in the NSI

parameters, eq. (19). The only effect of increasing κ may be that a given point (fασ, fσβ ,mh) is able to

fit neutrino masses with smaller gab and therefore possibly lighter mk.
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the channels can make up to 90% of the total decays. Then, the limits for the Zee-Babu

model are, at the 95% C.L., 322, 306, 310 GeV (151, 176, 151 GeV) for branching ratios of

100% (10%) to the ee, µµ, eµ channels. Notice that in [18] the limits on doubly-charged

bosons coupling to left-handed leptons are applied, in addition to the seesaw type II case, to

the Zee-Babu model. However, this is not so, as the doubly-charged singlets in the Zee-Babu

model are SU(2)L singlets and thus couple only to right-handed leptons, at variance with

the seesaw type II models, where the doubly-charged bosons are SU(2)L triplets and do

couple only to left-handed leptons. Therefore, in the Zee-Babu case they have a reduced

production cross section, due to their different couplings to the Z-boson, around 2.5 times

smaller than for the case of the triplet [40], and less stringent limits apply: for the Zee-Babu

model one should look at the second part of table I of [18], the one for H±±R ≡ k±±.

The CMS Collaboration has searched for doubly-charged bosons which are SU(2)L

triplets, both assuming that they decay to the different dilepton final states `` (` = e, µ, τ)

100% of the times, i.e., BR(k++ → ``) = 1, and also considering several benchmark points

with different branching ratios.

The CMS 95% C.L. limits for pair production of SU(2)L singlets, which is the one relevant

for the Zee-Babu Model, are around 60− 80 GeV less stringent [39, 40]:

• ee, µµ, eµ : 310 GeV,

• eτ, µτ : 220 GeV,

• ττ : 100 GeV.

Note that whenever the branching ratio to ττ is less than 30% (see table I and VI of

[19]), the bounds are ∼ 280 GeV, provided that there is a significant fraction of decays into

light leptons (ee, µµ, eµ).

In the Zee-Babu model the decay width of k±± into same sign leptons is given by

Γ(k → `a`b) =
|gab|2

4π(1 + δab)
mk . (22)

Since the gab couplings are free parameters, the BRs of the different decay modes are a

priori unknown, so we can not apply directly these bounds. As we will see in the numerical

analysis, section V, once neutrino oscillation data and low energy constraints are taken into
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account, the branching ratio to ττ is very small in the Zee-Babu model, less than about 1%.

Then, a conservative limit is mk > 220 GeV.

Moreover, in the ZB model for mk > 2mh > 200 GeV, it can happen that the doubly

charged scalar decays predominantly into hh, which can easily escape detection. This way

the constraints from dilepton searches could be evaded. The relevant decay width is given

by

Γ(k → hh) =
1

8π

[
µ

mk

]2

mk

√
1− 4m2

h

m2
k

. (23)

Then, even for gab ∼ 1, for mh = 100 GeV and mk = 200 GeV, we have that Γ(k→hh)
Γ(k→``) ≥ 1

for µ ≥ mk, which is still natural as long it is not very large. Thus, we take mk ≥ 200 GeV

in the numerical analysis.

E. Stability of the potential.

In this section we consider further constraints on the ZB model parameter space com-

ing from vacuum stability conditions. The Hamiltonian in quantum mechanics has to be

bounded from below, this requires that the quartic part of the scalar potential in eq. (2)

should be positive for all values of the fields and for all scales. Then, if two of the fields H, k

or h vanish one immediately finds5:

λH > 0, λh > 0, λk > 0 . (24)

Moreover the positivity of the potential whenever one of the scalar fields H, h, k is zero

implies

α, β, γ > −1 , (25)

where we have defined

α = λhH/(2
√
λHλh) , β = λkH/(2

√
λHλk) , γ = λhk/(2

√
λhλk) . (26)

Eq. (25) constrains only negative mixed couplings, λxH , λhk (x = h, k), since for positive ones

the potential is definite positive and only the perturbativity limit, λxH , λhk <∼ 4π applies.

5 We do not consider the possibility of zero couplings, which can only appear at very specific scales.
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Finally, if at least two of the mixed couplings are negative, there is an extra constraint,

which can be written as:

1− α2 − β2 − γ2 + 2αβγ > 0 ∨ α + β + γ > −1 . (27)

We have checked that the above conditions, eqs. (24, 25, 27), are equivalent to the ones

derived in [41] for the Zee model, but they differ from the ones used in [22] for the ZB

model, which seem not to be symmetric under the exchange of α, β, γ, as they should. Our

constraints also agree with the results obtained by using copositive criteria (see for instance

[42]).

The discovery of the Higgs boson with mass mH ∼ 125 GeV at the LHC has raised

the interest on the vacuum stability of the SM potential: for the current central values of

the strong coupling constant and the Higgs and top quark masses, the Higgs self-coupling

λH would turn negative at a scale Λ ∼ 1010 − 1013 GeV [43], indicating the existence of

new physics beyond the SM below that scale. In fact, by using state of the art radiative

corrections, the authors of [43] find that absolute stability of the SM Higgs potential up to

the Planck scale is excluded at 98% C.L. for mH < 126 GeV.

The one-loop renormalization group equations (RGEs) in the ZB model are written in

Appendix A. For a given set of parameters defined at the electroweak scale, and satisfying

the stability conditions discussed above, we calculate the running couplings numerically by

using one-loop RGEs. From eqs. (A1), we see that the new scalar couplings λhH , λkH always

contribute positively to the running of the Higgs quartic coupling λH , compensating for the

large and negative contribution of the top quark Yukawa coupling. Therefore, the vacuum

stability problem can be alleviated in the ZB model with λH remaining positive up to the

Planck scale for the present central values of mt and mH if λxH are not extremely small

(λxH ∼ ±0.2 are enough to stabilize λH maintaining stability/perturbativity of all couplings

up to the Planck scale (see fig. 2)).

On the other hand, as we discuss in section III, the slight excess in the Higgs diphoton

decay channel found at LHC can be accommodated in the ZB model with relatively light

singlet scalars and large, negative, mixed couplings λhH , λkH . However for such values of the

scalar couplings at the electroweak scale, the RGEs lead to vacuum instability (2
√
λHλx +

λxH < 0, x = h, k) and/or non-perturbativity (λx > 4π) well below the Planck scale. This

can be seen in fig. 2 where we have performed a complete scan of the quartic couplings
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Figure 2: Allowed regions in λkH vs λk (left) and λhk vs λh (right), taken at the mZ scale, if

perturbativity/stability is required to be valid up to 103, 106, 109, 1012, 1015, 1018 GeV (from light

to dark colours). The rest of the parameters entering the RGE are taken at their measured value

or varied in the range allowed by the perturbativity/stability requirement up to the given scale.

of the scalar potential, run all of them from mZ up to a given scale (µ = 103n GeV with

n = 1, 2, · · · , 6), and check that stability (as explained before) and perturbativity (λi < 4π)

are satisfied at all scales below µ. On the left we represent the region allowed in the λkH–

λk plane, with λ’s taken at the mZ scale, when stability/perturbativity is imposed up to

the different scales µ. Lighter regions correspond to small scales and obviously include the

regions of larger scales. A similar plot is obtained for λhH vs λh. On the right we present

the equivalent results for the couplings λhk vs λh.

III. H → γγ AND H → Zγ

It remains an open question whether the 125 GeV Higgs boson discovered by ATLAS [20]

and CMS [21] is the SM one or has some extra features coming from new physics. While

all the present measurements of the Higgs properties are consistent with the SM values, the

uncertainties are still large, so there is plenty of room for non-standard signals to show up

in the upcoming 13-14 TeV run data. Moreover, the present experimental situation of the

H → γγ decay channel is far from clear: although the last reported analysis of the CMS

15



and ATLAS Collaborations on the diphoton signal strength are barely consistent with each

other within 2σ, ATLAS still observes a ∼ 2σ excess over the SM prediction [44], while the

CMS measurement has become consistent with the SM at 1σ [45]:

ATLAS : Rγγ = 1.55+0.33
−0.28 ,

CMS : Rγγ = 0.78+0.28
−0.26 , MVA analysis (28)

CMS : Rγγ = 1.11+0.32
−0.31 . cut based analysis

It is thus worthwhile to explore whether an eventually confirmed deviation from the SM

prediction in the H → γγ channel can be accommodated within the ZB model.

In the SM the H → γγ channel is dominated by the W boson loop contribution, which

interferes destructively with the top quark one. Since the Higgs coupling to photons is

induced at the loop-level, extra charged fermions or scalars with significant couplings to

the Higgs can change drastically the H → γγ channel with respect to the Standard Model

expectations, either enhancing it or reducing it [46]. Moreover, in the absence of direct

signatures of new particles at LHC, the enhanced Higgs diphoton decay rate might provide

an indirect hint of physics beyond the SM.

The value of the H → γγ decay width in the ZB model with respect to the SM one is

given by [46–48]:

Rγγ =
Γ(H → γγ)ZB
Γ(H → γγ)SM

= |1 + δR(mh, λhH) + 4 δR(mk, λkH)|2 , (29)

where we have defined δR(mx, λxH) for the scalar x with mass mx and coupling to the Higgs

λxH as:

δR(mx, λxH) ≡ λxH v
2

2m2
x

A0(τx)

A1(τW ) + 4
3
A1/2(τt)

, (30)

with τi ≡ 4m2
i

m2
H

and the loop functions Ai(x) (i = 0, 1/2, 1) are defined in Appendix B. Notice

that the dominant W contribution is A1(τW ) = −8.32 for a Higgs mass of 125 GeV, while

A0(τh,k) > 0, therefore in order to obtain a constructive interference we need to consider

negative couplings λhH , λkH .

As discussed in sec. II E, stability of the potential imposes that 2
√
λHλx + λxH > 0, for

x = h, k. Since MH ∼ 125 GeV fixes the value of the Higgs self-coupling to λH ∼ 0.13, it is

immediately apparent that large and negative λxH couplings are going to be in conflict with

stability of the potential, unless we push λx close to the naive perturbative limit (λx < 4π),
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Figure 3: Rγγ in the presence of a doubly charged particle. Both an enhancement (as seen by

ATLAS [44]) or a suppression (as seen by CMS [45]), can be accommodated. For the same masses

and couplings, the singly-charged produces a smaller enhancement/suppression than the doubly-

charged, due to its smaller charge.

for which −3 <∼ λhH , λkH . Notice that this fact is not a special feature of the ZB model, but

a generic problem of any scenario in which the enhancement of the Higgs diphoton decay

rate is due to a virtual charged scalar.

We can consider three different cases:

• If mh � mk,

Rh
γγ ≈ |1 + δR(mh, λhH)|2 ; (31)

• If mk � mh,

Rk
γγ ≈ |1 + 4δR(mk, λkH)|2 ; (32)

• If mh ≈ mk ≡ mS, with

RS
γγ ≈ |1 + δR(mS, λhH) + 4 δR(mS, λkH)|2 . (33)

For the same masses and couplings of both singlets, the doubly charged produces a larger

enhancement/suppression than the singly-charged, due to its greater charge.

The largest enhancement can happen when both charged scalars are about the same mass

and these masses are low enough. We show in fig. 3 the prediction of the ratio Rγγ when

the doubly charged scalar k dominates, for different values of the coupling with the Higgs,
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Figure 4: Contour of Rγγ = 1.55 (left) [44] and Rγγ = 0.78 (right) [45] in the presence of a singly

charged and doubly charged particle with the same couplings.

λkH . Both an enhancement (as seen by ATLAS [44]) or a suppression (as seen by CMS [45]),

can be accommodated. In fact, deviations from the SM value are expected, i.e., Rγγ 6= 1,

in particular for below the TeV scale singlets and sizeable scalar couplings. Of course, even

for light singlets it is possible that Rγγ ≈ 1, either because the relevant scalar couplings are

tiny or due to a cancellation between the contributions of the singly charged and the doubly

charged scalars.

In principle, the enhancement Rγγ induced by a singly charged scalar h of similar mass

and coupling to the Higgs λhH ∼ λkH is smaller; however since the lower limit on mh from

LEP II direct searches is weaker mh > 100 GeV, as discussed in the previous section, and

the largest contribution occurs for lower masses, the resulting values of Rγγ for the allowed

range of mh are comparable to the doubly charged case.

We show in fig. 4 the contours of Rγγ = 1.55 (0.78), motivated by the experimental

results of ATLAS and CMS [44, 45], in the plane of the singly and doubly charged masses,

for various negative (positive) couplings. In summary, to obtain Rγγ ∼ 1.5 we need mh
<∼

200 GeV and/or mk
<∼ 300 GeV. As it will be shown in the numerical analysis section, these

scalar masses are in tension with describing neutrino oscillation data and being compatible

with current low-energy bounds in the ZB model if naturality is required at the level of

κ = 1, especially for the NH spectrum. Moreover, the large negative values of the couplings
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Figure 5: RγZ in the presence of a doubly charged particle. As can be seen, H → Zγ is anticorre-

lated with respect to H → γγ.

λxH ∼ −2 required to obtain such enhancement also induce vacuum instability of the ZB

scalar potential, unless the corresponding coupling λx is close to the perturbative limit,

λx ∼ 8.

There is a correlation between H → γγ and H → Zγ [46, 49, 50]. The ratio of the

H → Zγ decay rate in the ZB model with respect to the SM one is:

RZγ =
Γ(H → Zγ)ZB
Γ(H → Zγ)SM

=

∣∣∣∣∣1− gZhhλhH v2

m2
h

A0(τh, λh)

AZγSM
− gZkk

2λkH v
2

m2
k

A0(τk, λk)

AZγSM
,

∣∣∣∣∣
2

(34)

where AZγSM is the SM H → Zγ decay amplitude,

AZγSM = cot θWA1(τW , λW ) + 6Qt
T t3 − 2Qts

2
W

sW cW
A1/2(τt, λt) , (35)

with λi ≡ 4m2
i

m2
Z

, and the Z boson couplings to the new charged scalars are gZxx = −Qx cot θW ,

x = h, k. The loop functions Ai(x, y) (i = 0, 1/2, 1) can be found in Appendix B.

In fact, to have an enhancement in the H → γγ channel, we need negative couplings of

the singlets with the Higgs, which in turn implies that the H → Zγ channel is reduced with

respect to SM prediction, as can be seen in fig. 5.

IV. ANALYTICAL ESTIMATES

In this section we give some order of magnitude estimates of the free parameters in

the ZB model, which complement and help to understand our full numerical analysis. In
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particular, we want to estimate to which extent light charged scalar masses, for instance

like those required to fit an enhanced Higgs diphoton decay rate or to have a chance of

being discovered at the LHC, are consistent with neutrino oscillation data and low-energy

constraints.

As discussed in sec. II, with respect to the SM the ZB model has 17 extra parameters

relevant for neutrino masses (9 moduli and 5 phases from the Yukawa couplings f, g, and 3

mass parameters from the charged scalar sector, mh,mk and µ), plus 5 quartic couplings in

the scalar potential. However, some of the free parameters can be traded by the measured

neutrino masses and mixings, ensuring in this way that the experimental data is reproduced

and reducing the number of free variables as follows.

Since det f = 0, there is an eigenvector a = (fµτ ,−feτ , feµ) which corresponds to the zero

eigenvalue, fa = 0 [10]. Then, by exploiting the fact that a is also an eigenvector of Mν ,

we have

DνU
Ta = 0, (36)

which leads to three equations, one of which is trivially satisfied because one element of Dν

is zero. The other two equations allow to write the ratios of Yukawa couplings fij in terms

of the neutrino mixing angles and Dirac phase as follows:

feτ
fµτ

= tan θ12
cos θ23

cos θ13

+ tan θ13 sin θ23e
−iδ ,

feµ
fµτ

= tan θ12
sin θ23

cos θ13

− tan θ13 cos θ23e
−iδ , (37)

in the NH case, and

feτ
fµτ

= − sin θ23

tan θ13

e−iδ ,

feµ
fµτ

=
cos θ23

tan θ13

e−iδ , (38)

for IH spectrum. Therefore, we choose fµτ as a free, real, parameter and obtain (complex) feµ

and feτ from the above equations. Notice that the measured values, s2
12 ∼ 0.3, s2

23 ∼ 0.4 and

s2
13 ∼ 0.02 imply that, for NH, the first term on the right-hand side of eqs. (37) dominates

and leads to feµ ∼ fµτ/2 ∼ feτ . Conversely, for IH it is clear that feτ/feµ = − tan θ23 ∼ −1

and |feµ/fµτ | ∼ |feτ/fµτ | ∼ 4. Of course, to explain such fine-tuned relations of Yukawa

couplings a complete theory of flavour would be needed, which is beyond the scope of this

work.
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Regarding the Yukawa couplings g, we keep gee, geµ and geτ as free complex parameters

and fix the remaining ones (gµµ, gµτ , gττ ) by imposing the equality of the three elements

m22,m23 and m33 of the neutrino mass matrix Mν , written in terms of the parameters of

the ZB model in eq. (13), and in terms of the masses and mixings measured in neutrino

oscillation experiments in eq. (14), i.e.,

mij = (UDνU
T )ij = ζfiaωabfjb, (39)

where we have defined ωab ≡ mag
∗
abmb, and ζ = µ

48π2M2 Ĩ(r), being r the ratio of the scalar

masses, r ≡ m2
k/m

2
h.

Because of the hierarchy among the charged lepton masses, me � mµ,mτ , it is natural to

assume that ωee, ωeµ, ωeτ � ωµµ, ωµτ , ωττ . Within the approximation ωea = 0, the equation

(39) for neutrino masses is simplified, and we can easily estimate the ranges of parameters

consistent with neutrino oscillation data. Thus in this section we neglect them, although we

keep all ωab in the full numerical analysis6 We then have

m22 ' ζf 2
µτωττ , m23 ' −ζf 2

µτωµτ , m33 ' ζf 2
µτωµµ. (40)

From the large atmospheric angle we expect

|ωττ | ' |ωµτ | ' |ωµµ|, (41)

which leads to a definite hierarchy among the corresponding gab couplings:

gττ : gµτ : gµµ ∼ m2
µ/m

2
τ : mµ/mτ : 1. (42)

It is now convenient to write the mass matrix elements mij in terms of the neutrino

masses and mixings. In the normal hierarchy case this gives

ζf 2
µτωττ ' m3c

2
13s

2
23 +m2e

iφ(c12c23 − eiδs12s13s23)2 ,

ζf 2
µτωµτ ' −m3c

2
13c23s23 +m2e

iφ(c12s23 + eiδc23s12s13)(c12c23 − eiδs12s13s23) ,

ζf 2
µτωµµ ' m3c

2
13c

2
23 +m2e

iφ(c12s23 + eiδc23s12s13)2 , (43)

which for m3 ' 0.05 eV and m2 ' 0.009 eV, leads to

ζf 2
µτ |ωab| ' 0.025 eV , a, b = µ, τ, (44)

6 We find that, in general, this is a very good approximation.
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in agreement with the expectations of eq. (41).

In the inverted hierarchy case, eqs. (40) read

ζf 2
µτωττ ' m1(c23s12 + eiδc12s13s23)2 +m2e

iφ(c12c23 − eiδs12s13s23)2 ,

ζf 2
µτωµτ ' m1(s12s23 − eiδc12c23s13)(c23s12 + eiδc12s13s23)

+ m2e
iφ(c12s23 + eiδc23s12s13)(c12c23 − eiδs12s13s23) , (45)

ζf 2
µτωµµ ' m1(s12s23 − eiδc12c23s13)2 +m2e

iφ(c12s23 + eiδc23s12s13)2,

where m1 ' m2 ' 0.05 eV. It is important to notice that for eiφ ∼ eiδ ∼ 1 the matrix

elements mij are of the same order as in the NH spectrum, i.e.,

ζf 2
µτ |ωab| ' 0.025 eV , a, b = µ, τ. (46)

and therefore the hierarchy of couplings in eq. (42) is also obtained. However, in the IH

case there is a strong cancellation for Majorana phases close to π, so we can obtain smaller

values of ωab. In particular, for φ = δ = π and the best fit values of the masses and mixing

angles we find

ζf 2
µτ |ωµµ| ' 0.003 eV, (47)

which allows for a smaller gµµ and, as a consequence, a lighter mk still consistent with the

experimental limits. On the contrary, if φ ∼ π and δ ∼ 0, |ωττ | can be very small and

therefore gττ � (m2
µ/mτ )

2 gµµ, although this cancellation has no phenomenological impact.

Therefore, although in the following analytic approximations we assume the hierarchy of

couplings in eq. (42), one has to keep in mind that a larger parameter space is expected to

be allowed when φ ' δ ' π. Indeed we will confirm in the full numerical analysis of section

V that this region is specially favoured for light mk.

Now we can estimate the lowest scalar masses able to reproduce current neutrino data.

Using the neutrino mass equation we can write7

m33

0.05 eV
' 500|gµµ||fµτ |2

µ

M

TeV

M
Ĩ(r). (48)

The upper bound on τ → 3µ decay implies that |gµµ| <∼ 0.4(mk/TeV), while the new MEG

limits on µ → eγ lead to ε|fµτ |2 <∼ 1.3 · 10−3(mh/TeV)2, where ε ≡ |feτ/fµτ | ∼ 1/2 (4) for

7 Notice that similar limits are derived from any of the 23 block elements ofMν when assuming the hierarchy

of the g couplings given in eq. (42).
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NH (IH). Substituting these constraints in eq. (48) we obtain

m33

0.05 eV
<∼ 0.26

µmk

εM2

( mh

TeV

)2

Ĩ(r), (49)

which can be translated into a lower bound on the scalar masses. Using that m33 ∼ 0.025

eV from neutrino oscillation data, if mh > mk then µ ≤ κmk and Ĩ(r) ∼ 1, so eq. (49)

implies that

mh > mk
>∼

1 TeV√
κ

NH, (50)

mh > mk
>∼

3 TeV√
κ

IH. (51)

On the contrary, if mh < mk, we find

mk > mh
>∼
√

mk

mh κ Ĩ(r)
1 TeV NH, (52)

mk > mh
>∼
√

mk

mh κ Ĩ(r)
3 TeV IH. (53)

From the above results8, we conclude that:

1. It is easier to reconcile an enhanced Higgs diphoton decay rate with neutrino oscillation

data if the former is due to the doubly charged scalar loop contribution, since the lower

bounds from neutrino masses are similar, while the BR(H → γγ) can be accounted

for by a heavier mk. Moreover, if the enhancement is due to a light mh, then mk can

not be very heavy, because otherwise neutrino masses are too small.

2. For a NH neutrino mass spectrum, it is possible to fit simultaneously neutrino oscilla-

tion data, lepton flavour violation constraints and an enhanced BR(H → γγ) only if

the trilinear coupling µ is large, namely κ >∼ 4(10) for min(mh,mk) = 500 (300) GeV,

respectively.

3. In general, the case of IH neutrino masses is in conflict with an enhanced Higgs dipho-

ton rate unless κ ∼ O(30). However if we take into account the strong cancellations

in ωµµ when φ ' δ ' π, and allow for a smaller m33 ∼ 0.003 eV, it is also possible to

fit all data with κ ∼ 4.

8 Our limits in the IH case differ from those in [11]. We traced this difference to the fact that in the

estimates of [11] the perturbativity bound |gµµ| < 1 is imposed, but for low masses, mk < 2 TeV, such

bound is always satisfied, and the relevant bound is |gµµ| <∼ 0.4(mk/TeV), which depends on mk and

changes the scaling with ε, leading to a weaker lower bound on the charged scalar masses in our case. We

thank Martin Hirsch for discussions about this point.
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V. NUMERICAL ANALYSIS

In order to explore exhaustively the highly multi-dimensional parameter space of the

ZB model, naive grid scans are completely inappropriate, the method of choice is re-

sorting to Monte Carlo driven Markov Chains (MCMC) that incorporate all the cur-

rent experimental information described in precedence. As parameters we will use

{s2
ij,∆A,∆S, δ, φ, fµτ ,mh,mk, µ, gee, geµ, geτ}, and we allow them to vary within the ranges

showed in table IV.

Had we tried to use our MCMC to obtain a posteriori probability distribution functions

with a canonical Bayesian meaning, the choice of priors would have had a significant role.

Nevertheless, since our aim is to explore where in parameter space could the ZB model

adequately reproduce experimental data without weighting in the available parameter space

volume (that is, the “metric” in parameter space given by the priors), we will represent

instead profiles of highest likelihood (equivalently profiles of minimal χ2 ≡ −2 lnL with L

the likelihood) which, on the contrary, can be interpreted on a frequentist basis. This is

not a choice that we make because of the merits or demerits of either statistical school: our

goal remains to understand if and where the ZB “works well”, i.e. could fit experimental

data. The interpretation of the results/plots will be clear: they show the regions where the

model is in agreement with data without regard to their size when the remaining information

(parameters and observables) is marginalized over9. In this case, exploring the parameter

space in a uniform, logarithmic or other manner, in some given parameter will not affect our

results (only the computational efficiency required to reach them will be, of course, affected).

For the modelling of experimental data we typically resort to individual Gaussian like-

lihoods for measured quantities. Bounds are implemented through smooth likelihood func-

tions that include, piecewise, a constant and a Gaussian-like behaviour. For the sake of

clarity: if the experimental bound for a given observable O is BO[90%CL] at 90% CL (1.64σ in

one dimension), the χ2 contribution associated to the model prediction Oth for this observ-

9 Typically both approaches should converge to similar results when (experimental) information abounds;

in a study such as this one, if they differ, rather than sticking to one or the other, from the physical point

of view we would only conclude that the current experimental data is not yet sufficient to pin down or

exclude the model.
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able is

χ2(Oth) =


0, Oth < BO[90%CL]/1.64,(

1.64Oth

BO
[90%CL]

− 1

)2 (
1.64
0.64

)2
, Oth ≥ BO[90%CL]/1.64.

In this way we avoid imposing sharp stepwise bounds or half-Gaussian with best value at

zero that may penalize deviating from null predictions when this might not be supported by

experimental evidence (in particular when the number of bounds included in the analysis is

significant).

Simulations are done for both normal and inverted hierarchy. In each point of the pa-

rameter space we compute the full χ2, including all measurements and bounds. In the plots

we show the regions with the total ∆χ2 ≤ 6, which corresponds to 95% confidence levels

with two variables.

Parameter Allowed range

∆S (7.50± 0.19)× 10−5 eV2

∆A (2.45± 0.07)× 10−3eV2

sin2 θ12 0.30± 0.13

sin2 θ23 (0.42± 0.04) ∪ (0.60± 0.04)

sin2 θ13 0.023± 0.002

δ, φ [0, 2π]

arg(gee), arg(geµ), arg(geτ ) [0, 2π]

fµτ , |gee|, |geµ|, |geτ | [10−7, 5]

mh [100, 2× 103] GeV

mk [200, 2× 103] GeV

µ [1, 2κ× 103] GeV

Table IV: Allowed ranges for the parameter scan (Neutrino oscillation parameters are obtained

from [51–53]).

To compare our results with the analysis presented a few years ago by some of us [12]

some remarks are in order: first, here we have updated the experimental input on LFV and

neutrino oscillation parameters, as well as LHC direct searches. The new limits, in particular

on µ → eγ, tend to reduce the allowed regions but not dramatically. Especially important

is the determination of sin θ13: as shown in [12], already before its measurement the ZB
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Figure 6: mh vs mk for NH (left) and IH (right) for different values of the perturbative parameter

κ = 1, 5, 4π (dark to light colours).

model predicted a large mixing angle θ13 in the case of IH spectrum, close to the previous

experimental upper limit, while for NH any value of θ13 below the bound was allowed. In

fact, a very small value of θ13 would have ruled out the IH possibility within the ZB model.

Second, although the scanning of parameters is performed like in [12], we have chosen here to

present results in terms of profiles of highest likelihood, which are insensitive to the volume

of the parameter space and the priors used to scan it. This allows us to explore regions

where parameters are fine tuned (after all, Yukawa couplings always require a certain degree

of fine tuning). This is important since, as we have seen, the model is highly constrained at

present and less conservative assumptions could exclude it before time, at least in the region

of low masses. Moreover, we focus only on the region of masses with phenomenological

interest (mh,k < 2 TeV) precisely to explore better the region of low masses.

In fig. 6 we depict the points allowed by neutrino oscillation data and all low energy

constraints in the plane (mh,mk) for the two mass orderings (NH and IH) and different

values of the fine-tuning parameter in eq. (9) (κ = 1 darker, κ = 5 dark, κ = 4π light). The

results of the numerical analysis imply that in general the indirect lower bounds on mh and

mk from neutrino oscillation data and low energy constraints are stronger than the current

limits from direct searches, except when cancellations occur for δ, φ ∼ π, especially in the

IH case, and/or when naturality assumptions on µ are relaxed, allowing for κ = 4π. In

table V we summarize the lower bounds on the scalar masses obtained for the three values
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NH IH

κ 1 5 4π 1 5 4π

mh (GeV) 700 (1000) 300 (400) 200 (250) 220 (> 2000) 100 (1000) 100 (650)

mk (GeV) 700 (1100) 300 (450) 200 (250) 200 (> 2000) 200 (1000) 200 (550)

Table V: Lower bounds for the scalar masses for NH and IH and the naturality constraints

parametrized by the three values of κ. We present results for δ = π (δ = 0) (see figs. 6 and

7).

Figure 7: δ vs mk in NH (left) and IH (right).

of the naturality parameter κ, and two illustrative values of the Dirac phase, δ = 0, π. For

δ ∼ −π/2, as might be suggested by a recent analysis [51], the bounds are slightly weaker

than in the δ = 0 case (see fig. 7).

The correlation between the CP phase δ of the neutrino mixing matrix and the scalar

masses is illustrated in fig. 7, where we plot δ versus the doubly charged scalar mass, mk.
10

Such correlation is especially relevant in the IH case, where scalar masses lower than ∼ 1

TeV are only allowed if δ ∼ π. A similar correlation with the phase φ was already found in

[12] for IH spectrum, so we do not show it here.

Regarding the singly charged scalar h±, the width of its decay modes (eν, µν, τν) is fixed

by the fia couplings to leptons (see for instance [11, 12] for the relevant formulae). Therefore,

10 The correlation of δ with mh is entirely analogous.
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Figure 8: Branching ratios of the charged singlet h to eν, µν, τν splitting the two currently allowed

octants of θ23, θ23 < 45◦ (θ23 > 45◦) left (right). One can see the dependence on δ for the

NH spectrum in the µν and τν channels. The most significant change between octants is the

interchange of the µν and τν for the IH case. The bands are 95% C.L. regions.

after the measurement of θ13, present neutrino oscillation data determine completely the BRs

of h from eqs. (37) and (38), up to a residual dependence on the CP phase δ in the case

of NH spectrum. In this case, a very precise measurement of the branching ratios in the

µν or τν channels (probably in a next generation collider) will predict the CP phase δ, and

viceversa. We show the ranges attainable by the different BRs in fig. 8, as a function of

δ, splitting the two currently allowed octants of θ23. The most significant change between

octants is the interchange of the µν and τν for the IH case. Clearly, the best option to

discriminate between hierarchies is the eν channel.

An important point of the ZB model is that the doubly charged scalar can decay to two

singly charged scalars, which are difficult to detect at the LHC. However, in fig. 6 we see

that for a NH neutrino mass spectrum mh > 200 GeV, and the channel k → hh is closed for

mk < 400 GeV. Therefore, present bounds on mk from dilepton searches at LHC discussed

in II D apply. For the IH case, the k → hh channel is always open and can be dominant,

unless κ = 1, for which we obtain that it is closed in the region mk < 440 GeV. Thus in

general current direct bounds from LHC are weaker.

Let us now turn to the gab couplings. We find always gττ � gµτ , both for the NH
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Figure 9: log |gµµ/gµτ | and log |gττ/gµτ | vs δ for NH (left) and IH (right). The horizontal red lines

represent the naive approximation in eq. (42).

and IH cases, in agreement with the analytic estimates in eq. (42); however the expected

ratio gµµ/gµτ ∼ mτ/mµ is only fulfilled for the NH spectrum, since in the IH case large

cancellations when the phases of the PMNS matrix U are δ ∼ φ ∼ π lead to smaller

gµµ � gµτ . This can be seen in fig. 9, where we show the ratios gττ/gµτ and gµµ/gµτ

obtained in the numerical simulation as a function of δ, together with the expectation based

on the analytic approximations, which is just a constant fixed by the charged lepton masses
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Figure 10: log |gµµ| vs mk for NH (left) and log |gµτ | vs mk for IH (right).

(red horizontal line)11.

To set the absolute scale of the couplings we present in fig. 10 the value of the largest

couplings against mk, namely gµµ in the NH case, and gµτ in the IH case. We see that in

both cases the couplings are always in the range from 10−2 to 1 and therefore they tend to

dominate the decays of the k++.

Regarding the couplings gea, which are not determined by the neutrino mass matrix,

bounds from LFV charged lepton decays strongly constrain geτ and geµ to be less than

O(0.01), while gee can be larger, O(1). The constraint on |geegeµ| from µ→ 3e implies that

|geegeµ| < 2.3× 10−5 (mk/TeV)2 and it is illustrated in fig. 11.

Since the widths of the k±± leptonic decay modes are directly related to these couplings,

from the above results we can readily infer the corresponding BRs. We find that the prob-

ability of k → eµ, eτ, ττ is always negligible (even in the IH case, geµ can be at most 0.1

and only when δ ∼ π). For mk
<∼ 400 GeV, and NH neutrino spectrum, BR(k → ee) +

BR(k → µµ) ∼ 1, since the k → hh decay channel is closed; therefore k±± can not evade

current LHC bounds on doubly-charged scalar searches and the limit mk > 310 GeV applies

(400 GeV if no signal is found at 8 TeV with 20 fb−1 [36]). In the same mk range, for IH

11 In the NH case there can also be cancellations with the geτ terms, which have been neglected in eq. (43),

that would allow much smaller values of gττ and gµτ , but those only occur for κ = 4π and in a tiny region

of the parameter space.
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Figure 11: log |geµ| vs log |gee| for NH (left) and IH (right).

neutrino spectrum the BR(k → µτ) can also be significant and the channel k → hh is open

(unless κ = 1, for which it is only open for mk > 440 GeV), thus the present bound is

weaker.

When the upcoming LHC 13-14 TeV data is available, it is important to take into account

that the decay channel k → hh is open for mk
>∼ 400 GeV, and can be dominant, so in this

mass range limits on doubly-charged scalars from dilepton searches will not apply to the ZB

model. On the contrary, if a doubly charged scalar were detected at LHC in any mass range,

neutrino oscillation data and low energy constraints are powerful enough to falsify the ZB

model to a large extent. For instance, we know that BR(k → eµ, eτ, ττ) are negligible for

any neutrino mass spectrum, while a sizeable BR(k → µτ) is only compatible with an IH

spectrum.

VI. CONCLUSIONS

We have analyzed the ZB model in the light of recent data: the measured neutrino mixing

angle θ13, limits from the rare decay µ→ eγ and LHC results. Although the model contains

many free parameters, neutrino oscillation data and low energy constraints are powerful

enough to rule out sizeable regions of the parameter space. A large source of uncertainty

comes from the mass scale of the new physics, which is unknown. Since we are interested
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on possible signatures at the LHC, we present results for the masses of the extra scalar

fields below 2 TeV. Previous analyses [11, 12] have shown that larger mass scales are always

allowed, given the absence of significant deviations from the SM besides neutrino masses.

Even within this reduced scenario, there is still a free mass parameter, the trilinear cou-

pling between the charged scalars, µ, which remains mainly unconstrained. Naturality ar-

guments together with perturbativity and vacuum stability bounds, indicate that µ can not

be much larger than the physical scalar masses, mk,mh, but it is not possible to determine

a precise theoretical limit. Because the neutrino masses depend linearly on the parameter

µ, the ability of the model to accommodate all present data is quite sensitive to the upper

limit allowed for it, so we have considered three limiting values, µ < κmin(mk,mh), with

κ = 1, 5, 4π. Within the above ranges for the mass parameters of the ZB model, we have

performed an exhaustive numerical analysis using Monte Carlo Markov Chains (MCMC),

incorporating all the current experimental information available, both for NH and IH neu-

trino masses. The results of the analysis are presented in sec. V and summarized in figs. 6

– 11.

We have addressed the possibility that the slight excess in the Higgs diphoton decay

observed by the ATLAS collaboration is due to virtual loops of the extra charged scalars

of the ZB model, h± and k±±. Note that in the Zee-Babu model, as the new particles

are singlets, there is a negative correlation between H → γγ and H → γZ. Although a

similar study has been performed in [22], it was limited to the scalar sector parameters of

the model, and neutrino data, which we find crucial to determine the allowed charged scalar

masses, was not included in the analysis. In agreement with [22], we find that in order to

accommodate an enhanced H → γγ decay rate, large and negative λhH , λkH couplings are

needed, together with light scalar masses mh < 200 GeV, mk < 300 GeV. Such couplings

are in conflict with the stability of the potential, unless the self-couplings λh,k are pushed

close to the naive perturbative limit, ∼ 4π. As a consequence, even if vacuum stability

and perturbativity constraints are satisfied at the electroweak scale, RGE running leads to

non-perturbative couplings at scales not far from the electroweak scale, as shown in fig. 2.

When neutrino data and low energy constraints are taken into account, we still find

regions of the parameter space in which such enhancement is compatible with all current

experimental data; in particular, it seems easier if the enhancement is due to the doubly-

charged scalar loop contribution. As can be seen in fig. 6, in the NH case, the trilinear
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coupling µ should be near its upper limit, while in the IH case lower masses can be achieved

in the region δ ∼ φ ∼ π due to cancellations.

Regarding LHC bounds on the doubly-charged scalar mass, they are largely dependent

on the BRs of the k±± decay modes, namely same sign leptons `±a `
±
b and h±h±. The leptonic

decay widths are controlled by the gab couplings to the right-handed leptons, which are in

principle unknown. By imposing that the measured neutrino mass matrix is reproduced,

within the approximation me = 0 one obtains analytically that gττ : gµτ : gµµ ∼ m2
µ/m

2
τ :

mµ/mτ : 1, while there is no information on the gea couplings. Our numerical analysis

confirms the above ratio of couplings in the case of NH, but for the IH spectrum there can be

large cancellations if the PMNS matrix phases δ, φ are close to π, leading to gττ � gµτ ∼ gµµ.

In both cases, geµ, geτ <∼ 0.1.

Moreover, in NH, if mk < 400 GeV for κ = 4π (mk < 600 GeV if κ = 5), mh < mk/2 is

ruled out, therefore the decay channel k → hh is kinematically closed and the LHC bounds

from doubly-charged scalar searches can not be evaded. In IH, however, for δ ∼ φ ∼ π the

k → hh channel is open unless κ = 1, while if δ is very different from π, indirect bounds on

mk set a much stronger constraint than direct LHC searches.

As a consequence, if the light neutrino spectrum is NH, k decays mainly to ee, µµ, and

the current bound from LHC is mk > 310 GeV, while if the spectrum is IH, k may also decay

to µτ and hh, so the present bound is weaker, about 200 GeV. Were a doubly-charged boson

discovered at LHC, the measurement of its leptonic BRs could rule out the ZB model, or

predict a definite neutrino mass spectrum. Conversely, if a CP phase δ is measured in future

neutrino oscillation experiments to be quite different from π together with an IH spectrum,

the mass of the charged scalars of the ZB model will be pushed up well outside the LHC

reach.

Note: During the final stages of this work we became aware of [54], where an analysis

of the Zee-Babu model was performed. Our bounds on the scalar masses are comparable

to theirs taking into account the slightly different procedures, in particular that they fix

the neutrino oscillation parameters to their best fit values and we allow them to vary in

their two sigma range. While in our work we focus on prospects for the LHC, in [54] the

possibility of detecting the doubly charged singlet in a future linear collider is studied.

33



Acknowledgments

We are thankful to the authors of [54] for sharing with us their work and for useful discus-

sions. We also thank Marcela Carena, Ian Low and Carlos Wagner for discussions. This work

has been partially supported by the European Union FP7 ITN INVISIBLES (Marie Curie

Actions, PITN- GA-2011- 289442), by the Spanish MINECO under grants FPA2011-23897,

FPA2011-29678, Consolider-Ingenio PAU (CSD2007-00060) and CPAN (CSD2007- 00042)

and by Generalitat Valenciana grants PROMETEO/2009/116 and PROMETEO/2009/128.

M.N. is supported by a postdoctoral fellowship of project CERN/FP/123580/2011 at CFTP

(PEst-OE/FIS/UI0777/2013), projects granted by Fundação para a Ciència e a Tecnologia
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Appendix A: RGEs in the ZB model

16π2βH =
3

8

[
(g2 + g′2)2 + 2g4

]
− (3g′2 + 9g2)λH + 24λ2

H + λ2
hH + λ2

kH − 6y4
t + 12λHy

2
t

16π2βh = 6g′4 − 12g′2λh + 20λ2
h + 2λ2

hH + λ2
hk

16π2βk = 96g′4 − 48g′2λk + 20λ2
k + 2λ2

kH + λ2
hk

16π2βhH = 3g′4 − (
15

2
g′2 +

9

2
g2)λhH + 12λHλhH + 8λhλhH + 2λkHλhk + 4λ2

hH + 6λhHy
2
t

16π2βkH = 12g′4 − (
51

2
g′2 +

9

2
g2)λkH + 12λHλkH + 8λkλkH + 2λhHλhk + 4λ2

kH + 6λkHy
2
t

16π2βhk = 48g′4 − 30g′2λhk + 4λkHλhH + 8λhλhk + 8λkλhk + 4λ2
hk , (A1)

16π2βg′ =
5

3

(
41

10
+ 1

)
g′3

16π2βg = −19

6
g3

16π2βg3 = −7g3
3 , (A2)

16π2βt = yt

{
9

2
y2
t −

(
17

12
g′2 +

9

4
g2 + 8g2

3

)}
. (A3)
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Here g3, g, g
′ are the SM SU(3)C , SU(2)L and U(1)Y gauge couplings, respectively, and

we have neglected all the Yukawa couplings but the top quark Yukawa, yt. We have also

neglected the fab, gab couplings because for the range of singlet scalar masses that we consider

(≤ 2 TeV), they are are severely constrained by LFV and are much smaller than 1 except

for some corners of the parameter space where some of them could be order one. For the

analysis of the vacuum stability of the scalar potential fab, gab are subdominant, specially

in the region of large and negative mixed scalar couplings required to accommodate the

diphoton excess in Higgs decays. For smaller mixed scalar couplings, however, a more

detailed analysis including all Yukawa couplings and taking also into account leading two-

loop effects (as well as top quark mass uncertainties for the Higgs quartic coupling) should

be carried out, which is beyond the scope of this work.

Appendix B: Loop Functions for H → γγ and H → Zγ

• Functions relevant for H → γγ:

A0(x) = −x+ x2 f

(
1

x

)
(B1)

A1/2(x) = 2x+ 2x(1− x) f

(
1

x

)
(B2)

A1(x) = −2− 3x− 3x(2− x) f

(
1

x

)
(B3)

• Functions relevant for H → Zγ:

A0(x, y) = I1(x, y) (B4)

A1/2(x, y) = I1(x, y)− I2(x, y) (B5)

A1(x, y) = 4(3− tan2 θw)I2(x, y) +
[
(1 + 2x−1) tan2 θw − (5 + 2x−1)

]
I1(x, y) (B6)

where

I1(x, y) =
xy

2(x− y)
+

x2y2

2(x− y)2

[
f(x−1)− f(y−1)

]
+

x2y

(x− y)2

[
g(x−1)− g(y−1)

]
(B7)

I2(x, y) = − xy

2(x− y)

[
f(x−1)− f(y−1)

]
(B8)

and, for a Higgs mass below the kinematic threshold of the loop particle, mH < 2mi,

f(x) = arcsin2
√
x , (B9)

g(x) =
√
x−1 − 1 arcsin

√
x . (B10)
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