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Abstract

We analyse the neutral scalar sector of the MSSM without R-parity. Our analysis is performed
for a one-generation model in terms of “basis-independent” parameters, and includes one-loop
corrections due to large yukawa couplings. We concentrate on the consequences of large Rp

violating masses in the soft sector, which mix the Higgses with the sleptons, because these are
only constrained by their one-loop contributions to neutrino masses. We focus on the effect of
Rp-violation on the Higgs mass and branching ratios. We find that the experimental lower bound
on the lightest CP-even Higgs in this model can be lower than in the MSSM.

November 1999

1On leave of absence from the Universidad Antonio Nariño, Santa Fe de Bogotá, COLOMBIA.
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1 Introduction

Supersymmetry(SUSY) [1, 2, 3, 4] is a popular extension of the Standard Model (SM), that introduces
new scalar partners for SM fermions and new fermionic partners for SM bosons. A consequence of
the enlarged particle content of SUSY models is that baryon (B) and lepton (L) number are not
automatically conserved in the renormalisable Lagrangian. In the Standard Model, gauge invariance
implies that B and L are conserved in any terms of dimension ≤ 4; this is no longer the case in SUSY,
so a discrete symmetry is often imposed to forbid the unwanted interactions that violate B and/or L.

There are a variety of discrete symmetries [5] that can be imposed to remove the renormalisable
B and L violating terms from the SUSY Lagrangian. The most common is R-parity [6], under which
particles have the charge Rp ≡ (−1)3B+L+2S , where S is the spin. SM particles are even under this
transformation, and SUSY partners are odd, which forces SUSY particles to always be made in pairs
and forbids the Lightest Supersymmetric Particle (LSP) from decaying.

Alternatively, one can allow the B and L violating interactions to remain in the SUSY Lagrangian,
and constrain the couplings to be consistent with present experimental data. The renormalisable Rp

violating couplings violate either B, or L. If both types of coupling are simultaneously present, they
can mediate proton decay, and are therefore constrained to be very small [7]. So in this paper, we
will assume that the B violating couplings are absent—forbidden by some other symmetry— and only
consider the L violating couplings. These are particularly interesting, because L violation is observed
in neutrino masses.

The renormalisable Rp violating interactions have a variety of phenomenological consequences [8].
These include generating majorana neutrino masses, mediating various flavour and lepton number
violating processes [9, 10, 11], and modifying the signatures of supersymmetric particles at colliders
[11, 12] In particular it allows the lightest supersymmetric particle (LSP) to decay [14, 15]. It can also
modify the Higgs sector.

The Higgs sector of the Rp-conserving MSSM has been extensively studied [3, 16, 17, 18, 19, 20,
21, 22], with a lot of emphasis on both one-loop [23, 24, 25, 26, 20] and more recently on two-loop
effects [19, 27, 28, 29, 30, 31, 32] to the lightest Higgs boson mass. The most relevant one-loop effects
due to the large top-quark Yukawa coupling are from the stop-top sector. There are several different
approaches that have been utilised to incorporate these loop effects: effective potential methods,
renormalisation group running, explicit diagrammatic calculations (see e.g. [33] for a review). The
effective potential, which we use here, can in a simple way take into account the most relevant effects
although it does not incorporate any momentum-dependent contributions.

A Higgs boson could be the next particle discovered at accelerators. It is therefore interesting
to study its properties in various extensions of the Standard Model, in particular SUSY. One of the
advantages of the supersymmetric Standard Model for cosmology is that baryogenesis may be possible
at the electroweak phase transition— if the Higgs is light enough [39, 40]. However, as the experimental
lower limit on the Higgs mass increases, the parameter space remaining in the MSSM for baryogenesis
is reduced. Adding Rp violation can decrease the experimental lower limit on the Higgs mass, which
could increase the available parameter space for electroweak baryogenesis.

In this paper, we study the neutral Higgs sector at one-loop in the Rp-violating MSSM with
one generation of quarks and leptons, since this toy model already contains the main effects of the
complete three generation case. We vary bilinear and trilinear Rp violating parameters over their
experimentally allowed ranges, and discuss how this can change the masses of the neutral CP-even
scalar bosons and the branching ratios of the lightest one, h1. The Rp-violating Higgs sector has been

2



studied by numerous authors: novel decays of both neutral [34, 35] and charged [36] scalar bosons have
been analysed in the context of bi-linear Rp violation, and the mass matrices of the Higgs sector have
been derived, considering only the effect of bi-linear terms [37] and in the general case with both bi-
and tri-linear couplings [38]. Our analysis differs from previous treatments in that we include one-loop
yukawa corrections to the Higgs masses, and we parametrise Rp violation in a basis-independent way
that avoids much possible confusion about what is a lepton/slepton in a lepton number non-conserving
theory.

The next section of this paper introduces our notation and discusses the basis-independent approach
to Rp violation. The third section is devoted to experimental constraints on the Rp violating parameters
in our model, largely from neutrino masses. In the fourth and fifth sections, we calculate the masses
and various branching ratios for the CP-even Higgses at one loop. We present our results in section
six. The first appendix contains the one-loop Higgs mass matrices in an arbitrary basis. The second
appendix contains the same information, but in the basis where the sneutrino vev is zero (to one loop).
The third appendix contains a few useful but long formulae.

2 Basis dependence of the Lagrangian

In the SM, the Higgs and leptons have the same gauge quantum numbers. However, they cannot mix
because the Higgs is a boson and the leptons are fermions. In a supersymmetric model this distinction
is removed, so the down-type Higgs and sleptons can be assembled in a vector LJ = (Hd, Li) with
J : 0..Ng = the number of generations. We write vectors in LJ space with a capitalised index J or as
vectors ~v, and we write matrices in LJ space in bold face m. Using this notation, the superpotential
for the supersymmetric SM with Rp violation can be written as

W = µJHuLJ + λJKℓ
τ LJLKEc

ℓ + λJpq
b LJQpD

c
q + hpq

t HuQpU
c
q (1)

The Rp violating and conserving coupling constants have been assembled into vectors and matrices in
LJ space: we call the usual µ parameter µ0, and identify the usual ǫi = µi,

1
2
hjk

e = λ0jk
τ , λijk = λijk

τ ,

hpq
d = λ0pq

b , and λ
′ipq = λipq

b . Lower case roman indices i, j, k and p, q are lepton and quark generation
indices. In the body of the paper, we will work in a one generation model, so 1

2
hτ = λ01

τ , hb = λ0
b ,

and λ
′

= λ1
b and now the capitalised indices run from 0..1, and 1 corresponds to the third lepton

generation. We often write d and L (for down-type Higgs and slepton) rather than 0 and 1. Q, U c

and Dc are the third generation quark superfields. In the one-generation model, there is no λLLEc

interaction (because λ is antisymmetric on the capitalised indices).
We also include possible Rp violating couplings among the soft SUSY breaking parameters, which

can be written as

Vsoft =
m̃2

u

2
H†

uHu +
1

2
LJ†[m̃2

L]JKLK + BJHuLJ + AtHuQU c + AJ
b LJQDc + AJK

τ LJLKEc + h.c. (2)

Note that we have absorbed the superpotential parameters into the A and B terms; e.g. we write
B0HuHd not B0µ0HuHd

2. We abusively use capitals for superfields (as in (1)) and for their scalar
components.

2We do this because BJ is a vector—a one index object—in {LJ} space. ¿From this perspective, giving it two indices
can lead to confusion.
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The reason we have put the Higgs Hd into a vector with the sleptons, and combined the Rp -
violating with the Rp conserving couplings, is that the lepton number violation can be moved around
the Lagrangian by judiciously choosing which linear combination of hypercharge = -1 doublets to
identify as the Higgs/higgsino, with the remaining doublets being sleptons/leptons. This can create
some confusion when one tries to set experimental constraints on lepton number violating couplings;
it makes little sense to set an upper bound on a coupling constant that can be made zero by a basis
rotation.

If one calculates a physical observable as a function of measurable quantities, then the basis in which
one does the intermediate steps of the calculation is irrelevant. However, if one computes observables
as a function of Lagrangian quantities, as is common in Supersymmetry, it can be important to specify
the basis chosen in the Lagrangian. In SUSY theories with lepton number violation, there are various
possible choices for what one identifies as a lepton/slepton in the Lagrangian, and the interactions
that are “lepton number violating” depend on this identification. However, this freedom to redefine
what violates L is deceptive, because phenomenologically we know that the leptons are the mass
eigenstate e, µ and τ , so we know what lepton number violation is. There are two possible approaches
to this fictitious freedom; either one chooses to work in a Lagrangian basis that corresponds to the
mass eigenstate basis of the leptons, or one can construct combinations of coupling constants that are
independent of the basis choice to parametrise the Rp violation in the Lagrangian [12, 41, 42, 43, 44].
These invariant measures of Rp violation in the Lagrangian are analogous to Jarlskog invariants which
parametrise CP violation.

The standard option is to work in a basis that corresponds approximately to the mass eigenstate
basis of the leptons. For instance, if one chooses the Higgs direction in LJ space to be parallel to µJ ,
then the additional bilinears in the superpotential µi will be zero. In this basis, the sneutrino vevs are
constrained to be small by the neutrino masses, so this is approximately the lepton mass eigenstate
basis. Lepton number violation among the fermion tree-level masses in this basis is small by construc-
tion, so it makes sense to neglect the bilinear Rp violation, or treat the small Rp violating masses as
“interactions” within perturbation theory, and set constraints on the trilinears, as is commonly done
(for a review, see .e.g. [9, 10]. For a careful analysis including the bilinears, see [45]).

In this paper, we present our results in terms of basis-independent “invariants”. We also give
explicit results in the basis where the sneutrino does not have a vev, which is close to the lepton
mass eigenstate basis. This is to present our calculation in a familiar way. The advantage of the
first approach is that we can express Higgs masses and branching ratios in terms of inputs that are
independent of the choice of basis in the Lagrangian. The drawback is that the “invariants” can
appear unwieldy and forbiddingly complicated. However, since we work in a model with only one
lepton generation, the linear algebra is tractable.

The aim of the “basis-independent” approach is to construct combinations of coupling constants
that are invariant under rotations in LI space, in terms of which one can express physical observables.
By judiciously combining coupling constants one can find “invariants” which are zero if Rp is conserved,
so these invariants parametrise Rp violation in a basis-independent way. For instance, consider the
superpotential of equation (1) in the one generation limit, I : 0..1. It appears to have two Rp violating
interactions: µ1HuL and λ′LQDc. It is well known that one of these can be rotated into the other by
mixing Hd and L [8]. If

H ′
d =

µ0
√

µ2
0 + µ2

1

Hd +
µ1

√

µ2
0 + µ2

1

L
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L′ =
µ1

√

µ2
0 + µ2

1

Hd −
µ0

√

µ2
0 + µ2

1

L , (3)

then the Lagrangian expressed in terms of H ′
d and L′ contains no HuL

′ term. One could instead dispose
of the λ′LQDc term. The coupling constant combination that is invariant under basis redefinitions in
(Hd, L) space, zero if R parity is conserved, and non-zero if it is not is µ0λ

′−hdµ1 = (µ0, µ1)∧ (hd, λ
′).

In this paper, we are interested in Rp violating effects in the Higgs sector, so we are interested in
constructing invariants involving BJ , the LJ mass matrix [m2

L]JK ≡ [m̃2
L]JK + µJµK , and the LJ vev

vJ ≡ 〈L0
J〉. The vev vJ is a dependent variable, fixed by BJ and [m2

L]JK in the minimisation conditions.
In an arbitrary basis, there are therefore two Rp violating masses in the Higgs sector: B1 and [m2

L]01.
However one can always choose the basis such that one of these parameters is zero, so we expect only
one independent invariant parametrising Rp violation in the (tree-level) Higgs mass matrices.

There is Rp violation in the Higgs sector if ~B, [m2
L], and ~v disagree on which direction in LJ space

is the Higgs, or equivalently, if it is not possible to choose a basis where vL = BL =[m2]dL = 0. ~B is

a vector that would like to be the Higgs—that is, if the basis in LI space is chosen such that Hd ∝ ~B
then Bd = |B| and BL = 0, so the mass matrix mixes Hu with Hd but not with L. [m2

L]JK has two
eigenvectors in LJ space, one of which would like to be the Higgs, and the other the slepton. ~v is also
a candidate direction in LJ space to be the Higgs—the basis where Hd is the ~v direction is the basis
where the sleptons do not have vevs. There is Rp violation if two of ~B, ~v and [m2

L]JK do not agree on
what is the Higgs direction. A convenient choice for the invariant parametrising this Rp violation at
tree-level is

R = v2| ~B|2 − (~v · ~B)2 ; δR =
R

v2B2
, (4)

where δR is the normalised version of the parameter, varying from 0 for no Rp violation to 1 for
maximal Rp violation. As we will see from the minimisation conditions (equations 22 and 23), at tree

level χ~B = −[m2
L] · ~v, where χ is the vev of the up-type Higgs, so we can also write χ2R = v2~v · [

m2
L]2 · ~v − (~v · [m2

L] · ~v)2. R parametrises the Rp violation in the mass matrix relevant for the Higgs.√
δR is the sine of the angle 3 between ~B and ~v (see figure 1), which is clearly independent of the choice

of basis in LJ space.
There are many other invariants that parametrise Rp violation among other coupling constants.

For instance, there is an additional invariant among the bilinears in one generation [41, 12]. There
are three possible directions in LJ space that could be identified as the Higgs: BJ , µJ and one of
the eigenvectors of [m2

L]JK . If these three vectors do not coincide, there should be two invariants
parametrising the misalignment between the three vectors. One in the scalar sector, as constructed
in equation (4), and an additional one involving ~µ. For instance, if ~µ is misaligned with respect to ~v,
mixing between neutrinos and neutralinos generates a tree-level neutrino mass ∼ ~µ∧~v = v ·λτ ·µ/|λτ |.
Invariants parametrising Rp violation between bilinears and trilinears can also be constructed. Since
the upper bound on neutrino masses constrains ~µ ∧ ~v to be small, we neglect it in this paper, and
concentrate on the effects of δR.

Up to this point, we have discussed the construction of invariants using parameters from the
Lagrangian without specifying whether they were tree-level, or computed to some loop order. We
choose to write the invariants in terms of one-loop parameters. We do this because the invariants
were constructed to avoid expressing measurable quantities (e.g. masses) in terms of unmeasurable

3We take the positive square root: sin η = +
√

δR.
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Figure 1: Non-orthogonality of the soft mass BJHuL
J and the Hd-slepton vev 〈LJ〉 = vJ . The angle

η between ~B and ~v is basis-independent. The “invariant” R = v2B2 − (~v · ~B)2 is equal to v2B2 sin2 η.
The basis here is Ĥ ∝ ~v, and L̂ ∝ ~v · λτ .
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basis dependent Lagrangian parameters. So we define the invariants in terms of one-loop parameters,
because these are closer to what is physically measured. The invariants R and δR discussed above are
therefore taken to be

R = v2 ~M2
u − (~v · ~Mu)

2 ; δR =
R

v2 ~M2
u

, (5)

where ~Mu is the one-loop corrected version of ~B that appears in the CP-odd mass matrix (19). From

the one-loop minimisation conditions (22) and (23), ~Mu = −M·~v/χ, where M is the one-loop version
of m2

L that appears in the CP-odd mass matrix. R can therefore also be written as

χ2R = v2~v · M2 · ~v − (~v · M · ~v)2. (6)

The drawback to using the one-loop expressions is that it is not obvious which loop corrections should
be included.

We will use δR rather than R as our Rp violating parameter, because it is dimensionless and

normalised to 1. For small δR, this is clearly a good choice, because the magnitude of ~Mu is largely
determined by its Rp conserving component (∼ mA sin β cos β in the MSSM). However, as δR increases

to 1, the magnitude of the Rp violating mass2 term | ~Mu|
√

δR can nonetheless decrease if | ~Mu| does.
We will see that for some parameter choices, this is the case.

We would like to determine which are the necessary conditions on the Rp violating parameters
to produce a substantial effect on physical observables. Hence, we do not assume in this paper that
BI ≈ BµI , (and [m̃2

L] ≈ m̃2 I) as would be expected in many models of SUSY breaking. This means
that we allow δR to be as large as experimentally allowed.

3 Experimental constraints

Both low and high-energy processes can place stringent bounds (see e.g. [9, 10]) on the Rp-violating
couplings which give rise to new interactions. The most relevant constraints on the Rp violating bilinear
couplings come from neutrino masses. The trilinear λ′ also contributes to neutrino masses, but the
most restrictive bound on λ′ comes from Z decay to bb̄. We now mention the contribution to neutrino
masses due to various Rp violating parameters; the purpose of this discussion is to set bounds on our
parameters, not to calculate the neutrino mass.

In Rp-violating models the neutrino can acquire a mass at tree-level through mixing with the
neutralinos and also through loops which violate lepton number by two units. In the basis where the
sneutrino vevs are zero, the tree-level contribution can be written as [41, 46, 47]

mντ
=

m2
Zµ0Mγ̃ cos2 β

m2
ZMγ̃ sin 2β − M1M2µ0

sin2 ξ (7)

where M1, M2 are gaugino masses, Mγ̃ = M1 cos2 θW +M2 sin2 θW , and sin ξ = (~µ∧~v)/|µ||v|. Thus the
neutrino mass sets the constraint that ~µ be aligned with ~v, which determines the tree-level contribution,
without imposing any constraints on the other Rp-violating parameters.

There is also a loop contribution to the neutrino mass proportional to δR, as discussed in [48, 49, 50].

If ~v and ~Mu are not parallel, then the Rp violation in the soft masses will mix the real (imaginary) part
of the sneutrino with the CP-even (odd) Higgses. This introduces a mass splitting between ν̃R = Re(ν̃)
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and ν̃I = Im(ν̃). A neutrino mass can be generated by a neutralino-neutral scalar loop —see figure
(2). The amplitude for this diagram is

mν =
g2

64π2

∑

χj

mχj
(Zj2 − Zj1g

′/g)2
∑

i

(ν̂ · ŝi)
2ǫiB0(0, M

2
i , m2

χj
) (8)

We in practise neglect the sum over the four neutralinos and just include the lightest one. The Zij are
the usual mixing angles between the neutralino mass and interaction eigenstate bases—for simplicity
we only include the gauge coupling of the neutralino. We sum over three CP-even and two CP-odd
scalars : si = {h1, h2, h3, A1, A2}. The {(ν̂ · ŝi)} are the mixing angles between the neutrino and
the various scalars si. They are basis-independent quantities which we will calculate as dot products
in LJ space in section 5. ǫi is +1 for the three CP-even Higgses and −1 for the CP-odd. B0 is a
Passarino-Veltman function:

B0(0, M
2
s , m2

χ) = −16π2i lim
q→0

∫

d2ωk

(2π)2ω

1

[(k + q)2 − m2
χ](k2 − M2

s )
⊃ − M2

s

M2
s − m2

χ

ln

(

M2
s

m2
χ

)

. (9)

There are divergent and scale-dependent contributions to B0 in addition to the right hand side of
equation (9); however these cancel in the sum over scalars si in equation (8).

ν ν

hi, Ai

x
χ

Figure 2: Contribution to the one-loop neutrino mass from bilinear Rp violation in the soft masses.
This diagram is possible because the sneutrinos mix with the Higgses.

The dependence of mν on different parameters can be understood in various limits. As δR → 0
two of the CP even neutral scalars, hi and hj , become h and H of the MSSM, the third CP even
scalar hk becomes ν̃R, and A1 → A of the MSSM while A2 → ν̃I . The overlap between the neutrino
and the MSSM Higgs {hi, hj, A1} goes to zero (we will show in the next section that it is ∝ δR), and
ν̂ · ν̃R ∼ ν̂ · ν̃I → 1. The real and imaginary parts of the sneutrino contribute to the sum with opposite
sign; we expect m2

hk
− m2

A2
∝ δR so the sneutrino contribution will also go to zero with δR [48, 49].

The neutrino mass also decreases (for arbitrary δR) as either the neutralino mass or the CP-odd
scalar mass mA2

goes to infinity. We can therefore estimate

mν
<
∼

g2mχδR

64π2



















m2

Z

m2

A2

mA2
→ ∞

m2

Z

m2
χ

mχ → ∞
(10)

where we have assumed that as mA2
or mχ become large, all remaining masses are of order mZ . This

is an overestimate, because it neglects cancellations in the sum (8). For δR ∼ 1, and most choices of
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mA1
, mA2

, mχ and tan β, the neutrino mass will be < 10 MeV, so there is no bound on δR from the
laboratory limit mντ

< 10 MeV. If we require mν
<
∼ eV, as would be required by oscillation data, we

find δR
<
∼ 10−6 for mA2

∼ mχ ∼ mZ .
The second type of loop diagrams involve fermion-sfermion loops. The contribution proportional

to the trilinear coupling constant λ′
i33 in the usual three-generation mass-eigenstate basis-analysis, can

be expressed in a basis-invariant way as

mloop
ντ

=
3

16π2
Xb

f(x)

m2

b̃2

(ν̂ · ~λ)2mb , (11)

where f(x) = − log x
1−x

, x =
(

m
b̃1

m
b̃2

)2

, Xb is given in appendix A, and ν̂ and ~λ are defined in section 5. In

the basis where the sneutrino does not have a vev, ν̂ = (0,−1) and ~λ = (hb, λ
′). Here ν̂ is specifying

the neutrino direction. So, λ′
i33 will have a certain allowed upper value for a given set of the inputs

that determine the sbottom mass parameters.
Another bound on λ′

i33 has been given in the literature from the calculation of Rl [51] in which the
allowed value of the coupling scales with right-handed soft-SUSY breaking mass mBR

. For mBR
>
∼ 500

GeV the trilinear coupling can be of order 1. Other bounds from Bo–B̄o mixing or B → τ ν̄X [52, 53, 54]
also have been studied and they also allow values of λ′

i33 ∼ 1 for sufficiently heavy right-handed
sbottom, on the order of 300 GeV 4 .

The actual numerical bounds on the Rp violating coupling will depend on the input value one
takes for the neutrino mass. If we use the experimental limit on the tau neutrino mass ∼ 10 MeV,
we can easily have a value ~λ · ν̂ ∼ 1, thus its effect on the Higgs sector will be analogous to that
of the top Yukawa coupling. In this case the bound from Rl is stronger for generic values of the R-
parity conserving parameters. For smaller values of the neutrino mass, such that for example neutrino
oscillation scenarios can be fulfilled, the bounds are very strong on the Rp violating couplings.

Note that allowing λ′ ∼ 1 in the fermion mass eigenstate basis means that ~λ is almost perpendicular
to ~v. The b-quark mass is mb = −(~λ · ~v)/

√
2 ≪ |~v|, and λ′ = ~v ∧ ~λ/|~v|.

There are various accelerator limits on particle masses and coupling constants when R-parity is not
conserved (see e.g. [11] for a discussion). These often depend sensitively on a number of parameters,
so are difficult to translate to the model we consider here. We will comment the LEP lower bound on
the mass of sneutrinos with Rp violating decays in section 6.

4 Higgs boson masses

In this section, we calculate the Higgs boson masses using the effective potential. To do this we make
an SU(2) rotation on the Hd doublet, Hd → Φd = εH∗

d (ε12 = −1, ε2 = −1), to put the neutral
component in the same element of the doublet as for Hu. This makes it easy to compare the Rp

conserving part of our calculation to standard two-Higgs doublet results. We also rotate the slepton
field. So we can write

Hu =

(

H+
u

H0
u

)

=

(

Φ+
u

(χ + φR
u + iφI

u)/
√

2

)

, Hd =

(

H0
d

H−
d

)

=

(

(vd + φR
d − iφI

d)/
√

2
−(Φ+

d )∗

)

(12)

4The bounds from references [52, 53, 54] depend on whether the CKM-mixing is present in the down-quark sector.
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L =

(

L0

L−

)

=

(

(vL + φR
L − iφI

L)/
√

2
−(Φ+

L )∗

)

(13)

where we define χ to be the Hu vev, and vd, vL to be the down-type Higgs and slepton vevs (in some
arbitrary basis). We will not be concerned with the charged fields in this paper.

From the superpotential and soft terms of equations (1) and (2), the tree-level potential for the
neutral scalar vevs is

Vtree = m2
u

χ2

2
+

1

2
~v · [m2

L] · ~v + χ~B · ~v +
Λ

4
(χ2 − v2)2 (14)

where Λ = (g2 + g
′2)/8 ,v2 = |~v|2 = v2

d + v2
L, m2

u = m̃2
u + |~µ2| and [m2

L]JK = [m̃2
L]JK + µJµK .

We include the loop corrections due to large yukawa-type couplings, but not due to gauge couplings.
The one-loop contribution to the potential from tops, stops, bottoms and sbottoms will be

Vloop =
1

64π2

(

−12m4
t

[

ln

(

m2
t

Q2

)

− 3

2

]

+ 6m4
t̃1

[

ln

(

m2
t̃1

Q2

)

− 3

2

]

+ 6m4
t̃2

[

ln

(

m2
t̃2

Q2

)

− 3

2

]

−12m4
b

[

ln

(

m2
b

Q2

)

− 3

2

]

+6m4
b̃1



ln





m2
b̃1

Q2



− 3

2



+ 6m4
b̃2



ln





m2
b̃2

Q2



− 3

2







 . (15)

We include the bottom contributions because the Rp violating λ′ can be large (in the basis where the
sneutrino does not have a vev).

We are principally interested in the behaviour of the lightest CP-even neutral scalar—the “Higgs”.
We would like to obtain its mass as a function of observables like the masses of the CP-odd scalars,
and parameters like tanβ and the “invariant” δR (equation 5) that parametrises Rp violation. We
therefore need the 3 × 3 mass matrices for the CP-even and CP-odd Higgses at the minimum of the
potential.

The tree-level minimisation conditions can be written in terms of the CP-odd mass matrix elements
(19). In the absence of CP violation, the one-loop minimisation conditions expressed in terms of the
one-loop CP-odd mass matrix have the same functional form (see equations (22) and (23)). This is
useful because it means we can impose the minimisation conditions at one loop without calculating
either the one-loop CP-odd mass matrix or the one-loop minimisation conditions. To see this, we write
the potential as a function of six variables:

C1 = H0∗
u H0

u, C2 = H0∗
d H0

d , C3 = L0∗L0, C4 = H0
uH0

d , C5 = H0
uL0, C6 = H0∗

d L0 . (16)

The three minimisation conditions for the potential can then be written

0 =
∂V

∂H0
u

≡
6
∑

n=1

∂V

∂Cn

∂Cn

∂χ
(17)

0 =
∂V

∂L0
J

≡
6
∑

n=1

∂V

∂Cn

∂Cn

∂vJ
J = 0, 1. (18)

The CP-odd mass matrix is of the form

MCP−odd =









Muu

(

Mud MuL

)

(

Mud

MuL

) (

Mdd MdL

MdL MLL

)









(19)
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where the individual elements are

Mij =
∂2V

∂φI
i ∂φI

j

=
6
∑

n=1

∂V

∂Cn

∂2Cn

∂φI
i ∂φI

j

(20)

Note that our capitalised Ms have mass dimension 2. The indices i, j run from 1..3, or over u, d, L,
and the {φI

i } are the imaginary parts of the scalars (see equation 12); “I” is not an index in LJ space.)
Second derivatives of V do not appear because they are multiplied by first derivatives of the {Ci},
which are zero (evaluated at φI

j = 0). Since

∂C1

∂χ
= χ

∂2C1

∂φI
u∂φI

u

(21)

(and similarly for the other derivatives of the {Cn}), we see that the minimisation conditions can be
written in terms of the CP-odd mass matrix:

Muu +
MuJvJ

χ
= 0 (22)

MuJ +
MJKvK

χ
= 0 . (23)

We emphasize that these equations are valid in any basis, and we apply them at one-loop.
Explicit formulae for the minimisation conditions and the mass matrix elements can be found in

the Appendices. Appendix A contains the results for an arbitrary basis in terms of basis-invariant
quantities. In appendix B we present the results in the basis vL = 0, using the familiar Lagrangian
notation.

The eigenvalues of the CP-odd mass matrix M are easy to obtain, since M has a zero eigenvalue.
The two non-zero eigenvalues are

m2
A1

, m2
A2

=
1

2

[

Muu + Tr[M] ±
√

(Muu + Tr[M])2 − 4(MuuTr[M] + det[M] − | ~Mu|2)
]

, (24)

In the Rp conserving limit, mA2
≡ mν̃ . When Rp is not conserved, the sneutrino as a complex field

has Dirac and Majorana masses, so its real and imaginary parts are not degenerate. The mass of the
imaginary part is what we identify here as mA2

. By using the minimisation conditions (22) and (23),
we can rewrite these masses in terms of “basis-independent” invariants (scalars in LJ space) as

m2
A1

, m2
A2

=
1

2







~v · [M] · ~v
χ2

+ Tr[M] ±

√

√

√

√

(

~v · M · ~v
χ2

2χ2 + v2

v2
− Tr[M]

)2

+
4R

v2 cos2 β





 (25)

Note that we have chosen to write m2
A1

and m2
A2

as functions of scalars in LJ space which are non-
zero in an Rp conserving theory (such as Tr[M], ~v· M·~v) and scalars that are zero in an Rp-conserving
theory (δR). This is slightly different from choosing a basis in which one writes the masses as a part
depending on Rp conserving couplings and a part depending on Rp violating couplings (as done for
instance in [55]), because for some basis choices the Rp conserving invariants depend on Rp violating
couplings (e.g. in the MuL = 0 basis, ~v·M·~v = v2

d Mdd + 2vdvL MdL + v2
L MLL).
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The CP-even mass matrix will be

M
′

ij = Mij +
6
∑

n=1

∂Cn

∂Yi

×
(

∂

∂Yj

∂V

∂Cn

)

(26)

where we have temporarily introduced Yi = (χ, vd, vL). Explicit formulae can be found in the Ap-
pendices. We can express the eigenvalues of the CP-even mass matrix = {m2

h1
, m2

h2
, m2

h3
} in terms of

scalars in LJ space, by constructing the characteristic equation of (M
′ −m2 I), and expressing the co-

efficients in terms of invariants. We do not show the formulae (analogous to (25)), because they are too
long to be enlightening. Another possible way to solve for {m2

hi
} as a function of m2

A1
, m2

A2
, tanβ, δR

and loop corrections, is to express the matrix elements of M
′

in a basis-invariant way using equation
(26). We plot the CP-even masses for various inputs in section 6.

We have chosen m2
A1

, m2
A2

, tanβ, and δR as inputs because they are “physical”. However there are
relations between these parameters which constrain the ranges over which they can be varied. To solve
for mhi

as a function of our inputs, we invert equation (25) to write the basis invariant S ≡ ~v · ~Mu in
terms of mA1

, mA2
and δR:

S =
~v · [M] · ~v

χ2
=

cos2 β

2(1 + γ)

(

m2
A1

+ m2
A2

±
√

(m2
A1

− m2
A2

)2 − 4m2
A1

m2
A2

γ
)

(27)

where γ = sin2 βδR/(1 − δR), and the + (-) sign corresponds to m2
A1

> m2
A2

(m2
A1

< m2
A2

). S →
m2

A1
cos2 β when δR → 0. Clearly this inner product must be a real number; to ensure that the square

root is positive, we need
|m2

A1
− m2

A2
|

2mA1
mA2

sin β
>

√

δR

1 − δR

(28)

so mA1
and mA2

cannot be degenerate for non-zero δR.

5 Higgs Branching Ratios

Including Rp violation in the Higgs sector will modify the interactions as well as the masses of the
Higgses. Intuitively, it mixes the sneutrino with the neutral Higgses, so it can modify the amplitudes for
Higgs production and for Rp conserving decays, as well as allowing new decay modes such as h → νχ0

and h → τχ+ [34, 35]. Rp violating couplings also modify the decays of Higgs decay products. For
instance, the LSP χ0, produced in h → χ0ν and h → χ0χ0 , could decay (to three fermions) within
the detector [14, 15]. It turns into a neutrino and an off-shell hi, which then decays to SM fermions.
So if χ0 can be produced via an Rp violating vertex (in our case related to δR), then it decays rapidly
through the same vertex.

The Higgs production and decay rates clearly cannot depend on the basis in which they are com-
puted, so we will work in a “basis-independent” approach. We are principally interested in Rp violation
from the scalar Higgs sector, as parametrised by the invariant δR of equation 5, so we will write the
decay rates in terms of this and other invariants. There are three mass eigenstate bases in (Hu, LJ)
space that are relevant for calculating branching ratios: the CP-even mass eigenstate basis, the CP-
odd basis, and the fermion mass eigenstate basis. Rotation angles between these bases will appear
in the Higgs interaction vertices. We will provide expressions for these (“physical”) angles which are
independent of the basis choice in the Lagrangian.
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In the Rp-conserving MSSM, the lightest CP-even Higgs h is a linear combination of the up and
down type neutral Higgses: h = cos αφR

u − sin αφR
d . The ZZh vertex via which LEP can produce a Z

and an h is
ig2

2 cos2 θW

(χ cos α − v sin α) =
igmZ

cos θW

(sin β cos α − cos β sin α) (29)

Single sneutrinos cannot be produced in the MSSM, but the Z can decay to a pair of them if kine-
matically possible. The Z can similarly decay into a CP-even and odd Higgs, for which the vertex is
proportional to g cos(β − α)/(2 cos θW ).

Adding Rp violation involving one lepton generation means the sneutrino mixes with the Higgses,

so the lightest Higgs h1 will be a linear combination of three fields ĥ1 = (cos α)φR
u −(sin α cos ϕ)φR

d

−(sin α sin ϕ)φR
L . If we define the angle ϕ with respect to the basis in LJ space where the sneutrino

does not have a vev, then sin α cos ϕ = −ĥ1 · ~v/|~v| and sin α sin ϕ = −ĥ1 · ν̂. The vector ν̂ is the
lepton direction orthogonal to the vev: ν̂ = εT · ~v/|~v|. If ~v ∧ ~µ = 0, this vector corresponds to the
charged lepton mass eigenstate [42, 43], which is the neutrino flavour eigenstate. We therefore call this
direction ν̂. The ZZh1 vertex is then a simple generalisation of (29):

igmZ

cos θW

(sin β cos α + cos β
~v

v
· ĥ1) (30)

and the Zh1A1 vertex becomes

g

2 cos θW

(cos β cos α − (v̂ · ĥ1)(v̂ · Â1) − (ν̂ · ĥ1)(ν̂ · Â1))(pA − ph)
µ (31)

where ph and pA are the momenta of the outgoing scalars.
To evaluate the angles between the CP-even mass eigenstate basis and the zero-sneutrino-vev basis,

we must identify the direction in LJ space corresponding to h1. The lightest eigenvector of the CP-even
Higgs mass matrix satisfies









M ′
uu

(

M ′
ud M ′

uL

)

(

M ′
ud

M ′
uL

) (

M′
dd M′

dL

M′
dL M′

LL

)















u1

h1d

h1L





 = m2
h1







u1

h1d

h1L





 (32)

where the mass matrix has primes to denote that it is the CP-even mass matrix and not the CP-odd
matrix of equation 19. We would like to solve this for ~h1 = (h1d, h1L) 5. We can write this as two
equations for scalars, vectors, and matrices in LJ space:

M
′

uuu1 + ~M
′

u · ~h1 = m2
h1

u1 (33)

and
u1

~M
′

u + M
′ · ~h1 = m2

h1

~h1 . (34)

Rearranging (34), we find
~h1 = u1[m

2
h1

I − M
′

]−1 · ~M
′

u (35)

5 Normalised vectors wear hats, so for instance |ĥ1|2 = 1. The mass eigenvectors ĥi, Âj are in the 3-d (Hu, LJ) space;
~hi is the projection on LJ space and |~h1|2 = sin2 α
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In a one generation model, this is simple to solve because the inverse of a symmetric 2 × 2 matrix
N

′ ≡ [m2
h1

I − M
′

] is N
′−1 = −ε N

′

ε/det(N
′

), where ε11 = ε22 = 0, ε12 = −ε21 = −1. So

ν̂ · ĥ1 =
u1

v det[N′]
~v ·N′ · ε · ~M

′

u . (36)

and
~v

v
· ĥ1 =

u1

v det[N′ ]
~v · εT · N′ · ε · ~M

′

u . (37)

u1 = cos α can be determined from the normalisation of h1: u2
1 + ~h2

1 = 1. The vector ~M
′

u =
~Mu −m2

Z cos β sin β ~v/v+ loop corrections, and M
′

IJ = MIJ +m2
Z cos2 β vIvJ

v2 + loop corrections, where
~Mu and M are from the CP-odd mass matrix (19). These loop corrections, which are not presented in
our analytic formulae, are listed in the Appendix. The loop contribution to the CP-odd mass matrix
is implicitly included; the contribution missing from our analytic formulae is the one-loop difference
between the CP-even and CP-odd mass matrices. Using the minimisation conditions (22) and (23),
we find

ν̂ · ĥ1 =
u1

det[N′]
S tanβ(m2

h1
+ m2

Z(sin2 β − cos2 β))

√

δR

1 − δR

+ loop corrections (38)

and

~v · ĥ1

v
=

u1

det[N′ ]
[(m2

A1
m2

A2
sin β cos β − m2

h1
(S tanβ + m2

Z cos β sin β)

+m2
Z sin β cos β(m2

A1
+ m2

A2
− S/ cos2 β)] + loops. (39)

We do not present formulae for the loop corrections, but they are included in our numerical plots. S
is defined in equation (27); the normalisation factor u1/det[N

′

] is in Appendix C.
In the limit δR → 0, the lightest CP-even Higgs h1 can become either the MSSM Higgs h or the real

component of the sneutrino ν̃R. Suppose first that h1 → h as δR → 0. Then as expected ν̂ · ĥ1 ∝ δR.
If h1 → ν̃R in the δR → 0 limit, then ~v · ĥ1 → 0 because mh1

→ mA2
. ν̂ · ĥ1 → 1 in the same limit,

although this is less obvious because u1/det[N
′

] is singular.
To calculate the contribution of the various Higgses to the neutrino mass, as discussed in the

experimental bounds section, we need the angle mixing the neutrino with each of the Higgses: ν̂ · ŝi

(si = {h1, h2, h3, A1, A2}). These can be computed in the same way as ν̂ · ĥ1. For h2 and h3, the

formulae are the same, substituting mh2
or mh3

for mh1
. For A1 and A2, M

′

is replaced by M and ~M
′

u

by ~Mu in the analogue of equation (35). This gives

ν̂ · Âi = niSm2
Ai

tanβ

√

δR

1 − δR

+ loops (40)

where the normalisation factor ni is in Appendix C.
There is a technical catch to this way of calculating the {ν̂ · ŝi} in the δR → 0 limit. If δR = 0, one

of the hi, say h3, and A2 are the sneutrino so ν̂ · Â2 = ν̂ · ĥ3 = 1. This is the δR → 0 limit of equations
(40) and (36) because the denominator → 0, but at δR = 0 the equations are singular. This can be
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avoided by taking ν̂ · Â2 =
√

1 − (ν̂ · Â1)2 and ν̂ · ĥ3 =
√

1 − (ν̂ · ĥ1)2 − (ν̂ · ĥ2)2 which follow from the
unitarity of the rotation matrix.

The tree-level rate for a scalar h to decay to two fermions f1 and f2 through a vertex of the form

hf̄1(λLPL + λRPR)f2 , (41)

where PL = (1 − γ5)/2, is

Γ(h → f̄1f2) =
1

8πm2
h

√

E2
2 − m2

2

[

(m2
h − m2

2 − m2
1)(λ

2
L + λ2

R) − 4λLλRm1m2

]

(42)

where E2 = (m2
h + m2

2 − m2
1)/(2mh).

The Rp violating decay rates h → νχ0, τχ+ are both detectable if kinematically allowed, because
χ0 can decay to ν and an off-shell Higgs, which can then decay to SM fermions. Here we mention
again that the neutralino/chargino is produced and decays via the same vertex which is proportional
to δR. If δR 6= 0 but ~µ ∧ ~v = 0 6, the decays h → νχ0, τχ+ proceed because the mass eigenstate h
contains a “(s)neutrino component” = ν̂ · ĥ. The coupling constant for the vertex hχ̄0ν is therefore

λL = λR =
g

2
(Z12 − Z11g

′/g) ν̂ · ĥ , (43)

where Z diagonalises the neutralino mass matrix: ZmZ† = diag. Substituting in (42), we can compute
the decay rates Γ(h → χ0ν) and Γ(h → χ+τ). Note that by “h → χ0ν” we mean h → χ̄0ν and h → χ0ν̄.

The h1bb̄ coupling ~λ · ĥ1 can be much larger in Rp non-conserving theories than in the MSSM.

Decomposing ~λ = (~λ · ~v)~v/v2 + (~λ · ν̂)ν̂, (in the 〈ν̃〉 = 0 basis this is ~λ = (hb, λ
′)), it follows that

~λ · ĥ1 =
u1

detN′

{

− gmb√
2mW cos β

[

(m2
A1

m2
A2

sin β cos β − m2
h1

(S tan β + m2
Z cos β sin β))

+m2
Z sin β cos β(m2

A1
+ m2

A2
− S/ cos2 β)

]

+~λ · ν̂ S tanβ(m2
h1

+ m2
Z(sin2 β − cos2 β))

√

δR

1 − δR







+ loops (44)

where (~λ · ν̂) can be ∼ 1 as discussed in section 3. This expression simplifies when Rp violation is small:

if h1 → h when δR → 0 and ~λ · ν̂ → 0, then ~λ · ĥ1 → gmb/(
√

2mW cos β) as expected in the MSSM. If

h3 and A2 are the sneutrino components in the same limit, then one can check that ~λ · ĥ3 → 0.

6 Results

We express the masses and coupling constants of the CP-even Higgses in terms of tree-level input
parameters mA1

, mA2
, tanβ and δR. When loop corrections are included there is an additional depen-

dence on the soft parameters A, µI , mQ, mU and mD. This is the usual MSSM set of input parameters,
augmented by an additional CP-odd mass mA2

, and δR = the square of an angle parametrising Rp

6~µ ∧ ~v = 0 implies there is no Rp violation at tree level in the -ino mass matrices.
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violation. We define A2 to be the CP-odd scalar that becomes the ν̃ as δR → 0. Which of the Ai

becomes the ν̃ is important, because we expect the Rp violating effects to go to zero as mν̃ → ∞ for
all values of δR.

It can be seen from eqs. (24) and (27) that requiring the invariant S = ~v· [ M ] · ~v/χ2 to be real,
dictates that the mass splitting |m2

A1
−m2

A2
| and δR are not completely independent. Fixing the value

of this mass splitting will give a maximum allowed value of δR from requiring that S be real; also the
mass splitting must be greater than a certain value for a fixed value of δR.

In figure 3 we plot mh1
and mh2

as a function of δR for values of mA1
= 200, 300, 500, 1000 GeV

with tanβ = 2, 10 and mA2
= 100 GeV. We observe the dependence of the maximum allowed value of

δR on the mass splitting |m2
A1

− m2
A2
|. As the mass splitting increases the maximum value of δR also

increases. Note that mh1
(mh2

) → mA2
in figure 3 as δR → 0 for tanβ = 10(2) because this is the Higgs

which becomes the sneutrino in this limit. We see that the lightest mass eigenvalue mh1
, decreases

with δR for fixed CP-odd masses. On the other hand, mh2
increases as a function of δR. The effect of

δR on the heaviest eigenvalue mh3
is not very strong: we obtain mh3

≃ mA1
for all the allowed values

of δR.
Conversely, in fig. 4 we present the variation of mh1

with respect to mA2
for δR = 0, 0.2, 0.5, 0.8,

having fixed mA1
= 1 TeV, and for two values of tanβ = 2, 10. For each value of δR there is a maximum

allowed value of mA2
. Recall that A2 is a sneutrino component when δR = 0. As mA2

→ 0, so does
mh1

because the lightest CP-even Higgs is the mode that becomes ν̃R when δR = 0. As mA2
increases,

the mode “that would be the MSSM h if δR = 0” becomes the lightest Higgs and the plot flattens
out. In the plot mh1

does not become exactly zero for δR = 0, mA2
= 0 due to one-loop corrections

proportional to λ′2 from the squark-quark sector.
As mentioned above, the loop corrections induced by values λ′ ∼ 1 are similar to those induced by

the top Yukawa for the Higgs which couples to the up-type sector. The other Rp-violating coupling
we have introduced in the calculation µ1 is always constrained by the neutrino mass to be sufficiently
small that its contributions are negligible.

Including R-parity violation in the Higgs sector can be understood as having two effects on Higgs
production and decay. It mixes the “Higgses” with the “sneutrino”, and allows new decay modes for
the Higgs/sneutrino decay products. There is of course no distinction between a Higgs and a sneutrino
in the presence of R-parity violating couplings; by “sneutrino” we here mean the CP-even and -odd
mass eigenstates that become the sneutrino in the δR → 0 limit, and the “Higgs” is the CP-even mass
eigenstate that would be the Higgs in the same limit. We define A2 to be the CP-odd scalar that
becomes the ν̃I as δR → 0. Mixing the Higgs with the sneutrino means that the eigenstates hi can all
be produced via Z → Zhi and Z → hiAj , where i : 1..3 and j : 1..2. All of the hi can decay to bb̄, and
to χ0ν, χ+τ and χχ if these decay modes are kinematically accessible.

The neutralino can decay in the detector, via its production vertex (the neutralino becomes a
neutrino and an off-shell Higgs, which can then decay to SM fermions). So unless δR is uninterestingly
small, the χ0ν and χ0χ0 should be visible.

The new Rp violating decay modes h1 → χ+τ and h1 → χ0ν have been previously discussed [34, 35].
We plot the branching ratio to χ0ν as a function of δR in figure (5). We assume in this plot that the
decays to χ+τ and χ0χ0 are kinematically forbidden. As expected from equation (36), the decay rate
increases with δR. The decrease at large δR is a consequence of our parametrisation. δR is sin2 of
the angle between the vectors ~v and ~Mu; as the angle increases to π/2 for fixed mA1

and mA2
, | ~Mu|

decreases. So the Rp violating mass term | ~Mu|
√

δR decreases. For larger values of tan β the decay
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h1 → bb̄ is dominant.
Suppose now that the neutralino is also heavier than h1, so only the Standard Model decays are

available to the Higgs. The Rp violating couplings can still affect the production cross-section of the
Higgs, and therefore the experimental lower limits on mh.

The production cross-section for Z → Zh can be parametrised by ξ2 = σ(Z → Zh)/σ(Z → Zh)SM .
See, e.g., [56] for experimental limits on ξ2. In the MSSM, ξ2 = sin2(β − α). It can be very small in
our Rp violating model because it goes to zero as δR → 0 for the CP-even Higgs that becomes ν̃ in
this limit.

If mA2
is heavier than the CP-even Higgs which becomes h of the MSSM in the δR → 0 limit, then

the CP-even Higgs corresponding to ν̃R in the same limit will be heavier than mA2
(see figure 3). In

this case the Z → Zh1 vertex (equations 30 and 39) does not differ much from its MSSM value. We
plot ξ as a function of δR on the RHS of figure 6 for mA2

= 100 GeV. The present experimental lower
limit on the Higgs mass for ξ ∼ .8 is a few GeV below the ξ = 1 limit of 95.2 GeV [56].

Alternatively, if mA2
is light 7, then ξ2 can be very small. For instance on the LHS of figure 6, we

plot ξ for the CP-even Higgs which becomes part of the sneutrino when δR → 0. As expected, ξ is
very small for small δR, because sneutrinos in the MSSM are pair-produced.

Decreasing the ZZh vertex would decrease the experimental Higgs mass bound from this process;
for ξ <

∼ .3, there is virtually no experimental lower limit [56]. However, Γ(Z → hA) increases as
Γ(Z → hZ) decreases, so there should still be a bound on mh. The experimental lower limit on
mh from Z → hA is not trivial to determine, because the vertex and the two scalar masses are
independent parameters. There are experimental limits in the MSSM [57], but in this case the vertex
and mh determine mA. There are also bounds on sneutrino masses from Z → ν̃ν̃∗ [58] in models
with trilinear Rp violation, but these assume that the CP-even and CP-odd sneutrino components are
degenerate. The experimental lower limits on the Higgs masses in this model are therefore unclear,
but likely to be lower than in the MSSM.

7 Conclusions

We have described the R-parity violation induced by the additional soft mass terms in the scalar sector
in terms of a basis-invariant quantity R (or δR). This eliminates the ambiguity usually present in these
models when a specific Lagrangian basis for the hypercharge −1 doublets is chosen. We have analysed
the effects of the Rp-violating couplings on the CP-even and CP-odd scalar masses to one-loop in
a basis-invariant way. We have also calculated the Rp conserving and Rp violating branching ratios
of the lightest Higgs boson as a function of the basis-invariant quantity δR. We have identified the
regions of parameter space for which the decay modes of the Higgs boson are not those of the Standard
Model Higgs. We have also calculated the production cross section as a function of δR, and found that
this can be strongly modified with respect to the Rp conserving case when the lightest Higgs boson
is mostly “sneutrino-like”. The LEP lower bound on the Higgs mass in this model can therefore be
lower than in the MSSM.

7We assume that χ0ν decays are nonetheless kinematically not allowed; the stau is therefore the LSP, but it decays
so is not cosmologically a problem.
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Appendix A: 〈ν̃〉 6= 0 basis

We take the potential V to be the sum of equations (14) and (15). We define v =
√

v2
d + v2

L =
√

vIvI ,
and

tanβ =
χ

v
. (45)

We write the stop and sbottom masses as

m2
1̃,2̃

=
1

2

{

M2
L + M2

R ±
√

(M2
L − M2

R)2 + 2X2

}

(46)

where for the stops

M2
L = m2

Q + h2
t χ

2/2 + (g2 − 1

3
g′2)(v2 − χ2)/8 (47)

M2
R = m2

U + h2
tχ

2/2 + g′2(v2 − χ2)/6 (48)

and
X2

t = (Atχ + htµ · v)2 (49)

For the sbottoms

M2
L = m2

Q + (λ · v)2/2 − (g2 +
1

3
g′2)(v2 − χ2)/8 (50)

M2
R = m2

D + (λ · v)2/2 − g′2(v2 − χ2)/12 (51)

and
X2

b = (Ab · v + λ · µχ)2 . (52)

The one loop minimization conditions can be expressed in terms of the CP odd mass matrix Mij

as in equations (22) and (23):

Muu +
MuIv

I

χ
= 0 (53)

MuI +
MIJvJ

χ
= 0 (54)

The CP-odd mass matrix is:









Muu

(

Mud MuL

)

(

Mud

MuL

) (

Mdd MdL

MdL MLL

)









(55)
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where the components are

Muu = m2
u −

m2
Z cos 2β

2
+

{

3h2
t

32π2
[f(mt̃1

) + f(mt̃2
) − 2f(mt)] + (λIµI)

2Db + A2
tDt

}

(56)

MuI = BI +
{

(htAtDt)µI + (µJλJDb)A
b
I

}

(57)

MIJ = [m2
L]IJ +

m2
Z cos 2β

2
δIJ

+
{

3

32π2
[f(mb̃1

) + f(mb̃2
) − 2f(mb)]λIλJ + h2

t DtµIµJ + DbA
b
IA

b
J

}

. (58)

We have defined

f(m) = 2m2

(

log
m2

Q2
− 1

)

, (59)

where Q2 is the renormalisation scale in the MS scheme, and

Dt ≡ 3

32π2

1

∆t

[f(mt̃1
) − f(mt̃2

)] , (60)

Db ≡ 3

32π2

1

∆b

[f(mb̃1
) − f(mb̃2

)] (61)

with
∆t = m2

t̃1
− m2

t̃2
, ∆b = m2

b̃1
− m2

b̃2
. (62)

The CP-even scalar mass matrix is:

M
′

uu = Muu + m2
Z sin2 β +

{

3h4
t

16π2
χ2 log

m2
t̃1
m2

t̃2

m4
t

+
3h2

t

16π2

2AtXtχ

∆t

log
m2

t̃1

m2
t̃2

+ A2
t X

2
t g(mt̃1

, mt̃2
) + (λIµ

I)2X2
b g(mb̃1

, mb̃2
)

}

(63)

M
′

uJ = MuJ − m2
Z cos β sin β

vJ

v
+











3

16π2
(vKλK)(µKλK)

Xb

∆b

log
m2

b̃1

m2
b̃2



λJ

+
3

16π2

[

χh3
t Xt

∆t

log
m2

t̃1

m2
t̃2

]

µJ +
[

X2
b (λKµK)g(mb̃1

, mb̃2
)
]

Ab
J +

[

X2
t htAtg(mt̃1

, mt̃2
)
]

µJ

}

(64)

M
′

IJ = MIJ + m2
Z cos2 β

vIvJ

v2
+











3

16π2
(vKλK)2 log

m2
b̃1

m2
b̃2

m4
b



λIλJ

+





3

16π2
(vKλK)

Xb

∆b

log
m2

b̃1

m2
b̃2



 (λIA
b
J + λJAb

I) +
[

X2
b g(mb̃1

, mb̃2
)
]

Ab
IA

b
J

+
[

X2
t h2

tg(mt̃1
, mt̃2

)
]

µIµJ

}

(65)
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where

g(m1, m2) =
3

16π2

1

(m2
1 − m2

2)
2

[

2 − m2
1 + m2

2

m2
1 − m2

2

log
m2

1

m2
2

]

. (66)

Appendix B: 〈ν̃〉 = 0

This Appendix contains one-loop formulae for the minimisation conditions, the CP-odd mass matrix
and the CP-even mass matrix, in the basis where the sneutrino vev 〈ν̃〉 = vL is zero at one loop.

We define the up-type Higgs vev to be χ/
√

2, and the down-type vev to be v/
√

2, so

tan β =
χ

v
(67)

and Xt = Atχ + htµv.
In this basis, we can safely neglect the loop corrections due to hb and the soft trilinear coupling

Ab
d ∝ hb, since they are constrain to be small by the b-quark mass mb = −hbv/

√
2 ≪ v. If m2

1 ≡
[m2

L]dd, m
2
2 ≡ m2

u and m2
3 ≡ Bd are tree-level Higgs mass terms, µ ≡ µ0 (ǫ ≡ µ1) is the Rp conserving

(violating) superpotential mass, and A′ ≡ Ab
L, then the minimisation conditions are

m2
1 = −m2

3 tanβ − 1

2
m2

Z cos 2β + δm2
1 (68)

m2
2 = −m2

3 cotβ +
1

2
m2

Z cos 2β + δm2
2 (69)

[m2
L]dL = −BL tan β − htǫDt

Xt

v
− A′λ′ǫ tanβDb (70)

where

δm2
1 = −htµDt

Xt

v
, (71)

δm2
2 = − 3

32π2
h2

t [f(mt̃1
) + f(mt̃2

) − 2f(mt)] − AtDt

Xt

χ
− λ′2ǫ2Db . (72)

We have defined Dt, Db and f(m) as in the previous appendix.
The CP-odd scalar mass matrix elements are

Muu = − cot β(m2
3 + htµAtDt) (73)

Mud = m2
3 + htµAtDt (74)

MuL = BL + htAtǫDt + A′ǫλ′Db (75)

Mdd = − tan β(m2
3 + htµAtDt) (76)

MdL = [m2
L]dL + h2

t µǫDt (77)

MLL = m2
A1

+ m2
A2

+ (m2
3 + htµAtDt)

2

sin 2β
(78)
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with

m2
3 = −1

2

{

(m2
A1

+ m2
A2

) sin β cos β + 2htµAtDt

}

(79)

−sin β cos β

2

√

(m2
A1

− m2
A2

)2 − 4

cos2 β
(BL + htAtǫDt + λ′A′ǫDb)2

The CP-even scalar mass matrix M ′ is:

M ′
uu = − cotβ(m2

3 + htµAtDt) + m2
Z sin2 β + λ′4ǫ4χ2g(mb̃1

, mb̃2
)

+
3

16π2

[

h4
tχ

2 log
m2

t̃1
m2

t̃2

m4
t

+
2h2

tAtXtχ

∆t

log
m2

t̃1

m2
t̃2

]

+ A2
t X

2
t g(mt̃1

, mt̃2
) (80)

M ′
ud = m2

3 −
m2

Z

2
sin 2β + htµAtDt +

3h3
tµXt

16π2∆t

χ log
m2

t̃1

m2
t̃2

+ htµAtX
2
t g(mt̃1

, mt̃2
) (81)

M ′
uL = BL + htAtǫDt +

3

16π2
h3

t

ǫXtχ

∆t

log
m2

t̃1

m2
t̃2

+ htAtǫX
2
t g(mt̃1

, mt̃2
)

+A′ǫλ′Db + A′ǫ3λ′3χ2g(mb̃1
, mb̃2

) (82)

M′
dd = − tanβ(m2

3 + htµAtDt) + m2
Z cos2 β + h2

tµ
2X2

t g(mt̃1
, mt̃2

) (83)

M′
dL = m2

dL + h2
tµǫDt + h2

t X
2
t µǫg(mt̃1

, mt̃2
) (84)

M′
LL = MLL + h2

t ǫ
2X2

t g(mt̃1
, mt̃2

) + A′2ǫ2λ′2χ2g(mb̃1
, mb̃2

) (85)

where ∆t and g(m1, m2) are as defined in the previous appendix.

Appendix C: Some equations

The normalisation factors for the basis-independent Higgs mixing angles, at tree level, are

u

det[N′]
= − 1

√

(det N′)2 + V ′2
; (86)

where N
′

= m2
h I - M

′

, and
~V ′ = N′ · ε · ~M

′

u (87)

For h = h1, h2 or h3,

det N′ = m4
h − m2

h(m
2
Z cos2 β + m2

A1
+ m2

A2
) + sin2 βm2

A1
m2

A2
+ S(m2

h − m2
Z)

+(m2
A1

+ m2
A2

)m2
Z cos2 β;

(88)
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and

V
′2 = m4

h(S
2 tan2 β/(1 − δR) + 2m2

ZS sin2 β + m4
Z cos2 β sin2 β)

+m4
A1

m4
A2

sin2 β cos2 β + 2m2
Z cos2 β sin2 β(m2

A1
m2

A2
− m2

hm
2
Z)(m2

A1
+ m2

A2
− S/ cos2 β)

+m4
Z cos2 β sin2 β[(m2

A1
+ m2

A2
− S)2 − 2m2

A1
m2

A2
sin2 β − S2 tan4 β/(1 − δR)]+

m4
ZS2 cos2 β sin2 βδR/(1 − δR) − 2m2

Z sin2 βm2
hS

2δR/(1 − δR)
−2m2

hm
2
A1

m2
A2

sin2 β(S + 2m2
Z cos2 β) − 2S2m4

Z sin4 βδR/(1 − δR)
(89)

For the CP-odd Higgses, the normalisation factor is

n =
−1

√

(detN)2 + V 2
(90)

where N = m2
a I - M, ~V = N ·ε · ~Mu, a = either A1 or A2, and

det N = m4
a − m2

a(m
2
A1

+ m2
A2

− S) + m2
A1

m2
A2

sin2 β (91)

and
V 2 = m4

aS
2 tan2 β/(1 − δR) − 2m2

am
2
A1

m2
A2

S sin2 β + m4
A1

m4
A2

sin2 β cos2 β (92)
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Figure 3: mh1
and mh2

as a function of δR for mA1
= 200, 300, 500, 1000 GeV and mA2

= 100 GeV.
The input parameters for the loop contributions to the difference between the CP-even and CP-odd
mass matrices are mQ = 500 GeV, mU = mD = 300 GeV, A = 200 GeV, and µI = (200, 0). In the
plots on the left, tan β = 2; tan β = 10 for the plots on the right.
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Figure 4: mh1
as a function of mA2

for δR = 0, 0.2, 0.5, 0.8 and mA1
= 1 TeV. The input parameters

for the CP-even — CP-odd Higgs mass difference are mQ = 500 GeV, mU = mD = 300 GeV, A = 200
GeV, and µI = (200, 0). tan β = 2 on the left, and tanβ = 10 on the right.
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Figure 5: The branching ratio for h1 → χ0ν as a function of δR, for different values of mχ and tanβ. We
take mA1

= 500 GeV, mA2
= 120GeV , and the input parameters for the loops contributing to the CP-

even—CP-odd Higgs mass difference are A = 0, µI = (200, 0), mQ = 500 GeV, mU = mD = 300GeV.
We take the total decay rate to be Γtot = Γ(h → bb̄) +Γ(h → χ0ν).
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Figure 6: The ratio ξ as a function of δR, where ξ = gZZh/g
SM
ZZh is the ratio of the ZZh vertex its

value in the SM. When the lightest CP-even scalar h1 corresponds to the sneutrino in the δR → 0
limit, ξ can be small and goes to zero with δR. If mA2

(which becomes mν̃ when δR = 0) is large, ξ is
near its MSSM value.
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