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Abstract

We investigate the possibility that baryogenesis occurs during the weak phase transition in a
minimal extension of the Standard Model which contains extra neutral leptons and conserves total
lepton number. The necessary CP-violating phases appear in the leptonic Yukawa couplings. We
compute the CP-asymmetries in both the neutral and the charged lepton fluxes reflected in the
unbroken phase. Using present experimental bounds on the mixing angles and Standard Model
estimates for the parameters related to the scalar potential, we conclude that it seems unlikely to
produce the observed baryon to entropy ratio within this kind of models. However, we comment
on the possibility that the constraints on the mixings might be naturally relaxed due to small
finite temperature effects.
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1 Introduction

The baryon number to entropy ratio in the observed part of the Universe is required to be nB/s ∼
(4–6) × 10−11 by nucleosynthesis constraints [1]. In 1967, Sakharov [2] established the three basic
requirements for obtaining this baryon asymmetry as a result of particle interactions in the early
universe: a) Baryon number violation, b) C and CP violation, c) departure from thermal equilibrium.
These conditions may be fulfilled at weak scale temperatures [3], if the electroweak phase transition is
first order.

In a strongly first order electroweak transition, bubbles of the true ground state (broken phase)
nucleate and expand until they fill the Universe; local departure from thermal equilibrium occurs in
the vicinity of the expanding bubble walls. The other two Sakharov conditions are also satisfied, since
C and CP are known to be violated by the electroweak interactions and anomalous baryon number
violation is fast at high temperatures in the symmetric phase. As a bubble expands, particles in
the unbroken phase will reflect off the advancing wall. CP-violating interactions result in a different
reflection probability for fermions with a given chirality and the corresponding antifermions, leading
to a CP asymmetry in the reflected chiral number flux [4]. In the symmetric phase, anomalous
B + L violating interactions are in thermal equilibrium and the reflected current induces a net baryon
number. An important survival requirement for the produced baryon asymmetry is that the sphaleron
processes inside the bubble are slow enough and this in turn is directly related to the strength of the
phase transition.

In principle the Standard Model (SM) contains all the necessary ingredients for electroweak baryo-
genesis, but it has two problems: the CP asymmetry induced by the Kobayashi-Maskawa phase is far
too small to account for the observed nB/s ratio [5, 6], and the phase transition appears too weakly
first order for the Higgs mass experimentally allowed [7]. However, these two problems may be absent
in several simple extensions of the SM, which contain additional sources of CP violation and more
scalars than the SM. The larger parameter space in the scalar sector allows for a stronger first-order
phase transition without such a light Higgs [8]. Several such possibilities have been considered in the
literature: two Higgs models with a strong CP phase [9]–[12], heavy Majorana neutrinos [13], and
supersymmetric models [14].

In the present paper, we consider models with an extended lepton sector, which conserves total
lepton number. The model provides a viable alternative to the see-saw mechanism for explaining the
lightness of the known neutrinos, in those extensions of the SM where there are no scalars carrying
lepton number, which could generate Majorana masses. They arise in several contexts, such as GUTs
[15] and E(6) superstring-inspired models [16]. Similar patterns of lepton masses have also been
obtained in the context of models of Extended Technicolor with a GIM mechanism [17].

The relevant features for baryogenesis are twofold. First, the lepton Yukawa interactions contain
additional CP-violating phases, which can lead to a much larger CP asymmetry than the CKM phase
in the SM. In contrast to the models with Majorana neutrinos considered in [4], the CP-violating effects
in this case are not suppressed by the light neutrino masses. Second, the presence of an additional
singlet scalar may help in getting a stronger first-order phase transition.

An interesting issue that may be relevant in this type of models is whether finite temperature
corrections can produce an enhancement of the CP asymmetry, as was found in the first detailed
calculation of this quantity in the SM [18] 1. In [5][6] it was shown that this enhancement disappears

1To be more precise, the typical suppression with quark masses expected in a flavour-blind CP-violating process was
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in the SM when one properly includes the incoherence effects induced by the interaction of the quarks
with the plasma. However, the question remained that if the particles involved were much more weakly
interacting, as leptons instead of quarks, maybe this enhancement would be at work.

In section 2 we describe the model, and the order of magnitude estimates of the CP-violating
asymmetries are obtained in section 3. We find that the leading effects are different for the reflection
of the neutral and the charged leptons. Naively the later is smaller since it is suppressed by the charged
lepton masses; however, an enhancement of the type of ref. [18] could imply no such suppression. In
section 4 we compute the contribution to the asymmetry due to the reflection of the neutral leptons,
which turns out to be the leading effect, as expected. In close analogy with the SM case, we consider
in section 5 the lepton asymmetry generated by the charged lepton reflection on the bubble wall. As
we will see, no enhancement with respect to the naive estimate is found. In section 6 we compute the
baryon number induced by the CP asymmetries in the neutral sector, and we conclude in section 7.

2 The Model

The phenomenology of this type of models has been extensively studied in [19][17]. Here we briefly
describe the essential features relevant for baryogenesis.

The gauge group is the standard SU(2) × U(1), with minimal quark sector. The lepton sector is
extended with two electroweak singlet two-component leptons in each generation, i.e.,

Ψi
L =

(

νi
L

ei
L

)

, ei
R, νi

R, si
L. (1)

Unlike the minimal standard model, total lepton number conservation is not an automatic symmetry.
It has to be imposed, and it restricts the form of the Yukawa terms that lead to the neutral fermion
masses, while the Yukawa terms involving charged leptons are completely standard:

LY = Ψ̄LfHeR + Ψ̄LfDHνR + s̄LfSσνR + h.c. (2)

where fi are the Yukawa matrices, H is the standard Higgs doublet and σ is a new singlet scalar field.
Due to the presence of σ, the weak phase transition can be quite strongly first order for a significant
range of parameters [8].

For simplicity, we will assume that the singlet σ acquires a vacuum expectation value at the same
scale as the standard Higgs doublet, and the theory undergoes a single phase transition at a critical
temperature near the weak scale. Although this does not need to be the case, we expect that the CP
asymmetry will not depend much on this choice (at least if power counting arguments give a correct
estimate). Then, in the broken phase the lepton mass terms are

ēRmeL + ν̄RDνL + ν̄RSsL + h.c., (3)

where
m = f †v D = f †

Dv S = f †
Su (4)

v and u being the vevs of the doublet and singlet scalar fields, respectively.

not found, while the suppression with the CP-conserving angles was explicit.
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The structure of the neutral sector mass matrix (3) ensures the existence of three massless Weyl
neutrinos ν0, regardless of the relative value of D and S. The other six Weyl fermions pair up into
three heavy neutral Dirac fermions n, whose masses are essentially determined by S. Note that in this
model the ratio D/S is expected to be less constrained than the corresponding parameter of any model
that invokes the see-saw mechanism to understand the smallness of neutrino masses. This is because
in such models the neutrino masses are only suppressed by D/S, which is therefore very constrained.
In the present case, this ratio is not related to the light neutrino masses. Nevertheless, we will see in
the next section that it can also be constrained from the strong bounds on charged lepton mixing.

The mass matrix can be diagonalized by multiplying on the right and the left by unitary matrices:

(

V 0
0 0

)(

D S
0 0

)

U =

(

0 0
0 M

)

(5)

with
(

νL

sL

)

= U

(

ν0

nL

)

(6)

where ν0 are the massless neutrinos and n are the neutral heavy leptons (NHL).
The unitary matrix V diagonalizes DD† + SS† to give M2. The unitary matrix U can be written

as

U =

(

KL KH

KSL KSH

)

(7)

where KL, KSH ∼ 1 −O[(D/S)2] and KH , KSL ∼ O(D/S).
Using (6) we get the following form for the charged current leptonic weak interaction:

Lcc =
g

2
W µ

3
∑

a=1

6
∑

α=1

ēaγµL
[

KLν0 + KHnL

]

aα
+ h.c. (8)

One can see that the charged current coupling of the mass eigenstates charged leptons to the massless
as well as the heavy neutrinos is non-trivial, making possible the violation of individual lepton numbers
Le, Lµ and Lτ .

Due to the admixture of fermions of different weak isospin, there is no GIM mechanism in the
neutral fermion couplings to the Z boson, which are given by

Lnc =
g

2cw

Zµ
∑

α,β

N̄αγµLPαβNβ, (9)

where Nα = (ν0
a , na), and P = K†

LKL + K†
HKH is in general a non-diagonal projection matrix. The

neutral couplings involving the massless neutrinos are diagonal but flavour-dependent.
It has been shown [20] that for n generations the total number of physical parameters describing

the Yukawa sector is n2 angles and (n−1)2 phases. Thus, for three families there are four independent
CP-violating phases. If the charged lepton Yukawas are neglected, it is easy to show, using the method
of ref. [21], that the number of phases is (n − 1)(n − 2)/2. So one CP-violating phase still remains in
this limit and consequently the associated CP invariant is not suppressed by the charged lepton masses.
In contrast, the CP invariants corresponding to the other three phases are necessarily suppressed by
the small differences of charged lepton masses.
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3 Order of Magnitude Estimates

The observable CP asymmetry results from the interference of pure CP-violating phases with CP-
even phases, equal for particles and antiparticles. These are the reflection coefficients, which become
complex when the particle energy is smaller than its mass in the true vacuum. Unremovable CP-odd
phases appear in the mass matrices due to either

a) CP-violating interactions in the thermal loops that correct the dispersion relations of the particles
propagating in the plasma [18];

b) non-trivial space-time dependence of the scalar vevs inside the bubble wall (for more than one
Higgs field), which induces space dependent CP-violating phases. These phases cannot be rotated away
at two adjacent points, x and x + dx, by the same set of unitary transformations, i.e. U−1

x Ux+dx 6= 1
[14].

Whenever mechanism b) is present, it generically will dominate over a), since in a) there are
suppression factors coming from loops (1/4π). Mechanism b) is the one that generates the baryon
asymmetry in all the extensions of the SM proposed in the literature for electroweak baryogenesis. In
contrast, in the SM the quark mass matrix has only an overall dependence on the Higgs vev and can be
diagonalized by space-independent unitary matrices; hence the CP asymmetry can only be generated
through mechanism a).

In the model considered here we have to distinguish between the charged and the neutral sectors.
Charged leptons get their masses only from the doublet scalar vev, so the situation is completely
analogous to the SM: CP-violating phases appear in the thermal corrections to the dispersion relations.
In the neutral sector the situation is different because the mass matrix has a non-trivial dependence
on both singlet and doublet scalar vevs. Since generically this ratio is not constant within the wall,
mechanism b) is also present.

The size of the leading CP asymmetries in the reflection of both charged and neutral leptons can be
estimated by simple power counting arguments. To do so, we construct a measure of the CP violation,
invariant under flavour and phase redefinitions of the lepton fields, i.e. under transformations of the
type

ΨL → UΨL

eR → V eR

νR → WνR (10)

sL → XsL.

One can show that the following expression is invariant under such transformations, and vanishes if
CP is conserved [20]:

ImTr
[

D†Dm†mD†SS†D
]

. (11)

Notice that this effect cannot be tree level in the reflection amplitude, since it involves the couplings
of both charged and neutral leptons. Therefore it is typically down by loop factors (1/4π).

This invariant is given by

δ2
CP =

∑

a<b

M2
aM2

b (M2
a − M2

b )
∑

i<j

(m2
i − m2

j )Im(KHiaK
∗
HjaK

∗
HibKHjb), (12)

where Mi and ma are the NHL and charged lepton masses, respectively. The natural scale in the
problem is of the order of the electroweak phase transition temperature, T ∼ 100 GeV. Therefore,
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to obtain a dimensionless quantity δ2
CP should be divided by T 8. Typically Mi ∼ T , but the small

charged lepton masses give a suppression of order (mτ/T )2 ∼ 10−4 at least. We expect from eq. (12)
that the leading CP asymmetry in the reflection of charged leptons will appear at fourth order in the
mixing KH ∼ O(D/S).

On the other hand, the leading effect coming from the neutral sector appears at tree level. The
leading CP measure, invariant under the transformations of (11) involving only the neutral fields, is
given by

ImTr
[

DD†SS†(DD†)2(SS†)2
]

, (13)

which gives

δ3
CP = M2

1 M2
2 M2

3 (M2
1 − M2

2 )(M2
1 − M2

3 )(M2
2 − M2

3 )Im
[

(K†
HKH)12(K

†
HKH)23(K

†
HKH)31

]

. (14)

In this case, the asymmetry appears at sixth order in the mixing, O[(D/S)6]. To obtain a dimensionless
quantity, we should divide δ3

CP by T 12 but there is no suppression in the masses here since Mi ∼ T .
There is also an additional contribution of the form (12) due to loop corrections, but it would be
suppressed at least by (mτ/T )2 ∼ 10−4 and by loop factors, which considering the experimental
bounds, is a larger suppression than the extra (D/S)2.

If we assume that the asymptotic value of the ratio of scalar vevs is the same as at zero temperature
v(T )/u(T ) = v(0)/u(0), there are quite strong experimental bounds on the elements of the submatrix
K†

HKH . These bounds depend on the NHL mass [22, 23]. For 3 GeV ≤ M ≤ MZ the strongest
limits come from LEP and they are very stringent 2: |Im(KHiaK

∗
HjaK

∗
HibKHjb)| ≤ 3 × (10−9–10−7). If

M ≥ MZ , there are low-energy constraints that arise both from the non-observation of lepton flavour
violation and from universality, as well as limits from the invisible width of the Z boson [23]. The
limits are slightly weaker for the mixing of the third family with any of the first two,

|Im(KHiaK
∗
H3aK

∗
HibKH3b)| ≤ 5 × 10−5 (10−5) i = e, µ. (15)

The first number corresponds to the so-called ‘joint’ bounds in ref. [23], for which cancellations among
the different possible fermion mixings are allowed, while the number in brackets corresponds to the
‘single’ limits, obtained when the remaining mixing parameters are set to zero.

For the invariant (13), we get

Im
[

(K†
HKH)12(K

†
HKH)23(K

†
HKH)31

]

≤ 10−7 (3 × 10−8). (16)

Based on the bounds (15) and taking into account the loop factor expected in that case, plus the further
suppression in the charged lepton masses, typically of order (mτ/M)2 ∼ 10−4, the CP asymmetry in
the reflection of charged leptons (12) is expected to be too small to generate a significant baryon
asymmetry. However, a similar enhancement as the one found in [18] could imply that there is no
suppression coming from the lepton mass, in which case the effect could be important. This is the
reason why we decided to do a detailed calculation in this case.

In the case of the reflection of the neutral leptons, the bound (16), together with the fact that there
is no power suppression in the light masses or loop factors, implies that the effect could be of roughly
the right order of magnitude.

2These bounds have been obtained using inequalities of the form |Im(KHiaK
∗
HjaK

∗
HibKHjb)| ≤ 1

8
[(K†

HKH)2ii +

(K†
HKH)2jj ].
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4 CP Asymmetry in the Neutral Sector

In this section we will compute the CP asymmetry in the number current of νL that get reflected into
the unbroken phase. This asymmetry in the rest frame of the wall is simply given by

jCP = jtrans
sb
L
→νu

L
+ jtrans

νb
L
→νu

L
+ jref

νu
R
→νu

L
=

∫

d3p′

(2π)3

∑

i,j

[|At
sib

L→νju
L
(p′z,

√

p′2z + M2
i )|2 − |Āt

sib
L→νju

L
(p′z,

√

p′2z + M2
i )|2] p′z

E
f b

i (p
′)

+
∫

d3p

(2π)3

∑

i,j

[|At
νib

L→νju
L
(pz, pz)|2 − |Āt

νib
L→νju

L
(pz, pz)|2]

pz

E
f b

0(p)

+
∫

d3p

(2π)3

∑

i,j

[|Ar
νiu

R→νju
L
(−pz, pz)|2 − |Ār

νiu
R→νju

L
(−pz, pz)|2]

pz

E
fu

0 (p), (17)

with
∑

i,j being the sum over flavours and

fu
0 (p) =

1

e(|~p|+vw pz)/T + 1
, (18)

f b
0(p) =

1

e(|~p|−vw pz)/T + 1
, f b

i (p
′) =

1

e(
√

|~p′|2+M2

i
−vw p′z)/T + 1

, (19)

being the thermal distributions of the different particles in the unbroken (u) and broken (b) phases as
seen from the rest frame of the wall; vw is the wall velocity, which is estimated to be vw ∼ 0.1–0.4 in
the SM [24].

In the present case, thermal corrections to the propagation are negligible. The thermal masses are
≤ 0.25Mi for the heavy leptons and thus considerably smaller than the energies at which the effect will
be significant, ω ≥ min{Mi}. Furthermore, the mean free path of these weakly interacting particles is
expected to be large compared both to the expected width of the bubble wall and to the reflection time
of the leptons ∼ M−1

i ; in the scattering with the wall the neutral leptons will therefore be assumed to
be free. The transmission and reflection amplitudes will thus be computed at zero temperature, using
LSZ reduction formulae in terms of the propagator in the presence of the wall:

A =
∫

d4x
∫

d4y e−iqixeiqf y ū(qf )(i~∂ − m)S(y, x)(−i~∂ − m)u(qi)

= (2π)3δ(qx
f − qx

i ) δ(qy
f − qy

i ) δ(Ef − Ei) A(qz
i , q

z
f), (20)

with

S(y, x) ≡ 〈0|T [Ψ(y)Ψ̄(x)]|0〉. (21)

An analogous expression holds for antiparticles. The spinors in formula (20) are on-shell and normalized
to unit flux in the z direction, i.e.

ū γz u = 1. (22)
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Since the potential created by the bubble wall is only dependent on the coordinate z, momenta in
the x and y directions are conserved. The transmission and reflection amplitudes only depend on the
momenta in the z direction and can be computed in a much simpler way by first boosting to a frame
where qx, qy = 0. With the proper normalization chosen for the spinors (22), the amplitude in the
boosted frame is simply given by (20), with the propagator and incoming and outcoming momenta
substituted by the boosted ones.

We can further simplify the expression for jCP by using CPT symmetry and unitarity constraints,
which imply

∑

i

|At
νib

L→νju
L
|2 = 1 −

∑

i

|Ar
νiu

R→νju
L
|2 −

∑

i

|At
sib

L→νju
L
|, (23)

and substituting (23) in eq. (17):

jCP =
∫

d3p

(2π)3

∑

i,j

(|Ar
νiu

R→νju
L
|2 − |Ār

νiu
R→νju

L
|2) pz

E
(fu

0 (p) − f b
0(p))

+
∫

d3p

(2π)3

∑

i,j

(|At
sib

L→νju
L
|2 − |Āt

sib
L→νju

L
|2) pz

E
(f b

i (p
′) − f b

0(p)). (24)

Finally, by expanding the Fermi distributions for small wall velocities:

jCP =
vw

T

∫ d3p

(2π)3







−2
∑

i,j

(|Ar
νiu

R→νju
L
|2 − |Ār

νiu
R→νju

L
|2)

+
∑

i,j

(

√

p2
z − M2

i − pz

pz
)(|At

sib
L→νju

L
|2 − |Āt

sib
L→νju

L
|2)






p2
z

E
fF (p)[1 − fF (p)], (25)

where fF (p) = 1/(e|~p|/T + 1) is the unboosted Fermi distribution.
In order to compute the amplitudes in eq. (20) we would need the exact propagator in the presence

of the wall. The potential created by the wall in the weak basis (νL, sL, νR) is

M(z) =







0 0 V (z)KHM
0 0 U(z)KSHM

V (z)MK†
H U(z)MK†

HS 0





 , (26)

where V (z) ≡ v(z)/v is the ratio of the vevs of the doublet scalar H in the wall and the asymptotic
vev in the broken phase; U(z) is the ratio corresponding to the singlet σ field and M = (Mi) is the
diagonal mass matrix of the Dirac neutrinos.

The simplest approach would be to do perturbation theory in M(z) [6, 14], which is effectively
an expansion in M(z)/ω. Although this approximation makes the calculation much simpler, it is not
justified since the region of interest is always ω ∼ Mi. Instead, we will perturb in the mixing, that is
in KH = O(D/S) and KHS − 1 = O[(D/S)2]. We can write the mass matrix as

M(z) = M0(z) + δM(z), (27)

with

M0(z) =







0 0 0
0 0 U(z)M
0 U(z)M 0





 , δM(z) = M(z) − M0(z). (28)
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Our strategy will be to solve the scattering problem with potential M0(z) exactly and perturb
only in δM(z). This can be done for several forms of U(z). In order to simplify the problem we
consider here the thin wall approximation for the singlet field i.e., U(z) = θ(z). The result will be
more important for a singlet width as different from the doublet width as possible, so we will keep the
singlet width to its minimum value and vary the doublet one. There is no reason to expect that any
other choice would give very different results. The perturbation in δM then gives

S(x2, x1) =
∫

∏

i

dzi S(0)(x2, z1)δM(z1)S
(0)(z1, z2)δM(z2) . . . S(0)(zi, x1), (29)

where the integration is done over all zi(−∞,∞) and S(0) is the exact propagator in the potential
M0(z). It is a matrix with spin structure

S(0) =









S(0)
νL

0 0

0 S
(0)
LL S

(0)
LR

0 S
(0)
RL S

(0)
RR









. (30)

We can then use the zero temperature propagator in the presence of a thin wall that has been computed
in [25]. The formulae are given in appendix A.

We approximate the doublet field wall profile, V (z), as

V (z) =











0 z < 0
δ−1
H z 0 < z < δH

1 z > δH

(31)

so that the wall thickness is parametrized by δH . We expect that this simple form is enough to give a
reasonable estimate of the CP asymmetry.

The calculation is straightforward. In the case of three families, the result turns out to be non-
zero at sixth order in (D/S) as expected from the invariant (13). The contribution coming from the
reflection is

∑

i,j

(|Ar
νiu

R→νju
L
|2 − antiparticles) = Jijk F r(Mi, Mj, Mk), (32)

and the transmission one

∑

i,j

(|At
sib

L→νju
L
|2 − antiparticles) = Jijk F t(Mi, Mj , Mk), (33)

where

Jijk = Im[(K†
HKH)ij(K

†
HKH)ki(K

†
HKH)jk]

F r(Mi, Mj , Mk) = 2M2
i M2

j M2
k{Im[A∗

ikAij ] − 2Im[I i∗
1a

I ijk
5a

4pjpk
)]}

F t(Mi, Mj , Mk) = −M2
i M2

j M2
k

|Mi + ω − pi|2
2pi (ω + Mi)

Im

{

I ij∗
3b

2p∗j

I ik
3b

2pk
+ 2I i∗

1b

I ijk
5b

4pjpk
)

}

, (34)
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Figure 1: ǫijkF
t(Mi, Mj , Mk) as a function of pz for NHL masses Mi = (.6, .8, 2.) and δ−1

H = .1 (solid),
δ−1
H = .2 (dashed-dotted) and δ−1

H = .3 (dashed). All in units of the temperature.

and

Aij ≡
1

2pj
(I ij

3a − iI ij
2a) pi ≡

√

ω2 − M2
i . (35)

The integrals I1a, . . . , I5a are defined in appendix B.
It can be easily checked that whenever two masses are degenerate the result vanishes. We have also

checked that in the thin wall approximation, i.e. δH → 0, the effect disappears, as it should happen
since in this limit both the singlet and doublet wall profiles become the same.

As we saw in the previous section, for three generations there is only one CP-violating phase and
Jijk = J123 ǫijk. In this case, the phase J123 factorizes in the asymmetries of eqs. (32) and (33). We
find that the contribution from the transmission amplitude is the dominant one, while the reflection
amounts to a small correction. In figs. 1 and 2 we plot ǫijkF

t(Mi, Mj , Mk) as a function of pz, for
different values of the NHL masses and δH . We will consider masses of order ∼ T , because for heavier
neutral leptons the current will be strongly suppressed by the Fermi distribution in eq. (25).

Figure 1 shows the dependence on δH for a fixed NHL spectrum. We find that the effect is more
important when the mass differences of at least two NHLs are (Mi − Mj) ≤ δ−1

H . When all mass
differences are larger than δ−1

H , the asymmetry oscillates rapidly (we expect the oscillation period to
be related to δH) and the integrated result is suppressed. Also we observe that the effect is smaller for
smaller δH , in agreement with the fact that it vanishes in the limit δH → 0. Thus we expect that the
largest effect will occur for δH , satisfying (Mi − Mj) ≤ δ−1

H , as large as possible.
In fig. 2 we fix δH and keep M2 − M1 ≤ δ−1

H , while varying the masses M1 and M3. The peak
appears after the second threshold (i.e. pz > M2); thus, as M2 changes, the position of the peak moves
accordingly. Nevertheless, the integrated result is not very sensitive to the particular values of the
NHL masses, provided the relation M2 − M1 ≤ δ−1

H is satisfied.
The current jCP we obtain for generic values of the masses, with the only restriction that Mi ∼ T

9
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Figure 2: ǫijkF
t(Mi, Mj, Mk) as a function of pz for δ−1

H = .3 and NHL masses: i) (.8, 1.1, 1.4) solid
line, ii) (.8, 1.1, 2.) dashed-dotted, iii) (.6, .8, 1.) dashed and iv) (.6, .8, 2.) dotted. All in units of
the temperature.

and Mi − Mj ∼ δ−1
H for at least two NHL, is typically (0.5–1) × 10−2J123 vw.

5 CP Asymmetry in the Charged Sector

In this section we compute the CP asymmetry in the flux of charged left-handed leptons, lL, reflected
in the unbroken phase. The charged lepton mass matrix has just an overall dependence on the doublet
scalar vev (as occurs in the SM); therefore only mechanism a) as defined in section 3 is present in this
case.

The calculation of the charged lepton CP asymmetry is completely analogous to the computation
done for quarks in the SM [18, 5, 6], and we refer the reader to these works for further details. Contrary
to the case of the NHL, the one-loop thermal corrections are much larger than the tree-level masses of
the charged leptons. The resummation of the thermal self-energies considerably modifies the dispersion
relations and the correct asymptotic states are now quasi-particles.

Following the notation of ref. [26], the thermal one-loop contribution to the charged lepton self-
energy in the broken phase can be written as

Re(Σ(k)) = −a 6k − b 6u, (36)

where a and b are matrices in flavour space, u is the four-velocity of the plasma and k = (ω,k) is the
external momentum. We have neglected the contribution proportional to the masses of the charged
leptons. In the plasma rest frame and the mass basis,

Re(Σ(ω,k))γ0 = −h(ω,k) − a(ω,k)α · k, (37)

10



where h(ω,k) = a(ω,k)ω + b(ω,k) and is given by

hji = −fγH(mi, 0)δji −
g2

2

{

[fZH(mi, MZ) + fHH(mi, MH)]δji +
∑

α

fW,αH(Mα, MW )

}

, (38)

with

fγ = Q2
i g

2s2
W (L + R) (39)

fW,α =

(

1 +
λ2

α

2

)

LK∗
iαKjα +

λiλj

2
RK∗

iαKjα (40)

fZ =
1

2

[

4

c2
W

(T 3
i − Qis

2
W )2 +

λ2
i

2

]

L +
1

2

[

4

c2
W

(Qis
2
W )2 +

λ2
i

2

]

R (41)

fH =
λ2

i

4
(L + R) (42)

where L, R are the chiral projectors, λi = mi/MW , mi are the masses of the external flavours, and Mα

are the masses of the neutral leptons inside the loop. The function H(MF , MB) can be found in [5].
The dispersion relations of the quasi-particles are then given by

6k − Re(Σ(k)) = 0. (43)

Since these no longer are Lorentz invariant, it is not possible to simplify the calculation of the reflection
amplitudes by boostings them to the frame where kx, ky = 0, as we did in section 4. The realistic
computation in three dimensions then becomes very involved. However, since our main interest is
to study whether the enhancement found in [18] is present, and this can already be seen in the one-
dimensional problem, we restrict our discussion to this simpler case.

Our objective is to compute the number current of lL reflected on the wall, which for small wall
velocities and using unitarity and CPT, is given by

jCP = −2
vw

T

∫

dω

2π
ω v2

g fF (w)[1 − fF (w)]∆CP (ω), (44)

where vg ≡ ∂ω
∂k

= 1/3 is the group velocity,

∆CP (ω) =
∑

i,j

(|Ar
liu

R→lju
L
|2 − |Ār

liu
R→lju

L
|2), (45)

with Ar the reflection amplitudes on the wall, and fF (ω) is the unboosted Fermi distribution of quasi-
particles in the plasma rest frame:

fF (ω) = 1/(eω/T + 1). (46)

To lowest order in the wall velocity, the scattering problem can be approximately solved in the
rest frame of the wall, neglecting the corrections to the dispersion relations of the quasi-particles due
to the small boost (which are proportional to vw and are negligible at lowest order). In this frame,
to leading order in T and neglecting the flavour-non-diagonal corrections in (38), the quasi-particles
propagate according to the effective Hamiltonian

H0
eff = θ(−z)

(

− i
3
σz∂z + ωu

R 0
0 i

3
σz∂z + ωu

L

)

+ θ(z)

(

− i
3
σz∂z + ωb

R
m
2

m
2

i
3
σz∂z + ωb

L

)

, (47)
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where ω
u(b)
L,R , satisfying

ω
u(b)
L,R + h̄

u(b)
L,R(ω

u(b)
L,R , 0) = 0, (48)

are the thermal masses in the unbroken and broken phases respectively (the functions h̄ contain only
the leading T flavour-diagonal corrections in (38)). This effective Hamiltonian is only valid for low

momentum compared to the thermal masses ω
u(b)
L,R . Since the reflection of quasi-particles on the wall

will occur for kz ≤ m << ω
u(b)
L,R , this approximation is justified.

In order to obtain a non-vanishing CP asymmetry, both the subleading corrections in T (which
introduce the dependence on the NHL masses) and the flavour-non-diagonal terms (which contain
the mixings) in (38) are needed. After including these corrections, we get the following effective
Hamiltonian:

Heff = H0
eff +

1

2

(

θ(−z)δhu
R(ω0, 0) + θ(z)δhb

R(ω0, 0) 0
0 θ(−z)δhu

L(ω0, 0) + θ(z)δhb
L(ω0, 0)

)

(49)

where δh ≡ h − h̄, contain the subleading effects in T and the flavour-non-diagonal electroweak
corrections. The reflection amplitudes of quasi-particles on the wall can then be obtained by first
solving for eigenstates of the unperturbed Hamiltonian (47), which are superpositions of incoming,
reflected and transmitted plane waves, and then perturbing in the extra terms of (49).

Up to now, we have neglected the imaginary part of the one-loop self-energy (36). This contribution
is proportional to the damping rate of the quasi-particles, i.e. their inverse lifetime. There is no
calculation of the damping rate γ of leptons in the SM, but from the result for pure SU(2) at zero
momentum [27], we can estimate γ ∼ αW T , i.e. γ ∼ 1 GeV at T = 100 GeV. In refs. [5, 6] it
was shown that the damping effects for quarks in the SM lead to a sizeable suppression of the CP
asymmetry, because the lifetime ∼ 1/(2γ) of the quasi-quarks in the plasma, was much smaller than
their reflection time on the wall ∼ 1/m (for the down quarks, which gave the leading contribution).
In the present case, we expect that the main effect will come from the reflection of the τ lepton and,
according to the previous rough estimate, the lifetime of the quasi-tau would be of the same order of
magnitude as its reflection time. In this situation, it is not clear whether the damping will have an
important effect or not. We will first compute the asymmetry neglecting the damping completely and
at the end of this section we will estimate its effect. As we will see, it leads to a suppression that varies
rapidly with the exact value of γ around the region γ ∼ mτ .

Similarly to the SM case, we find that the first effect in the asymmetry appears at O(α2
W ). Defining

r0 ≡ Ar
0 (the unperturbed reflection amplitude), we get

∆
(2)
CP (ω) ∼

∑

i,j

Im[(δhb
L)ji(δh

b
R)ij ]

× Im

{

r0∗
ii

[

r0
jj

|dij|2
+

mj [(r
0
ii)

2 − (r0
jj)

2]

2diidijdji

+
r0
jj

dii

(
1

dij

+
1

dji

)

]}

, (50)

where δhb are flavour-dependent and dij ≡ ωi
L + ωj

R − 2ω +
mir

0

ii

2
+

mjr0

jj

2
. From eq. (50) we see that,

just as in the SM, the effect comes from the interference of the O(αW ) terms in δhb
L and δhb

R, and
there is no effect at leading order in T , because at this order δhb

R = 0.

Substituting the expressions for δhb
L,R, ∆

(2)
CP (ω) can be written as

∆
(2)
CP (ω) = α2

W

∑

i,j

∑

a<b

Im(KHiaK
∗
HjaK

∗
HibKHjb)f(mi, mj)F (Ma, Mb), (51)
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where

f(mi, mj) = λiλjIm

{

r0∗
ii

[

r0
jj

|dij|2
+

mj [(r
0
ii)

2 − (r0
jj)

2]

2diidijdji
+

r0
jj

dii

(

1

dij
+

1

dji

)]}

(52)

and

F (Ma, Mb) =
[

(2 + λ2
a)I(Ma) − 2I(0)

]

ωL

[I(Mb) − I(0)]ωR

−
[

(2 + λ2
b)I(Mb) − 2I(0)

]

ωL

[(I(Ma) − I(0)]ωR
. (53)

I(Ma) = π
2
H(Ma, MW ) and the subscript ωL,R indicates at which value of ω the function H is evaluated.

Equation (51) shows explicitly the GIM cancellation for both external and internal lepton masses.
Of all the terms in eq. (51), the one corresponding to the pair of external flavours (µ, τ) gives

the largest contribution, because f(mµ, mτ ) is a few orders of magnitude larger than for the other
combinations, while the experimental bounds on the mixings are of the same order. We restrict to this
leading term for which the ‘joint’ bound described in section 3 is

|Im(KH2aK
∗
H3aK

∗
H2bKH3b)| ≤ 5 × 10−5, (54)

independently of the flavour of the heavy leptons a, b. Thus, if we assume that all the mixings (54)
are of the same order of magnitude, the size of the various terms in the sum over the heavy flavours
depends only on the function F (Ma, Mb). We consider just one of these terms as a prototype, i.e.

∆23ab
CP = α2

W Im(KH2aK
∗
H3aK

∗
H2bKH3b)f(m2, m3)F (Ma, Mb), (55)

where there is no sum over a, b. Since we will allow the two heavy masses Ma, Mb to vary arbitrarily,
the largest value obtained for the integrated asymmetry, considering only (55), is also an upper bound
for the other terms. Thus the final result will be at most three times larger, if the terms add coherently.

In fig. 3 we show the contribution to the CP asymmetry, ∆23ab
CP (ω). We have taken the following

values for the masses at the phase transition temperature (T ∼ 100 GeV): mµ = 69 MeV, mτ = 1.176
GeV, MW = 50 GeV, and the weak coupling is αW = 0.035. We have fixed the mass of one NHL to
Ma = 80 GeV, and we plot the result for different values of the other NHL mass.

The peaks are situated in regions where the τ lepton reflects completely, while the µ does not. The
amplitude of the peaks is larger than one would expect from naive power counting, implying that the
suppression in the charged lepton masses is not at work, as found in [18]. However, in contrast to what
was obtained in the SM, the two peaks tend to cancel each other, and there is a big suppression in the
integrated result, since the Fermi factors in eq. (44) are approximately constant. For Mb = 140 GeV
the contribution of this term to the integrated result in (44) is ∼ 10−12vw (which turns out to be of
the same order as the naive estimate). Whether the peaks come with equal or opposite signs seems to
be very dependent on the relative position of the thermal masses of the different flavours. In this case
the thermal masses are almost flavour-independent, while in the down sector of the SM there is a big
shift in the third family thermal masses compared to the other two, due to the top Yukawa. This is
why there is no such cancellation in that case. The conclusion is that the enhancement found in [18]
is rather model-dependent and it seems to require large flavour-dependent thermal corrections.

Finally, we want to estimate the effect of the damping rate which, as discussed before, is not
negligible compared to the reflection time of the τ lepton. As shown in refs. [5, 6], the decoherence
effects induced by the damping rate can be taken into account by including the imaginary part of the
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self-energy in the effective Hamiltonian (47) and solving it for spatially damped waves. Since the exact
value of the damping rate is not known, we have computed ∆23ab

CP (ω) for different values of γ, namely
γ = 0.5, 1., and 1.5 GeV. The result is shown in fig. 4. As is clear from the curves, the suppression
due to the damping increases rapidly when γ ∼ mτ . Without a precise determination of this quantity,
it is thus impossible to estimate the actual suppression, although it is clear that neglecting this effect
is not justified.

To summarize, we have found that the CP asymmetry in the reflection of the charged leptons is at
most of O(10−12), even neglecting decoherence effects due to interactions in the plasma.

6 Baryon Asymmetry

In this section, we calculate the baryon asymmetry induced by the CP asymmetries computed in the
previous sections. This is a very difficult problem since a microscopic treatment is no longer possible
and we have to match somehow the microscopic result of jCP with the thermodynamic treatment of
transport of the chiral lepton number generated at the wall. Strictly speaking, the two problems,
reflection and transport, are completely coupled and should be solved at the same time. This how-
ever implies treating a many-body non-equilibrium quantum system, and some approximations are
necessary.

We will consider here only the effect obtained from the reflection of the neutral leptons, since the
CP asymmetry of the charged leptons computed in the last section is far too small. In the neutral
sector, we have completely neglected the thermal incoherence effects in the reflection. This has been
shown to be a very bad approximation when the damping rate is comparable to both the height and/or
width of the wall [5][6][14]. However, this is not the case here as we discussed in section 3. We believe
that, because of this, reflection can be treated independently of transport 3.

The picture is then that near the wall in the unbroken phase, a local density of νL lepton number
is generated due to reflection. This local density generates a diffusion current in the plasma and
decays due to sphaleron processes that take place in the unbroken phase as we go away from the wall,
generating a baryon number density. This picture is only consistent if the reflected particles have
enough time to diffuse before the wall catches up. This will be true for small velocities of the wall. In
this case also the incoming flux of particles in the calculation of jCP can be taken to be the thermal
one, as we assumed in the previous sections.

The diffusion equations in the wall rest frame read
(

∂t nB

∂t nL

)

=

(

DB∂2
z − vw∂z − 3Γθ(−z) −Γθ(−z)

−3Γθ(−z) DL∂2
z − vw∂z − Γθ(−z)

)(

nB

nL

)

(56)

where Γ ≡ 9ΓWS

T 3 and ΓWS = κ(αWT )4 is the weak sphaleron rate with κ a coefficient of O(1) [28] 4. We
have made the further approximation that the sphaleron rate in the broken phase is zero. This drastic
approximation can only be justified if the phase transition is strongly first order; vw is the velocity of
the wall. The constants DL,B are the diffusion coefficients for leptons and quarks respectively. Since
quarks suffer strong interactions, it is clear that

DB ≪ DL. (57)
3If the damping rate is not small compared to other scales in the problem, we do not think one can separate the

problems of reflection and transport, and a detailed calculation is much more complicated.
4However, there is a recent claim that damping effects in the plasma suppress the sphaleron rate to O(α5

W T
4) [29].
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We take the values of the diffusion constants estimated in the SM in ref. [10], namely DL ∼ 110/T and
DB ∼ 6/T . These estimates are obtained from the elastic scattering, t-channel vector boson exchange
diagrams, which are expected to dominate the scattering process. Yukawa interactions are neglected.
We have not included here any other possible νL number decay process than the sphalerons. Other
decays through Higgs interactions are obviously possible, but we find that their rate is smaller than
the sphaleron rate in the unbroken phase, so we can safely neglect them.

We look for stationary solutions, i.e. ∂tnB,L = 0. In order to solve the equations for nL,B (56),
we need to impose boundary conditions on the densities and their derivatives (diffusion currents). We
will require that nL,B(−∞) = 0, since there is no asymmetry in the incoming thermalized flux seen by
the wall. At z → ∞, we require that the solutions be constants. These would be precisely the values
of L and B in the broken phase that will survive the phase transition. At the interphase z = 0, we
impose continuity of the diffusion current,

DL,B∂znL,B − vwnL,B |+− = 0 (58)

and the existence of the reflected flux is taken into account in a constraint on the lepton density in
the unbroken phase near the wall,

nL|z=0− = n0 (59)

where n0 = jCP /〈vi〉 and 〈vi〉 is the average velocity of the particles in the reflected flux that we define
as,

〈vi〉 ≡
∫ d3p

(2π)3
∑

i,j Jijk{ −2F r(Mi, Mj , Mk) + (

√
p2

z−M2

i
−pz

pz
)F t(Mi, Mj , Mk) } p3

z

E2 fF (p)[1 − fF (p)]

∫ d3p
(2π)3

∑

i,j Jijk{ −2F r(Mi, Mj , Mk) + (

√
p2

z−M2

i
−pz

pz
)F t(Mi, Mj , Mk) }p2

z

E
fF (p)[1 − fF (p)]

It is straightforward to obtain the most general solutions [18] of (56) in the approximation,

3DB,LΓ

v2
w

≪ 1, (60)

which is expected to be of O(10−1). The solution is

nB = C1a11e
k1z + C2a21e

k2z

nL = C1a12e
k1z + C2a22e

k2z z < 0
nB = B
nL = L z > 0

with

k1 ≡
vw

DB

(

1 +
3ΓDB

v2
w

)

k2 ≡
vw

DL

(

1 +
ΓDL

v2
w

)

(61)

and
(

a11

a12

)

=

(

1
3ΓDB

v2
w(DL/DB−1)

)

,

(

a21

a22

)

=

(

ΓDL

v2
w(DB/DL−1)

1

)

. (62)
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Now, the constants C1,2 and B, L can be determined from (58) and (59). In the limit DB ≪ DL the
result for B is

B =
ΓDL

v2
w

n0. (63)

Although the dependence on the wall velocity seems to have a singular limit when vw → 0 (there is
only one power of the wall velocity in n0), this is only because we have made the approximation that
the ratio ΓDL

v2
w

≪ 1. In the limit vw → 0, this approximation is obviously not valid and indeed the
solution of the diffusion equations in this case gives B = 0, as expected.

Finally, in order to compare this result with the experimental one B/s ∼ (4–6) × 10−11, we need
to divide by the entropy at the temperature of the phase transition, s = 2π2

45
g∗T

3, where g∗ ∼ 110
counts the degrees of freedom of the relativistic particles at the electroweak phase transition. Putting
everything together we find generically a effect of the order of

B/s ∼ ΓDL

vw

J123 × 10−4. (64)

If we assume v(T )/u(T ) = v(0)/u(0), we can use the experimental bound J123 < 10−7 (16). Considering
the values quoted in the literature for the ratio ΓDL/vw ∼ 10−2 (within the SM) [10] [24] [28], we get a
baryon to entropy ratio two orders of magnitude smaller than required. However, the bounds on J123

only hold if the ratio of the scalar vevs does not vary with the temperature, which is not necessarily
true. For instance, a variation by a factor of 2 in the right direction (i.e. a larger ratio at T ), increases
the result by two orders of magnitude. This is because the CP asymmetry goes like O(D/S)6 which,
up to Yukawa couplings, is ∼ O(v(T )/u(T ))6. An enhancement due to this effect has been suggested
in the context of two-Higgs models in [10]. In order to establish whether this enhancement could take
place, a detailed study of the scalar potential is required, which is beyond the scope of this paper.

7 Conclusions

We have considered the possibility that baryogenesis occurs during the weak phase transition in a
minimal extension of the Standard Model, which contains extra neutral leptons and conserves total
lepton number. The leading CP asymmetries come from the reflection of both neutral and charged
leptons on the bubble wall. Due to the large mean free path of the leptons as compared to the
typical values of the wall thickness, the calculation is done in the thin wall regime. The CP-violating
phases come from two sources. For the NHL there are unremovable CP phases due to the non-trivial
space dependence of the mass matrix inside the bubble wall. The effect turns out to be tree level
and in agreement with naive estimates. It is only suppressed by the mixing angles. For the charged
leptons there is no tree-level contribution and the CP-violating phases appear in the one-loop thermal
corrections to the lepton propagation in the plasma. The naive estimate gives a suppression in the
charged lepton masses and in loop factors (1/4π), besides that in the mixing angles. The result of
[18] suggests that the suppression on the charged lepton masses could be absent; however, we find
agreement with the naive estimate. We argued that the effect found in [18] requires a large flavour
dependence of the leading T thermal corrections, which is not the case in this type of models.

Using the present constraints on the mixing angles, we obtain that the leading effect comes from the
neutral sector and gives B/s ≤ ΓDL

vw
10−11. Assuming SM estimates for the lepton diffusion constant
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DL, the wall velocity vw and the sphaleron rate Γ, we get B/s ≤ 10−13, which even though the errors
involved are very large, seems too small to account for the observed baryon asymmetry. However, the
constraints on the mixing angles apply only if the ratio of the scalar vevs at the temperature of the
phase transition is the same as today, which is not necessarily true. It would interesting to study a
realistic scalar potential to determine whether this possibility is realized.

Finally, we want to comment on other scenarios where the baryon asymmetry is also generated at
the electroweak phase transition, through lepton reflection on the bubble wall. In ref. [13] the singlet
majoron model was considered. The CP asymmetry in that case was also due to the reflection of
neutrinos. However, the relevant phase space was around the mass of the τ -neutrino ∼ O(10 MeV).
Although the asymmetry obtained was roughly of the correct order of magnitude, we think that thermal
corrections to the dispersion relation of the ντ in the plasma, which were neglected in [13], should be
taken into account. In particular, from the calculation of the damping rate of neutrinos in this model
[30], it is clear that the typical reflection time of the light neutrinos is much larger than the lifetime
of the quasi-particles in the plasma. In this situation, we expect a considerable suppression in the CP
asymmetry. In refs. [10][12], the reflection of τ leptons was considered as the leading contribution to
the baryon asymmetry in the two-Higgs model, in the thin wall regime. The effects of the damping
rate have also been neglected in this case. The results for the charged lepton contribution to the
asymmetry in the present work show that this effect could be important.
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Appendix A.

In the calculation of the CP asymmetry in the neutral sector (section 4) we have used the exact
propagator in the presence of a wall in position space. We give here the expression for S(0) (eq. (30))
in the boosted frame, px = py = 0:

S(0) = S
(0)
left + S(0)

across + S
(0)
right (A. 1)

with

S
(0)
left(z2, z1)γ

0 = −Θ(−z1)
{

Θ(z2 − z1)Θ(−z2)e
iE(z2−z1)

1 + αz

2

+ Θ(z1 − z2)e
−iE(z2−z1)

1 − αz

2
+ Θ(−z2)e

−iE(z2+z1)1 − αz

2

mγ0

E + p′

}

(A. 2)
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S(0)
across(z2, z1)γ

0 = −Θ(−z1)Θ(z2)e
−iEz1eip′z2

(

1 +
mγ0

E + p′

)

1 + αz

2

−Θ(z1)Θ(−z2)e
ip′z1e−iEz2

1 − αz

2

(

1 +
mγ0

E + p′

)

(A. 3)

S
(0)
right(z2, z1)γ

0 = Θ(z1)

{

−Θ(z2 − z1)e
ip′(z2−z1)1

2

(

E

p′
+ αz +

m

p′
γ0

)

− Θ(z1 − z2)Θ(z2)e
−ip′(z2−z1)1

2

(

E

p′
− αz +

m

p′
γ0

)

+ Θ(z2)e
ip′(z2+z1)1

2

(

E

p′
+ αz +

m

p′
γ0

)

mγ0

p + p′

}

(A. 4)

and p′ =
√

E2 − m2.
The propagator in position space for the massless left-handed neutrino is

S(0)
νL

(z2, z1) = Θ(z2 − z1)e
iE(z2−z1). (A. 5)

Appendix B.

I i
1a =

∫ ∞

0
dzV (z)ei(E+pi)z =

1

δH(E + pi)2
(ei(E+pi)δH − 1) (B. 1)

I ij
2a =

∫ ∞

0
dz1

∫ ∞

0
dz2V (z1)e

iEz1eipiz2

{

Θ(z1 − z2)e
ipj(z1−z2) + Θ(z2 − z1)e

ipj(z2−z1) − eipj(z1+z2)
}

= i
2pj

M2
i − M2

j

[I i
1a − Ij

1a] (B. 2)

I ij
3a =

∫ ∞

0
dz1

∫ ∞

0
dz2

∫ ∞

z2

dz3V (z1)V (z2)V (z3)e
iE(z1−z2+z3)eipiz3 (B. 3)

{

(E + pj)Θ(z1 − z2)e
ipj(z1−z2) + (E − pj)[Θ(z2 − z1)e

ipj(z2−z1) − eipj(z1+z2)]
}

I ijk
5a =

∫ ∞

0
dz1

∫ ∞

0
dz2

∫ ∞

z2

dz3

∫ ∞

0
dz4

∫ ∞

z4

dz5V (z1) . . . V (z5)e
iE(z1−z2+z3−z4+z5)eipiz5

{

(E + pj)Θ(z1 − z2)e
ipj(z1−z2) + (E − pj)[Θ(z2 − z1)e

ipj(z2−z1) − eipj(z1+z2)]
}

{

(E + pk)Θ(z3 − z4)e
ipk(z3−z4) + (E − pk)[Θ(z4 − z3)e

ipk(z4−z3) − eipk(z3+z4)]
}

(B. 4)

I i
1b = I i

1a(−pi) − I i
1a(pi) (B. 5)

I ij
3b = I ij

3a(−pi) − I ij
3a(pi) (B. 6)

I ijk
5b = I ijk

5a (−pi) − I ijk
5a (pi). (B. 7)
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