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Abstract

An approach to Witten String Field Theory based on the discretization
of the world sheet is adopted. We use it to calculate tree amplitudes with
the formulation of the theory based on string functionals. The results
are evaluated numerically and turn out to be very accurate, giving, for a
string approximated by 600 points, values within 0.02 % of the prediction
of the dual model. The method opens a way to calculate amplitudes in
String Field Theory using non-flat backgrounds as well as compactified
dimensions.
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The aim of this letter is to discuss, and test, a way to do calculations in
the field theory for strings proposed by Witten [1]. The method is based on
the discretization of the string, i.e. its substitution by a finite set of points, the
number of which is eventually sent to infinity to recover the continuum limit.
We will test this method by calculating the ratio of the 3 tachyons amplitude
over the tachyon-tachyon-vector amplitude. This quantity has been already
calculated by Gross and Jevicki [2], by Cremmer, Schwimmer and Thorn [3]
and by Samuel {4] in the context of Witten String Field Theory. The results of
[2,3,4] agree with the ones of the dual model. We will discuss this calculation
following [2]. In their paper Gross and Jevicki use Fock space vectors and ¢
function overlaps to construct the string vertices; while their method is very
elegant, it is quite involved and cumbersome to use as well, and moreover has
little or no flexibility should one wish to make changes such as, for example, a
different space-time background (possibly compactified).

We shall see that the discretization method is instead very straightforward,
leading basically to gaussian integrals, which can be solved exactly. In the
calculation presented here we find the drawback that it is not always possible to
do all the calculations analytically, in particular we will encounter one matrix
whose inverse we did not succeed to find analytically. It is however quite easy to
perform the calculations numerically, for various values of the number of points.
The method passes its test, since, already for 600 points, the value of the ratio
is within 2 parts in 10 of the correct value. The real advantage of the method
however lies in its flexibility. Once a calculation has been set up changes such
as the background space time may be easily managed, possibly by modifying
just a computer code. In the conclusions we will come back to the possible
perspectives offered by this method.

This letter is organized as follows: first we give an extremely short review
of the relevant aspects of Witten String Field Theory (see for example [5] for
a more complete review), and the calculations of [2]. The purpose of this is
mainly to set notations. We introduce the discretized approach and discuss its
relationship with the Fock space one. We then present the calculation of the
ratio of the two amplitudes and discuss its results. We conclude with some final
remarks. More details of this calculation, as well as the calculation of other
amplitudes and a more complete discussion will be presented in a future paper

[6]-
In this paper we will ignore ghosts, since we are interested for the moment

in calculating only tree amplitudes on shell, and we consider only open strings.

2



The objects one deals with in a string theory are string configurations, which
we denote by z#{z,7), where 7 is an evolution parameter and, for a fixed 7,
z#(o) is an image of the interval [0, ] into space-time (hereafter we will usually
suppress the index ). z(o) has the usual boundary conditions for open strings

z'(0) = z'(x) =0, where the prime denotes differentiation with respect to o.

For z(o) one has the usual mode expansion

z(o) = Nl \/EnZ:%z cos(no) (1)

where the z,, are called oscillator modes, and o/ /2 is the position of the center

of mass.

The string hamiltonian is (at 7 = 0)

H= & {p(o)? + a(e)?}

where p(o) = 2(0) = 8.2(o,7) calculated at 7 = 0. In terms of the z, H is

1.
1 = g el + 5 3o + i) ©
k=1

where

Even if wy, = 0 we have kept its formal dependence in (2) for reasons which
will become clear in the following. The hamiltonian (2) consists of an infinity of
single harmonic oscillators with frequency w,, except for the zero mode, which is
instead a free particle, reflecting the translational mode of the whole string. We
can therefore easily first quantize the theory defining creation and annihilation

operators a, and a! in the usual way.

One can then build a Fock space acting with the a'’s on the vacuum |0 >,
which is the vector annihilated by all the a’s. Given a generic vector |¥ >, the

associated functional in a Schrédinger-like representation is
<X|¥>= ¥z(o)]
where

X >= ] lzn> .

n=0



In particular the tachyon of momentum p and the vector with distribution of
momenta A(p) will be represented in the Fock space by

IT> = eP=/V20>
V> = eP™/V24,(p)attio>

Thus the study of first quantized strings is equivalent to the study of func-
tionals ¥{z(c)], that is objects which associate a number for each string, which
in this particular approach is seen as an infinite collection of oscillator modes.
On the other hand those functionals, which we will call string fields, are the
objects of interest in a string field theory. As it is known Witten [1] proposed
an action

A = f T+QU +§\1:*\I:*11:

Where Q is the BRST operator (which acts as some sort of differentiation for
the string fields). The x and § operators are defined as follows

(Ux®)laz,ar] = [Dy(o) Ulew;y] @[5 en)
j{\IJ = /DmL(a) Dag(c)Plzr;zpg]

where z1,zg and y are ‘half strings’, that is maps from the interval [0,7/2] into
space time. x; represents the left half of the string, z1(¢) = z(¢), while xg(o)
is the right half, 2z(0) = 2(7/2+0). §(o) = y(m — 5} is the half string y (which
acts as dumumy variable) parametrized from right to left.

An amplitude (vertex) between three states ¥; ¥, and U3 is simply the value
Of f \I'l*\]?g*‘llg,.

To calculate * and § among vectors one has to define vertices |Vy >, vectors

of the N-string Fock space, and then evaluate

ﬁ‘h*‘h*‘h = < V3[¥, > |8, > U5 > (3)

This calculation has been done [2,3,4] and the result reproduces the correct
value as given in the dual model, thus proving the validity of Witten String
Field Theory, at least at this level. Unfortunately the evaluation of V5 is rather
complicated and, as we already mentioned, the techniques used depend on the
background.

In this letter we adopt a different approach, first pioneered by Giles and
Thorn [7] and Thorn [8] and later applied to Witten String Field Theory by
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Srednicki and Woodard[9], some related work has appeared in [10]. The idea is
to interpret the string functionals as limits (in a sense which will be specified
below) of N points functions. As N goes to infinity one should then recover the

usual results of string field theory.

In other words, one discretizes the string world sheet in the ¢ direction
in such a way that the z(o) variable is substituted by the set of variables

©(oq),x{01),...,2z(on), where o, = im/N.

The functional ¥[z(c)] will be seen as the limit for N going to infinity of
a succession of N-variable functions ¥¥(z(ay),...,2(ox)), and the functional
integral measure
N
Dz(o) = llj{InniI;IO dz{o;),
where  is a normalization constant we need not calculate for our present pur-

poses.

¥[z{c)] is an object which associates a number for each string configuration
x(o), that is a number for each image of the interval [0,#] into space time
(with the appropriate boundary conditions). A N-variable function ¥ instead
associates a number for each set of N points. With a prescription to extract N
points from each string configuration we can compare the values of ¥[x(¢)] and
U for each string. If we now consider ¥V to be an element of a succession of
functions as N changes, we can have that, on a given string ¥V — ¥[z(0)] as

N — .

We will use the following definition for the convergence of a succession of

functions to a string functional:

li]{rn Y = ¥[z(0)] =

Ve Vz(0) 3Npin such that I\If[w(a)] — lI’N| <e VN > Npin (4)

One important thing to notice is that the convergence criterion defined in
(4) is not of the uniform kind. This is not a disaster, it means that there might
be problems in exchanging limits, integrals and infinite sums among themselves.
In the calculations presented here we have taken care not to interchange limits
and integrals once we have defined the * and § operations.



Within this interpretation we define the x and § as follows
(T+®)zr;2R) = Alrim (Ux®)V(zp;25) =

= lim v&w [dy(on),..,dy(on) T (ery(om), - . y(on))
" (y(on)s-- - y(om); zr)
f\y = Jim nN/dx(ao),...,d:c(orN)\I’N(:c(ao),...,:c(JN)) (5)
where M=N/2 (N odd) or M=(N-1)/2 (N even).

Note that we have defined * and § with the limits before the integrals, there
is no a priori reason to do that, except that only in this case we know how to
calculate the right hand side of the equations, which is a regular integral among

functions.

Another observation to make is that possibly not all string configurations are
reproduced in this picture, and some of those can be relevant for the functional
integrals. The same situation appears in the Fock space representation, where
for example it is impossible to obtain closed strings [11]. We will now discuss the
relation between the discrete and the oscillator pictures of the theory in some

more detail. We plan to come back to this problem in a future publication [6].

Let us now quantize the discretized string, that we represent by the vector
Z, a vector whose components are the z(c;)’s. In analogy with eq. (1) one can
make a finite Fourier expansion of # finding an identical formula to (1), but now

the sum goes up to N. In matrix notation:
Z=BXV (6)

where
[ 1/2 1 1 cee1/2

By, =] 1/2 cos(nal) oo cos(noy) cer (—)7/2 ()

2 -1 e (7 e ()2
and XV is a vector whose components are the =7, the Fourier components of
the finite expansion of 2(¢;). Since these components converge to the «, of (1)
to recover the continuous limit, hereafter we will skip the superscript N on the

z,’s.

The hamiltonian {2) becomes in the discretized case

1 N-1 1 N
H=pi+3 2 pi+ph+ 5 > wiek | (8)
k=1 k=0



corresponding to a set of N coupled harmonic oscillators with frequency

: kw
_ Singy be0. N
7/(2N)’

Wi

this is basically the result obtained by Thorn in [8].

The equation (8) gives the finite Fourier decomposition for the N discretized
string. Since the matrix B is non singular, there is an equivalence between the
N points z(0o;) and the N oscillators z,. Taking the limit NV — co one easily gets

the expansion (1), thus showing the equivalence between the two approaches.

We can now proceed to the construction of the states in the discretized ap-
proach. Although one can deduce those states from the hamiltonian (8) directly
in the discretized picture, we will deduce them from the states in the Fock space.
Since the hamiltonian (8) corresponds to a set of harmonic oscillator, again one
can define in the usual way creators and annihilators. We still keep a formal
dependence on wg, when at the end we will send wy to zero this will give the §

function of conservation of momentum.

The vacuum state for the hamiltonian (8) is just given by the gaussian of

the oscillator modes:

" 1Y
<X|0>= e:::p{—:?— Zwﬂxi}

n=0
Where now

- N
X >= ][ lz.> .
n=0

Any other state can be obtained from this expression by repeated application
of the creator operators on the vacuum |0>. Using the relation (7) one can then
obtain the functional corresponding to any state in the Fock space. For our
purposes it will be sufficient to explicitly show the functionals for tachyon and

vector.

| .
Tia(o)] = eapf{~pBoia(r) - < FTAT}
i

1
N p Boiz(0:) — — :E'TAE}

Vie(a)] = 200%/2 “]{; By z(o; )" A(p), e:cp{ N2

and the matrix A is defined by

N
Ay =Y wiB;By; (9)

k=0



These results will in general allow to calculate the * and § between different
oscillation modes of the string (one particle states) in terms of string functionals.
The recipe is straightforward, once the state is specified one uses (6) to get the
corresponding N-variable functions. Those functions, introduced in {5) will allow
the numerical or analytical calculation of the multiple integral. The final result
is then obtained taking the limit N — co. In particular for the three string

vertex (3) one considers
I@(lpla ‘1'27 \113) -

M-1
= Hm [ J] dz(o:)dy(o:)dz(e) ¥} (2(on-1)s- ., 2(00); Y(@0)s- ., Y(Tary))
=0
Y (y(orr—1)y---, 4(00); 2(00),+ .y 2(0ar_1))
\I’év (Z(UM-l)’ ses :2(0_0); :L‘(O‘o), K 7$(UM—1))
Since middle point subtleties do not to play any role in this calculation we will
use an even number of points, N = 2M — 1.

The calculations for the two amplitudes in question are straightforward, but
long and tedious, heavily relaying on the symmetries of the matrix B. They
can be done exactly up to a point however, since all the integrals are gaussian.
Details will be presented elsewhere [6]. The final result for the two amplitudes

)= (2}

)+(“t *‘)A’( .
¥

18

M-—1
A(TTT) = n’/ 1:[ dz(o;) dy(o;) dz(o;)
emp{zMi_l Big(1,1) [pl ( 4) +pa (

exrp { (2M—..1_ 1)2 [( y' _‘t)A! ( g) + (ftazt)Af (

Ny 8y

8w
=)

w8y

ey
e
—J
~——

(10)

Ny R w9y

A(TTV) = &' A(ps) 2w ] H de(o:) (a’,)dz(a’,)zM - B(1,0,-1)

i=0

otz () on(2) on (2]

ol e (2) o)1)



where ng = (Biry Biry1s - - - Biapr—1) and the vectors .,y and Z refer to half
strings in an obvious notation. The matrix A’ (obtained from A in equation

(9)) is given by :
AE:’ = i‘+M,j+M = A; MM
:'+M.j = A;,j-i»M = AM_i-1j4+M t,j=0,...,M ~1

p3 1s the momentum of the vector and «’ is a normalization constant related to
& and the normalization of the functionals. It will drop out in the final result.

It is worth however to work out in a bit of detail the dependence on the
frequency wo. Eq. (9) shows that in the limit wg — 0 the matrix A (and A’) are

singular. However, with a bit of work, it is possible to isolate the singular part

1 >\ 1
2 eepd (=P} L
wé/z P 2v/3 wWo

Thus sending wg to 0 one recovers the § function of the conservation of mo-

which turns out to be

mentum. This is not surprising because p, is the translational mode of the
string, and the fact that its associated frequency vanishes is a statement about

translational invariance.

Finally, to avoid unnecessary problems with the normalization we divide (11)
by (10) to obtain

ATTV)
A(TTT) ~

(A(ps + pa)l*(p2 = pr)uwl”” BigM ™ o ep { 5 B M Bon} (12)

B =

where M;; = 2A;m54m — AM_icv,j4m-

Since the result of the dual model (and of Witten String Field Theory as
calculated in [2,3,4]) is

1
5 [Alpr + p2))" (1 — P2
for the method to work we must have that

lim wjl_/zﬁiRM_lﬁgR exp{—%ﬁéRM"lgoR} =0.5 (13)

N—oo

Unfortunately we are not able to invert the matrix in (13) analytically, it is

however easy to perform the calculation numerically for various values of N.



N result error
4 10.629083 | 25.81 %
6 | 0.558865 | 11.77 %
20 | 0.508975 | 1.79 %
100 | 0.500964 | 0.10 %
200 | 0.500378 | 0.07 %
300 | 0.500219 | 0.04 %
400 | 0.500149 | 0.03 %
600 | 0.500087 | 0.02 %

Table 1: The results of the calculation of the ratio of the two amplitudes. In
column one the number of points used for the discretization, in column 2 the

calculated value, in column 3 the percent error from the correct value of 0.5.

The results are showed in table [1]. From the table it is evident that not only
the convergence is quite fast, but that already with a small number of points
(20 for example), it is possible to obtain results which are within a few percent
of the correct value. This is very encouraging should one attempt more involved

calculations, which might require much more computer time.

To conclude, we have shown that the discretization of the world surface
provides a viable method to compute amplitudes in Witten String Field Theory,
- despite the fact that some calculations have to be performed numerically, and
some possible initial worries about convergence. In this letter we presented only
the calculation relating tachyons and vectors at tree level on shell. But similar
amplitudes involving any other excited state can be obtained easily, with a slight
modification of the equation (12), the changes are not expected to significantly
modify the rate of convergence. For the moment the calculation done was just
a test of feasibility. Work is in progress to use this method in problems which
other approaches find either difficult or impossible to cope with.

We would like to thank Chan H-M for many useful discussions. JB acknowl-
edges the British Council and the Ministerio de Educacion y Ciencia (Spain) for
financial support, and the Rutherford Laboratory for hospitality.
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