
ar
X

iv
:h

ep
-p

h/
93

03
30

2v
2 

 5
 A

pr
 1

99
3

CTP # 2190

HUTP-92/A054

The Hunting of the MR Model

Nuria Riusa∗ and Elizabeth H. Simmonsb∗

aCenter for Theoretical Physics

Laboratory for Nuclear Science and Department of Physics

Massachusetts Institute of Technology

Cambridge, MA 02139

bLyman Laboratory of Physics

Harvard University

Cambridge, MA 02138

We consider experimental signatures of the standard model’s minimal supersymmetric

extension with a continuous U(1)R symmetry (MR model). We focus on the ability of

existing and planned electron-positron colliders to probe this model and to distinguish it

from both the standard model and the standard model’s minimal supersymmetric extension

with a discrete R-parity.

3/24/93

∗ e-mail: mitlns::rius, huhepw::simmons

http://arxiv.org/abs/hep-ph/9303302v2


1. Introduction

We consider experimental signatures of the standard model’s minimal supersymmetric

extension with a continuous U(1)R symmetry. When this class of models was first con-

sidered [1], LEP data on the non-observation of light Higgs bosons appeared to exclude

the minimal such model (MR model). Once the large size of radiative corrections to Higgs

masses from a very heavy top quark became apparent [2], the model was reexamined [3]

and pronounced viable.

We focus here on the ability of existing and planned electron-positron colliders to test

the Higgs boson and slepton sectors of the MR model. We also discuss the extent to which

it is possible to experimentally distinguish the MR model from both the standard model

(SM) and its minimal supersymmetric extension with a discrete R-parity (MSSM). As such,

our work was partly inspired by and is complementary to recent papers on the prospects for

studying the Higgs sector of the MSSM at various colliders [4]. Our results also complement

previous work on MR model phenomenology. Experimental signatures involving gaugino

production were considered in [1]; these are useful because they apply equally well to many

non-minimal U(1)R symmetric models. The phenomenological implications of cosmological

constraints on the lightest superpartner (the photino) were considered in [3]; those results

will be revisited and applied in this work.

The second section of this paper introduces the model and indicates how cosmologi-

cal constraints on the photino mass influence the model’s phenomenology. Section 3 then

discusses the masses and decay modes of the Higgs bosons for which we propose to search.

In the next three sections, we discuss the extent to which current LEP I data and pro-

posed LEP II and NLC searches for neutral Higgs bosons can and will constrain the MR

model. Slepton searches are the subject of Section 7. Section 8 summarizes our results

and compares the expectations for the MR, SM and MSSM models.

2. The MR Model

The model we study is the standard model’s minimal supersymmetric extension with

a continuous U(1)R symmetry. We define the continuous R symmetry by giving the coordi-

nate of superspace, θ, and all matter superfields charge +1 while all Higgs superfields have

charge 0. Expansions of the superfields in terms of the component fields then show that

all ordinary particles are R neutral while all superpartners carry non-zero R charge. Since

the U(1)R symmetry forbids Majorana gaugino masses, the model contains an additional
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field to give a Dirac mass to the gluino. This field appears only in the soft supersymmetry-

breaking sector and is irrelevant to the rest of this paper; we therefore omit it here and

refer the reader to [1] for details.

The most general Lagrangian consistent with the above assumptions is described by

the superpotential:

f = U cλU Q H2 + DcλD Q H1 + EcλE L H1 (2.1)

where each term has R = 2 and the quark and lepton superfields Q, U c, Dc, L, Ec have the

usual SU(3) × SU(2) × U(1) gauge interactions. The most general soft supersymmetry

breaking potential consistent with our symmetries and a GIM-like mechanism to naturally

suppress flavor-changing neutral currents is:

Lsoft = m2
H1

H∗
1H1 + m2

H2
H∗

2H2 + m2
QQ̃∗Q̃ + m2

Uc Ũ c∗Ũ c + m2
DcD̃c∗D̃c +

m2
LL̃∗L̃ + m2

EcẼc∗Ẽc + BH1H2 + ...
(2.2)

where we neglect small Yukawa-suppressed corrections to superpartner masses. Notice

that we do not assume that all superpartners have the same mass.

The gaugino mass matrix has a simple form in the MR model because [1] there is

neither a H1H2 mass term in the superpotential (i.e. µ = 0) nor any Majorana gaugino

mass in the supersymmetry breaking potential (i.e. M, M ′ = 0). The only mass terms are

the Dirac masses coupling the partners of the electroweak gauge bosons to the fermionic

partners of the Higgs. As is conventional, we shall define a mixing angle β in terms of the

ratio of the Higgs VEVs (v2/v1 ≡ tan β) and shall denote the superpartner of the W gauge

bosons as w̃ and that of the B gauge boson as b̃. Then the zino (z̃ ≡ − sin θW b̃+cos θW w̃3)

and one of the higgsinos (H̃Z ≡ cos θW b̃ + sin θW w̃3) combine to form a Dirac fermion

which has the same mass as the Z gauge boson at tree level, while the photino and

H̃γ , the higgsino orthogonal to H̃Z , are massless. The charginos have tree-level masses

m+ =
√

2mW cos β and m− =
√

2mW sin β. At one loop, the alteration of the mass

structure most significant for our analysis is the generation of a Dirac mass for the photino

and its associated higgsino, H̃γ :

mγ̃ = 1.3GeV cot β
( mt

200GeV

)2
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∣
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. (2.3)

Note that the photino mass decreases as the top squarks t̃L and t̃R become more nearly

degenerate.
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Unlike the MSSM, the MR model is strongly constrained by photino phenomenology.

To begin with, the small size of the photino mass (2.3) makes the decay Z →γ̃H̃γ possible;

this, in turn, renders the invisible Z width larger than the standard model value. The

Z branching fraction into photino plus higgsino will be suppressed by a factor of cos2 2β

relative to the branching into one SM neutrino flavor. Therefore, the bound on the Z

width [5] ∆ΓZ/Γν < 0.11 at 2σ translates into the constraint | cos 2β| < 0.33. This implies

that only the range 0.71 < tanβ < 1.41 is allowed in the MR model. We will apply this

constraint from here on.

In addition, the cosmological constraint (Ωγ̃h2 ≤ 1) on the present photino mass

density must be satisfied. The upper bound on Ωγ̃ provides a lower bound on the cross-

section for photino annihilation (σγ̃). Because σγ̃ grows as m2
γ̃ , very light photinos will

yield too large a residual mass density. Further, since both s-channel Z exchange and

t-channel slepton exchange are required to make σγ̃ large enough, the sleptons can weigh

no more than about 140 GeV in the MR model (see fig. 7 and [3]); this point will be

crucial to our discussion of slepton searches in Section 7. To determine the lightest allowed

photino mass (the one giving Ωγ̃h2 = 1), we maximize the slepton contribution to σγ̃ by

making the sleptons degenerate at the lightest experimentally [6] allowed mass (65 GeV).

Applying this lower bound on mγ̃ to equation (2.3) has two important consequences for

the MR model.

First, when the top quark is relatively light ( <∼ 150 GeV), producing a heavy enough

photino requires tanβ to be smaller than some maximum value, which is obtained when

the top squark masses are as widely separated as possible (making one mass 1 TeV and

the other, mt) so as to maximize the top squark contribution to (2.3). This constraint is

independent of mA, and it further restricts the allowed range of tanβ. We find tanβ <

0.95(1.2) for mt = 120(140) GeV.

The second effect arises more indirectly. Given the form of equation (2.3), the existence

of a lower bound on mγ̃ prevents the top squarks from being degenerate in the MR model.

We will see in Section 3 that this reduces the maximum size of the radiative corrections

to the Higgs masses relative to the the maximum size in the MSSM. As we will discuss in

Section 5, the lighter CP-even neutral Higgs boson of the MR model is therefore accessible

to LEP II in a wide region of the tanβ vs mA plane even if the top quark is very heavy.
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3. Neutral Higgs Bosons in the MR Model

The relations among the tree-level masses of scalar (H0
1 , H0

2 ), pseudoscalar (A0) and

charged (H+, H−) Higgs fields are identical to those in the MSSM. In terms of the variables

mA and β, the tree-level mass matrix for H0
1 and H0

2 is

(

M2
Z cos2 β + m2

A sin2 β − sin β cos β(M2
Z + m2

A)
− sin β cos β(M2

Z + m2
A) M2

Z sin2 β + m2
A cos2 β

)

. (3.1)

At one loop, there are corrections due to loops involving the squarks and the top quark. In

the MR model, the only [3] one-loop correction to the mass matrix (3.1) is a term added

to the (2,2) entry (if we neglect the bottom squark contribution which is negligible in the

allowed region of tanβ). If the renormalization point is chosen so as to maintain the tree

level vacuum expectation of the Higgs fields, this term takes the form1

ǫ

sin2 β
=

3g2

16π2 sin2 β

m4
t

M2
W

ln

(

m2

t̃L

m2

t̃R

m4
t

)

. (3.2)

As discussed in [3], this correction to the Higgs masses is quite significant; without it, LEP

I would already have excluded the model entirely. Note that the non-degeneracy of the top

squarks (Section 2) reduces the maximum size of this correction2 relative to the maximum

size in the MSSM (achieved with degenerate t̃L and t̃R).

The dependence of the mass of the lighter CP-even neutral Higgs boson (h) on mt

and tanβ is shown in fig. 1. Note that as the top quark gets lighter, mh becomes more

restricted. The mass of the heavier CP-even neutral Higgs (H) is at least twice the size of

mh throughout the parameter space of the MR model.

In order to discuss searches for the neutral Higgs bosons of the MR model, we need

to understand the Higgs bosons’ decay modes. The Higgses can potentially decay into

fermion/anti-fermion pairs (at a rate proportional to the square of the fermion mass),

chargino pairs, neutralino pairs, or other Higgs bosons. Due to the absence of the scalar

trilinear terms in the soft supersymmetry breaking potential, the MR Higgs bosons do not

1 In the MSSM, there are also contributions involving the coefficient µ of the H1H2 mass term

in the superpotential and the coefficient A of the trilinear scalar operators in the supersymmetry

breaking terms. Those two coefficients vanish in the MR model because of the continuous U(1)R

symmetry.
2 The maximum is found for given mt and tanβ by setting one top squark mass to 1 TeV and

the other to the largest value consistent with the lower bound on mγ̃ .
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decay to sleptons and squarks. It is important to note that the neutral Higgses of the MR

model only couple to the neutralino pairs z̃H̃γ and z̃H̃Z . This is because the vanishing

of the parameters M , M ′ and µ (see Section 2) in the MR model greatly simplifies the

matrix that diagonalizes the neutralino mass matrix. We will now discuss the dominant

decay modes of each neutral Higgs as a function of its mass 3.

The light CP-even Higgs boson (h) decays dominantly to fermion pairs, except in the

slice of parameter space where the decay h → AA is kinematically allowed. Therefore,

the ‘standard’ searches used to look for hSM are generally suitable for h, with slight

modifications to take the AA channel into account as must be done in searching for hMSSM .

In contrast, the heavy CP-even Higgs boson (H) is always sufficiently massive to decay

to the Higgs boson pair hh or to the pair of neutralinos z̃H̃γ . Decays to fermion pairs can

dominate only when the H becomes heavy enough to open the tt̄ decay channel. As a

result, the kind of searches we are going to analyze in this paper are not suitable for H.

The decays of the CP-odd Higgs boson (A) are shown in fig. 2 for mt = 160 GeV and

tan β = 0.71; the qualitative features are independent of those particular values. An A

boson lighter than roughly the Z mass will decay to the heaviest possible fermion pairs.

When mA rises a bit above mZ , the channel A → z̃H̃γ becomes kinematically accessible

and it immediately dominates. Likewise, the A → w̃+w̃− and A → tt̄ channels each take

over once they are allowed. The additional decay modes A → Zh and A → z̃H̃Z also

occur for sufficiently heavy A. The first is suppressed in the MR model by a ZAh coupling

factor (see Section 4) whose value is minuscule for A bosons heavy enough to decay to Zh.

The second is simply never large enough to dominate. Therefore ‘standard’ Higgs boson

searches based on decays to fermions will be useful to probe the region of parameter space

where mA <∼ 90 GeV.

4. ‘Standard’ Higgs Searches at LEP I

We now use the information we have gathered on the masses and decays of the Higgs

bosons to discuss how electron-positron collider experiments can search for these particles.

We begin by considering the implications of recent data from LEP experiments.

3 In evaluating the decay widths we have included the cosmological constraints discussed in

Section 2.
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At LEP I it is possible to search for the h and A Higgs bosons of the MR model; the

H boson is too heavy to be produced. Specifically, the channels

e+e− → Z → Z∗h, Ah (4.1)

are accessible if h and A are sufficiently light. We recall that any A boson light enough to

be produced at LEP I decays only to fermions. The ZZh coupling is reduced relative to

the standard model ZZhSM coupling by a factor sin(β − α), where α is the mixing angle

in the CP-even sector, determined from the diagonalization of the mass matrix. At one

loop, α is given by

tan 2α =
(m2

A + M2
Z) sin 2β

(m2
A − M2

Z) cos 2β + ǫ
sin2 β

, (4.2)

where ǫ was defined in eq. (3.2). The ZAh coupling is proportional to cos(β −α), making

the two channels complementary.

Recent ALEPH searches for Z∗h and Ah signals [7] have produced null results that

may be translated into bounds on sin2(β − α) and cos2(β − α), respectively. Because the

h mass depends on the top quark mass (cf. equations (3.1) and (3.2) ), the bounds also

depend on mt. For a relatively light top quark, sin2(β −α) is almost identically 1, so that

the bounds on the MR model come exclusively from the Z∗h channel. In this case, the h

boson is not very heavy and the current data strongly constrain the tanβ vs mA plane.

Specifically, we find that a top quark lighter than 120 GeV is entirely excluded in the MR

model; for mt = 120 GeV only the slice 0.71 < tanβ < 0.72 is allowed, independent of mA.

The situation changes considerably as the top becomes heavier: the constraints from Z∗h

searches get weaker (for mt = 200 GeV the constraint has evaporated) while the constraint

on cos2(β − α) from Ah production becomes stronger.

Our fig. 3 shows the excluded regions inferred from the ALEPH bounds on Z∗h pro-

duction for several top quark masses. The bounds from Ah production are only relevant

for mt ≥ 160 GeV and tend to exclude the small mA, large tanβ region of the plane; the

bounds when mt = 180 GeV and mt = 200 GeV are shown in fig. 3 by way of illustration.

We conclude that if the top quark is discovered to be lighter than 120 GeV then the

LEP I results just discussed will have excluded the MR model. If the top quark is heavier,

input from future experiments will be necessary to reach any conclusions about the MR

model.
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5. ‘Standard’ Searches for Zh at LEP II

The lightness of the MR model’s neutral Higgs boson h makes LEP II especially useful

for testing this model. With a CM energy
√

s ≃ 200 GeV, the possible Higgs production

channels will be

e+e− → Z∗ → Zh, Ah, AH, ZH (5.1)

The cross-section for AH production is, like that for Zh, proportional to sin2(β − α).

The complementary ZH production process is only kinematically allowed at LEP II when

mt ≤ 140GeV - precisely the region of parameter space where cos2(β − α) is a drastic

suppression factor. We will ignore H production since in the MR model it does not

contribute substantially to the final states for which we propose to search.

In this section, we consider how well LEP II will be able to search for h in the ννjj,

lljj and jjjj final states arising from production of Zh. Monte Carlo results on SM Higgs

boson signals and backgrounds in these three channels have been presented for LEP II

in ref. [9] . These show that hSM weighing up to 80 GeV can be detected in ννjj and

lljj channels, while one weighing up to 60 GeV can be seen in the jjjj channel with

integrated luminosity of 500pb−1 per detector. We follow Barger et al. [4] in scaling from

the SM simulations to estimate the detectability of the MR model’s Zh signals, which differ

from the SM signals essentially by the cross-section factor sin2(β − α). To be considered

‘detectable’ we require a signal to satisfy

S√
B

=
# of signal events√

# of background events
≥ 4 (5.2)

for an integrated luminosity L = 500pb−1. We add the significance S√
B

of the three

channels in quadrature, considering only channels with four or more events.

As usual, the bounds depend strongly on the top quark mass. For a light top quark,

sin2(β − α) ≈ 1 and the limits are essentially the same as for hSM . When the top quark

is heavier ( >∼ 140 GeV), sin2(β − α) drops significantly below 1 only in the region where

mh is substantially smaller than 80 GeV; even with the suppression factor the number of

events is large. The net result is that where h decays dominantly to leptons or jets LEP

II can do as good a job of looking for h in these channels as for hSM

On the other hand, if a Higgs boson is found, the fact that sin2(β − α) ≈ 1 will make

it difficult to tell whether hSM or h has been seen. We have estimated the difference

between the number of Zh and ZhSM events, again using the simulations of SM Higgs
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boson signals presented in ref. [9] . We observe that the difference is never statistically

significant (i.e. is < 3σ) when the top is lighter than ≈ 160 GeV. For a heavier top, the

difference is larger than 3σ typically in the small-mA/large-tanβ region of the parameter

space (see fig. 4). However, even in the most favorable case (mt = 200 GeV) the two

models become indistinguishable when mA is heavier than 100 GeV.

It is important to note that where kinematically allowed to do so, the MR h will

decay dominantly to AA (except when there is an accidental suppression of the coupling).

In this case, the final state topology and, hence, the efficiency of the standard searches

depends on mA. This issue has, naturally, arisen in the LEP I searches for hMSSM . It was

found [7] that the standard searches remain effective so long as mA > 2mb and slightly

modified searches for ‘six-fermion’ final states can cover the remaining region of parameter

space. Hence our estimates based on the scaling of the SM simulations remain reliable for

mA > 2mb. The remaining small slice of parameter space is either already excluded by

LEP I or can be studied using the appropriate modified-standard searches.

Our fig. 4 shows the regions in the (tanβ, mA) plane accessible to LEP II, for different

values of the top quark mass. Notice that if the top is lighter than 170 GeV, then h always

weighs 80 GeV or less. In this case, if LEP II sees no sign of an h in the standard channels,

the model’s survival will depend entirely on the efficacy of the modified-standard channels’

coverage of the light mA region where h → AA dominates.

The above estimates do not assume b jet identification. However, b tagging will sub-

stantially improve the Higgs boson discovery limit, since the Z-boson’s branching ratio

into bb̄ is only ∼ 15% while the Higgs boson decays mainly into bb̄. It has recently been

shown [10] that by tagging b jets LEP II experiments will be able to detect a SM Higgs

of mass mhSM
∼ √

s − 100 GeV 4. Within the MR model, the regions of the (tanβ, mA)

plane where h is heavier than 80 GeV correspond to sin2(β − α) ≈ 1, independent of the

top mass, and therefore the mass limit set for the SM Higgs also applies for h. In fig. 5 we

show the areas of the (tanβ, mA) which will be probed at LEP II assuming the b tagging

performances stated in ref. [10] can be achieved. The improvement is enormous. Provided

that the region where h → AA dominates can be excluded by modified-standard searches,

LEP II with a beam energy of 95 (100) GeV will be able to rule out the MR model if the

top is lighter than 180 (200) GeV.

4 We thank J.J. Gómez-Cadenas for pointing out to us this upgrade of the LEP detectors.
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To conclude, standard Zh searches in the MR model are strongly affected by the fact

that sin2(β − α) ≈ 1 in most of the MR model’s parameter space. On the one hand, a

large (i.e. visible) number of Zh events is guaranteed, so that failure to find a neutral

CP-even Higgs boson at LEP II would eliminate much of the tanβ vs mA plane. On the

other hand, the MR and SM Higgs bosons will look very similar unless the top quark is

quite heavy, so that further searches may well be required to disentangle the two models.

6. Searches for A and H in ττjj at LEP II and beyond

To distinguish the MR model from the SM with neutral Higgs searches, one must seek

evidence of the A and H bosons in addition to the h. Studies of the Higgs sector of the

MSSM [9][11] suggest exploiting the bosons’ potentially large branching fraction to tau

leptons by looking for the processes

e+e− → Zh, Ah, ZH, AH → ττjj. (6.1)

The scalars’ masses could be deduced from the shape of the Mττ and Mjj invariant mass

spectra of these events. In the MR model, we have already noted that the H dominantly

decays to hh or to z̃H̃γ ; thus production of H bosons will not contribute appreciably to

ττjj final states. The A boson on the other hand, decays primarily to fermion pairs if

its mass is below the Z mass; decays to τ+τ−, bb̄ and cc̄ pairs dominate since the scalar-

fermion coupling grows with the fermion mass. We therefore focus on the reactions

e+e− → Zh, Ah → ττjj (6.2)

in the remainder of this section. We shall consider whether a distinct peak due to the A

boson will be directly visible and also whether slight alterations in the Z and h peaks due

to the non-standard-ness of the model would be visible.

We note that the irreducible background for the proposed signal comes from e+e− →
ZZ events, which cluster at Mττ , Mjj = MZ . As shown in [11] the background would

be noticeable only when the scalar masses are close enough to MZ for the invariant mass

peaks to overlap.

The cross-section for Ah production depends on the scalars’ masses and on the sup-

pression factor of cos2(β − α). Even for the largest attainable cross-section (essentially

meaning for the smallest value of sin2(β − α)), we predict only about five ττjj signal
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events for 500pb−1 of integrated LEP II luminosity. Folding in the expected 50% detec-

tion efficiency [11] makes the signal essentially unobservable even before worrying about

the precise size of the background. Hence LEP II does not appear capable of directly

detecting the A scalar of the MR model in ττjj final states.

One might also wonder whether the slight alterations in the rate of Zh production in

the MR model as compared with the SM would be visible in ττjj. We find that, for a

heavy top quark, the number of e+e− → Zh → ττjj events predicted by the two models

can differ by of order 2σ for small mA and large tanβ. For example, with mt = 200 GeV,

the region with a deviation of at least 2σ is roughly that above the curve labeled A in

fig. 4. When combined with the ‘standard channel’ signals, this could aid differentiation

of the SM and the MR model in the appropriate region of parameter space.

Moving the search to a hypothetical NLC with a beam energy of 250 GeV and an inte-

grated luminosity of 10 fb−1 changes the picture enormously. The luminosity compensates

for the cross-section’s reduction due to the increased CM energy. In the most favorable

regions of parameter space (small mA and large tanβ) , one might now expect of order 100

events (after including the detection efficiency); contours of number of events are shown

in fig. 6. This should make the A boson directly visible if mA <∼ MZ . In addition, one can

more usefully exploit the difference between the predicted number of Zh and ZhSM events

at the higher event rates of the NLC. For the ττjj channel, we find that for heavy mt the

significance of this difference is now quite high: for mt > 180 GeV (160 GeV) it is less

than 3σ only for mA >∼ 100 GeV (70 GeV). Including the ‘standard’ Zh decay channels

in that comparison will naturally improve the strength of the signal.

7. Searching for Sleptons

We have found that LEP II is not likely to be able to distinguish the MR model from

the SM by studying the Higgs sector alone. Therefore, one should consider other searches

LEP II could make to fulfill this mission. What immediately suggests itself is searching

for superpartners. Since photino cosmology (Section 2) tells us that MR model sleptons

weigh no more than 140 GeV (while squarks could all have masses of a TeV), it is most

logical to search for these.

As the sleptons in the MR model are not appreciably different from those of the MSSM

(except, perhaps in their masses), we can adapt some results obtained for the MSSM to

predict how one might search for the MR sleptons. Detailed Monte Carlo studies of slepton
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searches at electron-positron machines [13] have shown that sleptons are generically visible

if their masses are no more than 80% to 90% of the beam energy.

As fig. 7 shows, the slepton mass is less than 80 GeV in the MR model so long as the

top quark mass is less than about 140 GeV. And the maximum slepton mass for any top

quark mass is about 140 GeV. Therefore, if the top quark is known to weigh less than 140

GeV and LEP II finds no sleptons below a mass of 80 GeV, then the MR model will be

ruled out. Even if the top quark mass is unknown or is greater than 140 GeV, the allowed

range of tanβ in the MR model will be strongly constrained if sleptons are not found at

LEP II. Only an e+e− collider with a beam energy of at least 175 GeV could search the

entire allowed mass range of the sleptons; the NLC’s discussed in [11] meet the energy

requirement easily.

It is instructive to briefly consider how useful hadron colliders are likely to be in

searching for MR model superpartners. Judging from the cross-sections plotted in ref [12],

the 4pb−1 of CDF’s current integrated luminosity would be expected to have produced

only 4 (1) pairs of low-rapidity 50 GeV (100 GeV) sleptons 5. Hence the only sleptons

light enough to be visible at the Tevatron are already excluded by other experiments [6].

While squarks would be more readily produced than sleptons (due to their color), they

can also be nearly ten times as heavy; the first consideration pales before the second. It

is only at the higher energies and luminosities of the SSC or LHC that the full range of

either slepton or squark masses of the MR model will be open to study.

8. Discussion/Conclusions

Because the Higgs and slepton sectors of the MR model are strongly constrained by

photino cosmology, they provide interesting search candidates for experiments at both

existing and planned electron-positron colliders. We have seen that studying the Higgses

and sleptons provides opportunities both for excluding the model and for distinguishing it

from the SM and the MSSM.

No matter what mass the top quark is found to have, at least one e+e−collider will

be able to use such searches to try to rule out the MR model entirely. Current LEP I

data on Zh searches will immediately exclude the MR model if the top quark is found to

5 The numbers of events given include a rapidity cut of |y| < 1.5 to ensure that only ‘detectable’

sleptons are included.
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weigh less than 120 GeV. LEP II will have two opportunities (slepton and higgs searches)

to exclude the model. For mt < 140 GeV, LEP II would rule out the MR model if it

found no sleptons weighing less than 80 GeV. For mt < 180 GeV, LEP II would rule out

the model if it did not find a neutral CP-even Higgs boson using ‘standard’ Zh search

channels. Finally, even if the top quark is as heavy as 200 GeV, combined searches for

sleptons and neutral Higgs bosons at an NLC with a beam energy of at least 175 GeV will

have the potential to exclude the MR model.

Assuming that the MR model is not directly excluded, one would naturally wish to

experimentally distinguish between it and the SM. Two possible approaches are (1) finding

a light CP-even Higgs boson and demonstrating that it is not hSM (2) finding a particle

such as A or l̃ that exists in the MR model and not the SM. We have seen that the first

approach is most useful when the top quark is very heavy. If a neutral CP-even Higgs boson

is found at LEP II, it will be difficult to directly tell whether h or hSM has been found

simply because sin(β − α) ≈ 1 through much of the MR parameter space. A deviation of

the observed number of Zh events from the number predicted in the SM would only be

detectable at LEP II if mt >∼ 180 GeV (fig. 4); the services of an NLC would be required

to make this signal useful if the top quark is lighter. The second approach is more broadly

applicable. While the A boson of the MR model will not be detectable in ττjj searches at

LEP II, that collider can find sleptons weighing up to 80 GeV. An NLC could both polish

off the allowed slepton mass range and search a respectable fraction of the parameter space

in which the A decays appreciably to ordinary fermions.

One would also wish to distinguish the MR model from the MSSM. The difficulty

of this will depend on the masses of the sleptons and Higgs bosons. If the sleptons are

heavier than the MR model allows for given top quark mass or if the values of mh and

mA correspond to a value of tanβ outside the MR model range, then the choice is clear.

However if those masses are such that either model is possible, one can still make progress

by studying the neutral Higgs bosons’ decay modes. For example, the discovery in ττjj

final states of any A boson at LEP II or of an A with mA >∼ MZ at an NLC would provide

strong evidence for the MSSM as opposed to the MR model. Searching for decay modes

of the neutral Higgs bosons that are allowed in the MSSM but forbidden in the MR model

(such as decays to sleptons, squarks, and certain combinations of neutralinos) would also

be useful in disentangling the two models.
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Figure Captions

Fig. 1. Mass of the CP-even neutral Higgs boson as a function of tanβ, including one

loop radiative corrections with the photino cosmological constraint incorporated,

for mt = 140 GeV (solid), 160 GeV (dashed), 180 GeV (dashed-dotted) and 200

GeV (dotted). For each value of the top mass, the lower curve corresponds to

mA = 10 GeV and the upper curve to mA = 1 TeV.

Fig. 2. CP-odd Higgs boson partial decay widths for mt = 160 GeV and tanβ = 0.71.

The decay modes are f f̄ (A), H̃γ z̃ (B), w̃+w̃− (C), hZ (D) and H̃Z z̃ (E).

Fig. 3. Excluded regions of the (mA, tanβ) plane inferred from the ALEPH results at

LEP I. Solid curves correspond to Z → Z∗h searches for mt =130 GeV (A), 140

GeV (B), 160 GeV (C) and 180 GeV (D). Discontinuous curves correspond to

Z → Ah searches for mt = 180 GeV (dashed) and 200 GeV (dashed-dotted).

Areas above or to the left of the curves are excluded.

Fig. 4. Regions in the (mA, tanβ) plane accessible to LEP II, for mt = 170 GeV (dashed),

180 GeV (dashed-dotted) and 200 GeV (solid). Areas to the right of the curves

are inaccessible. The dotted curves on the left side of the plot show the region of

the (mA, tanβ) plane where the difference between the number of Zh and ZhSM

events is larger than 3σ for mt = 180 GeV (A) and 200 GeV (B). In the areas

above or to the left of the dotted curves it should be possible to disentangle the

MR h boson from hSM .

Fig. 5. Same as fig. 4with b quark tagging, assuming
√

s = 190 GeV, for mt = 180 GeV

(dashed-dotted) and 200 GeV (solid); and assuming
√

s = 200 GeV for mt = 200

GeV (dashed).

Fig. 6. Contours showing how number of Ah → ττjj events at NLC depends on mA and

tanβ. Curves shown are for mt = 160 GeV; numbers of events for each curve

are: A=90, B=80, C=70, D=60, E=50, F=40, G=30. As mt is varied, the upper

curves simply correspond to an altered number of events. For mt = 180 GeV, one

has A=120, B=110, C=100, D=90, E=80, F=70. For mt = 140 GeV, one has

C=40, D=30; in this case, the plane extends only up to tanβ = 1.2, as discussed

in Section 3.

Fig. 7. Maximum slepton mass (assuming all the sleptons are degenerate) as a function

of tanβ, for different values of mt: 140 GeV (solid), 160 GeV (dashed), 180 GeV

(dashed-dotted) and 200 GeV (dotted). The constraint mh ≥ 44 GeV has been

incorporated.
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