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Universidad de Valencia-CSIC, Valencia, Spain

Abstract

We study dynamical electroweak symmetry breaking in the Randall-Sundrum scenario. We

show that one extra dimension is enough to give the correct pattern of electroweak symmetry

breaking in a simple model with gauge bosons and the right-handed top quark in the bulk. The

top quark mass is also in agreement with experiment. Furthermore, we propose an extended

scenario with all Standard Model gauge bosons and fermions propagating in the bulk, which
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1 Introduction

The origin of the electroweak symmetry breaking is one of the most important questions in particle
physics. In the Standard Model (SM) it is achieved by a nonzero vacuum expectation value of a
fundamental scalar Higgs field. However, the squared-mass of a fundamental scalar field receives
quadratically divergent radiative corrections, hence suffers from the so-called hierarchy problem if
the cutoff scale is much higher than the electroweak scale. This is indeed the case in the SM, where a
large hierarchy exists between the electroweak scale (∼ 100 GeV) and the Planck scale (MP ∼ 1018

GeV).
It has been recently realized that this hierarchy of scales could have its origin in the presence of

extra dimensions with nontrivial space-time geometries[1, 2]. If we live in D = 4 + δ dimensions,
there is the possibility that the Planck scale MP is actually an effective four dimensional scale
determined by the fundamental scale of the (4 + δ)-theory, M , and the geometry of space-time.
An explicit example of this is the Randall and Sundrum model [2], where the hierarchy problem is
solved by introducing a warped extra dimension. The space-time is a slice of AdS5 with one extra
dimension compactified on an orbifold, S1/Z2, of radius rc. The metric is given by

ds2 = e−2k|y|ηµνdx
µdxν + dy2 (1)

where y is the fifth coordinate, 0 ≤ y ≤ πrc, µ, ν are four dimensional indices, k is the AdS5

curvature of order of the Planck scale, and e−2k|y| is called the warp factor. The Randall-Sundrum
scenario consists of two three-branes located at the orbifold fix points y∗ = 0, πrc. From (1) one can
see that the warp factor determines the physical energy scale at the position y from the point of
view of a 4D observer. Thus assuming krc ∼ 12, the physical scale of the brane located at y∗ = πrc
is given by ke−πkrc ∼ (100−1000) GeV. This sets the scale on the brane to be the electroweak scale
and solves the hierarchy problem.

The hierarchy problem can also be avoided if the Higgs is a composite object rather than a
fundamental field, and ceases to be a dynamical degree of freedom not much above the electroweak
scale. Since the top quark is the heavier fermion in the standard model, it has been the first
candidate to form the composite Higgs, bound out of the third generation weak doublet ψL and
the right-handed top field, tR. Such composite Higgs arises naturally in the presence of some
strongly coupled four-quark operators. In four dimensional top condensate models, though, there is
a problem when one tries to accommodate the top quark mass in the experimental range as well as
electroweak symmetry breaking at the correct scale, because the large top Yukawa coupling gives a
top quark too heavy [3],[4]. This problem can be solved if a new vector-like fermion is introduced
with the same quantum numbers of tR, which becomes the appropriate constituent of the Higgs
boson together with ψL [5]. While this mechanism neatly accommodates both the measured top
quark mass and a Higgs vev of the electroweak scale, the drawback is that one has to include
additional structures to originate the non-renormalizable four-quark interactions.

In this work we will show that in the Randall-Sundrum scenario it is possible to construct
a phenomenologically successful effective theory with no fundamental scalars, including just the
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symmetry group SU(3)C×SU(2)W×U(1)Y and the SM fermion and gauge boson fields. Dynamical
electroweak symmetry breaking in the presence of flat extra dimensions has already been considered
in the literature [6]-[9]. In particular, it has been noticed that the ingredients needed for dynamical
electroweak symmetry breaking are naturally present in the SM, provided the gauge bosons and
some fermions propagate in extra dimensions compactified at the ∼ TeV scale [8, 9]. Four-quark
operators are always induced by QCD in compact dimensions, via the exchange of the Kaluza-Klein
(KK) excitations of the gluons. Moreover, by allowing the right-handed top quark to live in the
bulk, its KK modes will naturally play the role of the required vector-like quark.

The mechanism outlined above does not work in D = 5 flat space because the interchange of
gluon KK excitations is not strong enough to form the quark condensate. It is necessary to assume
a higher dimensionality (D ≥ 6), thus the degeneracy of the gluon KK modes makes the relevant
four-quark operator stronger. However, in the Randall-Sundrum scenario the coupling between KK
gauge bosons and fermions (both living in the bulk and on the TeV brane) can be larger than in the
flat space case [11], so one extra dimension is enough to trigger dynamical electroweak symmetry
breaking without introducing fundamental scalar fields.

In section 2 we present a minimal set-up which breaks correctly the electroweak symmetry, and
we briefly review the KK decomposition of massless gauge boson and fermion fields in the Randall-
Sundrum scenario. In the next section, we use these results to construct an effective theory with
four-fermion operators, and we argue that the binding strength of such operators is large enough
to form bound states, one of which will be identified as the Higgs field. We compute the effective
scalar Lagrangian in section 4. Finally, we discuss fermion masses both in the simplest model
(section 5) and in an alternative scenario which provides an explanation of the observed fermion
mass hierarchies (section 6). We conclude in section 7.

2 The simplest set-up

In the Randall-Sundrum model [2] only gravity propagates in the 5D bulk, while the SM fields are
confined on the TeV brane. Subsequently, the phenomenological consequences of placing the SM
fields in the bulk have been extensively studied [10]-[17].

In this section, we describe a minimal set-up which leads to dynamical electroweak symmetry
breaking without the need for a fundamental Higgs field. We begin by studying a toy model with
one generation of fermions, the third one, and postpone the discussion of flavor symmetry breaking
to section 5. We consider that gluons live in the 5D bulk, so their KK modes strongly coupled to
quarks can induce the formation of bound states. As we will see in section 5, in order to obtain
the correct value of the top mass also the right-handed top quark should propagate in 5D. For
simplicity, we assume that the remaining third generation fermions are confined on the TeV brane,
y∗ = πrc.

Since the right-handed top carries hypercharge, the U(1)Y gauge boson propagates in the bulk,
while the SU(2)W gauge bosons can either reside on the TeV brane or propagate in the bulk, because
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we do not require the components of weak doublet fermions to be in different places along the fifth
dimension. For definiteness we consider that the SU(2)W gauge bosons also live in 5D, but our
conclusions are completely independent of this assumption.

We are going to study the dynamical generation of masses through the condensation of a pair
quark-antiquark, so we shall use the KK decomposition of 5D massless fields in the Randall-Sundrum
model.

2.1 Fermion field

Consider a 5D massless fermion field Ψ(x, y). Compactifying on an orbifold S1/Z2 we can choose
the zero mode to be a left- or right-handed fermion. Imposing that the bulk fermion is even under
this compactification,

γ5 Ψ(x,−y) = +Ψ(x, y) , (2)

only the right-handed zero mode survives. We will identify this zero mode with the right-handed
top quark tR. The Kaluza Klein decomposition for a bulk fermion with boundary conditions (2)
can be written as [13]

Ψ(x, y) =
∑

n

[

Ψ
(n)
L,B(x) ξn(y) + Ψ

(n)
R,B(x) ηn(y)

]

(3)

where

ξn(y) =

√

2k

1 − e−πkrc
e−

k
2
|πrc−y|e

3

2
k|y| sin

{

mn

k

(

ek|y| − 1
)

}

,

ηn(y) =

√

2k

1 − e−πkrc
e−

k
2
|πrc−y|e

3

2
k|y| cos

{

mn

k

(

ek|y| − 1
)

}

, (4)

and mn = nπk/(eπkrc − 1) 6= 0. For the zero mode

ξ0(y) = 0, η0(y) =

√

k

1 − e−πkrc
e−

k
2
|πrc−y|e

3

2
k|y| . (5)

Note that massless bulk fermions are localized near the TeV brane, y∗ = πrc, due to the factor
e−k|πrc−y| of the wave function for all modes.

A 5D Lorentz invariant gauge theory has no chiral anomalies because the fermion representation
is vector-like. However, the boundary conditions imposed above prevent the existence of the ΨL

zero-mode and we have to worry about anomalies in the bulk. This problem can be solved by
including a Chern-Simons term in the action, which makes the scenario presented in this paper
anomaly-free [8].
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2.2 Gauge bosons

The bulk gauge bosons in the Randall-Sundrum scenario have been discussed in [11]. We work in
the gauge ∂µAµ = 0 and A5 = 0, with orbifold conditions

∂5Aµ(x, y=y∗) = 0 = A5(x, y=y∗) . (6)

Then the KK decomposition of Aµ(x, y) is given by

Aµ(x, y) =
∑

n

A(n)
µ (x)χn(y) , (7)

where χn(y) is a linear combination of first order Bessel functions, J1 and Y1,

χn(y) =

√
2k ek|y|

Nn

[

J1

(

λne
k|y|
)

+ αnY1

(

λne
k|y|
)]

, (8)

with λn ≡ Mn/k 6= 0. The mass eigenvalues Mn are determined by the condition ∂yχn(πrc) = 0,
which leads to the equation

J0(λn) Y0

(

λne
πkrc

)

= Y0(λn) J0

(

λne
πkrc

)

. (9)

The masses Mn grow linearly with n, being the first excited modes in the TeV range (M1 ∼
2.5 ke−πkrc, M2 ∼ 5.6 ke−πkrc, . . . ).

Continuity of ∂yχn(y) at y = 0 gives

αn = − J0(λn)

Y0(λn)
(10)

and Nn is a normalization constant which in the limit Mn ≪ k and eπkrc ≫ 1 can be approximated
by

Nn ∼ ekπrcJ1

(

λne
kπrc

)

. (11)

Several comments are in order. The wave function of the zero mode is χ0 = 1/
√
πrc, independent

of the fifth coordinate, so it couples equally to both boundaries with strength g = g5D/
√
πrc,

being g5D the 5D gauge coupling. On the contrary, the excited modes are localized near the TeV
boundary and have different couplings to fermions located on different branes, since these couplings
are determined by the eigenfunctions χn(y) near the boundaries. At the y∗ = πrc boundary the
term in (8) proportional to J1 dominates while at the other brane the eigenfunction can be well
approximated by the Y1 term. Within these approximations, the coupling of a gauge boson KK
mode n to 4D fermions is (for krc ≃ 12):

g(n)/g ≃ 8.4 for the TeV boundary

g(n)/g ≃ .2/
√
n for the MP boundary (12)

4



The strong coupling of the KK gauge modes to fermions located on the TeV brane puts a
restrictive constraint on this set-up. In the limit where the KK tower exchanges can be described
as a set of contact interactions, they lead to dimension six operators which can be constrained by
electroweak precision data, yielding a bound on the mass of the first gauge boson KK mode of order
20 TeV [11, 13]. Such a large scale may be a problem for the consistency of the theory, and seems to
disfavor this scenario. However it is interesting to consider it further, because the simplicity of the
model allows to make definite calculations that illustrate generic features of dynamical symmetry
breaking in warped compactifications.

We have seen that the KK excitations of the SM gauge bosons couple strongly to the fermions
located at the TeV brane and thus can produce bound states. The analysis for bulk fermions is
more involved, however it has been shown that the fermion zero-mode couples strongly to the first
KK gauge boson excitation, with g(1)/g ≃ 4.1 (the coupling for higher n is weaker) [13]. Although
this result is obtained in the effective 4D theory, it seems to indicate that the coupling of bulk SM
gauge bosons to the bulk fermion Ψ may be also strong enough to form composite states involving
the latter.

3 Bound states

In this section we study the formation of bound states in detail. The 5D gauge field theory is
non renormalizable, and it remains weakly coupled beneath a local cut-off which depends on the
position in the extra dimension, of order ∼ ke−ky [15]. Moreover, at energies somewhat larger
than this scale the excited gravitons are strongly coupled and string/M-theoretic excitations should
appear, which lie outside the domain of the 5D field theory. Therefore near the TeV brane we
expect the compositeness scale, Λ, to be given approximately by the cut-off of the effective 5D
theory, not far above the scale of the first gauge boson KK excitations. Below the compositeness
scale we integrate out the heavy gauge boson KK modes and approximate the resulting effective
action by local four-fermion operators. These operators involve both, fermions ψ(x) confined at the
TeV brane and the bulk fermion Ψ(x, y).

In order to construct the effective 5D theory which contains four-fermion operators we need the
propagator for the bulk gauge bosons, given by

〈0|Aµ(x′, y′)Aν(x, y)|0〉 =
∫

d4p

(2π)4

2k

N2
n

eip
µ(x−x′)µe(k|y|+k|y

′|)∑

n

Tn(y
′)

−igµν
pµpµ −M2

n

Tn(y) (13)

where we have defined
Tn(y) ≡ J1

(

λne
k|y|
)

+ αnY1

(

λne
k|y|
)

. (14)

Let us first consider the action corresponding to the exchange of gauge boson KK excitations
between fermions confined at the TeV brane, ψ(x), which reads

S5D = g2
5D

∫

d4x
∫

d4x′
∫

dy
∫

dy′
∫

d4q

(2π)4

∑

n

eiq
µ(x−x′)µ

2k

N2
n

e(k|y|+k|y
′|)Tn(y

′) ⊗
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gµν

q2 −M2
n

Tn(y)(ψ̄γµT
rψ)x′,y′ δ(y

′ − πrc) (ψ̄γνT
rψ)x,y δ(y − πrc) (15)

where the five dimensional gauge coupling is related to the effective four dimensional one g by
g5D = g

√
πrc.

At scales Λ above M1 the action contains both light gauge boson KK modes and four-fermion
operators obtained by integrating out the KK gauge bosons heavier than Λ, given by

S5D
eff = −

∑

n

g2
5D

1

M2
n

∫

d4x
∫

dy 2k ek|y|
Tn(y)

Nn

(ψ̄γµT rψ)x,y δ(y − πrc) ⊗
{

∫

dy′ ek|y
′| Tn(y

′)

Nn

(ψ̄γµT
rψ)x,y′ δ(y

′ − πrc)

}

, (16)

with the sum over KK modes starting at Mn
>∼ Λ. The integration in y′ is trivial due to the delta

function. Since we evaluate Tn(y) at the TeV brane, we can neglect the term proportional to Y1

in (14). Using the approximate form of the normalization constant Nn given in eq. (11) and after
Fierz transform, we obtain the familiar form of a Nambu-Jona-Lasinio interaction

L5D
eff ⊃

c

Λ2
δ(y − πrc)(ψ̄RψL)(ψ̄LψR) , (17)

where we have approximated the sum over KK modes by

∑

n

1

M2
n

∼ 1

Λ2
. (18)

For the SU(N) gauge groups, the coefficient c is given by

c = 3kπrcg
2
N

{

C2(ψ̄L) + C2(ψR) − C2(ψ̄LψR)
}

(19)

where gN is the 4D coupling constant of SU(N) and C2(r) the second Casimir invariant for the
representation r of the gauge group. For U(1)Y ,

c = 3kπrcg
2
1Yψ̄L

YψR
(20)

being g1 the 4D U(1)Y coupling and Yr the hypercharge of the fermion r.
Obviously, four-fermion operators involving quarks (the left-handed SU(2)W doublet ψ3

L and
the right-handed bottom d3

R) are more strongly coupled and therefore more likely to form bound
states. The most attractive channels are scalars: an SU(2)W doublet ψ̄3

Ld
3
R and a charged color

triplet ψ̄3
Lψ

3c
R , with binding strength proportional to 3kπrc(

4
3
g2
3 − 1

18
g2
1) and 3kπrc(

2
3
g2
3 + 3

4
g2
2 − 1

36
g2
1),

respectively.
In [3, 4] it was shown that there is a critical value of the four-quark operator coefficient above

which this attractive interaction gives rise to a bound state. In the large Nc limit, the critical value
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is 8π2/Nc. For krc ∼ 11−12, we easily obtain four-quark operator couplings larger than the critical
one, thus there are bound states made of quarks located on the TeV brane. This is an expected
result, because we have seen that the coupling of the excited modes of bulk gauge bosons to TeV
brane fermions is stronger than the zero mode coupling.

Notice that the binding strength of the four-quark operators is supercritical for a wide range
of the gauge couplings gi. This is reassuring, because it means that the formation of bound states
is not very sensitive to the running of the couplings above the TeV scale, which is still an open
question in the Randall-Sundrum scenario [15],[18].

If these bound states acquire vevs we have to face some phenomenological problems: 〈ψ̄3
Lψ

3c
L 〉

would break charge and color, and since the Yukawa coupling of the doublet ψ̄3
Ld

3
R to its constituents

is typically large, the bottom quark would be too heavy, as it occurs in four dimensional top
condensate models [3, 4, 8]. We will address these issues in the next section.

Let us consider now the action corresponding to the exchange of gauge boson KK excitations
among fermions confined at the TeV brane and the bulk fermion Ψ(x, y),

S5D = g2
5D

∫

d4x
∫

d4x′
∫

dy
∫

dy′
∫

d4q

(2π)4

∑

n

eiq
µ(x−x′)µ

2k

N2
n

e(k|y|+k|y
′|) ⊗

Tn(y
′)

gµν

q2 −M2
n

Tn(y)(Ψ̄γµT
rΨ)x′,y′ (ψ̄γνT

rψ)x,y δ(y − πrc) (21)

In order to approximate this non-local interaction by four-fermion operators we use an interesting
property of the Randall-Sundrum model: the warp factor produces a shift of a bulk field wave
function depending on its 5D mass, so that massless fermionic fields are localized near the TeV
brane, as can be seen from the 4D KK decomposition of fermion fields (4). Thus we can approximate
the integral over the fifth coordinate y′ by a delta function δ(y′−πrc). This is just an approximation,
but it is justified by the warp factor, a feature not present in flat space scenarios.

Analogously to the brane fermion case, the effective action at the scale Λ is obtained by inte-
grating out the gauge boson KK modes heavier than Λ, and after Fierz transform we get

L5D
eff ⊃

c

kΛ2
δ(y − πrc) (Ψ̄Rψ

3
L)(ψ̄3

LΨR) , (22)

with c as defined in eqs. (19) and (20). The factor 1/k appears for dimensional reasons, but it will
be compensated by the normalization constant of the bulk fermion field, eqs. (3)-(5).

The light bound states would be four-dimensional scalars, namely H ∝ ψ̄3
LΨR, which we will

identify with the Higgs doublet, and Ψ̄Rd
3c
L . The binding strength of the corresponding four-quark

operators is 3kπrc(
4
3
g2
3 + 1

9
g2
1) and 3kπrc(

2
3
g2
3 + 2

9
g2
1), so H is more deeply bound than the SU(2)W

singlet Ψ̄Rd
3c
L . The Ψ field in eq.(22) is five dimensional (although the delta function forces y = πrc),

so it is not possible to apply the result of [4] on the critical coupling in a straightforward manner,
because it was obtained by solving the gap equation in four dimensions. However, since the bulk
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fermion is localized in the region where the first KK mode of the gauge bosons couples strongly to
the fermion zero-mode, we expect that these bound states are also produced. We assume that they
are, and proceed with the analysis of the phenomenological implications of this scenario.

Finally, there is also the possibility of forming a five-dimensional gauge singlet composite scalar,
Ψ̄Ψ. However since its wave function vanishes at the TeV boundary, there is no quartic coupling
involving this singlet and the previously discussed four-dimensional bound states, and thus it has
no effect in the low energy effective theory.

Therefore in the Randall-Sundrum scenario, with only one extra dimension, strongly coupled
four-quark operators are naturally induced and give rise to 4D bound states. The next step is to
compute the parameters of the composite fields produced by this condensation of quark pairs.

4 Effective theory in 5D

To derive the low energy effective Lagrangian we follow the procedure of ref.[4]. We use the auxiliary
field method to construct scalar fields from a pair of quarks and we assume that they become
propagating degrees of freedom below the compositeness scale, Λ. We consider just the most deeply-
bound channels, which lead to the lightest scalars, more likely to get negative squared-masses and
acquire vevs. Thus we define

H = − 1

Λ2

√

cH
k

(ψ̄3
LΨR) (23)

and

φ = − 1

Λ2

√
cφ(ψ̄

3
Ld

3
R) , (24)

where cH = 3πkrc(
4
3
g2
3 + 1

9
g2
1) and cφ = 3πkrc(

4
3
g2
3 − 1

18
g2
1). Introducing these definitions in (17) and

(22) we obtain the following effective Lagrangian at the compositeness scale

L5D[Λ] = −δ(y − πrc)
{√

cH
k

(Ψ̄Rψ
3
L)H + Λ2H†H −√

cφ(d̄
3
Rψ

3
L)φ+ Λ2φ†φ

}

. (25)

At scales µ < Λ, the Yukawa interactions will induce kinetic terms for the scalars, as well as an
effective potential which includes mass and quartic terms:

L5D[µ] = δ(y − πrc)
{

ZH(µ)DνH†DνH + Zφ(µ)∂νφ†∂νφ−
√

cH
k
Hψ̄3

LΨR −√
cφ(d̄

3
Rψ

3
L)φ− V (µ)

}

(26)

where

V (µ) = δ(y − πrc)

{

M2
HH

†H +
λH
2

(H†H)2 +m2
φφ

†φ+
λφ
2

(φ†φ)2 + λφHH
†Hφ†φ

}

(27)
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We compute the parameters of the effective Lagrangian L5D[µ] in the large Nc limit, where only
one fermion loop contributes. We thus need the bulk fermion propagator, given by

〈0|Ψ(x′, y′)Ψ̄(x, y)|0〉 =
∫ d4p

(2π)4
eip

µ(x−x′)µ
2k

1 − e−πkrc
e−

k
2
(|πrc−y|+|πrc−y′|) e−

3

2
(k|y|+k|y′|) i

1 + δn0
⊗

∑

n

(cn(y
′)PR + sn(y

′)PL)
γµpµ + γ5mn

pµpµ −m2
n

(sn(y)PR + cn(y)PL) (28)

where cn(y) = cos
{

mn

k

(

ek|y| − 1
)}

and sn(y) is defined analogously. At leading order in the 1/Nc

expansion the mass parameters are

M2
H = Λ2 −NccH

4

1 − e−πkrc

∑

n

∫ d4k

(2π)4

−i
kνkν −m2

n

(29)

m2
φ = Λ2 − 4Nccφ

∫ d4k

(2π)4

−i
kνkν

(30)

The above integrals are defined with a cutoff at the compositeness scale Λ. Assuming that the
number of KK modes at the scale Λ, nKK(Λ) = (eπkrc−1)Λ/πk, is large enough, we can approximate
the sum over KK modes by an integral,

∑

n → ∫

dn. Using that

−i
8π2

∫ nKK

0
dn
∫ 1

0
dp

p

p2 + (mn/Λ)2
= −inKK

16π2
f1 (31)

where

f1 =
∫ 1

0
dq
∫ 1

0
p2dp2 1

p2 + q2
∼ 0.63 . (32)

we obtain

M2
H = Λ2

(

1 − nKK(Λ)Nc

cH
4π2

f1

1 − e−πkrc

)

(33)

m2
φ = Λ2

(

1 −Nc

cφ
4π2

)

(34)

From eqs. (33),(34) we see that the Higgs mass M2
H can be negative while m2

φ remains positive,
because the contribution of the bulk fermion KK modes in the loop decreases M2

H . Since the
compositeness scale Λ is above the electroweak scale, cH should be close to the critical value for
which M2

H becomes negative. In this region, H acquires a vev and provides a positive contribution
to m2

φ through their coupling, λφH . The resulting mass m2
φ is then expected to stay positive and

large. By the same argument, other bound states less deeply-bound than H and φ will also have
positive squared-masses, preventing charge and color breaking, as well as a too heavy bottom quark.
Therefore, naturally we obtain that the only composite field which acquires a vev is H ∝ ψ̄3

LΨR,
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due to the KK excitations of one of its constituents. These excitations will give also a natural
framework for a light top mass, as we will see in the next section.

The wave function renormalization and self-coupling of the Higgs in the large Nc limit are given
by

ZH = NccH
2

1 − e−πkrc

∑

n

∫

d4k

(2π)4

−i
kµkµ(kνkν −m2

n)
(35)

λH = 8Ncc
2
H

(

1

1 − e−πkrc

)2
∑

n1,n2

∫

d4k

(2π)4
(−1)n1+n2

−i
(kνkν −m2

n1
)(kνkν −m2

n2
)
. (36)

Again, we approximate the sums over KK modes by integrals and we find

ZH = NccH
1

1 − e−πkrc
nKK(Λ)

8π2
f2 (37)

λH = nKK(Λ)2 Nc

2π2

(

cH
1 − e−πkrc

)2

f3 (38)

where 1

f2 =
∫ 1

0
dq
∫ 1

0
dp2 1

p2 + q2
∼ 2.26 (39)

f3 =
∫ 1

0
dq
∫ 1

0
dq′

∫ 1

0
p2dp2 1

(p2 + q2)(p2 + q′2)
∼ 2.71 . (40)

Redefining H →
√
ZHH to obtain a canonical kinetic term, the Higgs mass becomes

M̄2
H =

M2
H

ZH
=

2Λ2

f2

(

4π2(1 − e−πkrc)

NccHnKK
− f1

)

(41)

and the quartic coupling

λ̄H =
λH
Z2
H

=
32π2

Nc

f3

f 2
2

∼ 60 . (42)

In this scenario we have a heavy Higgs boson with a large (non-perturbative) quartic coupling,
which is generic from top mode scenarios. Having a heavy Higgs boson is not in contradiction with
data, nor with triviality bounds because the cut-off of the effective theory, the compositeness scale,
is very low. Regarding the unitarity bound from the longitudinal WW scattering cross section, the

1Note that these integrals are the same of [8] with f1 = F3(L), f2 = F1(L), f3 = F5(L), where L ∼ (TeV )−1 is
the length of the fifth dimension
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Higgs mass we obtain at tree level, mH = v/
√

λ̄H , is above this bound. However, with such a large
quartic self coupling we cannot trust the tree level relation between the mass and the vev of the
Higgs, and we can only take it as a rough estimate of the Higgs mass.

Next-to-leading order corrections in the Nc expansion (i.e., contributions from gauge bosons and
composite scalar loops) could be included by evolving the couplings from the compositeness scale
Λ down to the electroweak scale. To do so, we would need the β-functions for the four-dimensional
SM couplings in the Randall-Sundrum scenario, which have not been computed yet. However we
do not expect that next-to-leading effects would change qualitatively our results.

5 Fermion Masses

In this section we discuss the generation of fermion masses within the simplest set-up described in
sec. 2. First, we calculate the top quark mass and then we include the other two generations in the
model.

5.1 Top Mass

To compute the top quark mass we have to canonically normalize the Higgs kinetic term in the
effective 5D Lagrangian (26) and integrate L5D

eff over the fifth dimension y to obtain the 4D effective
Lagrangian. We find

L4D ⊃ −ytHΨ̄R(x, πrc)ψ
3
L(x) (43)

where the top Yukawa coupling yt is given by

yt =

√

cH
ZH(1 − e−πkrc)

=
2
√

2π√
NcnKKf1

. (44)

Recall that nKK is the number of KK modes produced at the compositeness scale Λ. Thus we obtain
that the top Yukawa coupling is suppressed by the factor

√
nKK , and turns out to be order one for

nKK ∼ 10, i.e., Λ ∼ 10M1, with M1 the mass of the first gauge boson KK excitation. This result
is also generic in top condensate models with flat extra dimensions [8, 9], avoiding a too heavy top
quark typical of four dimensional top condensate models.

The zero mode of ΨR(x, πrc) becomes the four-dimensional right-handed top quark, tR. Taking
into account the KK decomposition of the bulk fermion (4), when the Higgs acquires a vev 〈H0〉 =
v/

√
2 we obtain the following mass matrix for the tL component of ψL and the Ψ KK modes:

(

t̄L Ψ̄
(1)
L Ψ̄

(2)
L . . .

)













yt
v√
2

ytv ytv ytv . . .

0 πk
eπkrc−1

0 0 . . .

0 0 2πk
eπkrc−1

0 . . .

. . . . . . . . . . . . . . .

























tR
Ψ

(1)
R

Ψ
(2)
R

. . .













(45)
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The diagonal entries are the usual KK mass terms. The top mass is given by the lowest eigenvalue
of this matrix. To compute it, we can perturbatively diagonalize the mass matrix, using that
mn = nπke−πkrc > v because KK excitations have not been observed at the moment. Thus, an

expansion in
(

v
πke−πkrc

)2 ≪ 1 is justified and within this approximation the lowest eigenvalue is

mt =
ytv√

2

[

1 −O
(

v

πke−πkrc

)2
]

, (46)

which gives easily a top mass in the experimental range ∼ 170 GeV for nKK ∼ 10.

5.2 Flavor Symmetry Breaking

Once we have accommodated the electroweak symmetry breaking scale and the top mass, the next
step is to generate masses for the remaining quarks and leptons of the Standard Model. The
simplest possibility is that the fermions of the first two generations are confined at the TeV brane.
Then, there would be three degenerate Higgs doublets H i ∝ ψ̄iLΨR , (i = 1, 2, 3), which obtain
a vev and break the U(2)ψ × U(2)u flavor symmetry, leading to two Nambu-Goldstone bosons,
besides the one eaten by the electroweak gauge bosons. Obviously, it is necessary a source of flavor
symmetry breaking. When fermions are located near the TeV brane, higher-dimensional operators
are suppressed by the multi-TeV scale, so generically there would be four-quark operators of the
type [8, 9]

ηi
Λ2

(ψ̄iLΨR)(Ψ̄Rψ
i
L) , (47)

where the coefficients ηi are O(1) and can be treated perturbatively. We have seen that the squared-
mass of a composite field depends on the strength of the interaction between its constituents (see
eq.(33)), thus assuming that the coefficient η3 is slightly larger than the others, it is possible that
only H3 gets a vev, giving a mass of the electroweak scale just to the top quark. The rest of
bound states may be quite heavy, even with small differences among the flavor symmetry breaking
coefficients ηi.

Of course, if all higher-dimensional operators consistent with the SM symmetry are only sup-
pressed by the multi-TeV scale, flavor-changing effects and proton decay become a problem, much
as in the original Randall-Sundrum set-up. We do not attempt to solve these problems here, and we
just assume that dangerous flavor-changing and baryon number violating operators are suppressed
by some mechanism of the underlying fundamental theory.

If the only light composite scalar is H3, to produce the observed pattern of fermion masses and
mixings we shall consider the presence of the effective operators

1

Λ2
(Ψ̄Rψ

3
L)
(

λuijψ̄
i
Lu

j
R + λdijψ̄

i
Liσ2d

j
R + λeij l̄

i
Liσ2e

j
R

)

, (48)

which would lead to Yukawa couplings of the H3 doublet to the SM fermions. As usual, large
hierarchies in the coefficients λij should be assumed in order to explain the observed fermion masses.
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6 The Standard Model in the Bulk

The minimal model studied in the previous sections should be regarded as a ‘working proof’ of
dynamical symmetry breaking in the Randall-Sundrum scenario, but it is not by any means unique.
A more natural possibility is that all SM fermions propagate in the 5D bulk. In this case, the
approximation of the higher-dimensional gauge interactions by local four-fermion operators is ques-
tionable and the issue of whether dynamical symmetry breaking really takes place or not is highly
non trivial [19]. A careful study of such dynamical problem is beyond the scope of this paper, but
given the strong coupling between gauge boson KK modes and the zero mode of fermions localized
near the TeV brane, we argue that the condensation of 5D massless quarks seems very likely.

The localization of fermion fields living in a slice of AdS5 depends on its 5D masses [14]. Left-
handed (right-handed) zero modes of fermions with bulk mass terms M5D/k < 1/2 (M5D/k > −1/2)
(in particular massless fermions, as we have seen) live near the TeV brane, while the left-handed
(right-handed) zero modes of fermions with M5D/k > 1/2 (M5D/k < −1/2) are localized near
the Planck boundary. For left-handed (right-handed) zero modes M5D/k = 1/2 (M5D/k = −1/2)
corresponds to the conformal limit, and in this case the zero mode is flat. On the other hand,
KK modes of gauge bosons are always located near the TeV brane and therefore they will couple
more strongly to light fermions 2. We thus assume that the left-handed third generation quarks Ψ3

have M5D/k
<∼ 1/2 and the right-handed top quark U3 has M5D/k

>∼−1/2, and due to the strong
coupling to gauge boson KK modes they form bound states. On the contrary, if the remaining SM
left-handed (right-handed) fermions have 5D mass terms M5D/k

>∼ 1/2 (M5D/k
<∼−1/2), their zero

modes live near the Planck brane, where the coupling to gauge boson KK modes is too weak to
produce composite states.

Under these assumptions, we expect that the SM gauge interactions in the bulk will induce only
condensates of third generation quarks Ψ3 and U3. Using the most attractive channel analysis [9]
one finds that the channel H = Ψ̄3U3 is the most attractive one among those which transform
non-trivially under the SM group, but there would be gauge-singlet scalars more tightly bound
than H , namely Ψ̄3Ψ3 and Ū3U3. As a consequence, these singlets would acquire vevs which do not
break any gauge symmetry and provide a positive contribution to the squared-mass of the SU(2)W
doublet H . In this case, it is not clear whether the scalar effective potential is minimized by a
nonzero vev of H ; moreover, simple estimates are not reliable due to the non-perturbative nature
of the quark condensation. To avoid this problem we could incorporate more Z2 symmetries during
the orbifold projection, preventing the existence of singlet zero modes in the KK decomposition
[9]. Thus the lightest modes of the singlets would have squared masses less negative, allowing
electroweak symmetry breaking.

If the composite Higgs H acquires a vev, it will provide electroweak scale masses for the gauge
bosons and the top quark. It is important to note that since the composite Higgs has a 5D mass

2In particular, at the conformal limit KK gauge bosons do not couple to the fermion zero mode, because the
five-momentum is conserved in this limit.
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of order TeV, it is also localized near the TeV boundary. In order to explain the SM fermionic
spectrum we have to assume the presence of four-fermion operators of the type (48). However

now the 5D Yukawa couplings can be all of order λ
(5)
ij k ∼ 1, because the hierarchy of masses is

originated by the exponentially small overlap of the fermions localized near the Planck brane with
the composite Higgs field, much as in the model of ref.[14] with a fundamental SM Higgs localized
on the TeV brane. There, it is shown that the spectrum of the SM fermionic sector can be naturally
generated just assuming small splittings in the bulk fermion masses, all in the range |M5D|/k ∼ 1.
We refer the reader to [14] for details. This idea of using the warp factor to explain fermion mass
hierarchies has also been consider in [12] in the context of neutrino masses.

Finally, we should point out that in this scenario FCNC dangerous operators are safely sup-
pressed, but proton decay is still a problem [14].

7 Conclusions

We have studied dynamical electroweak symmetry breaking in the Randall-Sundrum scenario and we
have shown that it is possible to break the electroweak symmetry using the ideas of top condensate
mode in the context of one warped extra dimension, with no fundamental fields beyond the SM
gauge bosons and fermions living in the 5D bulk.

In warped compactifications, the coupling of gauge boson KK excitations to fermions depends
on the position of the fermion field in the bulk. In particular, there is a sizeable enhancement of
their couplings to fermions localized near the TeV brane, as compared with the gauge boson zero
mode coupling. Such a strong interaction produces quark pair condensates, some of which can
acquire vevs and break dynamically the electroweak symmetry. Contrary to what happens in flat
extra dimensions [8], we do not have to rely on the degeneracy of KK modes in D ≥ 6 dimensions
to trigger dynamical symmetry breaking.

We have considered a minimal model, where only gauge bosons and the right-handed top quark
propagate in the 5D bulk, while all the other SM fermions are confined on the TeV brane. The Higgs
boson emerges as a bound state of the left-handed third generation quarks and the right-handed top.
The simplicity of the model allows to perform reliable calculations within the four-fermion operator
approximation. We have computed, at leading order in the Nc expansion, the parameters of the
composite scalar effective theory and the top quark mass. The reason why at least the right-handed
top quark must live in the bulk is twofold. First, its KK excitations active at the compositeness
scale give a large and negative contribution to the squared-mass of the SU(2)W doublet composite
Higgs, which then acquires a vev and breaks the electroweak symmetry. Second, the number of its
active KK excitations suppresses the top quark Yukawa coupling, leading to a top mass within the
experimental range. Although our calculation only includes the leading Nc contribution, it shows
that dynamical electroweak symmetry breaking is feasible in the Randall-Sundrum model, and we
do not expect that next-to-leading order corrections will invalidate this conclusion.

We have also considered a more natural scenario, in which all SM fermions as well as the gauge
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bosons propagate in the bulk. In this case, a local four-fermion approximation of the strong inter-
actions mediated by KK gauge boson modes is not justified, and we can only describe qualitatively
the expected features of the model. Interestingly enough, just assuming that the light fermions are
localized near the Planck brane and the heavy ones near the TeV boundary, we argue that only
composite states bound out of third generation quarks are produced and we can explain the fermion
mass hierarchies. The question of whether the composite Higgs doublet does acquire a nonzero vev
requires further investigation.
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comments on the manuscript. V.S. would like to thank the Center for Theoretical Physics of the
Massachusetts Institute of Technology for its hospitality while this work was initiated. This work
was supported in part by the spanish DGESIC grants PB97-1261 and PB98-0693, by the Generalitat
Valenciana under grant GV99-3-1-01 and by the TMR network contract HPRN-CT-2000-00148 of
the European Union.

References

[1] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B429 (1998) 263 [hep-ph/9803315].
I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B436 (1998) 257
[hep-ph/9804398].

[2] L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221].

[3] V.A. Miransky, M. Tanabashi and K. Yamawaki, Phys. Lett. B221 (1989) 177; Mod. Phys.
Lett. A4 (1989) 1043.

[4] W. A. Bardeen, C. T. Hill and M. Lindner, Phys. Rev. D41 (1990) 1647.

[5] B. A. Dobrescu and C. T. Hill, Phys. Rev. Lett. 81 (1998) 2634 [hep-ph/9712319].

[6] N. Arkani-Hamed and S. Dimopoulos, [hep-ph/9811353].

[7] A. B. Kobakhidze, [hep-ph/9904203].

[8] B. A. Dobrescu, Phys. Lett. B461 (1999) 99 [hep-ph/9812349]. H. Cheng, B. A. Dobrescu and
C. T. Hill, Nucl. Phys. B589 (2000) 249 [hep-ph/9912343].

[9] N. Arkani-Hamed, H. Cheng, B. A. Dobrescu and L. J. Hall, Phys. Rev. D62 (2000) 096006
[hep-ph/0006238].

15

http://arxiv.org/abs/hep-ph/9803315
http://arxiv.org/abs/hep-ph/9804398
http://arxiv.org/abs/hep-ph/9905221
http://arxiv.org/abs/hep-ph/9712319
http://arxiv.org/abs/hep-ph/9811353
http://arxiv.org/abs/hep-ph/9904203
http://arxiv.org/abs/hep-ph/9812349
http://arxiv.org/abs/hep-ph/9912343
http://arxiv.org/abs/hep-ph/0006238


[10] W. D. Goldberger and M. B. Wise, Phys. Rev. D 60 (1999) 107505 [hep-ph/9907218].

[11] H. Davoudiasl, J. L. Hewett and T. G. Rizzo, Phys. Lett. B473 (2000) 43 [hep-ph/9911262].
A. Pomarol, Phys. Lett. B486 (2000) 153 [hep-ph/9911294].

[12] Y. Grossman and M. Neubert, Phys. Lett. B474 (2000) 361 [hep-ph/9912408].

[13] S. Chang, J. Hisano, H. Nakano, N. Okada and M. Yamaguchi, Phys. Rev. D62 (2000) 084025
[hep-ph/9912498].

[14] T. Gherghetta and A. Pomarol, Nucl. Phys. B586 (2000) 141 [hep-ph/0003129].

[15] A. Pomarol, Phys. Rev. Lett. 85 (2000) 4004 [hep-ph/0005293].

[16] H. Davoudiasl, J. L. Hewett and T. G. Rizzo, Phys. Rev. D63 (2001) 075004 [hep-ph/0006041].

[17] F. del Aguila and J. Santiago, Phys. Lett. B493 (2000) 175 [hep-ph/0008143].

[18] J. Kubo, H. Terao and G. Zoupanos, [hep-ph/0010069].

[19] M. Hashimoto, M. Tanabashi and K. Yamawaki, [hep-ph/0010260].

16

http://arxiv.org/abs/hep-ph/9907218
http://arxiv.org/abs/hep-ph/9911262
http://arxiv.org/abs/hep-ph/9911294
http://arxiv.org/abs/hep-ph/9912408
http://arxiv.org/abs/hep-ph/9912498
http://arxiv.org/abs/hep-ph/0003129
http://arxiv.org/abs/hep-ph/0005293
http://arxiv.org/abs/hep-ph/0006041
http://arxiv.org/abs/hep-ph/0008143
http://arxiv.org/abs/hep-ph/0010069
http://arxiv.org/abs/hep-ph/0010260

