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QCD sum rule determination of the charm-quark mass
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QCD sum rules involving mixed inverse moment integration kernels are used in order to determine
the running charm-quark mass in the MS scheme. Both the high and the low energy expansion
of the vector current correlator are involved in this determination. The optimal integration kernel
turns out to be of the form p(s) = 1 − (s0/s)

2, where s0 is the onset of perturbative QCD. This
kernel enhances the contribution of the well known narrow resonances, and reduces the impact
of the data in the range s ≃ 20 − 25 GeV2. This feature leads to a substantial reduction in the
sensitivity of the results to changes in s0, as well as to a much reduced impact of the experimental
uncertainties in the higher resonance region. The value obtained for the charm-quark mass in the
MS scheme at a scale of 3 GeV is mc(3 GeV) = 987 ± 9 MeV, where the error includes all sources
of uncertainties added in quadrature.

PACS numbers: 12.38.Lg, 11.55.Hx, 12.38.Bx, 14.65.Dw

Progress on the theoretical [1]-[12], as well as on the
experimental information [13]-[16] on the vector current
correlator has allowed for a considerable improvement
on the accuracy of QCD sum rule determinations of
the charm-quark mass [17]-[19]. The analysis of [17]
is based on inverse (Hilbert) moment QCD sum rules,
requiring QCD knowledge of the vector correlator in
the low energy, as well as in the high energy region. In
[18] an alternative approach was used which involves
only QCD information at short distances, together
with (a) a simple integration kernel p(s) = 1 − s/s0
(local constraint), and (b) Legendre-type polynomial
kernels (global constraint). In this paper we describe an
improved analysis based on the use of direct as well as
inverse moment kernels of the form p(s) = 1 − (s0/s)

n,
with n ≥ 1. These kernels enhance considerably
the impact of the well known narrow resonances, as
compared with e.g. a simple kernel p(s) = 1/s2 , or
p(s) = 1 − s/s0. They also provide a welcome stronger
suppression of the contribution of data in the range
s ≃ 20 − 25 GeV2. In comparison with simple inverse
moments without pinching, this means that results
are less sensitive to assumptions about the onset of
perturbative QCD (PQCD), as well as to the treatment
of the higher resonance data. For instance, changes in
s0 in the range s0 ≃ 15− 23 GeV2 lead to a variation in
mc(3 GeV) of only 4 MeV (for n = 2) as opposed to a
variation of 14 MeV for p(s) = 1/s2, as used in [17]

We consider the vector current correlator

Πµν(q
2) = i

∫

d4x eiqx〈0|T (Vµ(x) Vν(0))|0〉

= (qµ qν − q2gµν) Π(q
2) , (1)

where Vµ(x) = c̄(x)γµc(x). From the residue theorem in
the complex s-plane (−q2 ≡ Q2 ≡ s) it follows

∫ s0

0

p(s)
1

π
ImΠ(s) ds = − 1

2πi

∮

C(|s0|)

p(s)Π(s) ds

+ Res[Π(s) p(s), s = 0] , (2)

where p(s) is an integration kernel, and

Im Π(s) =
1

12π
Rc(s) , (3)

with Rc(s) the standard R-ratio for charm production.
The PQCD expansion of Π(s) at short distances can be
written as

Π(s)|PQCD = e2c
∑

n=0

(

αs(µ
2)

π

)n

Π(n)(s) , (4)
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where ec = 2/3 is the charm-quark electric charge, and

Π(n)(s) =
∑

i=0

(

m̄2
c

s

)i

Π
(n)
i , (5)

and mc ≡ mc(µ) is the running charm-quark mass in the
MS-scheme. Up to order O [α2

s(m̄
2
c/s)

6] the function
Π(s)PQCD has been calculated in [1], and exact results

for Π
(3)
0 and Π

(3)
1 have been found in [2]. The function

Π
(3)
2 is known exactly up to a constant [3]. At five-loop

order O(α4
s) the full logarithmic terms for Π

(4)
0 may be

found in [5], and for Π
(4)
1 in [6]. Since there is incomplete

knowledge at this loop-order we shall use the available in-
formation as a measure of the truncation error in PQCD.
The low energy expansion of the vector correlator around
s = 0 can be written as

ΠPQCD(s) =
3 e2c
16 π2

∑

n≥0

Cn z
n , (6)

where z = s/(4m2
c). The coefficients Cn can be expanded

in powers of αs(µ)

C̄n = C̄(0)
n +

αs(µ)

π

(

C̄(10)
n + C̄(11)

n lm

)

+

(

αs(µ)

π

)2
(

C̄(20)
n + C̄(21)

n lm + C̄(22)
n l2m

)

+

(

αs(µ)

π

)3
(

C̄(30)
n + C̄(31)

n lm + C̄(32)
n l2m

+ C̄(33)
n l3m

)

+ . . . (7)

where lm ≡ ln(m̄2
c(µ)/µ

2). Up to three loop level the
coefficients up to n = 30 of C̄n are known [8]-[9]. At
four-loop level we have C̄0 and C̄1 from [8], [10], C̄2 from
[9], and C̄3 from [11]. We will choose p(s) so that no
coefficients C̄4 and above contribute to the residue at
s = 0, Res[Π(s) p(s), s = 0].

Apart from the quark mass, the fundamental QCD pa-
rameters are the running strong coupling αs(µ

2), and
the gluon condensate. For the strong coupling we use
the world average from [20], which agrees with lattice
QCD results [21], αs(M

2
Z) = 0.1184± 0.0007. However,

we will consider other values when comparing results for
mc with other analyses. In the non-perturbative sec-
tor the leading power correction in the Operator Prod-
uct Expansion (OPE) involves the gluon condensate, i.e.
〈

(αs/π)G
2
〉

whose value has been extracted [22] from
the ALEPH data on τ -decays. While the gluon conden-
sate is renormalization group invariant, its determina-
tion from QCD sum rules involves a difference between
integrals of PQCD and integrated experimental data.
This leads to an unavoidable dependence of the gluon
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FIG. 1: Experimental data for the total R(s) ratio together
with the optimal integration kernel, Eq.(8), with n = 2 (dash
curve), and p(s) = 1/s2 (solid curve) normalized to coincide
with the former at the position of the ψ(2S) peak.

condensate on the value of αs used in the PQCD ex-
pression of the correlator. Extrapolating the results of
[22] to include current values of αs [20], [23], leads to
〈

(αs/π)G
2
〉

= (0.01 ± 0.01) GeV4. This large uncer-
tainty in the value of the gluon condensate has only a
very small impact on our results for m̄c.
Turning to the experimental data, we follow closely the
analysis of [17]. For the first two narrow resonances we
use the latest data from the Particle Data Group [24],
MJ/ψ = 3.096916(11) GeV, ΓJ/ψ→e+e− = 5.55(14) keV,
Mψ(2s) = 3.68609(4) GeV, Γψ(2s)→e+e− = 2.35(4) keV.
These two narrow resonances are followed by the open
charm region where the contribution from the light quark
sector Ruds needs to be subtracted from the total R-ratio
Rtot. We perform this subtraction as in [25]. In the re-
gion 3.97 GeV ≤ √

s ≤ 4.26 GeV we only use CLEO data
[16] as they are the most precise. In connection with the
three data sets from BES [13]-[15], we assume that the
systematic uncertainties are not fully independent and
add them linearly, rather than in quadrature. However,
we treat these data as independent from the CLEO data
set [16], and thus add errors in quadrature. There is no
data in the region s = 25 − 49 GeV2, and beyond there
is CLEO data up to s ≃ 110 GeV2. The latter data is
fully compatible with PQCD.
We discuss next the integration kernels p(s) in Eq.(2),
which we choose as

p(s) = 1−
(s0
s

)n

, (8)

with n ≥ 1. As discussed in [17], inverse moments
p(s) = 1/sn should not involve too large values of n.
In fact, the convergence of PQCD deteriorates with
increasing n, the gluon condensate contribution increases
sharply for n > 2, and the uncertainties in αs and the
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mc(3 GeV) (in MeV)

Kernel m̄(0)
c

m̄(1)
c

m̄(2)
c

m̄(3)
c

s−2 1129 1021 998 995
1 − (s0/s)

2 1146 1019 991 987

TABLE I: Results for the charm-quark mass at different orders in
PQCD, and for two integration kernels. The results for p(s) = 1/s2

are obtained using slightly different values of the QCD parameters,
and a different integration procedure as in [17].

Uncertainties (in MeV)

Kernel m̄c(3GeV) EXP ∆αs ∆µ NP s0 Total

s−2 995 9 3 1 1 14 17
1 − (s0/s)

2 987 7 4 1 1 4 9

TABLE II: The various uncertainties due to the data (EXP), the
value of αs (∆αs), changes of ±35% in the renormalization scale
around µ = 3 GeV (∆µ), the value of the gluon condensate (NP),
and due to variations in s0 (s0).

renormalization scale µ have a greater impact on the
total error of the charm-quark mass. On the other hand,
direct kernels of the form p(s) = sn, with n ≥ 1, pose
problems. Indeed, the high energy expansion of the
vector correlator is incompletely known at O[α3

s], so that
the greater the value of n the greater is the contribution
of the higher order mass corrections at this order in
PQCD. Already with n = 1 one would need a Pade
approximation for the term O[α3

sm̄
6
c ]. Hence, in order

to avoid any approximation up to this order in PQCD
we restrict ourselves to direct moments with n = 0, and
include inverse powers in an attempt to enhance the
contribution of the well known narrow resonances, J/ψ
and ψ(2S), and at the same time suppressing the broad
resonance region. We found that Eq.(8) with n = 2
is the optimal kernel as explained next. In Fig.1 we
show the experimental data for the ratio R(s) together
with the kernel Eq.(8) with n = 2 and s0 ≃ 23 GeV2,
and the simple kernel p(s) = 1/s2 normalized such that
both kernels coincide at the peak of the second narrow
resonance ψ(2S), i.e. s ≃ 13.6 GeV2. One can easily
appreciate that in comparison with the latter, the former
kernel leads to a welcome enhancement of the weight of
the J/ψ, as well as to a strong suppression of the broad
resonance region, and particularly the region near the
onset of the continuum. Quantitatively, the ratio of the
area under the hadronic spectral function weighted with
p(s), in the narrow resonance region, Inr, and in the
broad resonance region and beyond, Ibr, is Inr/Ibr = 3.6
for p(s) = 1/s2, and Inr/Ibr = 7.7 for Eq.(8) with n = 2.
Other values of n lead to slightly less enhancement. In
addition, the kernel Eq.(8) with n = 2 leads to final
results for mc which are fairly insensitive to the choice
of s0. For instance, in the range s0 ≃ 15.0− 23.0 GeV2,
mc(3 GeV) changes by about 4.0 MeV, while using the
kernel p(s) = 1/s2 it changes by 14.0 MeV.
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FIG. 2: Results for mc(3 GeV) as a function of s0 for the
kernel p(s) = 1/s2. The variation of mc(3 GeV) in this range
is up to 14 MeV.
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FIG. 3: Results for mc(3 GeV) as a function of s0 for the
kernel Eq.(8) with n = 2. The variation of mc(3 GeV) in this
range is up to 4 MeV.

Proceeding to our determination we list in Table 1 the
results for mc(3 GeV) at different orders in perturbation
theory, and using two integration kernels. The results
for the kernel p(s) = 1/s2 differ from [17] as we use now
a slightly different value of the strong coupling, of the
gluon condensate, and of the ψ(2S) parameters as given
above, and we include the CLEO data [16]. The vari-
ous errors associated to the final value of mc(3 GeV) are
given in Table 2. Results from Fixed Order Perturbation
Theory (FOPT) are essentially the same as using Con-
tour Improved Perturbation Theory (CIPT) to integrate
around the circle of radius s0 in the complex s-plane. In
Fig.2 we show the results for mc(3 GeV) as a function
of s0 for the kernel p(s) = 1/s2, and in Fig. 3 for the
kernel Eq.(8) with n = 2, the latter exhibiting improved
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stability.

The convergence pattern in αs of the PQCD integral as
a function of mc can be studied by computing

I(s0) = − 1

2πi

∮

C(|s0|)

p(s)Π(s) ds+Res[Π(s) p(s), s = 0] ,

(9)
with these integrals being functions of both mc and
αs. Using mc(3 GeV) = 987 MeV, and Eq.(8)
with n = 2 we find reasonable convergence, i.e.
I(0) = 91.4 GeV2, I(1) = 62.0 GeV2, I(2) = 57.0 GeV2,
and I(3) = 56.3 GeV2, where the upper index in I(j)

indicates the power of αs.

Our final result using the optimal kernel, Eq.(8), with

n = 2 is

m̄c(3GeV) = 987 ± 9 MeV , (10)

in good agreement within errors with the result from in-
verse moment QCD sum rules [17], other recent determi-
nations [18]-[19], [25], [26], as well as lattice QCD [21].
Translated into a scale invariant mass, the above result
gives m̄c(m̄c) = 1278 ± 9 MeV for the value used here
for the strong coupling.
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