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Abstract

In this paper we consider the set of maps from the interval [0, 7] which
constitute the argument of the functionals of a String Field Theory. We
show that in order to correctly reproduce results of the dual model one has
to include all square integrable functions in the functional integral, or g
in terms of Sobolev spaces.
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One way to construct a String Field Theory' is to generalize the concept
of the point z, considered as the argument of a field #(z), to the string z(o),
now seen as the argument of a functional ¥[z(s)). The z(o) are maps from
the interval [0,7] with proper boundary conditions, in the case of open strings,
or the circle in the case of closed ones, into some manifold. This leaves open
the question: Which maps?, Should they be continuous, with some of their
derivatives?, Square integrable? ... In this paper we will discuss some of the
features of this infinite dimensional space, which in this paper we will call String
Configuration Space.

Horowitz and Witt have argued in [4] that this space is independent of the
dimensions of space time, and depends at most weakly on its other properties,
like its topology etc. They found Sobolev spaces to be a useful tool in this sort
of investigation, and argued that one has to include at least discontinuous maps
as arguments of the functionals. Here we work out in detail the contributions of
various spaces to an actual numerical computation of an amplitude in Witten’s
(5] approach to Open String Field Theory. We will work with a flat background
and ignore ghosts in what follows, we choose an amplitude for which the ghost
variable does not contribute. We find that in order to reproduce the correct
amplitude the configuration space has to include all square integrable functions
(2 in terms of Sobolev spaces).

Given an open string, that is a map z(¢), with boundary conditions z’(0) ==

z'(x) = 0, consider the Fourier expansion

(o) = E+\/§§ 2y cos(no).

We can then define, for each real number s, the Sobolev spaces as the set of

maps for which

> z(14n?) < co.
0

Among the properties of Sobolev spaces (see [4] and references therein) there

is the inclusion relation
2, C8 (p>0q) (1)
Moreover {15 is the set of square integrable maps. For s negative (I, contains

distributions. Furthermore:

1
Q. cCc” , 3>§+n,

TFor reviews see [1,2,3] and references therein.



where C™ is the set of continuous functions with their first n derivatives.

In order to determine which are the important strings contributing to the
functional integrals appearing in String Field Theory, we will follow the fol-
lowing strategy. We will consider the tree level amplitude for the scattering of
a vector with two tachyon states, normalized to the tachyon—-tachyon—tachyon
scattering, in Witten’s [5] approach to string Field Theory. These amplitudes
involve functional integrals in string space. We will consider these functional
integrals restricted to some appropriate subsets of this space, and will show that
the whole of Qg is necessary to reproduce the dual model result,

The functional integrals are difficult to treat, and necessitate a regulator. We
will work in the discretized version of the theory introduced in [6,7,8,9]. Instead
of continuous strings z(¢) we will consider N points on it, collected in a vector
T, with components z(s;) = z(%%). The string functionals are now functions
U¥(Z), and the product and integral of the theory can be defined as

(Txd)(zr32R) = ]\lri_xggo(\II*CIJ)N(a:L;xR)z

= lim Ry [ dy(om),....dy(on) O (er;y(or)s ..., y(on))
N (y(on)s. . ylou); zr)
fu = Jim ki [ de(ao),.... dx(or)

¥V (2(00), ..., z{oa), 2(oar)s . .., 2(a0)) (2}

where M = N/2(N even) or M = (N —1)/2(N odd) and sy is a normalization
constant, z7(z ) corresponds to the left (right) halves of the string z(¢) and, in
both cases the integrations are performed over half string.

Consider now the Tachyon—Tachyon—Vector (TTV) tree level amplitude nor-
malized to the Tachyon-Tachyon—Tachyon (TTT) amplitude. In this paper we
will ignore ghosts since they do not contribute to the ratio of amplitudes we are
considering here. In a sense here we are only concerned with the bosonic part
of the string configuration space relevant to string theory.

(TTT)Y =« / ]_:[ dx(0;) dy(e;) dz(a;) 2 (3)
; g
(TTV)Y = x'ps2u, f H d(oi)dy(0)d(o) =B R(1,0,-1) | # |2 (9)



ith
i = y z zZ
Z z i
exp (yT ”'T)A v + (27, ET)A z + (7,5 "’T Z
(N)2 z 7]
in the above equation, f!f}e = (Bip, Binrs1s in) where Bpym = ¢amcos(noy,)
= M%Z—Nl and the vectors

(cnm = 1/2for m = 0, N and ¢,,,, = 1 otherwise), wy
¥ and Z refer to half strings in an obvious notation. The matrix A is given

by:
N
A = Aimgrsm = Y weBrirarBijinr
k=0
N
Aumi = A = ) wrBinm—iaaBrgem 4,5 =0,...,M —1

k=0
ps 1s the momentum of the vector and &’ is a normalization constant related to

xn and the normalization of the functionals. It will drop out in the ratio
. TTV
We have that [7,9,10], defining R = (TTT)

— 5 m} = m3)Co (5)

R = —P§w1(P1p ~ p2,)Cro€Xp

where the relevant factors C;; are given by:

. 17 =
Ci; = B, [“M-] Bir (6)
being M;; = 2Aiipm540 — AM—i-1,j+M-
Numerical calculations show that, for N = 600
(7)

Coo = 0.52336 C)q = —0.38495

which gives
R = 0.5 p3(p1 — p2)
in agreement with the dual model result.

We will now repeat the above calculations reducing the functional integral

of § to a particular domain.
Let us consider the strings 2(¢) belonging to the space Q,(R), identified by

(a limit N — oo is understood)
N
Q,(R) = {x(i), i=0...N such that N*'Y z(i)? < Rz} (8)
1==0



where p is any real number. An inclusion relation, analogous to (1) is readily
obtained:

(R) C AR (P> q)- (9)

Those spaces can be related to the Sobolev spaces mentioned in the in-
troduction in the limit R — occ. Let us indicate §2, = limgp Q. Considering
N nPz? < NP Nzl = N1y N 0 %(7,) for p > 0 (and conversely for p < 0)

we ha.ve the following inclusion relatmns:

2 C 9, (p<0)
90 = QB
Q, C Q, (p>0).

To see what happens when we restrict the domain of integration, let us start
from equation (3) written in the following form:

(TTT)Y =« f DX exp [-XA'X] exp [iR X 0,(R) (10)

Where X = (%,9, %) is a vector whose components are the three half strings,
K= BR(p1 + P2, P2 + p3, ps + p1), A’ is a block rearrangement of A and © o(R)
is a function which restricts the integration to the proper domain Q2,(R). For
instance, if we were interested in restricting the integration range into a box
of side 2R, the form of ©,(R) would be just the product of step functions of
the form 8(z(v;) — R)8(z(c;) + R). In the general case of interest for us (8)
however, the actual form of @,(R) is not easy to work out and we will rely on
some analytical approximations (see below).

Before going on let us comment on possible infinities coming from trans-
lational invariance. The matrix A’ appearing in (10) is singular in the limit
wp =+ 0 that one has to take at the end of the calculation. We can however
understand the meaning of this infinity by isolating the singularity. Precisely, if
we diagonalize the matrix A’ and single out the terms containing wy, that gives

the singular piece, one gets the factor:

R -1 > 2
1T aRag 2 P [—wo (3 r) ] (11)

i=1

that, as we send wp to zero gives RE(Y p;), here § is a Kronecker function cor-
responding to the conservation of momentum in a finite space. Taking the limit
R — oo one recovers the usual Dirac delta function.



Now, to proceed further, we can simulate the behaviour of ©, for large R

using the product of Gaussian-like functions:

ﬁ exp (-Np—lm(ﬂ%‘z)z-) : (12)

=0

which stresses the contribution of the strings in the space Q.

To better understand the meaning of this approximation, it is interesting to
work out in detail an example. Let us take p=1 in (8), that implies considering
£2]. The product of exponentials now stresses the contribution from the strings
such that |z(o;)| < R for ¢ = 0,...,N, i.e. the ones contained in a box of side
2R. We can connect this result with the product of step functions mentioned

above. In fact, taking the Fourier transform of ©;(R) one has the expression:

om) = (%) [ pG @G.R)

where the function f(é, R) is given by:

#@.m =] 22n2E
i=0 Qi

which, as R — oo, gives 6(6?) Hence, what we have effectively done in (12)
is to approximate this Dirac function by its expression in terms of product of
Gaussian functions which gives the same behaviour for f( Q, R) in the limit of
large R. Integrating back in Dé one gets the approximation of ©@;(R) given in
(12).

In general, the result for the ratio of vertices (5), restricted to the domain
§2,, is now given by:

1
Ry = ~#hwr(pr — po) OB (R)exp | —5(mh — mb) 0B (19)

where the coefficients C,'g'p ) are:
— 1 —
¢l = BT ——————-]B- . 14
ig iR Né:l M JjR ( )

Ry is the contribution to R of the strings belonging to {2, if R, vanishes this
means that the contribution of those strings is 0. We are interested in finding
the smallest §2;, for which R, = R.



NrBL M-+ Bg NrBL,M-(~+1)Bp

N\n| o0 1 2 0 1 2

10 || 0.554 | 0.768 | 1.129 | —0.398 | —0.580 | —0.864
20 || 0.535 | 0.675 | 0.885 | —0.390 | —0.512 | —0.677
40 || 0.528 | 0.638 | 0.791 || —0.387 | —0.483 | —0.605
80 | 0.525 | 0.621 | 0.751 || —0.385 | —0.471 | —0.574
160 || 0.524 | 0.613 | 0.733 || —0.385 | —0.465 | —0.560
320 || 0.524 | 0.610 | 0.724 || —0.385 | —0.462 | —0.553
640 || 0.523 | 0.608 | 0.720 | —0.385 | —0.461 | —0.550

Table 1: Numerical result of the calculation of the parameter N "‘E_ig%M‘("‘”) B iR
for different values of the number of points N.

As always, in this approach, we find quantities that cannot be handled ana-
lytically, however, as it was shown in [7,9] this sort of calculations are very well
behaved and an accurate result is obtained from a numerical calculation already

for a small number of points on the string.

We can see that for p > 0, and in particular for p = 1, the limits N — oo
and R — oo cannot be safely interchanged in (13), in particular taking the limit
over N, that corresponds to the continuous string in our approach, gives a zero
result for any finite radius R. Problems in the exchange of limits in string field
theories are discussed in {8]. This means that the strings in Q,, p > 0 give a

zero contribution to the functional integral.

On the other hand, if p < 0 we get a finite result for any radius K. In
particular, in the case p = 0 we can expand the coefficients (14): in powers of
2 to obtain:

(=) o 5
Ci(jl) - ZO —ﬁ_NHB?RM_(nH)BJ‘R
n=
now the terms appearing in the series are finite, as opposite to the case p > 0
where the series is divergent as N goes to co. In this case, the first few terms of
the sequence are given in Table 1. We have taken up to IV = 640 for which an

accurate result is obtained [7,9].

One can see that the first term corresponds to the values of (7). Whereas

the remaining represent the corrections for finite R which vanish as R — co.

7



N\R{' | R=01| R=1|R=10]| R = 100
10 | 1.710% | 2.1 10? | 1.9 10% | 1.8 10?

20 | 3.910% | 4.310% { 3.5 10 | 3.6 10°

40 | 7.210% | 7.1 10% | 6.8 10% | 6.3 102

80 || 1.410° | 1.410% | 1.410% | 1.4 103

160 | 2.910° | 2.710° | 2.9 10° | 2.7 10°
320 | 6.210° | 6.510° | 5.4 10° | 5.7 10°
640 | 1.110* [ 1.210* | 9.6 10° | 9.7 10

Table 2: The results of the Montecarlo calculation for Ri' for various values of
R and various number of points on the string. The error on the values are less
than 5% for all values of N except for N = 640 for which there is an error of %

As we mentioned before, the vanishing result in the ratio of amplitudes is
true for (2, for any real p > 0 hence, using the inclusion relations between the
spaces {2, we can conclude that the minimum space necessary to achieve the

correct result is the corresponding to the square integrable function 2.

In order to test the validity of this result we have done an extensive numerical
test for the §2; case, (p = 1 in 8), in this case we can prove that the contribution
for any finite R vanishes. This numerical work does not rely at all on analytical
approximations, but it has of course the problem coming from a Montecarlo,
that is the number of points and the values of R are quite limited in range.

As we have commented before, by setting p = 1 in (12), the corresponding

function stresses the contribution of the strings contained entirely inside a box
of side 2R.

We have calculated the value of (R,)™! numerically with a Montecarlo for
a variety of values of the side R of the box, for an increasing number of points
on the string, and for various values of the momenta of tachyons and vector.
Table (2) shows the results for the choice of momenta in which the first tachyon
has momentum 1 in unities in which the a constant of the string has value 1/2,
the second tachyon has momentum 0 and the third tachyon or the vector have
momentum ~1. The results for different values of the momenta do not differ
appreciably.

From the table it is quite evident that the ratio goes to infinity independently
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Figure 1: The ratio (R;)™! versus the number of points N

on the value of R. The same can be seen from Fig. (1), where the R = 0.1 case
is shown. The line shows a behaviour ~ N, which clearly fits the data very well.
Other values of R would give a very similar picture. It is worth noticing that for
N = 640, the error due to the discretization is in the hundredths of a percent
[7,9].

In conclusion, using numerical methods we have investigated the configu-
ration space of a string field theory. We found that, in order to reproduce the
results of the dual model, the measure of the functional integrals must include all
square integrable maps, the Sobolev space §2. This space is not a subset of the
set of continuous maps, which leaves open the possibility that non—continuous

strings may play an important role in a string field theory.
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