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Abstract: We consider leptogenesis induced by soft supersymmetry breaking terms (“soft

leptogenesis”), in the context of the inverse seesaw mechanism. In this model there are

lepton number (L) conserving and L-violating soft supersymmetry-breaking B-terms in-

volving the singlet sneutrinos which, together with the – generically small– L-violating

parameter responsible of the neutrino mass, give a small mass splitting between the four

singlet sneutrino states of a single generation. In combination with the trilinear soft super-

symmetry breaking terms they also provide new CP violating phases needed to generate a

lepton asymmetry in the singlet sneutrino decays. We obtain that in this scenario the lep-

ton asymmetry is proportional to the L-conserving soft supersymmetry-breaking B-term,

and it is not suppressed by the L-violating parameters. Consequently we find that, as in the

standard see-saw case, this mechanism can lead to sucessful leptogenesis only for relatively

small value of the relevant soft bilinear coupling. The right-handed neutrino masses can be

sufficiently low to elude the gravitino problem. Also the corresponding Yukawa couplings

involving the lightest of the right-handed neutrinos are constrained to be
∑ |Y1k|2 . 10−7

which generically implies that the neutrino mass spectrum has to be strongly hierarchical.
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1. Introduction

The discovery of neutrino oscillations makes leptogenesis a very attractive solution to the

baryon asymmetry problem [1]. In the standard framework it is usually assumed that the

tiny neutrino masses are generated via the (type I) seesaw mechanism [2] and thus the new

singlet neutral leptons with heavy (lepton number violating) Majorana masses can produce

dynamically a lepton asymmetry through out of equilibrium decay. Eventually, this lepton

asymmetry is partially converted into a baryon asymmetry due to fast B − L violating

sphaleron processes.

For a hierarchical spectrum of right-handed neutrinos, successful leptogenesis requires

generically quite heavy singlet neutrino masses [3], of order M > 2.4(0.4) × 109 GeV

for vanishing (thermal) initial neutrino densities [3, 4], although flavour effects [5] and/or

extended scenarios [6] may affect this limit ∗. The stability of the hierarchy between this

new scale and the electroweak one is natural in low-energy supersymmetry, but in the

supersymmetric seesaw scenario there is some conflict between the gravitino bound on the

reheat temperature and the thermal production of right-handed neutrinos [9]. This is so

because in a high temperature plasma, gravitinos are copiously produced, and their late

decay could modify the light nuclei abundances, contrary to observation. This sets an

upper bound on the reheat temperature after inflation, TRH < 108−10 GeV, which may be

too low for the right-handed neutrinos to be thermally produced.

Once supersymmetry has been introduced, leptogenesis is induced also in singlet sneu-

trino decays. If supersymmetry is not broken, the order of magnitude of the asymmetry and

∗This bound applies when the lepton asymmetry is generated in the decay of the lightest right-handed

neutrino. The possibility to evade the bound producing the asymmetry from the second lightest right-

handed neutrino has been considered in [7], and flavour effects have been analysed for this case in [8].
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the basic mechanism are the same as in the non-supersymmetric case. However, as shown

in Refs. [10, 11], supersymmetry-breaking terms can play an important role in the lepton

asymmetry generated in sneutrino decays because they induce effects which are essentially

different from the neutrino ones. In brief, soft supersymmetry-breaking terms involving

the singlet sneutrinos remove the mass degeneracy between the two real sneutrino states of

a single neutrino generation, and provide new sources of lepton number and CP violation.

As a consequence, the mixing between the two sneutrino states generates a CP asymme-

try in the decay, which can be sizable for a certain range of parameters. In particular

the asymmetry is large for a right-handed neutrino mass scale relatively low, in the range

105 − 108 GeV, well below the reheat temperature limits, what solves the cosmological

gravitino problem. Moreover, contrary to the traditional leptogenesis scenario, where at

least two generations of right-handed neutrinos are required to generate a CP asymmetry

in neutrino/sneutrino decays, in this new mechanism for leptogenesis the CP asymmetry

in sneutrino decays is present even if a single generation is considered. This scenario has

been termed “soft leptogenesis”, since the soft terms and not flavour physics provide the

necessary mass splitting and CP-violating phase. It has also been studied in the minimal

supersymmetric triplet seesaw model [12].

In this paper we want to explore soft leptogenesis in the framework of an alternative

mechanism to generate small neutrino masses, namely the inverse seesaw scheme [13]. This

scheme is characterized by a small lepton number violating Majorana mass term µ, while

the effective light neutrino mass is mν ∝ µ. Small values of µ are technically natural,

given that when µ → 0 a larger symmetry is realized [14]: lepton number is conserved and

neutrinos become massless. In the inverse seesaw scheme lepton flavour and CP violation

can arise even in the limit where lepton number is strictly conserved and the light neutrinos

are massless [15], due to the mixing of the SU(2) doublet neutrinos with new SU(2) × U(1)

singlet leptons.

As opposite to the standard seesaw case, these singlet leptons do not need to be

very heavy [16], and, as a result, lepton flavour and CP violating processes are highly

enhanced [15]. In Ref. [17] it was studied the possibility that the baryon asymmetry is

generated in this type of models during the electroweak phase transition, in the limit

µ = 0. A suppression was found due to the experimental constraints on the mixing angles

of the neutrinos [18]. Therefore we consider here the supersymmetric version of the model

and the soft leptogenesis mechanism, since (i) in this case we expect that a CP asymmetry

will be generated in sneutrino decays even with a single-generation and no suppression due

to the mixing angles is expected, and (ii) this scheme provides a more natural framework

for the relatively low right-handed neutrino mass scale.

The outline of the paper is as follows. Section 2 presents the main features of the

inverse seesaw model in the presence of supersymmetry breaking terms. In Sec. 3 we

evaluate the lepton asymmetry generated in the decay of the singlet sneutrinos using a

field-theoretical approach assuming a hierarchy between the SUSY and L breaking scales

and the mass scale of the singlet sneutrinos. The relevant Boltzmann equations describing

the decay, inverse decay and scattering processes involving the singlet sneutrino states are

derived in Sec. 4. Finally in Sec. 5 we present our quantitative results. In appendix A
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we recompute the asymmetry using a quantum mechanics approach, based on an effective

(non hermitic) Hamiltonian [10,11].

2. Inverse Seesaw Mechanism

In this type of models [13], the lepton sector of the Standard Model is extended with two

electroweak singlet two-component leptons per generation, i.e.,

Li =

(
νi

L

ei
L

)
, ei

R, νi
R, si

L (2.1)

We assign lepton number L = 1 to the singlets si
L and νi

R. In the original formulation

of the model, the singlets si
L were superstring inspired E(6) singlets, in contrast to the

right-handed neutrinos νi
R, which are in the spinorial representation. More recently this

mechanism has also arisen in the context of left-right symmetry [19] and SO(10) unified

models [20].

The (9 × 9) mass matrix of the neutral lepton sector in the νL, νc
R, sL basis is given by

M =




0 mD 0

mT
D 0 MT

0 M µ


 (2.2)

where mD,M are arbitrary 3 × 3 complex matrices in flavour space and µ is complex sym-

metric. In models where lepton number is spontaneously broken by a vacuum expectation

value 〈σ〉, µ = λ〈σ〉 [21]. The matrix M can be diagonalized by a unitary transforma-

tion, leading to nine mass eigenstates na: three of them correspond to the observed light

neutrinos, while the other three pairs of two component leptons combine to form three

quasi-Dirac leptons.

In this “inverse seesaw” scheme, assuming mD, µ ≪ M the effective Majorana mass

matrix for the light neutrinos is approximately given by

mν = mT
DMT −1

µM−1mD , (2.3)

while the three pairs of heavy neutrinos have masses of order M , and the admixture among

singlet and doublet SU(2) states is suppressed by mD/M . Although M is a large mass

scale suppressing the light neutrino masses, in contrast to the Majorana mass (∆L = 2) of

the right-handed neutrinos in the standard seesaw mechanism, it is a Dirac mass (∆L = 0),

and it can be much smaller, since the suppression in Eq. (2.3) is quadratic and moreover

light neutrino masses are further suppressed by the small parameter µ which characterizes

the lepton number violation scale.

Notice that in the µ → 0 limit lepton number conservation is restored. Then, the

three light neutrinos are massless Weyl particles and the six heavy neutral leptons combine

exactly into three Dirac fermions.

We are going to consider the supersymmetric version of this model (for an analysis of

lepton flavour violation in this case see [22]). In this case, the above neutral lepton mass
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matrix (2.2) is described by the following superpotential:

W = YijNiLjH +
1

2
µijSiSj + MijSiNj , (2.4)

where i, j = 1, 2, 3 are flavour indices, H,Li, Ni, Si are the superfields corresponding to the

SU(2) up-Higgs and lepton doublets, and νic
R and si

L singlets, respectively, and Yij denote

the neutrino Yukawa couplings. Thus, after spontaneous electroweak symmetry breaking,

the neutrino Dirac masses are given by

(mD)ij = Yij〈H〉 (2.5)

The relevant soft supersymmetry breaking terms are the bilinear and trilinear scalar cou-

plings involving the singlet sneutrino fields, that provide new sources of lepton number

and CP violation. From now on we consider a simplified one generation of (N,S) model

because a single generation of singlet sneutrinos is sufficient to generate the CP asymme-

try. Indeed in the three-generation case, the relevant out of equilibrium decays are usually

those of the lightest heavy singlet states while the decay of the heavier (if heavier enough)

give no effect. Thus with our simplified single generation model we refer to the lightest of

the three heavy singlet sneutrinos which we number as 1. Consequently we label M = M11

and µ = µ11. Also, for simplicity, we will assume proportionality of the soft trilinear terms.

−Lsoft = AY1iL̃iÑH + m̃2
SS̃S̃† + m̃2

N ÑÑ † + m̃2
SN S̃Ñ † + BSS̃S̃ + BSN S̃Ñ + h.c. (2.6)

With our lepton number assignments, the soft SUSY breaking terms which violate L are

m̃2
SN and BS . The sneutrino interaction Lagrangian is then:

L = (Y1iLiNH + Y1iLiÑh + Y1iL̃iNh + h.c.) +

+ (Y1iM
∗L̃iS̃

†H + AY1iL̃iÑH + h.c.) +

+ (µSS + MSN + h.c.) +

+ ((|µ|2 + m̃2
S + |M |2)S̃†S̃ + (m̃2

N + |M |2)ÑÑ † + (µM∗ + m̃2
SN )S̃Ñ † + h.c.) +

+ (BSS̃S̃ + BSN S̃Ñ + h.c.) (2.7)

This Lagrangian has three independent physical CP violating phases: φB which can be

assigned to BSN , φA which is common to the three terms with AY1i, and φMY which is

common to theT three terms with MY ∗
1i, and are given by:

φB = arg(BSNB∗
SM̃2

SN )

φA = arg(AB∗
SM2µ∗(M̃2

SN )2)

φMY = arg(M̃2∗
SNM∗µ) ,

(2.8)

where we have defined M̃2
SN ≡ µM∗ + m̃2

SN . These phases provide the CP violation

necessary to generate dynamically a lepton asymmetry, even with a single generation of

sneutrinos. They can also contribute to lepton electric dipole moments [23].
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From the Lagrangian in Eq. (2.7) we obtain the sneutrino mass matrix in the interaction

basis (F̃i ≡ Ñ , Ñ †, S̃, S̃†):



m̃2
N + |M |2 0 M̃2∗

SN BSN

0 m̃2
N + |M |2 B∗

SN M̃2
SN

M̃2
SN BSN |µ|2 + m̃2

S + |M |2 2BS

B∗
SN M̃2∗

SN 2B∗
S |µ|2 + m̃2

S + |M |2


 (2.9)

Notice that in the most general case it is not possible to remove all CP phases from the

sneutrino mass matrix. With our choice of basis, BSN is the only complex parameter,

BSN = |BSN |eiφB .

Although one can easily obtain the analytic expressions for the corresponding mass

eigenvalues and eigenvectors, for the general case they are lengthy and we do not give

them here. Under the assumption that all the entries are real, i.e., φB = 0, we obtain the

following mass eigenvalues:

M2
1 = M ′2 + BS − 1

2

√
4(BSN + M̃2

SN )2 + (2BS − m̃2
N + m̃2

S + |µ|2)2

M2
2 = M ′2 − BS +

1

2

√
4(BSN − M̃2

SN )2 + (2BS + m̃2
N − m̃2

S − |µ|2)2

M2
3 = M ′2 − BS − 1

2

√
4(BSN − M̃2

SN )2 + (2BS + m̃2
N − m̃2

S − |µ|2)2

M2
4 = M ′2 + BS +

1

2

√
4(BSN + M̃2

SN )2 + (2BS − m̃2
N + m̃2

S + |µ|2)2 , (2.10)

where we have defined M ′2 ≡ |M |2 + m̃2
N + m̃2

S + |µ|2.
Furthermore, if we assume conservative values of the soft breaking terms:

A ∼ O(mSUSY )

m̃N ∼ m̃S ∼ m̃SN ∼ O(mSUSY )

BS ∼ O(mSUSY µ)

BSN ∼ O(mSUSY M)

(2.11)

with both, µ,mSUSY ≪ M , we see that BS, m̃2
N , m̃2

S , m̃2
SN ≪ BSN and M̃2

SN ∼ µM∗.

Neglecting these small soft terms, there is still one physical CP violating phase,

φ = φA − φB = arg(AB∗
SNM) . (2.12)

In this limit, we choose for simplicity a basis where A = |A|eiφ is the only complex param-

eter. Then we diagonalize to first order in two expansion parameters,

ǫ =
|µ|

2|M | , ǫ̃ =
|BSN |
2|M |2 ∼ O(mSUSY /M) (2.13)

To this order the mass eigenvalues are:

M2
1 = M2 − Mµ − BSN

M2
2 = M2 − Mµ + BSN

M2
3 = M2 + Mµ − BSN (2.14)

M2
4 = M2 + Mµ + BSN
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and the eigenvectors:

Ñ1 =
1

2

(
S̃† − Ñ †

)
+

1

2

(
S̃ − Ñ

)

Ñ2 =
i

2

(
S̃† − Ñ †

)
− i

2

(
S̃ − Ñ

)

Ñ3 =
i

2

(
S̃† + Ñ †

)
− i

2

(
S̃ + Ñ

)
(2.15)

Ñ4 =
1

2

(
S̃† + Ñ †

)
+

1

2

(
S̃ + Ñ

)

Note that in this limit the mass degeneracy among the four sneutrino states is removed

by both the L-violating mass µ and L-conserving supersymmetry breaking term BSN .

Together with the trilinear A term they also provide a source of CP violation, and the

mixing among the four sneutrino states leads to a CP asymmetry in their decay.

Another interesting limit is to diagonalize the sneutrino mass matrix (2.9) neglecting

only the BS entry, which may be appropriate if µ ≪ mSUSY and the order of magnitude

of the soft breaking terms is as given by (2.11). In this limit the mass matrix can also

be taken real and the mass eigenvalues can be read from Eq. (2.10), just setting BS = 0.

Now there are two non zero CP violating phases, φY M and φ′
A = arg(AB∗

SNM2µ∗M̃2
SN ).

However the combination that is relevant for the CP asymmetry in sneutrino decays is the

same as in the previous case, φ = φY M + φ′
A = arg(AB∗

SNM).

As we will see in Sec. 5, the total CP asymmetry in the singlet sneutrino decays turns

out to be sizable for very small values of the soft term BSN ≪ MmSUSY . Neglecting the

BSN term in the Lagrangian there are still two CP violating phases, φMY and φA, but

again the sneutrino mass matrix can be taken real, so that the mass eigenvalues are as

given by Eq.(2.10) with BSN = 0. The phase relevant for the CP asymmetry in the singlet

sneutrino decays is now φ′ = φY M + φA = arg(AB∗
SMM̃2

SN ).

Finally, neglecting supersymmetry breaking effects, the total singlet sneutrino decay

width is given by

Γ =

∑

i

|M ||Y1i|2

8π
. (2.16)

3. The CP Asymmetry

In this section we compute the CP asymmetry in the singlet sneutrino decays. As discussed

in Ref. [11], when Γ ≫ ∆Mij ≡ Mi − Mj, the four singlet sneutrino states are not well-

separated particles. In this case, the result for the asymmetry depends on how the initial

state is prepared. In what follows we will assume that the sneutrinos are in a thermal bath

with a thermalization time Γ−1 shorter than the typical oscillation times, ∆M−1
ij , therefore

coherence is lost and it is appropriate to compute the CP asymmetry in terms of the mass

eigenstates Eq.(2.15).

– 6 –



The CP asymmetry produced in the decay of the state Ñi is given by (see sec.4):

ǫi =

∑

f

Γ(Ñi → f) − Γ(Ñi → f̄)

∑

f

Γ(Ñi → f) + Γ(Ñi → f̄)
, (3.1)

where f = L̃kH,Lkh. We also define the fermionic and scalar CP asymmetries in the decay

of each Ñi as

ǫsi
=

∑

k

|Âi(Ñi → L̃kH)|2 − |Âi(Ñi → L̃†
kH

†)|2

∑

k

|Âi(Ñi → L̃kH)|2 + |Âi(Ñi → L̃†
kH

†)|2
(3.2)

ǫfi
=

∑

k

|Âi(Ñi → Lkh)|2 − |Âi(Ñi → L̄kh̄)|2

∑

k

|Âi(Ñi → Lkh)|2 + |Âi(Ñi → L̄kh̄)|2
. (3.3)

Notice that ǫsi
and ǫfi

are defined in terms of decay amplitudes, without the phase-space

factors which, as we will see, are crucial to obtain a non-vanishing CP asymmetry, much

as in the standard seesaw case [10, 11]. The total asymmetry ǫi generated in the decay of

the singlet sneutrino Ñi can then be written as

ǫi =
ǫsi

cs + ǫfi
cf

cs + cf
, (3.4)

where cs, cf are the phase-space factors of the scalar and fermionic channels, respectively.

Since the scale of lepton number and supersymmetry breaking are µ,mSUSY ≪ M ,

there is an enhancement of the CP violation in mixing (wave-function diagrams), so we only

include this leading effect and neglect direct CP violation in the decay (vertex diagrams).

We compute the CP asymmetry following the effective field theory approach described

in [25], which takes into account the CP violation due to mixing of nearly degenerate

states by using resumed propagators for unstable (mass eigenstate) particles. The decay

amplitude Âf
i of the unstable external state Ñi defined in Eq. (2.15) into a final state f is

described by a superposition of amplitudes with stable final states:

Âi(Ñi → f) = Af
i −

∑

j 6=i

Af
j

iΠij

M2
i − M2

j + iΠjj
, (3.5)

where Af
i are the tree level decay amplitudes and Πij are the absorptive parts of the two-

point functions for i, j = 1, 2, 3, 4. The amplitude for the decay into the conjugate final

state is obtained from (3.5) by the replacement Af
i → Af∗

i .
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The decay amplitudes can be read off from the interaction Lagrangian (2.7), after

performing the change from the current to the mass eigenstate basis:

−L =
1

2
Ñ1[−Y1kLkh + (Y1kM

∗ − AY1k)L̃kH]

+
i

2
Ñ2[−Y1kLkh − (Y1kM

∗ + AY1k)L̃kH]

+
i

2
Ñ3[Y1kLkh − (Y1kM

∗ − AY1k)L̃kH]

+
1

2
Ñ4[Y1kLkh + (Y1kM

∗ + AY1k)L̃kH] + h.c. (3.6)

Neglecting supersymmetry breaking in vertices, up to an overall normalization we

obtain that the decay amplitudes into scalars, Ask

i = A(Ñi → L̃kH), verify Ask
2 = Ask

3 =

iAsk
1 = iAs

4. Correspondingly the decay amplitudes into fermions Afk

i = A(Ñi → Lkh),

verify Afk

2 = −Afk

3 = −iAfk

1 = iAfk

4 .

Keeping only the lowest order contribution in the soft terms,

Πii = M Γ i = 1, . . . , 4 (3.7)

Π12 = Π21 = −Π34 = −Π43 = |A|Γ sin φ (3.8)

Altogether we can then write the fermionic and scalar CP asymmetries as:

ǫsi
=
∑

j 6=i

2(M2
i − M2

j )Πji

∑

k

Im(Ask∗
i Ask

j )

[(M2
i − M2

j )2 + Π2
jj]
∑

k

|Ask

i |2
(3.9)

ǫfi
=
∑

j 6=i

2(M2
i − M2

j )Πji

∑

k

Im(Afk∗
i Afk

j )

[(M2
i − M2

j )2 + Π2
jj]
∑

k

|Afk

i |2
(3.10)

Inserting the values of the amplitudes Af
i and the absorptive parts of the two-point func-

tions (3.7) we obtain the final expression for the scalar and fermionic CP asymmetries at

T = 0:

ǫsi
= −ǫfi

= ǭi = − 4 |BSN A|Γ
4|BSN |2 + |M |2Γ2

sin φ (3.11)

and the total CP asymmetry generated in the decay of the sneutrino Ñi is then:

ǫi(T ) = ǭi
cs − cf

cs + cf
. (3.12)

As long as we neglect the zero temperature lepton and slepton masses and small Yukawa

couplings, the phase-space factors of the final states are flavour independent. After includ-

ing finite temperature effects they are given by:

cf = (1 − xL − xh)λ(1, xL, xh)
[
1 − f eq

L

] [
1 − f eq

h

]
(3.13)

cs = λ(1, xH , xeL)
[
1 + f eq

H

] [
1 + f eq

eL

]
(3.14)
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where

f eq

H,eL =
1

exp[EH,eL/T ] − 1
(3.15)

f eq
h,L =

1

exp[Eh,L/T ] + 1
(3.16)

are the Bose-Einstein and Fermi-Dirac equilibrium distributions, respectively, and

EL,h = M
2 (1 + xL,h − xh,L), EH,eL = M

2 (1 + xH,eL − xeL,H) (3.17)

λ(1, x, y) =
√

(1 + x − y)2 − 4x, xa ≡ ma(T )2

M2 (3.18)

The thermal masses for the relevant supersymmetric degrees of freedom are [26]:

m2
H(T ) = 2m2

h(T ) =

(
3

8
g2
2 +

1

8
g2
Y +

3

4
λ2

t

)
T 2 , (3.19)

m2
eL(T ) = 2m2

L(T ) =

(
3

8
g2
2 +

1

8
g2
Y

)
T 2 . (3.20)

Here g2 and gY are gauge couplings and λt is the top Yukawa, renormalized at the appro-

priate high-energy scale.

As we will see in the next section, from Eq. (4.46), if the initial distributions of all four

states Ñi are equal, their total contribution to the total lepton number can be factorized

as:

ǫ(T ) ≡
∑

i

∑

f

Γ(Ñi → f) − Γ(Ñi → f̄)

∑

f

Γ(Ñi → f) + Γ(Ñi → f̄)
. (3.21)

Several comments are in order. We find that this leptogenesis scenario presents many

features analogous to soft leptogenesis in seesaw models [10–12]: (i) The CP asymmetry

(3.12) vanishes if cs = cf , because then there is an exact cancellation between the asymme-

try in the fermionic and bosonic channels. Finite temperature effects break supersymmetry

and make the fermion and boson phase-spaces different cs 6= cf , mainly because of the fi-

nal state Fermi blocking and Bose stimulation factors. (ii) It also displays a resonance

behaviour: the maximum value of the asymmetry is obtained for 2BSN/M ∼ Γ. (iii)

The CP asymmetry is due to the presence of supersymmetry breaking and irremovable CP

violating phases, thus it is proportional to |BSN A| sin φ.

As seen from Eq.(3.11) we obtain that the CP asymmetry is not suppressed by the

lepton number violating scale µ. This may seem counterintuitive. However if µ = 0 the

four sneutrino states are pair degenerate, and we can choose a lepton number conserving

mass basis, made of the (L = 1) states

Ñ ′
1 =

1√
2

(
S̃† − Ñ

)

Ñ ′
2 =

1√
2

(
S̃† + Ñ

)
(3.22)
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and their hermitian conjugates, with L = −1, Ñ ′†
1 , Ñ ′†

2 . Although there is a CP asymmetry

in the decay of these sneutrinos, it is not a lepton number asymmetry (since in the limit

µ = 0 total lepton number is conserved) but just a redistribution of the lepton number

stored in heavy sneutrinos and light lepton and slepton SU(2) doublets. At very low

temperatures, T ≪ M , when no heavy sneutrinos remain in the thermal bath, all lepton

number is in the light species and obviously if we started in a symmetric Universe with no

lepton number asymmetry it will not be generated.

In other words, the total lepton number generated for the case with no lepton number

violation is zero but it cannot be recovered by taking the limit µ → 0 of Eq.(3.11) because

in the derivation of Eq.(3.11) it is assumed implicitly that the four singlet sneutrino states

are non-degenerate and consequently it is only valid if µ (or some of the other L violating

parameters) is non zero.

In appendix A we recompute the asymmetry using a quantum mechanics approach,

based on an effective (non hermitic) Hamiltonian [10,11], and we get the same parametric

dependence of the result, which differs only by numerical factors. Both expressions agree

in the limit Γ ≪ |BSN/M |.
As discussed at the end of the previous section there may be other interesting ranges

of parameters beyond Eq.(2.13). Thus in order to verify the stability of the results to

departures from this expansion we have redone the computation of the CP asymmetry

keeping all the entries in the sneutrino mass matrix, and just assuming that it is real. The

expressions are too lengthy to be given here but let us simply mention that we have found

that, in the general case, the CP asymmetries generated in the decay of each of the four

singlet sneutrino states are not equal but they can always be written as:

ǫi = − 4 |BSN A|Γ
4|BSN |2 + |M |2Γ2

sin φ + fi(BS , µ, M̃2
SN ) (3.23)

where the functions fi verify that for |µ|2 ≪ |BSN | and to any order in |BS |:
∑

i

fi(BS , µ, M̃2
SN ) ∝ |BSN | . (3.24)

In the limiting case |BSN | ≪ |BS |,m2
SUSY , |µ2| the dominant term in the CP asym-

metry at leading order in |BS | ∼ |M |Γ ≪ |M̃2
SN | is

∑

i

ǫi =
8|BSA|Γ

(4|BS |2 + |M |2Γ2)2
|µ2| + m̃2

S − m̃2
N

|M̃2
SN |

(4|BS |2 − |M |2Γ2) sin φ′ . (3.25)

It also exhibits a resonant behaviour, described now by |BS |Γ/(4|BS |2 + |M |2Γ2)2, how-

ever the total CP asymmetry in this limit is further suppressed by a factor of order

(|µ2|,m2
SUSY )/|M̃2

SN |.
Finally, let’s comment that in the previous derivation we have neglected thermal cor-

rections to the CP asymmetry from the loops, i.e., we have computed the imaginary part

of the one-loop graphs using Cutkosky cutting rules at T = 0. These corrections are the

same for scalar and fermion decay channels, since only bosonic loops contribute to the

wave-function diagrams in both cases, so they are not expected to introduce significant

changes to our results.
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4. Boltzmann Equations

We next write the relevant Boltzman equations describing the decay, inverse decay and

scattering processes involving the sneutrino states.

As mentioned above we assume that the sneutrinos are in a thermal bath with a ther-

malization time shorter than the oscillation time. Under this assumption the initial states

can be taken as being the mass eigenstates in Eq. (2.15) and we write the corresponding

equations for those states and the scalar and fermion lepton numbers. The CP fermionic

and scalar asymmetries for each Ñi defined at T = 0 are those given in Eq. (3.11).

Let’s notice that the CP asymmetries as defined in Eq. (3.11) verify ǫsi
= −ǫfi

≡ ǭi.

However in order to better trace the evolution of the scalar and fermion lepton numbers

separately we will keep them as two different quantities in writing the equations.

Using CPT invariance and the above definitions for the CP asymmetries and including

all the multiplicative factors we have:

∑

k

|Â(Ñi → L̃kH)|2 =
∑

k

|Â(L̃†
kH

† → Ñi)|2 ≃ 1 + ǫsi

2

∑

k

|Ask

i |2 ,

∑

k

|Â(Ñi → L̃†
kH

†)|2 =
∑

k

|Â(L̃kH → Ñi)|2 ≃ 1 − ǫsi

2

∑

k

|Ask

i |2 ,

∑

k

|Â
(
Ñi → Lkh

)
|2 =

∑

k

|Â
(
L̄kh̄ → Ñi

)
|2 ≃ 1 + ǫfi

2

∑

k

|Afk

i |2 ,

∑

k

|Â
(
Ñi → L̄kh̄

)
|2 =

∑

k

|Â(Lkh → Ñi)|2 ≃ 1 − ǫfi

2

∑

k

|Afk

i |2 .

(4.1)

where

∑

k

|Ask

i |2 =
∑

k

|Y1kM |2
4

,

∑

k

|Afk

i |2 =
∑

k

|Y1kM |2
4

M2
i

M2
. (4.2)

The Boltzmann equations describe the evolution of the number density of particles in the

plasma:

dnX

dt
+ 3HnX =

∑

j,l,m

ΛXj...
lm... [flfm . . . (1 ± fX)(1 ± fj) . . . W (lm · · · → Xj . . . )−

− fXfj . . . (1 ± fl)(1 ± fm) . . . W (Xj · · · → lm . . . )]

where,

ΛXj...
lm... =

∫
d3pX

(2π)32EX

∫
d3pj

(2π)32Ej
. . .

∫
d3pl

(2π)32El

∫
d3pm

(2π)32Em
. . . ,

and W (lm · · · → Xj . . . ) is the squared transition amplitude summed over initial and final

spins. In what follows we will use the notation of Ref. [24] and we will assume that the

Higgs and higgsino fields are in thermal equilibrium with distributions given in Eqs. (3.15)
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and (3.16) respectively, while the leptons and sleptons are in kinetic equilibrium and we

introduce a chemical potential for the leptons, µf , and sleptons, µs:

fL =
1

exp[(EL + µf )/T ] + 1
,

fL̄ =
1

exp[(EL − µf )/T ] + 1
, (4.3)

feL =
1

exp[(EeL + µs)/T ] − 1
,

feL† =
1

exp[(EeL − µs)/T ] − 1
.

Furthermore in order to eliminate the dependence in the expansion of the Universe we

write the equations in terms of the abundances YX , where YX = nX/s.

We are interested in the evolution of sneutrinos Y eNi
, and the fermionic YL and scalar

Y eL lepton number, defined as YL = (YL − YL̄)/2, Y eL = (YeL − YeL†)/2. The number density

of sneutrinos is regulated through its decays and inverse decays, defined in the D− terms,

while to compute the evolution of the fermionic and scalar lepton number we also need to

consider the scatterings where leptons and sleptons are involved. The scattering terms are

defined in the S − terms.

dY eNi

dt
= −Di − D̄i − D̃i − D̃†

i (4.4)

dYL

dt
=
∑

i

(
Di − D̄i

)
− 2S − S

LeL† + S̄
LeL† − S

LeL + S̄
LeL (4.5)

dY eL
dt

=
∑

i

(
D̃i − D̃†

i

)
− 2S̃ − SLeL† + S̄LeL† + SLeL − S̄LeL (4.6)

where

sDi = Λ12
eNi

[
f eNi

(1 − fL)(1 − f eq
h )
∑

k

|Â
(
Ñi → Lkh

)
|2−

−fLf eq
h (1 + f eNi

)
∑

k

|Â(Lkh → Ñi)|2
]

, (4.7)

sD̄i = Λ12
eNi

[
f eNi

(1 − fL̄)(1 − f eq
h )
∑

k

|Â
(
Ñi → L̄kh̄

)
|2−

−fL̄f eq
h (1 + f eNi

)
∑

k

|Â
(
L̄kh̄ → Ñi

)
|2
]

, (4.8)

sD̃i = Λ12
eNi

[
f eNi

(1 + feL)(1 + f eq
H )
∑

k

|Â(Ñi → L̃kH)|2−

−feLf eq
H (1 + f eNi

)
∑

k

|Â(L̃kH → Ñi)|2
]

, (4.9)
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sD̃†
i = Λ12

eNi

[
f eNi

(1 + feL†)(1 + f eq
H )
∑

k

|Â(Ñi → L̃†
kH

†)|2−

−feL†f
eq
H (1 + f eNi

)
∑

k

|Â(L̃†
kH

† → Ñi)|2
]

, (4.10)

and

sS = Λ12
34


fLf eq

h (1 − fL̄)(1 − f eq
h )
∑

k,k′

|Msub(Lkh → L̄k′h̄)|2−

−fL̄f eq
h (1 − fL)(1 − f eq

h )
∑

k,k′

|Msub(L̄kh̄ → Lk′h)|2

 , (4.11)

sS̃ = Λ12
34


feLf eq

H (1 + feL†)(1 + f eq
H )
∑

k,k′

|Msub(L̃kH → L̃†
k′H

†)|2−

−feL†f
eq
H (1 + feL)(1 + f eq

H )
∑

k,k′

|Msub(L̃
†
kH

† → L̃k′H)|2

 , (4.12)

sSLeL† = Λ12
34


fLf eq

h (1 + feL†)(1 + fH†)|
∑

k,k′

|Msub(Lkh → L̃†
k′H

†)|2−

−feL†f
eq
H (1 − fL)(1 − f eq

h )
∑

k,k′

|Msub(L̃
†
kH

† → Lk′h)|2

 , (4.13)

sS̄
LeL† = Λ12

34


fL̄f eq

h (1 + feL)(1 + f eq
H )
∑

k,k′

|Msub(L̄kh̄ → L̃k′H)|2−

−feLf eq
H (1 − fL̄)(1 − f eq

h )
∑

k,k′

|Msub(L̃kH → L̄k′h̄)|2

 , (4.14)

sSLeL = Λ12
34


fLf eq

h (1 + feL)(1 + f eq
H )
∑

k,k′

|Msub(Lkh → L̃k′H)|2−

−feLf eq
H (1 − fL)(1 − f eq

h )
∑

k,k′

|Msub(L̃kH → Lk′h)|2

 , (4.15)

sS̄
LeL = Λ12

34


fL̄f eq

h (1 + feL†)(1 + f eq
H )
∑

k,k′

|Msub(L̄kh̄ → L̃†
k′H

†)|2−

−feL†f
eq
H (1 − fL̄)(1 − f eq

h )
∑

k,k′

|Msub(L̃
†
kH

† → L̄k′h̄)|2

 . (4.16)
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The S−terms are defined in terms of subtracted amplitudes, since the on-shell contribution

is already taken into account through the decays and inverse decays in the D − terms. So

for example:

∣∣Msub(Lkh → L̄k′h̄)
∣∣2 =

∣∣M(Lkh → L̄k′h̄)
∣∣2 −

∣∣Mos(Lkh → L̄k′h̄)
∣∣2 , (4.17)

where,

∣∣Mos(Lkh → L̄k′h̄)
∣∣2 =

∣∣∣Â(Lkh → Ñi)
∣∣∣
2 πδ(s − m eNi

)

m eNi
Γ eNi

∣∣∣Â(Ñi → L̄k′h̄)
∣∣∣
2

. (4.18)

In writing Eqs.(4.4)–(4.6) we have not included the ∆L = 1 processes. They do not

contribute to the out of equilibrium condition. However they can lead to a dilution of

the generated Ltotal. Therefore they are relevant in the exact computation of the κ factor

defined in Eq. (5.1).

In order to compute the D− terms, we use the following relation between the equilib-

rium densities:

f
L
( )f

eq
h (1 + f eq

eNi

) = f eq
eNi

(1 − f
L
( ))(1 − f eq

h )e∓µf /T ≃
≃ f eq

eNi

(1 − f eq
L )(1 − f eq

h )(1 ∓ YL) , (4.19)

feL(†)f
eq
H (1 + f eq

eNi

) = f eq
eNi

(1 + feL(†))(1 + f eq
H )e∓µs/T ≃

≃ f eq
eNi

(1 + f eq
eL )(1 + f eq

H )(1 ∓ Y eL) , (4.20)

with

f eq
eNi

=
1

exp[EfNi
/T ] − 1

. (4.21)

One gets

Di + D̄i =
1

s
Λ12

eNi

[
f eNi

(1 − f eq
L )(1 − f eq

h )

(
1 + ǫfi

2
+

1 − ǫfi

2

)∑

k

|Afk

i |2

− f eq
eNi

1 + f eNi

1 + f eq
eNi

(1 − f eq
L )(1 − f eq

h )

[
(1 − YL)

1 − ǫfi

2
+ (1 + YL)

1 + ǫfi

2

]∑

k

|Afk

i |2
]

=

=
(
Y eNi

〈Γf
eNi

〉 − Y eq
eNi

〈Γ̃f
eNi

〉
)

+ Y eq
eNi

YLǫfi
〈Γ̃f

eNi

〉

where in order to write the equations in the closest to the standard notation we have
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defined the following average widths:

neq
eNi

〈Γf
eNeq

i

〉 = Λ12
eNi

f eq
eNi

(1 − f eq
L )(1 − f eq

h )
∑

k

|Afk

i |2 (4.22)

n eNi
〈Γf

eNi

〉 = Λ12
eNi

f eNi
(1 − f eq

L )(1 − f eq
h )
∑

k

|Afk

i |2 (4.23)

neq
eNi

〈Γ̃f
eNi

〉 = Λ12
eNi

f eq
eNi

(1 + f eNi
)

(1 + f eq
eNi

)
(1 − f eq

L )(1 − f eq
h )
∑

k

|Afk

i |2 (4.24)

neq
eNi

〈Γs
eNeq

s
〉 = Λ12

eNi
f eq

eNi

(1 + f eq
eL )(1 + f eq

H )
∑

k

|Ask

i |2 (4.25)

n eNi
〈Γs

eNi
〉 = Λ12

eNi
f eNi

(1 + f eq
L )(1 + f eq

H )
∑

k

|Ask

i |2 (4.26)

neq
eNi

〈Γ̃s
eNi
〉 = Λ12

eNi
f eq

eNi

(1 + f eNi
)

(1 + f eq
eNi

)
(1 + f eq

eL )(1 + f eq
H )
∑

k

|Ask

i |2 (4.27)

which verify that in equilibrium

〈Γf(s)
eNi

〉 = 〈Γf(s)
eNeq

i

〉 = 〈Γ̃f(s)
eNi

〉 (4.28)

Equivalently for the rest of terms :

Di + D̄i =
(
Y eNi

〈Γf
eNi

〉 − Y eq
eNi

〈Γ̃f
eNi

〉
)

+ Y eq
eNi

YLǫfi
〈Γ̃f

eNi

〉 (4.29)

Di − D̄i = ǫfi

(
Y eNi

〈Γf
eNi

〉 + Y eq
eNi

〈Γ̃f
eNi

〉
)

+ Y eq
eNi

YL〈Γ̃f
eNi

〉 (4.30)

D̃i + D̃†
i =

(
Y eNi

〈Γs
eNi
〉 − Y eq

eNi

〈Γ̃s
eNi
〉
)

+ Y eq
eNi

Y eLǫsi
〈Γ̃s

eNi
〉 (4.31)

D̃i − D̃†
i = ǫsi

(
Y eNi

〈Γs
eNi
〉 + Y eq

eNi

〈Γ̃s
eNi
〉
)

+ Y eq
eNi

Y eL〈Γ̃
s
eNi
〉 (4.32)

Concerning S − terms, in order to evaluate, for example, the on-shell contribution∣∣Mos(Lkh → L̄k′h̄)
∣∣2 we use the following relation between the equilibrium densities

(1 − f eq
L )(1 − f eq

h ) = f eq
eNi

eEN /T
[
(1 − f eq

L )(1 − f eq
h ) − f eq

L f eq
h

]
, (4.33)

and the identity,

1 =

∫
d4pNδ4(p eNi

− pL − ph) . (4.34)

They allow us to write the on-shell contribution to the scattering terms at the required

order in ǫ as:

Λ34
12 fLf eq

h (1 − fL̄)(1 − f eq
h )
∑

k

|Â(Lkh → Ñi)|2
πδ(s − m eNi

)

m eNi
Γth

eNi

∑

k′

|Â(Ñi → L̄k′h̄)|2 =

=

∫
d3pL

(2π)32EL

d3ph

(2π)32Eh
(2π)4δ4(p eNi

− pL − ph)fav
L f eq

h

(
1 − ǫfi

2

)2∑

k

|Afk

i |2 ×

∫ d4p eNi

(2π)4

2πδ(s − m eNi
)

2m eNi
Γth

eNi

∫
d3pL

(2π)32EL

d3ph

(2π)32Eh
(2π)4δ4(p eNi

− pL − ph) ×

f eq
eNi

eEN /T
[
(1 − f eq

L )(1 − f eq
h ) − f eq

L f eq
h

] ∑

k′

|Afk′

i |2 .(4.35)
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Now we define the thermal width into fermion and scalars as:

Γth,f
eNi

=
1

2m eNi

∫
d3pL

(2π)32EL

d3ph

(2π)32EL
(2π)4δ4(p eNi

− pL − ph)

[
(1 − f eq

L )(1 − f eq
h ) − f eq

L f eq
h

]∑

k

|Afk

i |2 ,

Γth,s
eNi

=
1

2m eNi

∫
d3peL

(2π)32EeL

d3pH

(2π)32EH
(2π)4δ4(p eNi

− peL − pH)

[
(1 + f eq

eL )(1 + f eq
H ) − f eq

eL f eq
H

]∑

k

|Ask

i |2 . (4.36)

so that the thermal width of sneutrinos is Γth
eNi

= Γth,f
eNi

+ Γth,s
eNi

.

Using that
∫ d4p eNi

(2π)4
2πδ(p2

eNi
− m2

eNi
) =

∫ d3p eNi

(2π)32E eNi

we can write Eq. (4.35) as:

Λ12
eNi

f eq
eNi

(1 − f eq
L )(1 − f eq

h )

(
1 − ǫfi

2

)2∑

k

|Afk

i |2
Γth,f

eNi

Γth
eNi

= neq
eNi

(1 − ǫfi
)2

4
〈Γf

eNeq
i

〉
Γth,f

eNi

Γth
eNi

.

Altogether we find that

S =
∑

k,k′

〈σ(Lkh → L̄k′h̄) − σ(L̄k′ h̄ → Lkh)〉 + Y eq
eNi

ǫfi
〈Γf

eNeq
i

〉
Γth,f

eNi

Γth
eNi

. (4.37)

The rest of on-shell contributions can be evaluated similarly:

S̃ =
∑

k,k′

〈σ(L̃kH → L̃†
k′H

†) − σ(L̃†
k′H

† → L̃kH)〉 + Y eq
eNi

ǫsi
〈Γs

eNeq
i

〉
Γth,s

eNi

Γth
eNi

(4.38)

S
LeL† =

∑

k,k′

〈σ(Lkh → L̃†
k′H

†) − σ(L̃†
k′H

† → Lkh)〉 + Y eq
eNi

ǫfi
+ ǫsi

2
〈Γf

eNeq
i

〉
Γth,s

eNi

Γth
eNi

=

=
∑

k,k′

〈σ(Lkh → L̃†
k′H

†) − σ(L̃†
k′H

† → Lkh)〉 + Y eq
eNi

ǫfi
+ ǫsi

2
〈Γs

eNeq
i

〉
Γth,f

eNi

Γth
eNi

(4.39)

S̄
LeL† =

∑

k,k′

〈σ(L̄kh̄ → L̃k′H) − σ(L̃k′H → L̄kh̄)〉 − Y eq
eNi

ǫfi
+ ǫsi

2
〈Γf

eNeq
i

〉
Γth,s

eNi

Γth
eNi

=

=
∑

k,k′

〈σ(L̄kh̄ → L̃k′H) − σ(L̃k′H → L̄kh̄)〉 − Y eq
eNi

ǫfi
+ ǫsi

2
〈Γs

eNeq
i

〉
Γth,f

eNi

Γth
eNi

(4.40)

SLeL =
∑

k,k′

〈σ(Lkh → L̃k′H) − σ(L̃k′H → Lkh)〉 + Y eq
eNi

ǫfi
− ǫsi

2
〈Γf

eNeq
i

〉
Γth,s

eNi

Γth
eNi

=

=
∑

k,k′

〈σ(Lkh → L̃k′H) − σ(L̃k′H → Lkh)〉 − Y eq
eNi

ǫfi
− ǫsi

2
〈Γs

eNeq
i

〉
Γth,f

eNi

Γth
eNi

(4.41)
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S̄LeL =
∑

k,k′

〈σ(L̄kh̄ → L̃†
k′H

†) − σ(L̃†
k′H

† → L̄kh̄)〉 − Y eq
eNi

ǫfi
− ǫsi

2
〈Γf

eNeq
i

〉
Γth,s

eNi

Γth
eNi

=

=
∑

k,k′

〈σ(L̄kh̄ → L̃†
k′H

†) − σ(L̃†
k′H

† → L̄kh̄)〉 − Y eq
eNi

ǫfi
− ǫsi

2
〈Γs

eNeq
i

〉
Γth,f

eNi

Γth
eNi

(4.42)

Altogether we can write the Boltzmann equations for the sneutrinos and leptonic num-

bers †:

dY eNi

dt
= −Y eNi

(
〈Γf

eNi

〉 + 〈Γs
eNi
〉
)

+ Y eq
eNi

(
〈Γ̃f

eNi

〉 + 〈Γ̃s
eNi
〉
)

−Y eq
eNi

(
YLǫfi

〈Γ̃f
eNi

〉 + Y eLǫsi
〈Γ̃s

eNi
〉
)

(4.43)

dYL

dt
=
∑

i

[
ǫfi

(
Y eNi

〈Γf
eNi

〉 + Y eq
eNi

〈Γ̃f
eNi

〉 − 2Y eq
eNi

〈Γf
eNeq

i

〉
)

+ Y eq
eNi

YL〈Γ̃f
eNi

〉
]

−〈2σ(Lh → L̄h̄) + σ(Lh → L̃†H†) + σ(Lh → L̃H)〉
+〈2σ(L̄h̄ → Lh) + σ(L̄h̄ → L̃H) + σ(L̄h̄ → L̃†H†)〉
−〈σ(L̃H → L̄h̄) − σ(L̃H → Lh)〉 +

+〈σ(L̃†H† → Lh) − σ(L̃†H† → L̄h̄)〉 (4.44)

dY eL
dt

=
∑

i

[
ǫsi

(
Y eNi

〈Γs
eNi
〉 + Y eq

eNi

〈Γ̃s
eNi
〉 − 2Y eq

eNi

〈Γs
eNeq

i

〉
)

+ Y eq
eNi

Y eL〈Γ̃
s
eNi
〉
]

−〈2σ(L̃H → L̃†H†) + σ(L̃H → L̄h̄) + σ(L̃H → Lh)〉
+〈2σ(L̃†H† → L̃H) + σ(L̃†H† → Lh) + σ(L̃†H† → L̄h̄)〉
−〈σ(Lh → L̃†H†) − σ(Lh → L̃H)〉
+〈σ(L̄h̄ → L̃H) − σ(L̄h̄ → L̃†H†)〉 (4.45)

The out of equilibrium condition is verified since using Eq. (4.28) the first term of Eq. (4.43)

and the ǫ terms of Eqs.(4.44) and (4.45) cancel out in thermal equilibrium.

The Boltzmann equation for the total lepton number can be written as (here we use

ǫsi
= −ǫfi

= ǫi):

dYLtotal

dt
=
∑

i

ǫi

[
Y eNi

(
〈Γs

eNi
〉 − 〈Γf

eNi

〉
)

+ Y eq
eNi

(
〈Γ̃s

eNi
〉 − 〈Γ̃f

eNi

〉
)
− 2Y eq

eNi

(
〈Γs

eNeq
i

〉 − 〈Γf
eNeq

i

〉
)

+ Y eq
eNi

(YLΓ̃f
eNi

+ Y eLΓ̃s
eNi

)
]

+ scattering terms

≃
∑

i

[
〈Γ eNeq

i
〉
(
Y eNi

− Y eq
eNi

)
ǫeff
i (T ) + Y eq

eNi

(
YLΓ̃f

eNeq
i

+ Y eLΓ̃s
eNi

)]
+ s. t. (4.46)

with 〈Γ eNeq
i
〉 = 〈Γf

eNeq
i

〉 + 〈Γs
eNeq

i

〉.

†Here we have suppressed flavour indices in the two body ∆L = 2 scattering terms for the sake of

simplicity, but a sum over all flavours in initial and final states should be understood.
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In the last line we have used that at O(ǫ) we can neglect the difference between f eNi

and f eq
eNi

in the definitions of the thermal average widths and we have defined the effective

T dependent total asymmetry:

ǫeff
i (T ) = ǫi

〈Γs
eNi
〉 − 〈Γf

eNeq
i

〉

〈Γf
eNeq

i

〉 + 〈Γs
eNeq

i

〉
, (4.47)

which in the approximate decay at rest takes the form Ref. [10,11]

ǫi(T ) = ǫi
cs − cf

cs + cf
. (4.48)

5. Results

We now quantify the conditions on the parameters which can be responsible for a successful

leptogenesis.

The final amount of B − L asymmetry YB−L = nB−L/s generated by the decay of

the four light singlet sneutrino states Ñi assuming no pre-existing asymmetry and thermal

initial sneutrino densities can be parameterized as

YB−L = −κ
∑

i

ǫi(Td)Y eq

Ñi
(T ≫ Mi) . (5.1)

ǫi(T ) is given in Eq.(3.12) and Td is the temperature at the time of decay defined by the

condition that the decay width is equal to the expansion rate of the universe: Γ = H(Td),

where the Hubble parameter H = 1.66 g
1/2
∗

T 2

mpl
, mpl = 1.22 · 1019 GeV is the Planck

mass and g∗ counts the effective number of spin-degrees of freedom in thermal equilibrium,

g∗ = 228.75 in the MSSM. Furthermore Y eq

Ñi
(T ≫ Mi) = 90ζ(3)/(4π4g∗).

In Eq. (5.1) κ . 1 is a dilution factor which takes into account the possible inefficiency

in the production of the singlet sneutrinos, the erasure of the generated asymmetry by L-

violating scattering processes and the temperature dependence of the CP asymmetry ǫi(T ).

The precise value of κ can only be obtained from numerical solution of the Boltzmann

equations. Moreover, in general, the result depends on how the lepton asymmetry is

distributed in the three lepton flavours [5]. For simplicity we will ignore flavour issues.

Furthermore, in what follows we will use an approximate constant value κ = 0.2.

After conversion by the sphaleron transitions, the final baryon asymmetry is related

to the B − L asymmetry by
nB

s
=

24 + 4nH

66 + 13nH

nB−L

s
, (5.2)

where nH is the number of Higgs doublets. For the MSSM:

nB

s
= −8.4 × 10−4 κ

∑

i

ǫi(Td) (5.3)

This has to be compared with the WMAP measurements that in the ΛCDM model

imply [27]:
nB

s
= (8.7+0.3

−0.4) × 10−11 (5.4)
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Altogether we find that (for maximal CP violating phase sinφ = 1):

4 |BSN A|Γ
4|BSN |2 + |M |2Γ2

cs(Td) − cf (Td)

cs(Td) + cf (Td)
& 2.6 × 10−7 (5.5)

Further constraints arise from the timing of the decay. First, successful leptogenesis

requires the singlet sneutrinos to decay out of equilibrium: its decay width must be smaller

than the expansion rate of the Universe Γ < H |T=M , with Γ given in Eq. (2.16),

M
∑

k

|Y1k|2

8π
< 1.66 g

1/2
∗

M2

mpl
. (5.6)

This condition gives an upper bound:

∑

k

|Y1k|2
(

108 GeV

M

)
< 5 × 10−9 (5.7)

Second, in order for the generated lepton asymmetry to be converted into a baryon

asymmetry via the B-L violating sphaleron processes, the singlet sneutrino decay should

occur before the electroweak phase transition

Γ > H(T ∼ 100 GeV) ⇒ M
∑

k

|Y1k|2 ≥ 2.6 × 10−13 GeV (5.8)

The combination of Eqs.(5.7) and (5.8) determines a range for the possible values of∑ |Y1k|2 for a given M :

2.6 × 10−21

(
108 GeV

M

)
<
∑

k

|Y1k|2 < 5 × 10−9

(
M

108 GeV

)
(5.9)

We now turn to the consequences that these constraints may have for the neutrino

mass predictions in this scenario. Without loss of generality one can work in the basis in

which Mij is diagonal. In that basis the light neutrino masses, Eq. (2.3), are:

mνij = 3 × 10−3 eV
( v

175GeV

)2∑

kl

Yli
108 GeV

Ml

108 GeV

Mk

µkl

GeV
Ykj (5.10)

where v = 〈H〉 is the Higgs vev.

It is clear from Eq. (5.10) that the out of equilibrium condition, Eq. (5.7), implies that

the contribution of the lightest pseudo-Dirac singlet neutrino generation to the neutrino

mass is negligible. Consequently, to reproduce the observed mass differences ∆m2
⊙ and

∆m2
atm, the dominant contribution to the neutrino masses must arise from the exchange

of the heavier singlet neutrino states.

This can be easily achieved, for example, in the single right-handed neutrino dominance

mechanism (SRHND) [28]. These models naturally explain the strong hierarchy in the

masses and the large mixing angle present in the light neutrino sector. In particular, in the

simple case in which the matrix µ and M are simultaneously diagonalizable, the results
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Figure I:
∑

k

|Y1k|2−BSN regions in which enough CP asymmetry can be generated (Eq. (5.5)) and

the non-equilibrium condition in the sneutrino decay, Eq. (5.6) and decay before the electroweak

phase transition, Eq. (5.8) are verified. We take A = mSUSY = 103 GeV. The regions correspond

to M = 106, 5 × 107, and 109 GeV, from left to right.

in Ref. [28] imply that for the inverse see-saw model with three generations of singlet

neutrinos, the SRHND condition is attained if there is a strong hierarchy:

µ3
Y3kY3k′

M3
≫ µ2

Y2lY2l′

M2
≫ µ1

Y1lY1l′

M1
. (5.11)

Generically this means that the out of equilibrium condition requires the neutrino mass

spectrum to be strongly hierarchical, m1 ≪ m2 < m3.

Conversely this implies that the measured neutrino masses do not impose any con-

straint on the combination of Yukawa couplings and sneutrino masses which is relevant for

the generation of the lepton asymmetry which can be taken as an independent parameter

in the evaluation of the asymmetry.

Finally we plot in Fig. I the range of parameters
∑ |Y1k|2 and BSN for which enough

asymmetry is generated, Eq. (5.5), and the out of equilibrium and pre-electroweak phase

transition decay conditions, Eq. (5.9) are verified. We show the ranges for three values of

M and for the characteristic value of A = mSUSY = 103 GeV.

From the figure we see that this mechanism works for relatively small values of M

(< 109 GeV). The smaller is M , the smaller are the yukawas
∑ |Y1k|2. Also, in total

analogy with the standard seesaw [10], [11], the value of the soft supersymmetry-breaking

bilinear BSN , is well bellow the expected value MmSUSY . The reason is that, in order

to generate an asymmetry large enough BSN ∼ MΓ, but Γ is very small if the sneutrinos
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decay out of equilibrium, Γ 6 1 GeV
(

M
109 GeV

)2
. A small B term with large CP phase can

be realized naturally for example within the framework of gauge mediated supersymmetry

breaking [29] or in warped extra dimensions [30].

Given the small required values of BSN one can question the expansion in the small

parameters in Eq. (2.13). As described at the end of Sec. 3 in order to verify the stability

of the results we have redone the computation of the CP asymmetry keeping all the entries

in the sneutrino mass matrix, and just assuming that it is real. We have found that as long

as |BSN | ≫ |BS |, |µ|2 the total CP asymmetry is always proportional to BSN , and presents

the same resonant behaviour, so that it is still significant only for BSN ≪ MmSUSY .

In summary in this work we have studied the conditions for successful soft leptogenesis

in the context of the supersymmetric inverse seesaw mechanism. In this model the lepton

sector is extended with two electroweak singlet superfields to which opposite lepton number

can be assigned. This scheme is characterized by a small lepton number violating Majorana

mass term µ with the effective light neutrino mass being mν ∝ µ. The scalar sector contains

four single sneutrino states per generation and, after supersymmetry breaking, their inter-

action lagrangian contains both L-conserving and L-violating soft supersymmetry-breaking

bilinear B-terms which together with the µ parameter give a small mass splitting between

the four singlet sneutrino states of a single generation. In combination with the trilinear

soft supersymmetry breaking terms they also provide new CP violating phases needed to

generate a lepton asymmetry in the singlet sneutrino decays.

We have computed the relevant lepton asymmetry and we find in that, as long as the

L-conserving B-term, BSN , is not much smaller than the L-violating couplings, the asym-

metry is proportional to BSN and it is not suppressed by any L-violating parameter. As in

the standard see-saw case, the asymmetry displays a resonance behaviour with the max-

imum value of the asymmetry being obtained when the largest mass splitting, 2BSN/M ,

is of the order of the singlet sneutrinos decay width, Γ. Consequently we find that this

mechanism can lead to successful leptogenesis only for relatively small values of BSN . The

right-handed neutrino masses are low enough to elude the gravitino problem. Also, the out

of equilibrium decay condition implies that the Yukawa couplings involving the lightest of

the right-handed neutrinos are constrained to be very small which, for the naturally small

values of the L-violating parameter µ, implies that the neutrino mass spectrum has to be

strongly hierarchical.
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A. CP Asymmetry in Quantum Mechanics

The four sneutrino system is completely analogous to the K0 − K̄0 system, so here we

compute the CP asymmetry generated in their decay using the same formalism. In order

to compare with the effective field theory approach described in Sec. 3 we consider only

the simplified case BS, m̃2
N , m̃2

S , m̃2
SN ≪ BSN and M̃2

SN ∼ µM∗. In this limit, we have

chosen for simplicity a basis where A = |A|eiφ is the only complex parameter with φ given

in Eq.(2.12).

The evolution of the system is then determined by the effective Hamiltonian,

H = M̂ − i
Γ̂

2
(A.1)

where, in the interaction basis and at leading order in the expansion parameters ǫ, ǫ̃ defined

in Eq. (2.13),

M̂ = M




1 0 ǫ ǫ̃

0 1 ǫ̃ ǫ

ǫ ǫ̃ 1 0

ǫ̃ ǫ 0 1


 (A.2)

and

Γ̂ = Γ




1 0 0 A
M

0 1 A∗

M 0

0 A
M 1 0

A∗

M 0 0 1


 (A.3)

with Γ given in Eq.(2.16).

It is convenient to write the effective Hamiltonian in the mass eigenstate basis Eq.(2.15),

because in such basis the four sneutrino system decouples in two subsystems of two sneu-

trinos, with the resulting width matrix:

Γ = Γ




1 − ǫA cos φ ǫA sin φ 0 0

ǫA sinφ 1 + ǫA cos φ 0 0

0 0 1 − ǫA cos φ −ǫA sinφ

0 0 −ǫA sinφ 1 + ǫA cos φ


 (A.4)

where ǫA = |A|
|M | .

The eigenvectors of the effective Hamiltonian H are:

Ñ ′
1 = 1r

2+2
|ǫ+|

|ǫ−|

[
ei(φ−−φ+)/4(S̃† − Ñ †) +

√
|ǫ+|
|ǫ−|e

−i(φ−−φ+)/4(S̃ − Ñ)
]

Ñ ′
2 = ir

2+2
|ǫ+|

|ǫ−|

[
ei(φ−−φ+)/4(S̃† − Ñ †) −

√
|ǫ+|
|ǫ−|e

−i(φ−−φ+)/4(S̃ − Ñ)
]

Ñ ′
3 = ir

2+2
|ǫ+|

|ǫ−|

[
ei(φ−−φ+)/4(S̃† + Ñ †) −

√
|ǫ+|
|ǫ−|e

−i(φ−−φ+)/4(S̃ + Ñ)
]

Ñ ′
4 = 1r

2+2
|ǫ+|

|ǫ−|

[
ei(φ−−φ+)/4(S̃† + Ñ †) +

√
|ǫ+|
|ǫ−|e

−i(φ−−φ+)/4(S̃ + Ñ)
]
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and the eigenvalues

ν1 = |M | − |µ|/2 − iΓ/2 − ei(φ−+φ+)/2
√

|ǫ+|
√

|ǫ−|
ν2 = |M | − |µ|/2 − iΓ/2 + ei(φ−+φ+)/2

√
|ǫ+|

√
|ǫ−|

ν3 = |M | + |µ|/2 − iΓ/2 − ei(φ−+φ+)/2
√

|ǫ+|
√

|ǫ−|
ν4 = |M | + |µ|/2 − iΓ/2 + ei(φ−+φ+)/2

√
|ǫ+|

√
|ǫ−|

where

ǫ− = |ǫ−|eiφ− = |BSN/(2M)| − iΓǫA/2

ǫ+ = |ǫ+|eiφ+ = |BSN/(2M)| − iΓǫ∗A/2

We consider an initial state at t = 0 with equal number densities of the four sneutrino

interaction states F̃i. Using that the time evolution for the hamiltonian eigenstates Eq.(A.5)

is trivially
∣∣∣Ñ ′

i(t)
〉

= e−iνit
∣∣∣Ñ ′

i

〉
, we obtain that at time t the interaction states are the

following:
∣∣∣Ñ(t)

〉
=

=
g1+(t) + g2+(t)

4

∣∣∣Ñ
〉

+

√
|ǫ−|
|ǫ+|

ei(φ−−φ+)/2 g1−(t) − g2−(t)

4

∣∣∣Ñ †
〉
−

− g1+(t) − g2+(t)

4

∣∣∣S̃
〉
−
√

|ǫ−|
|ǫ+|

ei(φ−−φ+)/2 g1−(t) + g2−(t)

4

∣∣∣S̃†
〉

∣∣∣Ñ †(t)
〉

=

=

√
|ǫ+|
|ǫ−|

e−i(φ−−φ+)/2 g1−(t) − g2−(t)

4

∣∣∣Ñ
〉

+
g1+(t) + g2+(t)

4

∣∣∣Ñ †
〉
−

−
√

|ǫ+|
|ǫ−|

e−i(φ−−φ+)/2 g1−(t) + g2−(t)

4

∣∣∣S̃
〉
− g1+(t) − g2+(t)

4

∣∣∣S̃†
〉

∣∣∣S̃(t)
〉

=

= −g1+(t) − g2+(t)

4

∣∣∣Ñ
〉
−
√

|ǫ−|
|ǫ+|

ei(φ−−φ+)/2 g1−(t) + g2−(t)

4

∣∣∣Ñ †
〉

+

+
g1+(t) + g2+(t)

4

∣∣∣S̃
〉

+

√
|ǫ−|
|ǫ+|

ei(φ−−φ+)/2 g1−(t) − g2−(t)

4

∣∣∣S̃†
〉

(A.5)

∣∣∣S̃†(t)
〉

=

= −
√

|ǫ+|
|ǫ−|

e−i(φ−−φ+)/2 g1−(t) + g2−(t)

4

∣∣∣Ñ
〉
− g1+(t) − g2+(t)

4

∣∣∣Ñ †
〉

+

+

√
|ǫ+|
|ǫ−|

e−i(φ−−φ+)/2 g1−(t) − g2−(t)

4

∣∣∣S̃
〉

+
g1+(t) + g2+(t)

4

∣∣∣S̃†
〉

The functions g1±(t) and g2±(t) containing the time dependence are given by:

g1±(t) = e
−i

“
|M |− |µ|

2
−iΓ

2

”
t [

ei∆νt ± e−i∆νt
]

, (A.6)
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g2±(t) = e
−i

“
|M |+

|µ|
2
−iΓ

2

”
t [

ei∆νt ± e−i∆νt
]

, (A.7)

with,

∆ν = e
i
“

φ−+φ+
2

” √
|ǫ−|

√
|ǫ+| . (A.8)

We neglect soft supersymmetry-breaking terms, so that S̃ only decay to scalars, and

Ñ to antifermions:

|A[S̃ → L̃kH]|2 = |A[S̃† → L̃†
kH

†]|2 = |Y1kM |2 ≡ |AeLk
|2

|A[Ñ → L†
kh

†]|2 = |A[Ñ † → Lkh]|2 = |Y1k|2(s − m2
L − m2

h) ≡ |ALk
|2

(A.9)

We next write the time dependent decay amplitudes in terms of |AeLk
|2 and |ALk

|2:

|A[Ñ(t) → L̃kH]|2 = |A[Ñ †(t) → L̃†
kH

†]|2 =
|g1+ − g2+|2

16
|AeLk

|2 (A.10)

|A[Ñ (t) → L̃†
kH

†]|2 =

( |ǫ−|
|ǫ+|

)2

|A[Ñ †(t) → L̃kH]|2 =
|ǫ−|
|ǫ+|

|g1− + g2−|2
16

|AeLk
|2(A.11)

|A[Ñ(t) → Lkh]|2 =

( |ǫ−|
|ǫ+|

)2

|A[Ñ †(t) → L†
kh

†] =
|ǫ−|
|ǫ+|

|g1− − g2−|2
16

|ALk
|2(A.12)

|A[Ñ(t) → L†
kh

†]|2 = |A[Ñ †(t) → Lkh]|2 =
|g1+ + g2+|2

16
|ALk

|2 (A.13)

|A[S̃(t) → L̃kH]|2 = |A[S̃†(t) → L̃†
kH

†]|2 =
|g1+ + g2+|2

16
|AeLk

|2 (A.14)

|A[S̃(t) → L̃†
kH

†]|2 =

( |ǫ−|
|ǫ+|

)2

|A[S̃†(t) → L̃kH]|2 =
|ǫ−|
|ǫ+|

|g1− − g2−|2
16

|AeL|
2 (A.15)

|A[S̃(t) → Lkh]|2 =

( |ǫ−|
|ǫ+|

)2

|A[S̃†(t) → L†
kh

†]|2 =
|ǫ−|
|ǫ+|

|g1− + g2−|2
16

|ALk
|2(A.16)

|A[S̃(t) → L†
kh

†]|2 = |A[S̃†(t) → Lkh]|2 =
|g1+ − g2+|2

16
|ALk

|2 (A.17)

We define the integrated CP asymmetries for the fermionic and scalar channels as:

ǫf =

∫
dt
∑

i,k

[
|A[F̃i(t) → Lk + X]|2 − |A[F̃i(t) → L†

k + X]|2
]

∫
dt
∑

i,k

[
|A[F̃i(t) → Lk + X]|2 + |A[F̃i(t) → L†

k + X]|2
]

ǫs =

∫
dt
∑

i,k

[
|A[F̃i(t) → L̃k + X]|2 − |A[F̃i(t) → L̃†

k + X]|2
]

∫
dt
∑

i,k

[
|A[F̃i(t) → L̃k + X]|2 + |A[F̃i(t) → L̃†

k + X]|2
] (A.18)

Using the time-dependent amplitudes from Eq. (A), the time integrated asymmetries

are:

ǫs = −ǫf = ǭ = −1

2

( |ǫ−|
|ǫ+|

− |ǫ+|
|ǫ−|

)
χ , (A.19)
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where the factor |ǫ−|
|ǫ+| −

|ǫ+|
|ǫ−| vanishes if CP is conserved, and for ǫA ≪ 1 is given by:

|ǫ−|
|ǫ+|

− |ǫ+|
|ǫ−|

≃ 4MΓ|ǫA|
BSN

sin φ =
4Γ A

BSN
sinφ (A.20)

The time dependence is encoded in χ:

χ =

∫∞
0 dt

[
|g1−(t)|2 + |g2−(t)|2

]
∫∞
0 dt [|g1+(t)|2 + |g2+(t)|2 + |g1−(t)|2 + |g2−(t)|2] . (A.21)

In the limit ǫA ≪ 1 the time integrals are :

∫ ∞

0
dt
[
|g1−|2 + |g2−|2

]
≃ 4

|BSN |2/Γ|M |2
Γ2 + |BSN |2/|M |2 , (A.22)

∫ ∞

0
dt
[
|g1+|2 + |g2+|2 + |g1−(t)|2 + |g2−(t)|2

]
≃ 8

Γ
; (A.23)

ǫs = −ǫf = ǭ = − Γ |BSN | |A|
Γ2|M |2 + |BSN |2 sinφ (A.24)

The comparison between the asymmetry in Eq.(3.11) and Eq.(A.24) is in full analogy

to the corresponding comparison in the standard see-saw case discussed in [10]. The asym-

metry computed in the quantum mechanics approach, based on an effective (non hermitic)

Hamiltonian, Eq.(A.24), agrees with the one obtained using a field-theoretical approach,

Eq.(3.11) in the limit Γ ≪ BSN/M . When Γ ≫ BSN/M , the four sneutrino states become

two pairs of not well-separated particles. In this case the result for the asymmetry can

depend on how the initial state is prepared. If one assumes that the singlet sneutrinos

are in a thermal bath with a thermalization time Γ−1 shorter than the typical oscillation

times, ∆M−1
ij , coherence is lost and it is appropriate to compute the CP asymmetry in

terms of the mass eigenstates Eq.(2.15) as done in Sec. 3 and one obtains Eq. (3.11). If,

on the contrary, one assumed that the Ñ , S̃ states are produced in interaction eigenstates

and coherence is not lost in their evolution, then it is appropriate to compute the CP

asymmetry in terms of the interaction eigenstates Eq.(A.5) as done in this appendix and

one obtains Eq.(A.24).
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