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The problem of formulating a covariant closed string field theory proved to
be surprisingly difficult. A straight forward extension of Witten’s open string
field theory [1] to closed strings does not satisfy gauge invariance[2] and it fails
to reproduce the correct dual scattering amplitudes [3, 4].

It is now well established that a consistent closed string field theory, is nec-
essarily nonpolynomial[5]. At the classical level, the interaction terms are the
so-called restricted polyhedra[6, 7, 8], where the contact interactions are given
by the patterns of string overlaps on the surface of a sphere having always three
edges at each vertex. For the N-string scattering one has an N-faced polyhedron
for which the N closed strings correspond to the faces, and are glued together
across the edges. The lengths of the edges play the role of the modular parame-
ters. They are restricted by (i), the sum of the lengths of the edges of any face
equals 2π (corresponding to the fact that all strings are taken to have the same
σ-length equal to 2π), and (ii), any closed path surrounding two or more faces
on a polyhedron has length larger than or equal to 2π.

On the other hand, based on the strong analogies between Yang-Mills theory
and Witten’s open string field theory, it was first suggested in[9, 10] and proved
rigorously in [11, 12, 13], that physical open strings can be viewed as infinite
matrices. If one breaks the open string into two pieces, the string field Ψ, can
be treated as a functional of the two ”half-strings”, which play the role of the
row and column indices, and a function of the mid-point. In particular the open
string 3-vertex is represented as a trace[11, 12, 13]. This trace can be generalized
to represent any N-string (N ≥ 3) tree level scattering amplitude[15]:

AN =
∫ ∞

−∞

dλ1 · · · dλN

SL(2,ℜ)
Tr(exp(λ1M)A1 · · · exp(λNM)AN ). (1)

The operator M is the generator of infinitesimal shifts of the mid-point of the
string, so in fact we are shifting this point to every possible position.

In an analogous construction for closed strings one brakes the closed string
into two pieces, therefore singling out two points, and treats each of the remaining
halves as labeling matrix indices. Shifting these two points around corresponds
to varying the lengths of the basic overlaps of the strings. In other words, one is
varying the lengths of the edges of the polyhedra. Using a functional approach it
has been proved in[16], that the analogous of eq. (1) for closed strings gives the
correct dual amplitudes. Alternatively, one could restrict the region of integration
in such a way that the restricted polyhedra are obtained. For the 3-vertex there
are no modular parameters, so the Witten vertex should work. For higher vertices
the proper region of integration has to be found in such a way that the moduli
spaces of the field theory are covered correctly.

In this letter we present an oscillator construction for orbital degrees of free-
dom of the closed strings based on half-string coordinates (the ghost degrees of
freedom will be treated elswere). We will find that the correspondence between
the half-string and the full-string descriptions is non-singular. As examples we
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calculate explicitly the 1 and the 2-vertices, and we recover the correct vertex for
the scattering of three tachyons. We finish this letter by showing how a vertex
with no operator insertions obtained by sewing two vertices, satisfies the “glu-
ing and resmoothing theorem” of [17] in a trivial way. Our approach will follow
closely the approach of references [11, 14, 12] and [13].

Half-string coordinates. The boundary condition satisfied by the closed string
is (the space-time index is not written, and the length of the strings is taken to
be π as opposed to 2π):

X(σ, τ) = X(σ + π, τ). (2)

The general solution to the string equations of motion compatible with (2) at
τ = 0, can be written as

X(σ, 0) = x0 +
1√
2

∑

n≥1

[xncos2nσ + ynsin2nσ], (3)

where we have introduced the oscillators

xn =
i√
2n

(αn − α−n + α̃n − α̃−n) = x†n, (4)

yn =
1√
2n

(−αn − α−n + α̃n + α̃−n) = y†n. (5)

The oscillator modes α and α̃, satisfy the well known commutation relations

[αn, αm] = [α̃n, α̃m] = mδn+m; [αn, α̃m] = 0. (6)

The Fock space of the theory is constructed by acting on the vacuum |0 >, with
the creation operators α−n and α̃−n, (with n ≥ 1).

There are several possible boundary conditions for the half string coordinates.
The choice we make, will determine the commutation relations of the half-string
oscillator modes after quantization and therefore the half-string Fock spaces.
The correct choice of boundary conditions is the one that isolates completely the
motion of the two points X(σ = π

2
) and X(σ = 0), where we break the string.

This is so that there is a one-to-one correspondence between the two descriptions
(which in general is given by an non-singular infinite dimensional matrix). The
simplest choice is the one depicted in figure (1), where we joined the string points
at σ = π

2
, and σ = 0 with a straight line, and the half string coordinates χr(σ),

r = 1, 2, are defined as the distances between this axis and the string. One has:

χr(σ, τ) =

{
X(σ, τ) − 2

π
(π

2
− σ)X(0, τ) − 2σ

π
X(π

2
, τ) if r=1,

X(π − σ, τ) − 2
π
(π

2
− σ)X(0, τ) − 2σ

π
X(π

2
, τ) if r=2.

(7)

where σ ∈ [0, π
2
]. The boundary conditions are χr(0) = 0 = χr(π

2
), and they

imply a Fourier decomposition (at τ = 0) in terms of even sine modes only:

χr(σ) =
∑

n≥1

χr
nsin2nσ, (8)
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Figure 1: Definition of the Half-String Coordinates

with inverse:

χr
n =

4

π

∫ π
2

0
dσχr(σ)sin2nσ. (9)

Let us define the following quantities in the space of “even-odd oscillators”:

Ar
n =

(
Ar

2n

Ar
2n−1

)
; Bn =

(
B2n

B2n−1

)
, (10)

Where A (B) is any half-string (full-string) vector. We also define the matrix:

Bn,m =



(

2m−1
2n

)
B2n,2m−1 0

0
(

2m
2n−1

)
B2n−1,2m


 , (11)

(bold-faced quantities will be used to represent vectors or matrices in this ”even-
odd” space). Bm,n is given by:

Bm,n =
1

π

(
2n

n2 −m2

)
. (12)

Then one can express χr
n as:

χr
n = −

√
2
∑

m≥1

Bn,muxm +
(−)r+1

√
2

yn; u =

(
0 1
1 0

)
. (13)

The matrix Bn,m is non-singular. Indeed it can be checked that:

(B−1)m,n = −4



(

2n
2m−1

)2
B2m−1,2n 0

0 B2m,2n−1


 . (14)
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Therefore there is an invertible relation between the full-string oscillators xn and
yn, and the half-string modes χr

n, the inverse of equation (13) is:

xm =
−u

2
√

2

∑

n,r

(B−1)m,nχ
r
n; yn = 1√

2

∑
r=1,2(−)r+1χr

n. (15)

To complete the picture, we still need an explicit relation between the center of
mass coordinate x0, and the two points of the string that we singled out. Calling
them XI = X(σ = π

2
, τ = 0) and XII = X(σ = 0, τ = 0), it is straight forward

to see that:

x0 =
1

2
(XI +XII) +

1

π

∑

n,r

χr
2n−1

2n− 1
. (16)

Hence there exists a one-to-one correspondence between the half-string and the
full string pictures. To establish this correspondence at the level of Fock spaces,
we proceed to quantize the theory.

The quantization programme can be carried out in the usual way by interpret-
ing the oscillator modes χr

n, XI and XII as q-operators and define their conjugate
momenta as PI = −i ∂

∂XI
, PII = −i ∂

∂XII
and P r

n = −i ∂
∂χr

n
. They satisfy

[χr
n, P

s
n] = iδr,sδn,m, [XI , PI ] = i, [XII , PII ] = i.

The corresponding momenta for the full string are given by Pn = −i ∂
∂xn

, P̃n =

−i ∂
∂yn

and P = −i ∂
∂x0

.
The transformation rules between the half and the full-string momenta can

be easily worked out using the chain rule to give:

Pr
m = − u

2
√

2

∑

n≥1

(B−1)n,mPn +
(−)r+1

√
2

P̃m +
e2

π

P

(2m− 1)
(17)

and
1

2
P = PI + PII . (18)

Here e2 is the unit vector (0, 1)T . These equations can be inverted to solve for
Pm,

uPm = −
√

2
∑

n,r

Bn,mPr
n +

e2√
2
P and P̃m =

∑

r

(−)r+1

√
2

Pr
m. (19)

P is recovered by multiplying the first of eqs. (19) by 1
2k−1

, and summing over
r = 1, 2 and odd n ≥ 1:

P =
4

π

∑

r,k

1

2k − 1
P r

2k−1. (20)

Relation (18) may seem somewhat obscure at this point. It can be better under-
stood at the classical level in the following way: from equation (7) we can get
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an expression for the string Lagrangian, from which PI + PII =
∫ π

2
0

∑
r P

r, fol-
lows as a primary constraint on the system. The total momentum of the string is

Ptotal = PI +PII +
∫ π

2
0

∑
r P

r = 2(PI +PII), in agreement with equation (18). This
identification means that 2(PI +PII) corresponds to the translational mode of the
string. This will become clear since integration over the combination 1

2
(XI +XII)

gives rise to the conservation of momentum in the vertices.
Let us pause for a moment too see the meaning of this. Traditionally, people

have been bias against using half-strings to describe closed strings because this
would produce a bilocal theory. However from eqs. (16) and (18) we see that
in fact the string fields only depend on the two preferred points through the
combination XI +XII .

The full-string Fock space is build up by acting on the vacuum |0 > with the
creation operators:

a†m =
1√
2m

(α−m + α̃−m); ã†m = i√
2m

(α−m − α̃−m), (21)

corresponding to the modes xn and yn respectively. The creation and annihilation
operators for the half-string defined as:

βr
n
† = i

√
n

2
χr

n +
1√
n
P r

n ; βr
n = −i

√
n

2
χr

n + 1√
n
P r

n , (22)

are related to the full string oscillator modes by

uam =
∑

n≥1

(A(+)
mnb

(+)†
n + A(−)

mnb
(+)
n ) +

e2P

2
√
m

; and ãm = b(−)
m , (23)

where b±n = 1√
2
(β(1)

n ± β(2)
n ), and we have defined the following matrices:

A±
m,n =

(
−N±

m,n 0
0 −M±

m,n

)
; (24)

M±
mn =

(
2m

2n− 1

) 1
2

[B2n−1,2m ± B2m,2n−1]; (25)

and

N±
mn =

(
2n

2m− 1

) 1
2

[
(

2m− 1

2n

)
B2n,2m−1 ±

(
2n

2m− 1

)
B2m−1,2n]. (26)

Notice that the matrix M±, coupling the odd oscillators already appeared in
[11, 14] for the open bosonic string. Next, we go on to develop a relation between
the full string vacuum |0 >, and the two half-string vacua |0 >1 and |0 >2

corresponding to the two half-strings. They are defined in the usual way:

βr
m|0 >r= 0. (27)
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Repeated action of the creation operators βr†
m , on these vacua give the Fock spaces

corresponding to each half-string. We propose the standard ansatz

|0 >= exp(
−1

2
b(+)†

n ξnmb(+)†
m )|0 >1 |0 >2 . (28)

Notice that only the plus combination appears in the exponential. This is because
ãn is expressed only in terms of b(−)

n , and hence it annihilates the vacuum trivially.
The action of an fixes ξ to be:

ξ = A(−)−1A(+) =

(
ψ 0
0 ϕ

)
. (29)

The tachyon state is obtained by inserting the factor eiPx0 in (28). One can verify
that this state in the half-string representation is an eigenstate of the momentum
operator with eigenvalue P , when expressed in the half-string language.

The Hilbert space H of the closed full string is spanned by linear combinations
of the state vectors of the form

∏
a†n, ã

†
n|0 >. The one-to-one relation between

full and half-string modes, together with equation (28) imply that the Hilbert
space of the full string is contained in the completion of the tensor product
H = H1

⊗H2
⊗HM .

Matrix representations and verices. In order to compute the half-string ma-
trix representing a string state with arbitrary ocupation nubers, it is useful to
use the coherent state:

|~λ, ~̃λ; p) = eipx0 exp(λ · a† + λ̃ · ã†)|0 > . (30)

Also one introduces the half-string states:

|nr
i >=

∞∏

i=1

1√
n

r

i !
(βr

i )
†nr

i |0 >r, (31)

in terms of which, the matrix representing the functional for any state is defined
by:

[A]
n2

i

n1
i

= (−)
∑

i≥1
n2

i < n1
i ;n

2
i |λ, λ̃; p). (32)

The factor (−)
∑

i≥1
n2

i takes into account that the normalization for χ2 is reversed.
After a long calculation we find the following expression for the matrix (32):

[A]
n2

i

n1
i

= C(λ; p)e
ip

2
(XI+XII )

∞∏

i=1

1√
n1

i !n
2
i !

(
−1√

2
D−

i

)n1
i
(

1√
2
D+

i

)n2
i

×

exp
(−1

2
vTξv

)
|v=0 , (33)
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where we have defined the quantities:

C(λ; p) = exp(−1

2
p2kT (1 + ξ)k + pλT (A− −A+ξ)k

+
1

2
λT (A− −A+ξ)A(+)T λ). (34)

λi =

(
λ′i
λi

)
; λ̃i =

(
λ̃i

λ̃′i

)
, (35)

(lambdas with a prime are those that couple to the odd modes of the creation
operators in equation (30)).

D±
i = ρi ± λ̃i +

d

dvi

; ki = −1
π
√

2

(
0

(2i− 1)−
3
2

)
. (36)

v is a dummy variable and ρ is given by

ρT
i = [λT (A− + A+ξ)]i − p[kT (1 + ξ)]i. (37)

The coherent state matrix (33) can be used to construct the vertices in the half-
string language as:

VN =
1

2

∫
d(XI +XII)

∫

DN

dλ1 · · · dλN

SL(2,ℜ)
Tr(exp(λ1M)A1 · · · exp(λNM)AN ). (38)

The operatorM = L1−L−1+L̃1−L̃−1 is the element of the SL(2;ℜ) subalgebra of
the Virasoro algebra that reparametrises σ in such a way as to shrink the segment
between σ = π

4
and σ = 3π

4
, while expanding its complement[16]. Although this

operator leaves the points σ = 0, π and π
2

invariant, one is free to move these
points to any other point by a rigid rotation since, in order to build the field
theory, these vertices still have to be multiplied by the projection operator P
that ensures that condition (2) is satisfied. DN represents the region in moduli
space such the restricted polyhedra are obtained. We postpone to a later paper
its determination. For N = 1, 2 and 3 no M insertions are necessary.

As examples we will compute the (integration) 1-vertex, the 2-vertex (sewing
ket) and the 3-vertex that couples three tachyons. Setting N = 1 in equation
(38), using equation (33) gives:

I = δ(P )C(λ;P ) exp (
−1

2
D+D−) exp (

−1

2
vT ξv) |v=0 . (39)

Integration over the combination 1
2
(XI + XII) gave rise to the momentum con-

servation delta. The sum over n1
ni

on the trace was grouped in the exponential.
Using the standard techniques in Gaussian integrals we can write this as:

I = C(λ;P = 0) exp (
1

2
[λ̃

2 − ρT (1 − ξ)−1ρ]). (40)
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It is not difficult to check that:

(1 − ξ)−1 = (A− + A+)TA−, (41)

so that

I = exp (
1

2
[λ̃

2 − λ2]). (42)

This vertex precisely corresponds to folding the closed string along its diameter.
Setting N = 2 in equation (38) gives

V2 = δ(P1 + P2)C(λ1;P1)C(λ2;P2) exp (
−1

2
~D+B ~D−) exp (

−1

2
vT ξv) |v=0 . (43)

Where as before integration over the combination 1
2
(XI + XII) gives rise to the

momentum conservation delta, and the sum on the trace was grouped in the
exponential. It is understood that the above quantities have been imbedded in
two dimensional vectors or matrices. For example ~p = (p1, p2) are the momenta
of the two external states, etc. The matrix B is defined as

B =

(
0 1
1 0

)
. (44)

In the same way as before, we can write V2 (ignoring the momentum conservation
delta) as:

V2 = C(λ1;P1)C(λ2;P2) exp (
1

2
[λ̃

T
Bλ̃ − ρT (B − ξ)−1ρ]). (45)

It is not difficult to check that:

− 1

2
ρT (B − ξ )−1ρ = −1

2
ρ1A

+TA−ρ1 −
1

2
ρ2A

+TA−ρ2 − ρ1A
−TA−ρ2 (46)

so we arrive at
V2 = exp (λ̃1

T · λ̃2 − λ1

T · λ2), (47)

which again can be seen to correspond to the standard result.
We now proceed to the computation of the 3-vertex. From (38):

V3 = δ(
∑3

i=1 pi)e
(a
∑3

r=1
p(r)2)

exp[~̃λ
T

M1
~̃λ+ ~λTM ′

1
~λ+ ~̃λ

T

M2~p+ ~λTM ′
2~p+ ~̃λ

T

M~λ]. (48)

As before we have imbedded the above quantities in the three dimensional space
spanned by the three strings. The quantity a and the matrices Mi, M

′
i and M ,

are the same quantities that appeared in [11], with φ→ ξ and kn → kn.
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Setting λ = λ̃ = 0 in the above expression, one recovers the interaction of
three tachyons3, namely

V
Tachyons
3 = δ(

∑

i=1,2,3

P i
0)e

−1
8

ln( 33

24
)
∑

i=1,2,3
P

(i)2
0 . (49)

In arriving at this expression we have used that a = −1
4
N rs

00 , which can be easily
established with the results of references[11, 14].

These three examples coincide with the standard expressions. However we
still have to compare our higher order vertices with other vertices appearing in
the literature. In [17], LeClair, Peskin and Preitschopf (LPP) define the 3-vertex
through the relation:

< V123||A >1 |B >2 |C >3=< T 2h[ΘA]Th[ΘB]h[ΘC ] >, (50)

here ΘA is the normal ordered operator that creates the state |A >:

|A >= ΘA|0 >, (51)

and T is an Sl(2;C) transformation such that T 3 = 1. Higher order vertices are
defined analogously.

There are precisely these type of vertices the ones used as a starting point by
Kugo and Suehiro, to construct the restricted polyhedra, and to show that the
resulting theory is gauge invariant[8].

Lets start by comparing the two-point vertices in both formalisms. By defi-
nition the state |V12 > (or simply |V (2) > in our language) imposes the condition

X1(σ) = X2(−σ), which is equivalent to imposing that α(1)
n = α

(2)
−n at the level

of operators. If we write the string coordinate in terms of the complex coordi-
nate z = exp(τ + iσ) (take τ = 0), then this condition is equivalent to imposing
X1(z) = X2(

1
z
). This can be used to define the Belavin, Polyakov and Zamolod-

chikov (BPZ) conjugate to |A > as

< A| =< 0|I[ΘA(0)], (52)

where I(z) = 1
z

is a conformal map. i.e.:

I[A(z, z∗)] = A′(
1

z
,

1

z∗
). (53)

The (BPZ) inner product is defined as:

< A|B >=< 0|I[ΘA(0)]ΘB(0)|0 >=< VAB||A > |B > . (54)

It is easy to see that the 2-vertex constructed with LPP’s prescription using the
I defined above, corresponds exactly to our V2.

3Recall that for closed strings P
2 = 1

2
P

2

left + 1

2
P

2

right = 1

2
P

2

open.

10



A very important property any vertex should satisfy is that the new vertex
produced by the contraction of two other vertices by the conformal field theory
inner product BPZ, is precisely the one which results from first sewing the corre-
sponding two Riemann surfaces via the map I, and then constructing the vertex
on that surface. In other words:

< V
(4)
ABEF | =< V

(3)
ABC | < V

(3)
DEF ||V

(2)
CD >, (55)

with

< V1234||A >1 |B >2 |C >3 |D >4=< T 2h[ΘA]Th[ΘB]IT 2[ΘC ]IT [ΘD] > . (56)

This is the Generalized Gluing and Resmoothing Theorem (GGRT) for N = 3
[17].

It is straight forward to show that our vertices satisfy this theorem. The
proof steams out from the fact that they are written as traces, and that the
transformation from half-strings to full-strings is complete.

Denote our string field matrices as Anm =< nm|Λ) where the indices n

and m refer to the left and right parts of the string, and Λ is a short for (λ, λ̃).
Completeness of the (orthogonal) transformations means that Parseval’s identity,
I =

∑
nm |n;m >< n;m|, works both ways, and I =

∫
DΛ|Λ)(Λ|. The left hand

side of equation (55) can be written in our language as (summing over repeated
indices):

V
(3)
125V

(2)†
56 V

(3)
634 =

∫
DΛ5DΛ6 < nm|Λ1) < mk|Λ2) < kn|Λ5)

(Λ5|pq > (Λ6|qp >< rs|Λ6) < sv|Λ3) < vr|Λ4). (57)

Using (twice) that
∫
DΛ < kn|Λ)(Λ|pq >= δkpδnq (orthogonality), we can write

the above equation as

V
(4)
1234 =< nm|Λ1) < mk|Λ2) < kq|Λ3) < qn|Λ4), (58)

which is just the l.h.s. of (55).
This can be generalized trivially to higher point vertices. Notice that this

result is valid for both open and closed strings.
Conclusions. We have showed that closed string fields can be represented by

matrices, in a very similar way as the open string ones. We only dealt with the
orbital degrees of freedom, but the ghosts can also be treated with half-strings in
a very similar way as in references [12, 13]. We defined the closed half-string co-
ordinates, and from them we constructed the corresponding half-string matrices.
These are written in a very similar way as the matrices corresponding to open
string functionals. We constructed the vertices VN for N = 1, 2 and 3 explicitly,
and we showed that –as for open strings– they are determined completely by the
matrix Bnm, which relates the full and the half string modes. This will still hold
for higher order interactions. We obtained the correct vertex that couples three
tachyons together and showed that our vertices satisfy the “general gluing and
resmoothing theorem” of [17] in an almost trivial way.
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