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Abstract

The Dualized Standard Model has scored a number of successes in
explaining the fermion mass hierarchy and mixing pattern. This note
contains updates to those results including (a) an improved treat-
ment of neutrino oscillation free from previous assumptions on neu-
trino masses, and hence admitting now the preferred LMA solution to
solar neutrinos, (b) an understanding of the limitation of the 1-loop
calculation so far performed, thus explaining the two previous discrep-
ancies with data, and (c) an analytic derivation and confirmation of
the numerical results previously obtained.
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1 Introduction

The Dualized Standard Model (DSM) suggested a few years ago [1, 2, 3] has
scored some, to us, notable successes in explaining the intricate and otherwise
mysterious mass and mixing patterns of quarks and leptons. With only 3
adjustable parameters, the model is able to reproduce already at 1-loop level
the following mass and mixing parameters all to within present experimental
errors [4, 5]: all 9 CKM matrix elements |Vrs| for quarks [6], the 2 MNS
lepton mixing matrix elements |Uµ3| and |Ue3| bounded by neutrino oscillation
experiments with respectively atmospheric [7] and reactor neutrinos [8], plus
the 3 mass ratios mc/mt, ms/mb and mµ/mτ [6], together accounting for 8
independent parameters of the Standard Model. However, the treatment so
far published, culminating in [5] to which we refer the reader for details,
contains some shortcomings which were not apparent at the beginning but
have since, with time, been recognized and remedied. In particular, (a)
some assumptions were made in ν oscillations which are later found to be
unnecessary, (b) the limitations of the 1-loop approximation made which
were not recognized before are now seen to explain why the other masses
and mixing angles: mu, md, me, Ue2, were not well reproduced, while (c) the
results obtained only numerically before are now seen to follow also from
simple analytic considerations. The purpose of this note is to remove these
old shortcomings, resulting in both a tighter and a more transparent scheme,
while affording at the same time an analytic check on the previous numerical
results.

We begin with a very brief summary of the basic features of the DSM
scheme necessary for our presentation. For explanations and details, the
reader is referred to the literature cited. The DSM scheme is based on a
nonabelian generalization of electric-magnetic duality [9] which offers an ex-
planation for the existence of exactly 3 fermion generations and a suggestion
of how the generation symmetry is broken. This leads in turn to the con-
struction of a Higgs potential and Yukawa coupling which give the tree-level
fermion mass matrix a factorized form [1] and allows its radiative correc-
tions to be calculated. Further, the fermion mass matrix is found to retain
a factorized form even after 1-loop radiative corrections:

m = mT







x
y
z





 (x, y, z), (1)

where only the normalization mT depends on the fermion species, i. e. U or
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D type quarks, or charged leptons L or neutrinos N . The vector (x, y, z),
however, now rotates in generation space with changing scales µ, and satisfies
the RG equation:

d

d(lnµ2)







x
y
z





 =
3

64π2
ρ2







x̃1

ỹ1

z̃1





 , (2)

with

x̃1 =
x(x2 − y2)

x2 + y2
+

x(x2 − z2)

x2 + z2
, cyclic, (3)

and ρ2 the Yukawa coupling strength [4]1. In (2), one sees that the vector
(x, y, z), taken to be normalized from now on, is stationary in orientation
with respect to change in µ at (x, y, z) = (1, 0, 0) and 1√

3
(1, 1, 1), which

means that these are to be interpreted as fixed points of rotation. Further,
the sign of the derivative is such that as µ changes, the vector r = (x, y, z)
traces out a trajectory on the unit sphere in 3-D generation space starting
from the “high-energy” fixed point (1, 0, 0) at infinite scale and ending at the
“low-energy” fixed point 1√

3
(1, 1, 1) at zero scale.

The fact that the mass matrix rotates with changing scales means that
the usual definition of the 3 generation states as mass eigenstates has to be
refined since it will have to be specified at what scales they are to be so
defined. An analysis of the situation, defining each state at its own mass
scale, leads to the following conclusion [10]. For each fermion species T
(i.e. whether U, D, L or N) the state vectors for the 3 generations form an
orthonormal triad in generation space which is given in terms of the rotating
vector r(µ) as follows:

v1 = r1,

v2 = − r1 ∧ (r1 ∧ r2)

|r1 ∧ (r1 ∧ r2)|
,

v3 =
r1 ∧ r2

|r1 ∧ r2|
(4)

where ri = r(mi) is the rotating vector r(µ) taken at the scale µ = mi, with
mi being the physical mass of the ith generation labelled from the heaviest

1There was an error in the coefficient of the right-hand side of eq. (2) as given in [4],
which means that the numerical value of ρ given in [4] and [5] should be multiplied by a
factor of

√

5/3. Other results in these references are not affected.
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(1) to the lightest (3). The elements of the mixing matrix (whether CKM
[11] for quarks or MNS [12] for leptons) are then given as the scalar products
between the up-states vi and the down states v′

j , thus:

Vij = vi.v
′
j . (5)

Furthermore, for the fermion species U, D and L, the mass of the ith gener-
ation state is given as the solution for mi to the equation:

mi = mT |ri.vi|2. (6)

This criterion for determining the masses of the 3 generations, however, does
not apply to neutrinos which, because of a likely see-saw mechanism [13],
may have physical masses different from the Dirac masses appearing in the
above equation and hence require a special treatment to be explained later.
With the above formulae, once given the trajectory for r, mixing matrix
elements and mass ratios between generations can be evaluated, excepting
for the moment where neutrinos are involved.

The trajectory for r(µ) depends on only 3 parameters, two of them corre-
sponding to the vacuum expectation values of the Higgs fields which specify
the rotation trajectory, and the third being the Yakawa coupling strength
ρ in (2) which governs the rotation speed. The first 2 parameters are inde-
pendent of the fermion species T , while the third ρ can in principle depend
on T but, for consistency with the above prescription for defining masses of
the generations, it was found that ρ has also to be T -independent (see [4]
and later). In [5], these 3 parameters were fitted to mc/mt, mµ/mτ and the
Cabibbo angle, which then allows one to calculate the whole trajectory via
(2). The result is shown in Figure 1 where from the location of the various
states each marked at its own mass scale, the rotation speed with respect to
µ can be gauged. From this, the CKM matrix for quarks was calculated using
(5), and gave, as already mentioned, all elements within present experimental
limits.

2 ν Oscillations

Neutrinos require a special treatment because of the see-saw mechanism
which is likely to give them physical masses different from the Dirac mass
appearing in the mass matrix (1). On the one hand, the state vectors for
neutrinos, in parallel to other fermions, ought to be defined at the scales of
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Figure 1: Trajectory traced out by the vector r(µ) on the unit sphere as
calculated in [5] with the various fermion states marked each at its own mass
scale.
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their physical masses, while on the other the equation (6) applies only to
states whose physical and Dirac masses coincide, and hence not directly to
neutrinos. It would appear therefore that some additional assumption will
have to be made on the relationship between the physical and Dirac masses of
neutrinos before the above scheme can be applied, and this was the approach
we took in [14].

It turns out, however, that as far as reproducing the MNS mixing matrix
elements is concerned, which is at present our main conern, then no such new
assumption is needed. This arises as follows. The electron neutrino mass is
now restricted by e.g. tritium decay experiments to below 3 eV [6], while
oscillation experiments on solar [7, 15] and atmospheric [7] neutrinos limit the
mass differences between generations to less than 0.05 eV, implying that all
3 generations have masses of at most order eV. According to the calculation
cited in Figure 1, however, at scales of order eV, the vector r is already so
close to the low energy fixed point 1√

3
(1, 1, 1) as to be indistinguishable in

the figure. Referring next to the definition of the state vectors in (4), one
sees that in this situation when all 3 generations are close together, the 3
vectors in the triad become respectively just the position vector, the tangent
vector to the trajectory, and the vector normal to both the above, all taken
at the same point. In other words, one has in particular for the state vector
of the heaviest neutrino ν3 just:

v1 = vν3
= r0 =

1√
3
(1, 1, 1). (7)

(Notice that neutrinos are conventionally labelled in the opposite order to
that adopted in (4) above, i.e. from the lightest (ν1) to the heaviest (ν3)).

Charged leptons being ordinary Dirac particles, their state vectors can
be calculated by the method detailed in the preamble above in the same
manner as for quarks. The result of the calculation performed in [5] and
cited in Figure 1 gave:

|τ〉 = (0.996732, 0.076223, 0.026756),

|µ〉 = (−0.075925, 0.774100, 0.628494),

|e〉 = (0.027068,−0.628482, 0.777354). (8)

From these and (7) above, using (5), one easily obtains the MNS mixing
matrix elements:

Uµ3 = 〈µ|ν3〉 = 0.7660,

Ue3 = 〈e|ν3〉 = 0.1016, (9)
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which are seen to be within the experimental limits obtained for these quanti-
ties by respectively the atmospheric [7] and reactor [8] neutrino experiments:

|Uµ3| ∼ 0.56 − 0.83,

|Ue3| ∼ 0.00 − 0.15. (10)

One notices that the above result is independent of any assumptions about
the Dirac masses of neutrinos, in contrast to the previous treatment of [14].
In particular, because of the assumptions made then on neutrino masses, the
treatment in [14] is valid only for the range of masses permitted by the “vac-
uum oscillation” solution to the solar neutrino problem. The present result
in (9), on the other hand, having been derived independently of assumptions
on neutrino masses, is valid for any solution to the solar neutrino problem,
in particular for the large mixing angle MSW [16] solution. This is of great
practical significance, given the increasing preference of recent data for the
LMA solution to the exclusion of the others [17, 18].

In principle, one can use the trajectory calculated in [5] and displayed in
Figure 1 to evaluate also the tangent and normal vectors at the low energy
fixed point r0 = 1√

3
(1, 1, 1), namely the state vectors vν2

and vν1
, and hence

all the other elements of the MNS mixing matrix, in particular the solar
neutrino angle Ue2. However, as we shall see in the next section, due to the
limitations of the 1-loop calculation so far performed, such results would be
unreliable.

3 Limitations of 1-loop

The 1-loop approximation with the parameters fitted as above and as in [5] is
valid only near the fixed point (1, 0, 0) where the rotation is slow. Away from
the fixed point, the RGE will receive large logaritmic terms from higher-loop
contributions. As seen in Figure 1, however, down to the top mass scale at
175 GeV, the vector r has rotated from the fixed point at infinite scale by
an angle of only about 0.012 radians, while even from the top mass scale to
that at the muon mass at 105 MeV, the vector has rotated by only about
another 0.3 radians. For scales above the muon mass, therefore, one can hope
a 1-loop approximation to have some validity. But at scales much below the
µ mass, the 2-loop correction, which is expected to be of the order of the
square of the 1-loop result, will become increasingly significant, thus making
the 1-loop result unreliable.
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Given then the limited validity range for the 1-loop calculation so far
performed, one has to re-examine the results obtained to ascertain which
could be regarded as reliable. Let us accept for present purposes the 1-loop
approximation as sufficiently accurate for scales down to about the muon
mass, in which range would then be included the 2 heavier generations of
the 3 fermion species U, D, L, i.e. all species except the neutrinos. We
notice from (4), however, that for U, D, L, the triad of state vectors for all
3 generations are in fact already determined in this range, the vector v3 for
the lightest generation being given as the normal once the vectors for the 2
heavier generations are specified. Hence, given the triads for both the U and
D quarks, one can evaluate the whole CKM matrix with confidence. Indeed,
this is born out by the comparison given in [5] of the calculation result:







|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|





 =







0.9745 − 0.9762 0.217 − 0.224 0.0043 − 0.0046
0.217 − 0.224 0.9733 − 0.9756 0.0354 − 0.0508
0.0120 − 0.0157 0.0336 − 0.0486 0.9988 − 0.9994





 , (11)

with the then available experimental numbers quoted from the databook [6]:







0.9745 − 0.9760 0.217 − 0.224 0.0018 − 0.0045
0.217 − 0.224 0.9737 − 0.9753 0.036 − 0.042
0.004 − 0.013 0.035 − 0.042 0.9991 − 0.9994





 , (12)

which are seen also to be within the most recent limits [19]. On the other
hand, the masses for the lightest generation, according to (6), requires run-
ning the vector r down to the mass scales of the lightest generation, and
hence cannot be achieved reliably by the 1-loop approximation. And indeed,
the value obtained in [5] for the electron mass was 6 MeV, to be compared
with the correct empirical value of 0.5 MeV. The mass values for the light
quarks u, d were also not well reproduced, but that may be due to intrinsic
ambiguities in defining light quark masses.

Next, turning to the MNS mixing matrix for leptons, we note first that
the state vectors for all 3 charged leptons τ, µ, e as quoted in (8) ought,
according to the above criterion, be reliable. The same, however, cannot be
said for the state vectors of neutrinos, the mass scales of which are all way
outside the range of validity of the 1-loop calculation. The only exception
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is the vector for the heaviest neutrino ν3 which, as noted in the previous
section, can be identified to a good approximation with the low energy fixed
point r0 = 1√

3
(1, 1, 1) known to be valid beyond 1-loop [20]. In consequence,

one obtains the result (9) in good agreement with experiment. The other
2 vectors in the neutrino triad both depend on the tangent vector to the
trajectory and hence cannot be reproduced by the 1-loop calculation. Indeed,
the value obtained in [5] for the solar neutrino angle Ue2, which depends on
the state vector for the second heaviest neutrino ν2, is about 0.23 and lies
outside the experimental limits of about 0.4 to 0.7.

In other words, the results of the 1-loop calculation on fermion mass
and mixing parameters have now all been checked to agree with present
experiment in the range they are expected to be valid, and are seen to deviate
from data only outside the expected validity range.

It should be emphasized, however, that this apparent success achieved by
calculating only the diagram with a single (dual colour) Higgs loop makes
sense only if one regards both the mass hierarchy and mixing as consequences
of the mass matrix rotation. As far as the orientation of the rotating vector
r(µ) rotation is concerned, it was shown in [4] that radiative corrections due
to standard model particles are zero, and those due to other dual colour
particles are small, leaving thus the calculated (dual colour) Higgs loop with
no competition. The same approximation, however, would not be applicable,
for example, to the normalization of the rotating vector.

4 Analytic Approach

Previous calculations with the DSM scheme, e.g. [5], were done numerically,
on which calculations the above remarks also rely. It is found, however, that
with some simple yet quite reasonable approximations, an analytic approach
is possible which provides first a check on the numerical results, and second
an easier means for the reader to scrutinize and verify them. It also gives
algebraic relations between fermion mixing elements and mass ratios which
may be useful for certain purposes.

First, let us parametrize the vector r(µ) in terms of the usual polar co-
ordinates, thus:

r(µ) = (cos θ(µ), sin θ(µ) cos φ(µ), sin θ(µ) sin φ(µ)), (13)

and denote by θi, φi the corresponding angles taken at the scale µ = mi with
mi being the mass of the state i. Next, we recall from the last section that the
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1-loop approximation is valid only in the region near the high energy fixed
point (1, 0, 0) so that there is no loss of generality at 1-loop to make a small
angle approximation, i.e. assuming that all θ’s are small and that, although
the φ’s are in principle arbitrary, their differences are small. In the same
spirit, we assume also that θ1 is small compared to θ2. In this approximation
then, one has:

v1 = (1 − θ2
1

2
, θ1 cos φ1, θ1 sin φ1),

v2 = (0, cos φ2, sin φ2)

+θ1(− cos(φ2 − φ1),−
1

θ2
sin(φ2 − φ1) sin φ2,

1

θ2
sin(φ2 − φ1) cos φ2),

v3 = (0,− sin φ2, cos φ2)

+θ1 sin(φ2 − φ1)(1,−
1

θ2
cos φ2,−

1

θ2
sin φ2). (14)

Using (14) and (5), one obtains the approximate forms of the CKM matrix
elements:

Vtb = 1 − 1

2
(θb − θt)

2,

Vcs = cos(φs − φc) + sin(φs − φc)

{

θt

θc

sin(φc − φt) −
θb

θs

sin(φs − φb)

}

,

Vud = −Vcs,

Vcd = sin(φs − φc) + cos(φs − φc)

{

θb

θs

sin(φs − φb) −
θt

θc

sin(φc − φt)

}

,

Vus = −Vcd,

Vts = −θb cos(φs − φb) + θt cos(φs − φt),

Vcb = θb cos(φc − φb) − θt cos(φc − φt),

Vtd = θb sin(φs − φb) − θt sin(φs − φt),

Vub = −θb sin(φc − φb) + θt sin(φc − φt). (15)

From these formulae, one deduces immediately that:

|Vtb| ∼ cos ∆θ ∼ 1,

|Vcs| = |Vud| ∼ cos(∆φ) ∼ 1,

|Vcd| = |Vus| ∼ − sin(∆φ) ∼ small,

|Vts| = |Vcb| ∼ ∆θ ∼ small,

|Vtd| = |Vub| ∼ θ sin(∆φ) ∼ very small. (16)
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In other words, simply on the premises of a rotating mass matrix as given
in (1) without using even the evolution equation (2) for the rotating vector
r apart from the condition that r should remain near the high energy fixed
point (1, 0, 0), one has already derived the well-known, and long-wondered
at, hierarchy of CKM elements as observed in experiment. This result was
anticipated already using some elementary differential geometry in [21] but
is here now made completely explicit.

Next, let us rewrite the evolution equation (2) for the unnormalized vector
(x, y, z) as:

1

x

dx

dt
= f1,

1

y

dy

dt
= f2,

1

z

dz

dt
= f3, (17)

with t = ln µ, k = 3ρ2/(32π2), where

f1 = k

(

x2 − y2

x2 + y2
+

x2 − z2

x2 + z2

)

, cyclic. (18)

To get rid of the normalization, we take differences of these equations, so
that we can still use the parametrization (13), which, with arbitrary φ and
small θ, becomes:

r ≃ (1, θ cos φ, θ sin φ), (19)

and
f1 ≃ 2k, f2 ≃ k(cos 2φ − 1), f3 ≃ −k(1 + cos 2φ). (20)

Hence we get for f1 − f3 and f2 − f3 respectively:

− 1

θ sin φ

d(θ sin φ)

dt
= k(3 + cos 2φ), (21)

1

θ cos φ

d(θ cos φ)

dt
− 1

θ sin φ

d(θ sin φ)

dt
= 2k cos 2φ, (22)

which simplify to

1

sin 2φ cos 2φ

dφ

dt
= −k, (23)

1

θ

dθ

dt
= −k(2 + sin2 2φ), (24)

giving

tan 2φ

tan 2φ0

=

(

µ0

µ

)2k

, (25)

θ

θ0

=

(

µ0

µ

)2k (
cos 2φ0

cos 2φ

)1/2

. (26)
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Equation (26) reduces to

θ

θ0

=

(

µ0

µ

)2k

(27)

if we further assume that φ2 is small.
With this solution, one easily checks that, for consistency with (6), ρ has

to be the same for all fermion species T to a good approximation, a result
first found in [4] numerically, as follows. From (6), one has:

m2 = m1 sin2(θ2 − θ1), (28)

or else, recalling θ2 ≫ θ1, which is an approximation numerically similar to
that for obtaining the linearized solution (27) above:

m2 ∼ m1θ
2
2. (29)

Hence, using (27), one has:
√

m2

m1
∼ θI

(

µI

m2

)2k

, (30)

with θI being the value of θ at some chosen (large) initial value µI . Applying
the formula (30) to successively the fermion species U, D, L and eliminating
θI , one obtains:

(

mcmb

mtms

)1/2

=
(

µI

mc

)2kU

(

ms

µI

)2kD

,

(

mcmτ

mtmµ

)1/2

=
(

µI

mc

)2kU

(

mµ

µI

)2kL

, (31)

which is consistent for arbitrary µI only when kU = kD = kL, as required. We
note that this result is independent of the choice of the 3 model parameters.

Turning next to parameter-dependent results, we shall first determine the
parameter values by fitting them to the 3 best known empirical quantities
as was done in [5], namely the 2 mass ratios mc/mt and mµ/mτ , and the
Cabbibo angle. From (30) using the t scale as I, one deduces the approximate
relations:

mc

mt

= θ2
t

(

mt

mc

)4k

,

mµ

mτ

= θ2
t

(

mt

mµ

)4k

. (32)
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Inputting then the empirical values in GeV of mt ∼ 175, mc ∼ 1.25, mτ ∼
1.777, mµ ∼ 0.105, one easily obtains;

k ∼ 0.21, θt ∼ 0.011. (33)

These values compare very well with the values k ∼ 0.20, θt ∼ 0.012 obtained
before from the numerical fit of [5], affording thus a check on both the present
approximation and the previous numerical result. The good agreement is
actually a little fortuitous, being beyond what can be expected from the
crudeness of the approximations made in deriving the formulae used above.

With now k and θt as 2 of our parameters, we can next proceed to evaluate
other mass ratios and mixing matrix elements which depend only on θ. For
mass ratios within the range of validity, we have only one relation (from (31)
using mb = 4.2 GeV):

ms ∼ mc

(

mb

mt

)1/(4k+1)

, (34)

giving ms ∼ 160 MeV (cf. 75 to 170 MeV [6]). For the CKM matrix elements,
we have:

Vtb ∼ 1 − θ2
b/2 ∼ 1 − 1

2

mc

mt

(

mc

mb

)4k

, (35)

giving Vtb ∼ 1 − 0.001 (cf. 0.9990 to 0.9993 [6]), and

Vts = −Vcb ∼ −θb + θt ∼ −
√

mc

mt

(

mc

mb

)2k

, (36)

giving Vts = −Vcb ∼ 0.05 (cf. 0.035 to 0.043 [6]). These number also agree
well with those obtained from the numerical result of [5] quoted in (11).

Inputting next the Cabbibo angle Vus ∼ 0.22 to determine the last pa-
rameter which we can take as sin(φs − φc) and which for small φ differences,
according to (15), can be take approximately as:

sin(φs − φc) =
Vus

1 + (ms/mb)
2k , (37)

we obtain sin(φs − φc) ∼ 0.18. With this value fixed, we can now evaluate
the remaining CKM matrix elements, thus:

Vud ∼ −Vcs ∼ 1 − 1

2
V 2

us, (38)
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giving Vud ∼ −Vcs ∼ 0.976 (cf. 0.9734 to 0.9749 [6]),

Vtd ∼ θb sin(φs − φc) ∼
√

mc

mt

(

mc

mb

)2k Vus

1 + (ms/mb)
2k , (39)

giving Vtd ∼ .009 (cf. 0.004 to 0.014 [6]), and

Vub ∼ θb
θc − θb

θs
sin(φs − φc) ∼

√

mc

mt

(

ms

mb

)2k Vus

1 + (ms/mb)
2k , (40)

giving Vub ∼ 0.004 (cf. 0.002 to 0.005 [6]). Again, these estimates agree
well with the values (11) obtained before numerically in [5]. Contrary to
usual belief the CKM matrix elements appear related to the ratios of the two
heaviest generations, which is expected if both come from a rotating mass
matrix.

Finally, using the values of the parameters determined, one can calculate
also from (14) the 3 vectors vτ ,vµ and ve for the charged leptons, as explained
in the section above. We notice in (14), however, that these vectors depend
on the angles φi which may not be small, not just on their differences. These
can be determined by solving equation (25) and using the result sin(φs−φc) ∼
0.18. This gives 2 solutions, φs ∼ 0.61, 0.35, of which the fit in [5] correspond
to the former. With the values θt ∼ 0.011 obtained before and φs ∼ 0.61,
one can then evaluate the corresponding angles for τ and µ, and hence the
vectors vτ ,vµ,ve. One obtains:

|τ〉 = (0.994, 0.070, 0.029),

|µ〉 = (−0.074, 0.757, 0.657),

|e〉 = (0.0188,−0.657, 0.757), (41)

not far from the values quoted in (8) from [5], and corresponding to the MNS
lepton mixing matrix elements:

Uµ3 = 〈µ|ν3〉 = 0.77,

Ue3 = 〈e|ν3〉 = 0.07, (42)

which is seen to compare well with (9) and (10) above.
Hence, one sees that all the previous results obtained numerically before

together with their agreement with experiment have now been confirmed by
analytic considerations although in a rather crude approximation.
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In summary, we conclude that a closer examination of the tenets of the
DSM scheme has removed a previous restriction on its predictions on neutrino
oscillations, making them now consistent with the favoured LMA solution for
solar neutrinos. It has also explained away the couple of discrepancies noted
before as limitations of the 1-loop calculation so far performed, which is
seen otherwise to be in full agreement with experiment within its perceived
range of validity. Furthermore, all previous numerical results have now been
confirmed by analytic considerations.

References

[1] Chan Hong-Mo and Tsou Sheung Tsun, Phys. Rev. D57, 2507, (1998),
hep-th/9701120.

[2] Chan Hong-Mo, talk given at the International Conference on Funda-
mental Sciences, Mathematics and Theoretical Physics, 13-17 March
2000, Singapore, Int. Journ. Mod. Phys. A 16 (2001) 163-177,
hep-th/0007016.

[3] Chan Hong-Mo and Tsou Sheung Tsun, Lectures given at the 42nd
Cracow School of Theoretical Physics, Zakopane, Poland, May-June,
2002, Acta Phys. Pol. B33 (2002) 4041.
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