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Abstract

We study the finite-temperature effective potential of minimal left-right symmetric models

containing a bidoublet and two triplets in the scalar sector. We perform a numerical analysis

of the parameter space compatible with the requirement that baryon asymmetry is not washed

out by sphaleron processes after the electroweak phase transition. We find that the spectrum of

scalar particles for these acceptable cases is consistent with present experimental bounds.
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1 Introduction

The origin of the observed baryon asymmetry of the Universe (BAU) remains an interesting open
question in particle physics. In 1967, Sakharov [1] established the three basic requirements for obtaining
this baryon asymmetry as a result of particle interactions in the early universe: a) Baryon number
violation, b) C and CP violation, c) departure from thermal equilibrium. These conditions are fulfilled
in grand unification theories, in which the baryon asymmetry is generated by the out-of-equilibrium B-
violating decay of some superheavy boson. However, this scenario presents the problem that anomalous
processes can partially or totally erase the baryon asymmetry generated at extremely high energies.

It was realized in [2] that Sakharov conditions may also be satisfied at weak scale temperatures, if
the electroweak phase transition is first order. In a strongly first order electroweak phase transition,
bubbles of the true ground state (broken phase) nucleate and expand until they fill the Universe; local
departure from thermal equilibrium occurs in the vicinity of the expanding bubble walls. C and CP
are known to be violated by the electroweak interactions, and anomalous baryon number violation
is fast at high temperatures in the symmetric phase. Moreover, electroweak baryogenesis provides
an explanation of the observed BAU in terms of experimentally accessible physics and hence much
attention has been devoted to the study of this possibility [3].

In principle, the Standard Model (SM) contains all the necessary ingredients for electroweak baryo-
genesis, but it has two problems: the CP asymmetry induced by the Kobayashi-Maskawa phase is far
too small to account for the observed nB/s ratio [4], and the phase transition appears too weakly first
order for the Higgs mass experimentally allowed [5]. To avoid the erasure of the baryon asymmetry
produced during the phase transition, the sphaleron processes need to be sufficiently suppressed in
the broken phase and this in turn is directly related to the strength of the phase transition. Quan-
titatively, the requirement is that the ratio of the vacuum expectation value of the Higgs field at the
critical temperature to the critical temperature must be larger than one,

v(Tc)

Tc

> 1 . (1)

In the SM, this imposes an upper bound on the Higgs mass which is below the present experimental
bound mH ≥ 88 GeV [6].

However these two problems may be absent in simple extensions of the SM, which contain additional
sources of CP violation and more scalars than the SM. The larger parameter space in the scalar sector
allows for a stronger first-order phase transition without such a light Higgs [7]. Several possibilities
have been analyzed in detail: two Higgs models with a strong CP phase [8]-[11], heavy neutrinos [12],
and supersymmetric models [13].

In the present paper, we consider one of the most attractive extensions of the SM, based on the
gauge group SU(2)L × SU(2)R × U(1)B−L [14, 15]. Various different models employing this gauge
group are possible, depending on which Higgs and fermion spectrum is chosen, and on whether or not
exact discrete left-right symmetry is imposed. We are interested in the class of left-right symmetric
models described in [14, 16]. Besides the original idea of explaining the observed parity violation of
the weak interaction at low energies, these models provide also an explanation for the lightness of the
ordinary neutrinos, via the so-called see-saw mechanism.

There are two possible scenarios for baryogenesis in left-right symmetric models. In the first one,
the BAU is generated at the scale where local B − L is broken. This in turn can occur during the
right phase transition (if it is first-order), due to the reflection of right-handed neutrinos on walls
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of broken phase bubbles (i.e. SU(2)L ⊗ U(1)Y symmetric) [17], and/or via out-of-equilibrium decay
of right handed Majorana neutrinos [18]. In both cases, a lepton number asymmetry is produced
and subsequently converted into a baryon number one through the rapid (B +L)-violating anomalous
processes above the electroweak phase transition temperature. However, the right-handed scale needed
to account for the BAU (O(10 TeV) in the first case and above 106 − 107 GeV in the latter) is too
high to have any low-energy observable implication. In the second scenario, baryogenesis takes place
at the lower electroweak scale, mainly due to the reflection of the top quark on walls of the true
vacuum (i.e. U(1)em symmetric) bubbles. There are estimates [18, 17, 19] of the baryon asymmetry
produced in left-right symmetric models using this mechanism, although they neglect effects that are
now understood to be important, such as diffusion [9], [20] and thermal scattering [4].

We focus on the possibility of electroweak baryogenesis. We perform an analysis of the electroweak
phase transition in phenomenologically acceptable left-right symmetric models with a relatively low
right scale, which have interesting implications in present and planned experiments [22] 1.

It has been shown recently that, contrary to previous belief, spontaneous CP violation can occur
in the minimal left-right symmetric model considered here [23]. However baryogenesis with (only)
spontaneous breakdown of CP presents severe cosmological problems, due to the formation of domain
walls as a result of the breaking of a discrete symmetry. Although this problem can be solved, in order
to generate the BAU the scale of spontaneous CP violation and the scale at which baryogenesis takes
place must be different [19]; otherwise, an equal amount of matter and anti-matter is generated. In the
minimal left-right symmetric model with spontaneous CP-violation both scales coincide and therefore
electroweak baryogenesis is not feasible.

The remainder of this paper is structured as follows. In section 2 we describe the model, while the
effective potential at finite temperature is calculated in section 3. The order of the electroweak phase
transition is analyzed in section 4 and we conclude in section 5.

2 Left-right symmetric model

We consider the minimal SU(2)L × SU(2)R × U(1)B−L model with a left-right discrete symmetry
[16, 24]. This model is formulated so that parity is a spontaneously broken symmetry: the Lagrangian
is left-right symmetric but the vacuum is not invariant under the parity transformation. Thus, the
observed V-A structure of the weak interactions is only a low energy phenomenon, which should
disappear when one reaches energies of order vR, where vR is the vacuum expectation value of some
right-handed scalar.

According to the left-right symmetry requirements, quarks (and similarly leptons) are placed in
left and right doublets,

ΨiL =
(

ui

di

)

L

≡
(

2, 1,
1

3

)

, ΨiR =
(

ui

di

)

R

≡
(

1, 2,
1

3

)

, (2)

where i = 1, 2, 3 is the generation index and the representation content with respect to the gauge group
is explicitly given. Taking advantage of the fact that the weak interactions observed at low energies
involve only the left handed helicity components, the electric charge formula can also be written in a

1A similar study in a left-right symmetric model with a simpler scalar content has been done in ref. [21].
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left-right symmetric form as

Q = IW
3L + IW

3R +
B − L

2
(3)

where IW
3 denotes the third component of the weak isospin.

Regarding the bosons, gauge vector bosons consist of two triplets W
µ
L ≡ (3, 1, 0), W

µ
R ≡ (1, 3, 0),

and a singlet Bµ ≡ (1, 1, 0).
The Higgs sector of the model is dictated by two requirements,the choice of the symmetry breaking

chain and the desire to reproduce the phenomenologically observed light masses of the known neutrinos
via the so-called see-saw mechanism. The best candidates for these purposes seem to be

Φ =

(

φ0
1 φ+

1

φ−
2 φ0

2

)

≡
(

1

2
,
1

2

∗
, 0

)

(4)

∆L =





δ+

L√
2

δ++
L

δ0
L − δ+

L√
2



 ≡ (1, 0, 2) (5)

∆R =





δ+

R√
2

δ++
R

δ0
R − δ+

R√
2



 ≡ (0, 1, 2) (6)

where the scalar fields have been written in a convenient representation given by 2 × 2 matrices.
Let us now discuss the form of the Lagrangian. We require the Lagrangian to be invariant under

the discrete left-right symmetry defined by

ΨL ↔ ΨR ∆L ↔ ∆R Φ ↔ Φ† (7)

where Ψ denotes any fermion. We assume that the global phases allowed to appear in the transforma-
tions above are absorbed by proper redefinition of the fields.

The most general renormalizable Lagrangian consistent with the above discrete symmetry and
gauge invariance can be written as

L = Lgauge + Lf + LHiggs (8)

where the gauge field part of the Lagrangian contains the kinetic energy terms for the gauge bosons
corresponding to the gauge groups SU(2)L × SU(2)R × U(1)B−L. The gauge coupling constants for
the gauge groups SU(2)L and SU(2)R are the same and we denote it by g, while that of the U(1)B−L

is denoted by g′. The fermionic part of the Lagrangian, Lf , contains the kinetic energy terms for the
fermions and the Yukawa couplings, which are given by

−LY =
∑

a,b

habΨaLΦΨbR + h̃abΨaLΦ̃ΨbR + ifab

[

ΨT
aLCτ2∆LΨbL + (L ↔ R)

]

+ h.c. (9)

where Φ̃ = τ2Φ
∗τ2, C is the Dirac charge-conjugation matrix and a, b label different generations.

The Higgs part of the Lagrangian contains the kinetic energy terms for the fields ∆L,R and Φ
and the scalar interaction terms, i.e. the most general scalar potential. This potential cannot have
trilinear terms: because the nonzero B − L quantum numbers of the ∆L and ∆R triplets, these must
always appear in the quadratic combinations ∆†

L∆L, ∆†
R∆R, ∆†

L∆R or ∆†
R∆L. These can never be
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combined with a single bidoublet Φ in such a way as to form SU(2)L and SU(2)R singlets. Nor can
three bidoublets be combined so as to yield a singlet. However, quartic combinations of the form
Tr(∆†

LΦ∆RΦ†) are in general allowed by the left-right symmetry. According to these strict conditions,
the most general form of the Higgs potential is

V = VΦ + V∆ + VΦ∆ (10)

with

VΦ = −µ2
1 Tr(Φ†Φ) − µ2

2

[

Tr(Φ̃Φ†) + Tr(Φ̃†Φ)
]

+ λ1

[

Tr(ΦΦ†)
]2

+

λ2

{

[

Tr(Φ̃Φ†)
]2

+
[

Tr(Φ̃†Φ)
]2
}

+ λ3

[

Tr(Φ̃Φ†)Tr(Φ̃†Φ)
]

+

λ4

{

Tr(Φ†Φ)
[

Tr(Φ̃Φ†) + Tr(Φ̃†Φ)
]}

V∆ = −µ2
3

[

Tr(∆L∆†
L) + Tr(∆R∆†

R)
]

+ ρ1

{

[

Tr(∆L∆†
L)
]2

+

[

Tr(∆R∆†
R)
]2
}

+ ρ2

[

Tr(∆L∆L)Tr(∆†
L∆†

L)+

Tr(∆R∆R)Tr(∆†
R∆†

R)
]

+ ρ3

[

Tr(∆L∆†
L)Tr(∆R∆†

R)
]

+

ρ4

[

Tr(∆L∆L)Tr(∆†
R∆†

R) + Tr(∆†
L∆†

L)Tr(∆R∆R)
]

VΦ∆ = α1

{

Tr(Φ†Φ)
[

Tr(∆L∆†
L) + Tr(∆R∆†

R)
]}

+ α2

[

Tr(Φ̃†Φ)Tr(∆R∆†
R)

+Tr(Φ̃Φ†)Tr(∆L∆†
L)
]

+ α∗
2

[

Tr(Φ̃Φ†)Tr(∆R∆†
R)+

Tr(Φ̃†Φ)Tr(∆L∆†
L)
]

+ α3

[

Tr(ΦΦ†∆L∆†
L) + Tr(Φ†Φ∆R∆†

R)
]

+

β1

[

Tr(Φ∆RΦ†∆†
L) + Tr(Φ†∆LΦ∆†

R)
]

+ β2

[

Tr(Φ̃∆RΦ†∆†
L)+

Tr(Φ̃†∆LΦ∆†
R)
]

+ β3

[

Tr(Φ∆RΦ̃†∆†
L) + Tr(Φ†∆LΦ̃∆†

R)
]

where we have written out each term completely to display the full parity symmetry. Note that as
a consequence of the discrete left-right symmetry all terms in the potential are self-conjugate, except
for the α2 one; therefore α2 is the only parameter which may be complex. The potential (10) is
not invariant under the exchange of the fields φ0

1 ↔ φ0∗
2 . One can restore this symmetry by setting

β2 = β3, α3 = 0 and α2 real. Then all the parameters in the scalar potential have to be real and it is
CP conserving. In that case, spontaneous CP violation can occur even with the minimal scalar sector
described above [23]. However, as explained in the introduction this model can not lead to successful
electroweak baryogenesis and we shall not consider it here.

Since we will not discuss the CP violation aspect of the BAU generation, in our analysis we assume
CP conservation and take α2 to be real. It can be shown [24] that, without fine tuning, the βi terms
spoil the seesaw mechanism by inducing a direct Majorana mass term for the left-handed neutrino,
unless |βi| ≤ 10−7 − 10−8 or the right scale is very large. As a result, in realistic left-right symmetric
models with a low right scale (vR ∼ 1 TeV) and no fine tuning, the effects of such terms will be
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negligible and it is a good approximation to assume that they vanish. Therefore, we set βi = 0 in the
rest of the paper This choice will also avoid the unwanted presence of too large FCNC which could
enter in conflict with experimental data.

Only the neutral components of the scalar fields, φ0
1, φ

0
2, δ

0
L, δ0

R, can acquire vevs without violating
electric charge. If ∆L or ∆R acquire a vev, then B − L is necessarily broken, and if 〈∆L〉 6= 〈∆R〉
parity breakdown is also ensured. Thus the correct pattern of symmetry breaking is achieved by

〈Φ〉 =
1√
2

(

k1 0
0 k2

)

, 〈∆L,R〉 =
1√
2

(

0 0
vL,R 0

)

(11)

where k1, k2, vL and vR are real, and phenomenologically the hierarchy vR ≫ k1, k2 ≫ vL is required.
Moreover, when the β parameters in the scalar potential vanish then vL = 0 [15, 24], so we neglect vL

in the following.
In the tree-level scalar potential we have thus 14 free parameters, plus the zero temperature vevs.

Three of these parameters can be fixed by minimizing the zero-temperature tree-level potential, i.e.
imposing the vanishing of the first derivatives of V at (k1, k2, vR), which leads to the relations

µ2
1 =

α1

2
v2

R − α3

2

k2
2v

2
R

(k2
1 − k2

2)
+ λ1(k

2
1 + k2

2) + 2λ4k1k2

µ2
2 =

α2

2
v2

R +
α3

4

k1k2v
2
R

(k2
1 − k2

2)
+ (2λ2 + λ3)k1k2 +

λ4

2
(k2

1 + k2
2) (12)

µ2
3 =

α1

2
(k2

1 + k2
2) + ρ1v

2
R + 2α2k1k2 +

α3

2
k2

2

Before writing down the finite temperature effective potential, let us discuss briefly the values that
can be taken by the αi (i = 1, 2, 3) parameters. From the minimization conditions (12), one can see
that to obtain µ1 and µ2 of order of the weak scale (and hence phenomenologically acceptable values

of k ≡
√

k2
1 + k2

2) the αi should be of order O(k2/v2
R) ≪ 1. Otherwise, µ1, µ2 would naturally be of

order of the right scale, vR. But this is by no means an artificial fine tuning, as the αi parameters
govern the doublet-triplet mixing and therefore we do expect them to be of that order. We shall take
advantage of this fact to obtain an approximate analytic expression for the finite temperature effective
potential in the next section.

The masses for the relevant degrees of freedom of the theory in the background of the fields k1, k2, vR

are given in the appendices.

3 Finite Temperature Effective Potential

The main tool for the study of the electroweak phase transition in the left-right symmetric model
described above is the one-loop, daisy improved finite-temperature effective potential of the model.
We are actually interested in the dependence of the potential on k1 = Re φ0

1/
√

2, k2 = Re φ0
2/
√

2 and
vR = Re δ0

R/
√

2. It can be readily computed by the usual methods [25] and is given by

Veff(ki, vR, T ) = V (ki, vR) + V1(ki, vR, T ) + Vdaisy(ki, vR, T ) (13)

where V (ki, vR) is the tree-level potential (10),

V1(ki, vR, T ) =
T 4

2π2

∑

i

niJi

[

m2
i (ki, vR)

T 2

]

, (14)

5



Vdaisy(ki, vR, T ) = − T

12π

∑

i

ni

[

m3
i (ki, vR, T ) − m3

i (ki, vR)
]

. (15)

The sum runs over all the particles in the model, ni is the corresponding number of degrees of freedom,
taken negative for fermions, and m2

i (ki, vR) is the tree-level mass of the particle i in presence of the
background fields k1, k2, vR. The functions Ji = J+(J−) for bosons (fermions) are given by

J±(y2) =
∫ ∞

0

dxx2 log
(

1 ∓ e−
√

x2+y2

)

(16)

The last term in (13), Vdaisy(ki, vR, T ), is a correction coming from the resummation of the leading
infrared divergent higher-loop contributions, associated with the so-called daisy diagrams. The sum
runs over bosons only. The masses m2

i (ki, vR, T ) are obtained from the m2
i (ki, vR) by adding the

leading T -dependent self-energy contributions, which are proportional to T 2. In the contribution
of the longitudinal gauge boson degrees of freedom, there is a suppression due to the temperature
dependent Debye mass. A simple treatment is just to drop the longitudinal contribution [26], and we
follow this prescription.

For values of the fields such that mi(ki, vR)/T < 1, we can expand J± as [25] 2

J+(m2/T 2) = −π4

45
+

π2m2

12T 2
− π

6

(

m2

T 2

)3/2

+ O
(

m4

T 4
log

m

T

)

(17)

J−(m2/T 2) =
7π4

360
− π2m2

24T 2
+ O

(

m4

T 4
log

m

T

)

(18)

In left-right symmetric models one expects two phase transitions [21]: one at T = TR = O(vR) ∼ 1
TeV [27], where SU(2)R is spontaneously broken, and the other at T = TL = O(k) ∼ 250 GeV. Hence
at temperatures much higher than TR down to T = TR, vR = k = 0 will be the minimum of the
effective potential (13). At T = TR, two degenerate minima exist: one for vR = k = 0 and a new
one at k = 0, vR = vR(TR). For temperatures T < TR, the right triplet field vR will settle down near
the minimum given by vR = vR(TR), which will slowly evolve to its zero temperature value. In our
analysis we focus on the left-sector phase transition, and we just assume that by the time it occurs,
equilibrium has again been attained after the right phase transition, so that we can reliably use the
finite temperature effective potential (13).

Near the electroweak phase transition temperature, TL, the high-temperature expansion of J± is not
valid for particles with mass of order vR ≫ TL. The contribution due to these particles is Boltzmann
suppressed, and in the limit mi(ki, vR) ≫ T it reduces to [7]

V1(ki, vR, T ) ∼
∑

i

niT
2

(2π)3/2
m2

i

√

T

mi
e−mi/T

[

1 +
15T

8mi
+ O

(

T 2

m2
i

)]

. (19)

The exponential factor in the previous expression allows us, within good approximation, to neglect the
effect of particles with masses of the vR scale. We then have to identify the heavy O(vR) degrees of
freedom, by diagonalizing the mass matrices given in the appendices, and remove their contribution
from eq. (13).

2In fact, it may be shown numerically that the m/T expansion is a good approximation up to m/T ∼ 2.2(1.6) for
bosons (fermions) [7].
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In the case of the gauge bosons, we see from eqs. (A.7), (A.8) that only the W1 and Z1 bosons
should be included in eq. (13), since W2 and Z2 get masses of order vR. In the limit k2 ≪ v2

R, the W1

mass is just given by the (11) entry of the mass matrix (A.4), while the Z1 mass can be approximated
by

M2
Z1

≃ g2(g2 + 2g′2)

4(g2 + g′2)
(k2

1 + k2
2). (20)

Since the electric charge formula, eq.(3), implies that

1

e2
=

2

g2
+

1

g′2 , (21)

a Standard Model type relation for the light gauge bosons is also valid in the left-right symmetric
model, M2

Z1
= M2

W1
/ cos2 θW , with cos2θW = (g2 + g′2)/(g2 + 2g′2).

With respect to the fermions, only the right-handed neutrinos get masses of order vR. The contri-
bution to the effective potential of quarks and charged leptons is proportional to the Yukawa couplings
(h, h̃), so we neglect all of them except for the third generation of quarks. The effect of the light neu-
trinos is even more suppressed, since their masses are of order k2/vR due to the see-saw mechanism.

Let us finally discuss the scalar sector spectrum. Both doubly charged scalar fields, δ++
R , δ++

L ,
acquire masses of order vR and hence decouple. In the singly charged Higgs sector, δ+

L is an eigenstate
with mass of O(vR), while φ+

1 , φ+
2 , δ+

R mix among themselves. However, the mass matrix elements which
relate the triplet with the doublet components are of the type αikvR, which are negligible with respect
to the terms O(λik

2), since αi = O(k2/v2
R) and λi = O(1). Thus, neglecting the doublet-triplet mixing,

δ+
R can be identified with the pseudo-Goldstone boson eaten by the WR, which in a general Rξ gauge

will not contribute to the effective potential (13) near TL. The two remaining charged scalar fields
get electroweak scale masses, which can be calculated analytically by diagonalizing the corresponding
2 × 2 submatrix, given in appendix B.

Since we have assumed that the tree-level scalar potential is CP conserving, in the neutral Higgs
sector scalars and pseudo-scalars do not mix, and we are left with two 4× 4 mass matrices. From the
one corresponding to the imaginary parts of the neutral fields, we see that neither δi

R nor δi
L contribute

to Veff(ki, vR, T ); the former is the pseudo-Goldstone boson eaten by the Z ′, while the latter acquires
a right scale mass. Concerning the real parts, δr

L decouples because it is also a heavy eigenstate, and
neglecting terms of the type αikvR so does δr

R. The field dependent masses of the light eigenstates can
be found in appendix B.

Then, the field-dependent part of the finite temperature effective potential near the electroweak
phase transition may be approximated by:

Veff(ki, vR, T ) = V (ki, vR) +
T 2

24

{

2(2α1 + α3)v
2
R +

[

24λ4 + 12hh̃
]

k1k2 (22)

+

[

10λ1 + 4λ3 +
3

2
g2 +

3

4

g2(g2 + 2g′2)

(g2 + g′2)
+ 3(h2 + h̃2)

]

(k2
1 + k2

2)

}

− T

12π







8
∑

j=1

[m2
j(ki, vR, T )]3/2 + 4

[

g2

4
(k2

1 + k2
2)

]3/2

+ 2

[

g2(g2 + 2g′2)

4(g2 + g′2)
(k2

1 + k2
2)

]3/2






where the sum runs only over the bidoublet scalar degrees of freedom.
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Notice that, within reasonable approximations, we have found that in the scalar sector only the
bidoublet Φ can give a sizeable contribution to the finite temperature effective potential near TL,
together with the fermions and SM gauge bosons. The effective theory at temperatures of order TL

contains then the same degrees of freedom as a two Higgs doublet model. However, a careful look at
the part of the tree-level potential involving the bidoublet shows that some of the scalar couplings of
the most general two Higgs model in the left-right symmetric model are constrained or vanish, while
the coupling λ4, usually taken to be zero in two Higgs models, is present in our case. Therefore,
although the electroweak phase transition in two Higgs doublet models has been extensively studied in
the literature [28], the results can not be extrapolated to the left-right symmetric model in a straight
forward way, and it is worth to perform a new analysis within the (different) parameter space relevant
for this case.

4 Numerical results

We shall now use the effective potential (22) to calculate the critical temperature and the location of
the minimum at the critical temperature. We define the critical temperature Tc as the value of T at
which the determinant of the second derivatives of Veff(ki, vR, T ) at k = 0 vanishes:

det

[

∂2Veff (ki, vR, Tc)

∂ki∂kj

]

k=0

= 0 . (23)

In fact, the phase transition starts at T = TD, where TD is the temperature at which there are two
degenerate minima, by tunnelling. At Tc there is no longer any barrier in some direction between what
was the minimum at the origin and the new minimum away from the origin, and condensation of the
scalar fields can progress rapidly without any suppression from a tunnelling factor.

The effective potential Veff(ki, vR, Tc) is a function of the three temperature-dependent vevs,
k1(T ), k2(T ), vR(T ); however we expect vR(Tc) ≃ vR(T = 0) and therefore we approximate vR(Tc) by its
zero temperature value. Within this approximation, we solve numerically eq. (23), and once Tc is deter-
mined we minimize (numerically) the potential Veff(ki, vR, Tc) and find the minimum [k1(Tc), k2(Tc)].
Then we compute the quantity of interest concerning the strength of the electroweak phase transition,

that is, the ratio k(Tc)/Tc where k(Tc) ≡
√

k2
1(Tc) + k2

2(Tc).
Our procedure is the following: we use the minimization conditions at zero temperature (12) to fix

three of the unknown parameters in the effective potential (22). The experimental constraint on the
weak scale

k2 ≡ k2
1 + k2

2 = (246GeV)2 (24)

eliminates one more, while the Yukawa couplings h, h̃ can be determined from the masses of the third
generation of quarks, for which we take mtop = 175 GeV and mb = 4.5 GeV.

The finite temperature effective potential (22) still depends on a large number of free parameters
in the scalar sector. However, only some of them are relevant to determine the critical temperature
and the position of the minimum, namely λ1, λ2, λ3, λ4, k1(T = 0) and α3, which only appears in
the combination α3v

2
R. We generate randomly values of these parameters in the ranges |λi| ≤ 1/2

(so that the use of the perturbative effective potential is reasonable), |k1(T = 0)| ≤ 246 GeV and
|α3v

2
R| ≤ (246GeV)2/10, which takes into account that αi ∼ O(k2/v2

R) for realistic left-right symmetric
models.
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There are further restrictions on this parameter space, due to zero temperature requirements. First,
the potential must be bounded from below, which leads to the set of constraints:

λ1 > 0 λ1 − |λ4| > 0 2λ2 + λ3 − λ1 > 0 (25)

Finally, in order to obtain the correct symmetry breaking pattern at zero temperature, we also
require that the scalar vevs do not break electromagnetism and that the squared masses of fluctuations
about these vevs are positive. That is, the eigenvalues of the light scalar mass matrices at zero
temperature (see appendix B) should be positive, once the relations (12) have been used. For any
random set (λ1, λ2, λ3, λ4, k1(T = 0), α3v

2
R) satisfying the above conditions, we calculate the critical

temperature Tc according to the definition (23), minimize the effective potential at Tc with respect to
k1(Tc), k2(Tc), and obtain k(Tc)/Tc.

Since we use the high temperature expansion of the one-loop effective potential, we need to verify
that such approximation is valid at Tc. Thus, once the vevs ki(Tc) have been determined, we compute
the value of all the masses which enter in the effective potential (22) and impose the condition

m(Tc)

Tc
< 1.6 (26)

For the sets of parameters excluded by this condition, the high temperature expansion used would be
questionable.

In Fig. 1 we plot the ratio k(Tc)/Tc against the lightest scalar mass m1, corresponding to a sample
of 500 points in the parameter space which passed our selection criterion. As we see, there is a
sizeable fraction which satisfies the condition for preserving the baryon asymmetry, k(Tc)/Tc > 1,
and corresponds to experimentally allowed values of the lightest scalar mass, m1 > 50 GeV [29]. We
find this result to be particularly interesting, given the relatively large number of potential signatures
of such a model in future experiments [22] and the small number of free parameters to adjust the
remaining phenomenology [30].

In Figs. 2, 3, 4 and 5 we show the frequency of occurrence of the (zero temperature) masses
corresponding to the light physical scalars, in the allowed baryon preserving region for a sample of
9000 points. They range from about 50 GeV to 250 GeV. The masses of the lightest neutral scalar and
the charged ones are peaked about 110 GeV, while the pseudo-scalar and heavy neutral scalar mass
distributions are broader and centered in a somehow higher value ∼ 150 GeV. So we conclude that
there is no significant contradiction with experimental bounds in the baryon preserving cases found.

5 Conclusions

We have analyzed the electroweak phase transition in left-right symmetric models with a scalar sector
consisting of a bidoublet and two triplets. Within reasonable simplifying assumptions about the scalar
couplings, we find regions of parameter space which are consistent with the present experimental
bound on the Higgs mass and with a sufficiently strong first-order electroweak phase transition, eq.
(1). We have also obtained the scalar spectrum for these phenomenologically acceptable values of the
parameters.

In this paper we have focused on the requirement that the sphaleron processes be sufficiently
suppressed after the electroweak phase transition, to preserve the produced baryon asymmetry. Once

9



we have shown that the transition can be strongly enough first order, a detailed calculation of the
baryon asymmetry generated during the electroweak phase transition in the framework of left-right
symmetric models would be very interesting. As mentioned in the introduction, there are estimates
of this quantity in the literature [17]-[19] but they do not include some relevant effects and lead
to different results. In principle, the baryon asymmetry in the class of left-right symmetric models
considered here will be generated in much the same manner as in two Higgs doublet models, where it
has been computed by several groups [8]-[11]. Some of these calculations seem to indicate that enough
baryon asymmetry can be generated, so we expect that this will also be the case in left-right symmetric
models.
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A Gauge boson eigenstates

For the sake of completeness in this appendix we derive physical gauge boson eigenstates (eigenstates
of mass matrices) and their eigenvalues. Remember that our scalar sector consists of one bidoublet and
one set of left-right symmetric lepton-number carrying triplets with the pattern of symmetry breaking
given in eq. (11).

The piece of the Lagrangian containing their covariant derivatives is

LD = Tr(Dµ∆
L
)†(Dµ∆

L
) + Tr(Dµ∆

R
)†(Dµ∆

R
) + Tr(DµΦ)†(DµΦ) (A.1)

where

Dµ∆L
= ∂µ∆

L
+

1

2
ig
[

~τ · ~WL∆
L
− ∆

L
~τ · ~WL

]

+
1

2
ig′B∆

L
,

Dµ∆R
= ∂µ∆

R
+

1

2
ig
[

~τ · ~WR∆
R
− ∆

R
~τ · ~WR

]

+
1

2
ig′B∆

R
,

DµΦ = ∂µΦ +
1

2
ig(~τ · ~WLΦ − Φ~τ · ~WR) (A.2)

Then in this model there are seven gauge bosons: four charged ones, the W 1
L,R and W 2

L,R and three
neutral ones, W 3

L,R and B. When the Higgs multiplets acquire their vevs (see eq. (11)) the interaction
bosons get their masses.

10



By inspecting the Lagrangian, it is easy to see that the mass terms for the charged bosons are

Lc
mass = ( W+

L W+
R )M c

(

W−
L

W−
R

)

(A.3)

where W± are defined by W± = 1√
2
(W 1 ∓ W 2) and M c is

M c =
g2

4

(

k2
1 + k2

2 −2k1k2

−2k1k2 v2
R + k2

1 + k2
2

)

(A.4)

While that of the neutral sector has the form

Ln
mass =

1

2
( W 3

L W 3
R B )Mn







W 3
L

W 3
R

B





 (A.5)

where the Mn is given by

Mn =
1

4







g2(k2
1 + k2

2) −g2(k2
1 + k2

2) 0
−g2(k2

1 + k2
2) g2(v2

R + k2
1 + k2

2) −gg′v2
R

0 −gg′v2
R g′2v2

R





 (A.6)

The diagonalization of (A.4) and (A.6) gives the masses of the charged W±
1,2 and neutral A and Z1,2

physical fields, they are

M2
W1,2

=
g2

8

[

v2
R + 2(k2

1 + k2
2) ∓

√

v4
R + 16(k1k2)2

]

(A.7)

M2
Z1,2

= C ∓
√

C2 − 4D (A.8)

with

C =
1

8
[(g2 + g′2)v2

R + 2g2(k2
1 + k2

2)]

D =
1

64
g2(g2 + 2g′2)(k2

1 + k2
2)v

2
R

and

MA = 0 (A.9)

B Higgs masses

Here we give a variety of useful result for the mass-squared matrices of the various Higgs sectors before
the first derivative constraints have been substituted. The mass matrices are symmetric.
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B.1 Neutral scalar mass matrix

We first compute the mass matrix corresponding to the real components of the neutral scalar fields in
the {φr

1 , φr
2 , δr

R , δr
L} basis.

MRe
2

11 = −µ2
1 + λ1(3k

2
1 + k2

2) + 4λ2k
2
2 + 2λ3k

2
2 + 6λ4k1k2 +

1

2
α1v

2
R

MRe
2

12 = −2µ2
2 + k1k2 (2λ1 + 8λ2 + 4λ3) + 3λ4(k

2
2 + k2

1) + α2v
2
R

MRe
2

13 = α1k1vR + 2α2k2vR

MRe
2

14 = 0

MRe
2

22 = −µ2
1 + λ1

(

3k2
2 + k2

1

)

+ 2k2
1(2λ2 + λ3) + 6λ4k1k2 +

1

2
(α1 + α3)v

2
R

MRe
2

23 = 2α2k1vR + α1k2vR + α3k2vR

MRe
2

24 = 0

MRe
2

33 = −µ2
3 + 3ρ1v

2
R + 2α2k1k2 +

1

2
α1(k

2
1 + k2

2) +
1

2
α3k

2
2

MRe
2

34 = 0

MRe
2

44 = −µ2
3 +

1

2
ρ3v

2
R +

1

2
α1(k

2
1 + k2

2) + 2α2k1k2 +
1

2
α3k

2
2 (B.1)

As explained in section 3, near the electroweak phase transition temperature only the light states
contribute to the effective potential in eq. (13) and are relevant for our analysis. Within the approx-
imation k2 ≪ v2

R, those are the bidoublet components φr
1 , φr

2, and the corresponding mass matrix is
just the 2 × 2 submatrix obtained from the entries (11),(12) and (22) above.

B.2 Neutral pseudo-scalar mass matrix

In a manner similar to the previous section, we compute the mass matrix corresponding to the imagi-
nary components of the neutral scalars, in the basis {φi

1 , φi
2 , δi

R , δi
L}.

MIm
2

11 = −µ2
1 + λ1(k

2
1 + k2

2) − 4λ2k
2
2 + 2λ3k

2
2 + 2λ4k1k2 +

1

2
α1v

2
R

MIm
2

12 = 2µ2
2 − 8λ2k1k2 − λ4(k

2
2 + k2

1) − α2v
2
R

MIm
2

13 = 0

MIm
2

14 = 0

MIm
2

22 = −µ2
1 + λ1

(

k2
2 + k2

1

)

+ 2k2
1(−2λ2 + λ3) + 2λ4k1k2 +

1

2
(α1 + α3)v

2
R

MIm
2

23 = 0

MIm
2

24 = 0

MIm
2

33 = −µ2
3 + ρ1v

2
R + 2α2k1k2 +

1

2
α1(k

2
1 + k2

2) +
1

2
α3k

2
2

MIm
2

34 = 0
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MIm
2

44 = −µ2
3 +

1

2
ρ3v

2
R +

1

2
α1(k

2
1 + k2

2) + 2α2k1k2 +
1

2
α3k

2
2 (B.2)

Again, in the limit k2 ≪ v2
R, the light states are the bidoublet components φi

1 , φi
2, and their mass

matrix is given by the entries (11), (12) and (22) of MIm
2

.

B.3 Singly charged Higgs mass matrix

The singly charged Higgs mass matrix, in the {φ+
1 , φ+

2 , δ+
R , δ+

L } basis, is

M+2
11 = −µ2

1 + λ1(k
2
1 + k2

2) + 2λ4k1k2 +
1

2
(α1 + α3)v

2
R

M+2
12 = −α2v

2
R + 2µ2

2 − λ4(k
2
1 + k2

2) − 2k1k2 (λ3 + 2λ2)

M+2
13 =

1

2
√

2
α3k1vR

M+2
14 = 0

M+2
22 = −µ2

1 +
1

2
α1v

2
R + λ1(k

2
1 + k2

2) + 2λ4k1k2

M+2
23 =

1

2
√

2
α3k2vR

M+2
24 = 0

M+2
33 = −µ2

3 +
1

2
(α1 + α3) (k2

1 + k2
2) + 2α2k1k2 + ρ1v

2
R

M+2
34 = 0

M+2
44 = −µ2

3 +
1

2
(α1 + α3) (k2

1 + k2
2) + 2α2k1k2 +

1

2
ρ3v

2
R (B.3)

In the limit k2 ≪ v2
R, the light mass eigenstates coincide with φ+

1 , φ+
2 , and their mass matrix is

given by the entries (11), (12) and (22) of M+2

.

B.4 Doubly charged Higgs mass matrix

We now present the doubly charged Higgs mass matrix components in the {δ++
R , δ++

L } basis .

M++2
11 = −µ2

3 +
1

2
α1(k

2
1 + k2

2) + 2α2k1k2 + ρ1v
2
R + 2ρ2v

2
R +

1

2
α3k

2
1

M++2
12 = 0

M++2
22 = −µ2

3 +
1

2
α1(k

2
1 + k2

2) + 2α2k1k2 +
1

2
ρ3v

2
R +

1

2
α3k

2
1 (B.4)
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[24] N.G. Deshpande, J.F. Gunion, B. Kayser and F. Olness, Phys. Rev. D44 (1991) 837

[25] L. Dolan and R. Jackiw, Phys. Rev. D9 (1974) 3320

[26] M. Dine, P. Huet, R. Leigh and A. Linde, Phys. Lett. B283 (1992) 319; Phys. Rev. D46 (1992)
550

[27] M. Lindner and M. Weiser, Phys. Lett. B383 (1996) 405; R.R. Volkas, Phys. Rev. D53 (1996)
2681

[28] A.I. Bochkarev, S.V. Kuzmin and M.E. Shaposhnikov, Phys. Rev. D43 (1991) 369; N. Turok and
J. Zadrozny, Nucl. Phys. B358 (1991) 471; A.T. Davies, C.D. Froggatt, G. Jenkins and R.G.
Moorhouse, Phys. Lett. B336 (1994) 464; J.M. Cline and P.-A. Lemieux, Phys. Rev. D55 (1997)
3873

[29] K. Huitu, J. Maalampi, A. Pietila, M. Raidal and R. Voupionpera, hep-ph/9701386; K. Huitu
and J. Maalampi, Phys. Lett. B344 (1995) 217

[30] J. Sirkka, Phys. Lett. B344 (1995) 233; A. Pilaftsis, Phys. Rev. D52 (1995) 459

15

http://arxiv.org/abs/hep-ph/9701386


Figure captions

Fig. 1. v(Tc)/Tc ratio vs the ligthest scalar mass (in Gev).

Fig. 2. Frequency distribution of the lightest neutral scalar mass (in Gev) for the baryon preserving cases.

Fig. 3. Frequency distribution of the charged scalar mass (in GeV) for the baryon preserving cases.

Fig. 4. Frequency distribution of the pseudoscalar mass (in Gev) for the baryon preserving cases.

Fig. 5. Frequency distribution of the heavy neutral scalar mass (in Gev) for the baryon preserving cases.
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