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ABSTRACT 

 

Drug-induced liver injury (DILI) is a major health and economic 

problem and the leading cause of hepatic dysfunction, drug failure 

during clinical testing and post-market withdrawal of approved drugs. 

Pre-clinical testing should be able to detect potential hepatotoxins early 

in the drug development process in order to minimize health risks and 

financial losses. Several liver-derived in vitro models have been 

developed to be used in pharmacology and toxicology research to 

understand the mechanism of DILI and to evaluate potential 

hepatotoxicity of new chemical entities. Although they fail to reproduce 

the complexity of a whole organ, their low cost, high reproducibility, and 

the possibility of a human origin make them a good complement to 

traditional in vivo tests. Monoparametric strategies used in in vitro 

toxicity testing have been proved insufficient to predict human DILI. The 

application of the new 'omics' technologies allows the simultaneous 

determination of multiple parameters in a single biological sample and 

represents a more sensitive, comprehensive and powerful tool for the 

study of hepatotoxic events. Among them, metabolomics measures the 

downstream products of the 'omics cascade', thus representing a closer 

approximation to phenotype than the study of genes, transcripts or 

proteins.  

Based on the previous evidences we decided to evaluate whether 

metabolomics, in combination with in vitro cellular models and in vivo 

animal models, could be a useful tool for the disvovery of characteristic 

patterns associated to specific mechanisms of DILI.  

First, we defined a suitable framework that, thanks to a careful design 

of sample analysis and the incorporation of different internal standards 

and quality controls, allowed us to perform metabolomic analysis within 

a quality assurance environment. Then, uni- and multivariate statistical 

tools were selected in order to be able to identify mechanism-specific 
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alterations and to develop predictive/classificatory models. Finally, we 

optimized a sample processing and analysis strategy that allowed the 

differential extraction and detection of a broad range of metabolites 

ranging from highly polar to highly apolar ones thus maximizing 

metabolome coverage. 

The application of the developed tools to HepG2 cells exposed to 

subcytotoxic concentrations of model hepatotoxins acting through 

different mechanisms of toxicity allowed us to identify specific 

metabolomic patterns associated to each of the mechanisms of interest. 

Moreover, the application of multivariate data analysis techniques 

allowed the development of predictive/classificatory models able not 

only to distinguish between toxic and non-toxic compounds, but also to 

specifically classify drugs according to their mechanism of 

hepatotoxicity. The proposed strategy could be of interest for the 

identification of early markers of hepatotoxicy and for the prediction of 

mechanism of hepatotoxicity of new drug entities. 

The usefulness of the analytical strategy was also confirmed by its 

application with in vivo models using both medaka (Oryzias latipes) and 

rat. Studies in medaka revealed common liver altered pathways with 

HepG2 cells, suggesting medaka as a useful model for human 

hepatotoxicity prediction. Toxicity studies in rats allowed us to identify 

common serum markers of hepatotoxicity which could be used as 

biomarkers in pre-clinical studies or even extrapolated to humans. 
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wouldn’t be revealed through its fruit" 
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“Data does not equal information; 

information does not equal knowledge; 

and, most importantly of all, 

knowledge does not equal wisdom. 

We have oceans of data, 

rivers of information, 

small puddles of knowledge, 

and the odd drop of wisdom.” 
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1.1 General aspects of liver structure and function 

 

The liver plays an essential role in a variety of functions to maintain 

homeostasis in the organism. This organ is able to synthesize, degrade 

or storage a wide variety of molecules in a regulated way. It is involved in 

the metabolism of substances as different as carbohydrates, lipids, 

amino acids, bile acids (BAs), vitamins, steroids or iron. The liver also 

produces most of the circulating plasma proteins, including the most 

abundant component, albumin. Moreover, the liver is the center organ in 

the detoxification of xenobiotics (1-3). 

The liver is the largest solid organ in the human body (from 1300 to 

1700 g in adults) and it is located in the abdominal cavity. Blood supply 

to the liver is performed by two different blood vessels: i) the hepatic 

portal vein, which represents about 80% of the hepatic blood supply, 

carries blood that, having already circulated through the gut, the 

pancreas and the spleen, is reduced in oxygen and enriched in nutrients, 

xenobiotics, hormones and growth factors; and ii) the hepatic artery, 

which supplies oxygen-rich blood from the aorta artery. The unusual 

pattern of blood supply in the liver is essential to understand its role in 

both nutrient and xenobiotic metabolism (2, 4). Two different efferent 

vessels coexist in the liver. On one hand, blood is drained into the 

central veins and leaves the liver through a number of hepatic veins, 

which enter the inferior vena cava. On the other hand, the bile produced 

in the liver is collected in bile canaliculi, which merge to form bile ducts. 

The basic structural unit of the liver is the hepatic lobule (Figure 

1.1.A). It has the shape of a polygon, usually a hexagon. Each corner of 

the polygonal hepatic lobule is occupied by a portal triad, consisting of 

the hepatic artery, bile duct and portal vein. At the center of each hepatic 

lobule is located the central vein. The area defined by this hexagon is 

occupied by hepatocyte plates that adopt a radial distribution from the 

central vein to the perimeter of the lobule. Hepatic plates or cords are 

http://en.wikipedia.org/wiki/Bile
http://en.wikipedia.org/wiki/Bile_canaliculi
http://en.wikipedia.org/wiki/Bile_duct
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generally one hepatocyte thick and are separated from one another by 

the hepatic sinusoids (the capillaries of the liver) which are lined by 

sinusoidal endothelium (3, 5). 

The functional unit of the liver, known as the acinus, is delimited by 

the elliptical or diamond-shaped space that comprises two adjacent 

central veins, connected by the long axis, and to adjacent portal triads, 

connected by the short axis (Figure 1.1.A) (5, 6). Two different fluid 

flows take place along this axis. Blood enters the liver from the portal 

veins and hepatic arteries at the portal triads, flows through the 

sinusoids and exits from the central vein. On the other hand, bile flows 

in the opposite direction, thus going through the canaliculi along the 

hepatocyte plates to the bile ducts situated in the portal triad (3, 5). 

 

 

 

Figure 1.1. A) Diagram of the basic hepatic lobule and the acinus substructure. 

Hepatic lobules have hexagonal shape with the portal triads - formed by the 

hepatic artery, the hepatic portal vein and the bile duct - located at the corners 

and the central vein located at the center. B) Diagram illustrating the basic 

structure and composition of liver sinusoids. Liver sinusoids are lined by 

fenestrated liver sinusoidal endothelial cells (LSEC). Hepatocytes are disposed 

forming hepatic cords, with the basolateral membranes exposed to blood 

components through the space of Disse (SD), while the lateral membrane is in 

contact with adjacent hepatocytes attached by tight junctions and forms the bile 

canaliculus. Hepatic stellate cells (HSC) are located in the SD with numerous 

plasmatic extensions that allow them to be in close contact with other HSC as 

well with hepatocytes and LSEC. Finally, Kupffer cells (KC) are attached to the 

luminal surface of LSEC, in a strategic location that permits its continuous access 

to afferent blood. Figure 1.1.A adapted from reference (5). Figure 1.1.B adapted 

from reference (7).  
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1.2 Cells of the liver 

 

The liver is comprised by a rich variety of cells. The hepatocytes, the 

most abundant cell type, carry out the majority of the functions 

associated with the liver (5). They are responsible of the synthesis and 

excretion of plasma proteins, coagulation factors, lipoproteins and acute 

phase reactants. Moreover, they control the homeostasis of 

glucose/glycogen, triacylglycerides (TG), cholesterol, BAs, vitamins A and 

D, and metabolize amino acids, metals, heme, bilirubin, and xenobiotics 

(1). Nevertheless, the hepatocytes alone are not competent to perform all 

the hepatic functions, and the cohort of non-parenchymal cells are 

essential to the maintenance of the liver structure and are important 

contributors to various roles that support and regulate hepatic growth 

and function. Major liver non-parenchymal cells are bile duct epithelial 

cells (or cholangiocytes), liver sinusoidal endothelial cells (LSEC), hepatic 

stellate cells (HSC), Kupffer cells (KC), and hepatic progenitor cells (5, 8) 

(Figure 1.1.B). The liver also contains a large and diverse population of 

residing inmunocytes that in addition to KC and LSEC are essential 

components of the liver-centered immune system (2, 5, 9). 

Hepatocytes are large cells and represent about 60% of the total cell 

population and about 80% of the liver mass/volume (2, 3, 5, 8). 

Hepatocytes possess one or more nuclei, as a result of mitotic division of 

the nucleus without cytokinesis, with prominent nucleoli, indicative of an 

active transcriptional activity. As corresponds to their numerous and 

varied metabolic, storage and secretory functions, hepatocytes contain 

abundant mitochondria, lysosomes, peroxisomes and Golgi complexes, 

mainly adjacent to the bile canaliculi. The cytoplasm is rich in rough 

endoplasmic reticulum, indicative of the hepatocyte's secretory nature, 

and smooth endoplasmic reticulum, where many of the enzymes 

involved in phase I and phase II biotransformation of endogenous and 

exogenous compounds are located (2, 5). 



Introduction 

30 

Hepatocytes are highly polarized cuboidal-shaped cells. Due to the 

particular configuration of cells in the hepatic cords, each hepatocyte is 

adjacent to two neighbor hepatocytes and possess two basolateral 

domains that interface with the sinusoids on opposite sides of the cell 

plates (5, 10). The basolateral domain of hepatocytes is formed by the 

sinusoidal and lateral plasma membrane. At the sinusoidal side, 

hepatocytes are directly in contact with most of the blood substances 

thanks to the fenestrations present in the membranes of the LSEC. At the 

lateral membrane, neighbor hepatocytes are connected through gap 

junctions, thus allowing the communication of adjacent hepatocytes by 

transfer of small molecules (2, 11). The apical domain of the hepatocyte 

represents a small portion of the plasma membrane and lies between 

cells, set off from the basolateral plasma membrane by tight junctions 

and forming the bile canaliculus (10). These membrane domains show 

structural, compositional and functional differences and are essential for 

the role of hepatocytes in the uptake, metabolism and biliary elimination 

of both endogenous and exogenous substrates (5). In general, the 

basolateral plasma membrane has transporters that remove substances 

(e.g. BAs, drugs) from the portal venous blood by facilitated diffusion 

along a concentration gradient, whereas the apical plasma membrane 

has transporters that pump substances against a steep concentration 

gradient from the cell interior into the bile canaliculus (10).  

The liver architecture, cell composition and function are essential to 

understand its involvement in drug metabolism and toxicity. In 

particular, hepatocytes are the major players in biotransformation 

processes (phase I and II reactions and drug transport) and their function 

strongly impacts on the pharmacokinetic, side effects and toxicity of 

drugs. Therefore, the development of in vitro approaches for drug 

metabolism and hepatotoxicity studies is focused on the imitation of the 

functional status and disposition of hepatocytes, and other components, 

in the intact liver.  
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1.3 Drug-induced liver injury 

 

The liver is an organ specially prone to suffer toxic damage due to its 

particular anatomic location and to its involvement in drug metabolism 

and detoxification. As described above, the liver is functionally 

interposed between the site of absorption of exogenous compounds and 

the systemic circulation. Thus, through its blood supply from the portal 

vein, the liver is directly exposed to all ingested substances that are 

present in the portal blood (12-14). On the other hand, the liver is 

quantitatively and qualitatively the most important site of drug 

metabolism due to the expression in the hepatocytes of phase I and 

phase II metabolizing enzymes and drug transporters. Thus the liver, 

along with drug-metabolizing enzymes and drug transporters expressed 

in the intestinal mucosa, provides an effective barrier that prevents 

xenobiotics from entering the systemic circulation (15). However, the 

high exposure of the liver to xenobiotics, its involvement in their 

metabolism and the possibility of formation of drug-derived reactive 

species make the liver an organ specially sensitive to drug-induced 

damage (16, 17). 

Drug-induced liver injury (DILI) is a major health problem that 

challenges pharmaceutical companies, regulatory agencies and health 

care professionals and institutions (18). DILI is the most frequent basis 

for drug-related regulatory actions (19), including termination of clinical 

drug trials, failure to obtain US Food and Drug Administration (FDA) or 

European Medicines Agency (EMA) approval, restriction of use, as well as 

the major reason for post-market withdrawal of drugs (16, 20). The 

incidence of DILI in the general population has been estimated to be 10-

15 cases per 100000 patients year (21), being the responsible of one 

third to one half of cases of acute liver failure and 15% of associated liver 

transplantations (20, 22, 23). DILI mimics all forms of acute and chronic 

hepatobiliary diseases and the most frequent clinical manifestations are 
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hepatocellular damage, cholestasis, mixed hepatocellular and cholestatic 

injury, and steatosis (17). 

A major concern regarding DILI is the failure of the drug development 

process to detect potentially hepatotoxic drugs. Safety tests during drug 

development involve pre-clinical and clinical phases. Pre-clinical testing is 

based on toxicity assessments in in vitro models and in experimental 

animals. Unfortunately, these pre-clinical studies are not very predictive 

of human DILI. During clinical trials, the drug is administered to an 

increasing number of patients from phase I to phase III to reach 

approximately 3000 patients in a phase III study (24). Two of the main 

reasons leading to misdetection of DILI before drug approval are the lack 

of specific and reliable diagnostic markers or tests to verify an episode 

of DILI and the underpowered nature of clinical trials due to the limited 

number of patients involved (16). Liver function/damage monitoring 

during clinical trials includes measurement of serum liver enzyme levels. 

The discontinuation of testing is only advised in the case of finding 

frequent or severe increases in aminotransferase levels (greater than 

eight times the upper limit of normal) or accompanying increases in 

bilirubin without initial findings of cholestasis (25). In practice, it is very 

unlikely to detect those rare reactions before drug approval and most 

DILI appear post-approval. Once marketed, drugs are administered to a 

much larger and diverse group of patients than those included in 

controlled pre-approval trials, including patients at elevated risks for 

adverse effects (elderly persons, children, pregnant women, and patients 

with HIV infection or treated with multiple drugs) (13). 

DILI is commonly classified into intrinsic versus idiosyncratic 

hepatotoxicity. Intrinsic hepatotoxicity is regarded as dose-dependent 

and predictable above an approximate threshold dose, thus causing a 

reproducible liver damage that is usually detected during pre-clinical 

safety testing. Idiosyncratic toxicity occurs without obvious dose-

dependency, with a delayed onset and the participation of innate and 
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adaptive immune responses is required. Its development is strongly 

affected by the mix of unique characteristics - phase I and II drug-

metabolizing activities, transporters or immune factors - specific to an 

individual (14, 26-28).  

DILI progression involves complex multi-step mechanisms that are 

initiated by a chemical insult to cells in the liver (27). Drug exposure is 

determined by the dose and handling of the drug by the liver (phase I, II, 

III drug metabolism) (24). In phase I metabolic reactions, drugs are 

rendered more hydrophilic, primarily by oxidative pathways through the 

cytochrome P-450 (CYP) enzyme system. Phase II usually involves 

conjugation of the parent drug or its metabolites to glucuronide, sulfate 

or glutathione (GSH). Finally, the drug and/or its hydrophilic products are 

exported into plasma or bile by transport proteins located on the 

hepatocyte membrane (phase III) (13, 27). The metabolites obtained 

through biotransformation may be non-toxic, in which case drug 

metabolism and excretion is a detoxifying process, or may mediate 

toxicity, typically through the formation of chemically reactive species 

(27). Thus, the parent drug, or more often, reactive metabolites may 

cause GSH depletion, covalent binding to proteins, lipids or nucleic acids, 

induction of oxidative stress (OS), lipid peroxidation, or inhibition of the 

activity of biliary efflux transporters thus initiating the damage process 

(14, 16, 17, 27). All those have direct effects on organelles such as 

mitochondria, the endoplasmic reticulum, the cytoskeleton, or the 

nucleus. They may also have an indirect influence through the activation 

or inhibition of signaling kinases or transcription factors that may 

contribute to the protection against the damage or to its progression 

(17). The consequences of the amplification and progression of toxicity 

include hepatocellular damage and the initiation of immunological 

reactions. Innate immunity activation and inflammation seems to be a 

general feature in DILI, however some drugs have the ability to provoke 

the activation of the adaptive immune system (16, 27). The balance 
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between intracellular and cell-to-cell signaling determines the final extent 

of the damage, thus leading to an adaptation to the insult resulting in a 

mild but manageable damage or accelerating the damage leading to 

massive cell death (either through apoptosis or necrosis) and severe liver 

damage (14, 24). Figure 1.2 summarizes the events and inputs 

determining DILI initiation, development and resolution. Although the 

focus of hepatotoxicity is mainly on hepatocytes, non-parenchymal cells 

such as cholangiocytes, LSEC or KC can be involved in the process of 

drug-induced hepatotoxicity. Moreover, some drugs can induce 

cholestasis by impairing bile secretion or causing obstruction of extra-

hepatic bile ducts (26). 

 

 

 

Figure 1.2. Schematic representation of the different steps involved in the 

initiation, development and resolution of drug-induced liver damage. Drug 

exposure in the liver is determined by the dose and phase I and II drug 

metabolizing reactions. Drug metabolism is considered to be a detoxifying 

process, however, it may result in the formation of reactive species. The parent 

drug, or more often, the reactive metabolites formed may cause an initial 

damage that sets in motion a series of intracellular and extracellular processes. 

The balance between protective versus injurious pathways determines the extent 

of the hepatocellular damage. Finally, the severity, duration and progression of 

the damage versus the capacity of the liver to regenerate damaged zones will 

determine the extent of the injury. Figure adapted from references (14, 24).  



Introduction 

35 

1.4 Mechanism-based classification of DILI 

 

Several molecular mechanisms are primarily involved in hepatocyte 

injury induced by the drug itself or by any of its metabolites, and the 

manner in which the intracellular organelles, macromolecules and 

functions are affected defines the pattern of liver disease (13, 14, 24, 

29). Several mechanism-based classifications of DILI have been proposed 

according to different criteria (12, 13, 18, 24, 28-30). We have adopted 

the classification proposed by Gómez-Lechón et al (29) in which, 

independently of the initial target causing the damage, mechanisms of 

DILI are grouped according to the initial clinical manifestation provoked 

by the drug. Thus, the following mechanisms will be described below: i) 

Steatosis; ii) Phospolipidosis; iii) Cholestasis; and iv) Oxidative stress  

 

1.4.1 Steatosis 

 

Steatosis, or fatty liver disease, is characterized by an increased 

deposition of lipids, mainly TG, in hepatocytes above 5% in weight (31). 

Accumulation of TG in hepatocytes leads to micro- and macro-vesicular 

steatosis and balloon-cell degeneration (32). Steatosis is a complex 

process that has been associated to nutritional factors, genetic defects 

and drug intake. Impairment of β-oxidation leading to the accumulation 

of fatty acids (FA) as TG in the cytoplasm of hepatocytes is one of the 

major mechanisms involved in drug-induced steatosis (32, 33). Micro-

vesicular steatosis is usually due to a severe impairment of β-oxidation 

and is characterized by the presence of multiple small lipid droplets 

within the cytoplasm of hepatocytes. It is an acute condition that may be 

associated with liver failure, coma and death due to the secondary 

damages associated to lipid peroxidation and energy depletion (32-35). 

On the other hand, macro-vesicular steatosis is due to milder and 

prolonged forms of mitochondrial dysfunction. In this case fat 
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accumulates in form of a single large droplet. Although it is considered a 

benign condition it can progress to liver fibrosis or cirrhosis after several 

years (31, 32). 

Multiple drug-induced alterations can cause steatosis (29, 32): 1) 

Direct alteration of mitochondrial FA oxidation by the inhibition of any β-

oxidation enzyme; 2) Indirect impairment of β-oxidation by sequestration 

of cofactors L-carnitine or coenzyme A; 3) Inhibition of carnitine 

palmitoyl transferase-1 altering FA transport across the mitochondrial 

membrane; 4) Inhibition of long-chain acyl-CoA synthase, thus impairing 

the mitochondrial entry of long-chain FA (LCFA); 5) Increased TG 

synthesis with or without lowered cholesterol and/or phospholipid (PL) 

synthesis; 6) Reduction in lipid export by the inhibition of microsomal 

triglyceride transfer protein activity; 7) Induction of mitochondrial 

permeability transition pore opening; 8) Dissipation of the mitochondrial 

transmembrane potential; 9) Direct impairment of mitochondrial 

respiratory chain, which can secondarily inhibit mitochondrial β-oxidation 

and enhance reactive oxygen species (ROS) formation; 10) Mitochondrial 

DNA (mtDNA) depletion, which can reduce the synthesis of mtDNA-

encoded proteins, impair mitochondrial respiratory chain and increase 

ROS generation; 11) Increased de novo FA synthesis.  

 

1.4.2 Phospholipidosis 

 

Phospholipidosis is a lipid storage disorder characterized by the 

excessive accumulation of PL within cells and by the formation of 

membrane-bound cytosolic inclusions with a lamellar morphology 

(laminar bodies), predominantly of a lysosomal origin (32, 36). In toxicity 

studies, phospholipidosis has been shown to occur in various tissues, 

being the liver one of the most common targets. Most drugs inducing 

phospholipidosis belong to a group of compounds known as cationic 

amphiphilic drugs (CADs). These compounds contain a hydrophobic 
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region (usually a ring structure) and a hydrophilic side chain (a primary 

or substituted nitrogen group) that is positively charged at a 

physiological pH. This chemical structure allows a direct binding of the 

molecule with PL (32). To date, it is not clear which are the biological 

effects caused by PL accumulation, however phospholipidosis is usually 

associated to a high intrahepatic accumulation of the causing drug (or a 

metabolite), which can produce potential toxicity after chronic exposure 

(29, 32, 37). Regulatory agencies generally consider phospholipidosis an 

adverse effect and the development of a drug can be delayed or 

terminated when pre-clinical studies in animals reveal PL accumulation in 

certain organs. 

Different mechanisms have been proposed to explain the development 

of drug-induced phospholipidosis (29, 32): 1) Direct inhibition of 

lysosomal phospholipase; 2) Decreased degradation of PL due to the 

formation of degradation-resistant drug-PL complexes; 3) Decreased 

lysosomal enzyme transport; and 4) Increased synthesis of PL.  

 

1.4.3 Cholestasis  

 

Drug-induced cholestasis is characterized by impaired bile flow, which 

leads to the accumulation of BAs in the liver and the subsequent toxicity 

to hepatocytes (28, 29). BAs are major components of bile formed from 

cholesterol through various enzymatic reactions in hepatocytes. BAs act 

as detergents involved in the process of solubilization and absorption of 

dietary fats and fat soluble vitamins and they also facilitate the excretion 

of bile pigments, cholesterol and other hydrophobic molecules (38). On 

the other hand, BAs are regulatory molecules able to control not only 

their own homeostasis but also FA, lipoprotein, glucose, and energy 

metabolism (39-41) by binding specific receptors (e.g., PXR, VDR or 

TGR5) and activating several cell signaling pathways (i.e., JNK, ERK, or 

AKT) (39, 40, 42-44). Abnormal accumulation of BAs in the hepatocytes 
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not only induces several changes in gene expression, but due to its 

detergent nature it also induces damages on cellular membranes, 

mitochondrial dysfunction and ultimately necrosis and apoptosis (38, 45, 

46). It has been shown that the deleterious toxic effects of BAs depend 

on the profile of accumulated BAs, with higher toxic effects associated to 

more hydrophobic BAs (47). Thus, the rank order of BA cytotoxicity is: 

lithocholic acid (LCA) > chenodeoxycholic acid (CDCA) , deoxycholic acid 

(DCA) > cholic acid (CA) (46). 

At the hepatocyte level, cholestasis is mainly produced through 

damage to the structure and/or function of bile canaliculi, thus altering 

bile flow (29). Several transport proteins have been identified as potential 

loci for drug-induced cholestasis. These include the basolateral uptake 

transporters (NTCP and OATPs), canalicular efflux transporters (BSEP, 

MRP2, and MDR3), and basolateral efflux transporters (MRP3 and MRP4) 

(38, 45, 48). Events leading to drug-induced cholestasis include (13, 29, 

38): 1) Direct inhibition of transport proteins; 2) Altered localization of 

transport proteins; 3) Altered transport protein expression; 4) Disruption 

of actin filaments in the proximities of the canaliculus; and 5) Transport 

protein malfunction due to energy supply disruption.  

 

1.4.4 Oxidative Stress 

 

OS is produced when the generation of oxidant species (reactive 

molecules containing oxygen or nitrogen) exceeds the antioxidant 

protection of the cells (antioxidant enzymes or non-enzymatic 

scavengers/quenchers). This situation is produced by different physio-

pathological conditions, including exposure to drugs able to induce an 

excessive generation of ROS or a depletion of GSH pool. The 

mitochondrion is one of the main sources of ROS within the cell, where 

superoxide radical is produced during oxidative phosphorylation. In 

addition, ROS can be generated by CYP-dependent microsomal 
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oxidations of drugs and other xenobiotics. GSH is a strong nucleophillic 

thiol that protects cells against damage caused by a variety of 

electrophiles (free radicals, ROS, etc.). In addition, it serves as an 

essential co-factor of GSH peroxidase which removes hydroperoxides 

formed during oxidative processes. Finally, GSH is involved in the 

conjugation and inactivation of the reactive metabolites produced by 

CYP-dependent oxidations (49). Enhanced ROS levels leading to GSH 

depletion and OS may cause a wide spectrum of oxidative damage to 

intracellular biomolecules (DNA, lipids and proteins), altering the 

structure and function of key cellular constituents that result in 

mutation, cell damage and cell death (14, 29, 50). 

OS is produced by compounds that are able to undergo repeated 

oxidation and reduction cycles within the cell, or by molecules 

containing oxygen atoms that can either produce free radicals or are 

chemically activated by them (49, 51). Drugs may induce OS through 

different mechanisms (29): 1) Excessive ROS generation during drug 

oxidations catalyzed by CYPs; 2) GSH depletion due to the formation of 

GSH adducts with reactive electrophilic metabolites; 3) GSH depletion 

due to the formation of GSH conjugated metabolites catalyzed by GSH 

transferases; 4) Direct or indirect impairment of mitochondrial electron 

chain; and 5) Redox cycling inducing molecules.  

  



Introduction 

40 

1.5 Experimental models for the study of hepatotoxicity 

 

As mentioned, DILI is a major health and economic problem and the 

hepatotoxicity is the main cause of safety problem leading to drug 

failure during clinical testing and after being launched to the market (16, 

20). Furthermore, the limitation in the number of patients exposed to the 

drug during clinical testing hampers the detection of very low incidence 

drug-related adverse reactions (13). Pre-clinical testing should be able to 

detect potential hepatotoxins early in the drug development process in 

order to minimize health risks and financial losses. One drawback 

related to hepatotoxicity prediction is the low concordance between 

humans and commonly used experimental animals (49, 52, 53). Species 

differences in drug metabolism, target molecules and pathophysiology 

are important factors that hamper the usefulness of animal models (49). 

As an alternative to in vivo experiments, several liver-derived in vitro 

models have been developed for use in safety pharmacology and 

toxicology research to understand the mechanisms of DILI and to 

evaluate potential hepatotoxicity of new chemical entities (49, 54). Major 

advantages of in vitro models are the highly controlled environmental 

conditions in which experiments are performed, the possibility of using 

material from a human origin, the possibility of performing high-

throughput experiments, its relative low cost in comparison with in vivo 

experiments and the reduction of the number of animals needed. 

Although in vitro approaches fail to reproduce the complexity of a whole 

organ, they are a good complement to traditional in vivo tests and may 

be useful in the prediction of toxicity in early stages of drug 

development (49).  

Primary culture of freshly isolated human hepatocytes is considered 

the gold standard in vitro model for the study of DILI (55). However, 

many other liver-based models have been used in hepatotoxicity 

assessment including: immortalized tumor-derived cell lines, hepatocyte-
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like cells (HLCs) derived from pluripotent stem cells and liver tissue 

preparations (slices, microsomes and S9 fractions) (49, 54). Table 1.1 

summarizes the advantages and disadvantages of the main experimental 

models. Detailed information about the characteristics of cultured 

hepatocytes and hepatoma cell lines, the most widely used liver-derived 

cell models, is provided below.  

 

1.5.1 Hepatocytes 

 

Among in vitro systems, cultured hepatocytes are recognized as the 

closest model to the in vivo situation (5, 49, 55). Hepatocytes cultured 

under the appropriate conditions retain most of differentiated liver-

specific functions (i.e. gluconeogenesis, glycogen metabolism, urea 

formation, plasma protein synthesis and secretion, lipid metabolism...) 

and drug metabolism (phase I and phase II enzymes) and transporters 

for limited period (5, 49, 55). Many different culture conditions (medium 

formulation, cell density, extracellular matrix components and 

configuration, co-culture with other cell types, dynamic culture systems) 

have been described for the in vitro use of hepatocytes and they strongly 

influence hepatocyte's viability and functionality (5, 49, 55).  

Isolated hepatocytes in suspension are the simplest culture system 

derived from hepatocytes. They allow to perform a complete set of 

functional analysis (viability, transport, drug-metabolism, excretion of 

plasma proteins...). However, its usefulness is very limited due to their 

very short-term viability (2-4 h) and the phenotypic changes induced by 

the loss of cell-cell and cell-matrix interactions (49, 55). 

2D culture systems are the most common way of culturing 

hepatocytes. They involve the culture of the hepatocytes over a coated 

dish, what extends hepatocyte viability and functionality up to a week 

thanks to the establishment of cell-cell and cell-matrix interactions. The 

main strengths of this model are its simplicity, the extended hepatocyte 
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viability and the possibility of detecting metabolism mediated 

hepatotoxicity. However, phase I and II drug-metabolizing enzymes 

activity decay with the time in culture (5, 49, 55). An alternative to the 

classic monolayer cultures, in which transport studies cannot be 

performed due to the loss of hepatocyte polarity, is the culture of the 

hepatocytes in the commonly named 'sandwich' configuration. It involves 

the culture of the hepatocytes between two layers of matrix, thus 

reconstructing the opposing sinusoidal facing domains of hepatic plates 

in vivo. Under these conditions the hepatocytes repolarize and 

reestablish bile canaliculi and the expression of functional transporters. 

Moreover, they are characterized by an improved functionality and 

similarity to in vivo response and an increased viability (up to some 

weeks) (5, 49, 55). 

 

1.5.2 Hepatoma cell lines 

 

Hepatoma cell lines constitute a simple, readily accessible and almost 

unlimited source of cells from a human liver origin (49). Besides their 

differences with hepatocytes in many functional aspects, especially with 

respect the levels of drug-metabolizing enzymes, they represent a very 

common in vitro model used in toxicological studies. Although many 

different human hepatic cell lines have been tested (i.e. HuH7, HepaRG, 

Fa2N-4...), HepG2 cell line is the most commonly used and best 

characterized one (5, 49). 

HepG2 cells are derived from a liver tissue sample of a donor with a 

well differentiated hepatocellular carcinoma (5). HepG2 are no 

tumorogenic cells with high proliferation rates and epithelial-like 

morphology and they show many differentiated hepatic functions: 

synthesis and secretion of plasma proteins, cholesterol and TG 

metabolism, lipoprotein metabolism and transport, BA synthesis, 

glycogen synthesis or insulin signaling (5, 56-58). The main inconvenient 
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of the use of HepG2 cells in toxicological studies is the reduced 

expression of several hepatic functions, especially those related to drug 

metabolism and transport. HepG2 cell line shows substantially lower 

levels of phase I and II biotransformation enzymes when compared to 

primary hepatocytes thus leading to a possible misdetection of 

metabolic-dependent toxicity for particular compounds (5, 49). An 

alternative to circumvent the low expression of drug-metabolizing 

enzymes in HepG2 cell line is their genetic engineering to achieve stable 

or transient expression of the desired genes. HepG2 cells stably 

expressing drug-metabolizing enzymes have been successfully 

generated. However, a major limitation of this strategy is that only one 

or two enzymes can be satisfactorily transfected to cells, thus limiting 

their application to the study of the contribution of a single enzyme in 

drug metabolism and related toxicity. On the other hand, transient 

expression has been achieved for multiple enzymes in a regulated 

manner, thus being able to customize enzyme expression to reproduce 

the desired activity pattern. However, transient expression is limited to a 

maximum of 24-72 h and yet the expression or function of other several 

genes/proteins involved in drug metabolism, clearance and toxicity 

cannot be restored with this strategy (59). Despite the limitations of the 

model, HepG2, by themselves or in combination with some strategy to 

upgrade their metabolic capacity, is the most used immortalized hepatic-

derived cell line for the prediction of toxicological adverse effects. As a 

result of this widespread use, exhaustive data on the effects of a huge 

number of compounds (model hepatotoxins, drugs, chemicals) on many 

parameters indicative of toxicity to HepG2 cells (viability, membrane 

integrity, cell proliferation, ATP level, etc.) are available in the literature 

(52, 60, 61). Moreover, recent transcriptomic, proteomic and cytomic 

studies have confirmed the potential value of HepG2 cells as in vitro 

model for toxicity screenings (52, 62-64). In summary, its unlimited 

availability, easy culture and handle conditions, complete 
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characterization and wide bibliographic documentation makes HepG2 a 

very interesting option in toxicological studies, at least as a first 

approximation to the problem.  

 

Table 1.1. In vitro models for hepatotoxicity studies.  

 

In Vitro Model Advantages Limitations 

Liver Slices 

- Preserved liver architecture 

- Hepatocyte heterogeneity 

- Presence of non-parenchymal 

cells 

- Preservation of hepatocyte 

bipolarity 

- High-resemblance to the in vivo 

phenotype  

- Possibility of histological 

examination 

- Limited viability and function 

- Scarce availability (fresh human 

liver) 

- High inter-donor variability 

- High intra-assay variability 

- Technically demanding 

Primary 

Cultured 

Hepatocytes 

- Easy to use 

- Expression of inducible 

biotransformation enzymes. 

- Correct function of transporters 

(depending on the culture 

conditions) 

- Reasonable resemblance to in 

vivo liver phenotype 

- Potential use for long-term 

studies 

- High versatility of culture 

conditions 

- Limited availability (human 

tissue) 

- Early phenotypic changes  

- Loss of drug-metabolizing 

activities 

- Inter-donor variability 

- High influence of culture 

conditions (viability, transport, 

function...) 

 

HepG2 Cells 

- Unlimited availability 

- Easy to use 

- Most commonly used and best 

characterized human liver cell 

line 

- Expression of many 

differentiated hepatic functions 

- High reproducibility 

- Amenable to high throughput 

screening 

- Customizable expression of 

CYPs and phase II conjugating 

enzymes though permanent or 

transient modifications. 

- Lack/scarce expression of 

transport proteins 

- Limited/partial expression of 

some relevant drug-

metabolizing enzymes 

- No reproduction of in vivo 

hepatic phenotype 

- Low response to certain 

inducers. 

Hepatocyte 

Like Cells 

(HLCs) 

- Unlimited availability 

- Representative of phenotypic and 

genetic variation in population 

(induced pluripotent stem cells -

derived HLCs) 

- Complex culture conditions 

- Non-standardized 

differentiation procedures 

- High variability 

- Low expression of key hepatic 

functions 

- Non-complete characterization 
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1.6 Methods for the evaluation of DILI using in vitro 

models 

 

1.6.1 Conventional hepatotoxicity assays 

 

Toxicological in vitro studies have been usually performed by the 

employment of cytotoxicity assays that are based on an estimation of 

cell viability and/or functional or metabolic state of cells previously 

exposed to toxicants. Common cytotoxicity testing involves the analysis 

of cell number, membrane integrity (e.g. release of intracellular 

enzymes, membrane-impermeable DNA stain), apoptosis (e.g. activation 

of caspases), loss of critical biomolecules (e.g. ATP depletion), metabolic 

effects (e.g. tetrazolium salt assays, Alamar blue assay), or anti-

proliferative assays (e.g. inhibition of DNA or protein synthesis) (49, 65). 

These assays monitor events that occur in late stages of cell injury, when 

the cell is near to death. They are useless for mechanistic studies and 

they are more likely to miss toxicities that produce adverse but non-

lethal effects (27, 49). In contrast to this approximation, a variety of pre-

lethal mechanistic assays have been proposed to study potential 

hepatotoxic adverse effects that occur before compromising cell viability 

including: OS (e.g. ROS generation, GSH depletion, lipid peroxidation), 

mitochondrial dysfunction (e.g. inner mitochondrial membrane 

depolarization), lipid accumulation, impairment of BA transport or liver-

specific functions (e.g. plasma protein synthesis, ureogenesis...) (49, 65). 

As a general protocol, conventional in vitro hepatotoxicity studies are 

performed in two steps. First, effects in cell viability are examined by 

cytotoxicity parameters. To this end, cells are incubated with a wide 

range of concentrations of the test compound to obtain a dose-viability 

curve and to calculate IC10 or IC50 values (concentrations causing 10% 

or 50% of cell death, respectively). In a second stage, non-lethal 

concentrations of the drug (e.g., lower than IC10) are used to perform 
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functional and/or mechanistic studies (49, 65). To achieve an accurate 

and reliable in vitro evaluation of drug-induced hepatotoxicity, several 

key markers need to be analyzed. Although many of the conventional 

tests have been adapted to multi-well culture formats, contributing to 

increase screening throughput, their main limitation is that each test 

evaluates a single parameter. Thus a wide battery of traditional tests, 

each performed in a different biological replicate, needs to be performed 

in order to obtain enough information to relate one problem drug to a 

specific mechanism of hepatotoxicity. 

 

1.6.2 Multiparametric approaches 

 

The application of the new 'omics' technologies (i.e. transcriptomics, 

proteomics, cytomics and metabolomics) allows the simultaneous 

determination of multiple parameters in a single biological sample (49).  

In a general sense, transcriptomics examines the levels of all coding 

and non-coding RNA molecules (transcriptome) in a given sample (e.g. 

cell population). However, the most common application of 

transcriptomics is usually referred as gene expression profiling as it is 

based on the determination of levels of mRNAs (49, 66, 67). The premise 

beyond the application of transcriptomics to the study of toxicity is that 

after an adverse effect produced by a toxicant, the cellular homeostasis 

is altered and the cell tries to restore it by switching on/off the 

expression of specific genes (11). A fingerprint (gene expression or RNA 

levels signature) can then be deciphered and used to predict the toxicity 

of a candidate drug based on the concept that similar toxins or similar 

mechanisms of toxicity elicit comparable changes in the gene expression 

(49, 67, 68). Moreover, transcriptional profiling can be used to identify 

potential markers of DILI for diagnosis purposes. The usefulness of this 

experimental approximation has been successfully demonstrated (67, 

69-71). However, the correct interpretation of transcriptomic studies is 
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hampered by a number of experimental factors that can contribute to the 

observed changes in gene-expression data. A major difficulty is the 

differentiation of gene expression alterations related to drug toxicity 

from those associated to its pharmacological activity. Moreover, timing is 

a critical factor in the experimental design. The most valuable 

mechanistic information is obtained from early transcriptional changes 

preceding the occurrence of toxicity, because changes observed in later 

stages after drug exposure can be more related to an adaptive response 

to the toxicity (72). 

The proteome is defined as the entire set of proteins produced or 

modified by an organism or system. It varies with time and the distinct 

requirements, or stresses, that a cell or organism undergoes (73). Thus, 

from a comprehensive point of view, proteomics is the large-scale study 

of proteins, particularly their structures and functions, although a more 

simple and practical definition could be the high-throughput separation, 

display and identification of proteins (74, 75). The main theoretical 

advantage of proteomics with respect transcriptomics is that gene 

expression is not the definitive determinant of the final protein content 

and function, as not all mRNAs are transcribed into proteins and, 

moreover, post-translational modifications and final location of proteins 

(targeting, trafficking) deeply influence protein abundance and activity 

(76, 77). Chemical exposure frequently modifies proteins and 

dysregulates critical biological pathways or processes leading to toxicity. 

Therefore, the main aims of proteomics when applied to toxicity studies 

are the discovery of key modified proteins, the identification of affected 

pathways, and the development of biomarkers for the eventual 

prediction of toxicity as it is assumed that toxicants that produce similar 

effects will induce similar changes in the proteome (49). Recent 

publications support the use of proteomics to evaluate or predict 

mechanism of hepatotoxicity using in vitro models (62, 78, 79). 

However, the applicability of proteomics is limited compared to other 
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'omics' due to its relative low throughput, the need of a high amount of 

sample, the high complexity of the proteome due to post-translational 

modifications of proteins and technical problems associated to some of 

the technologies employed that hinder the detection of low-abundant, 

hydrophobic, acidic, basic, small and large proteins (49, 80-82). 

The cytomes can be defined as the heterogeneous cellular systems and 

functional components of the pluricellular organisms. Cytomics is the 

study of the heterogeneity of cytomes and aims to determine changes in 

the phenotype of single cells, which can be further related to a given 

stimulus or injury (83, 84). Within the 'omics' framework, cytomics can 

be considered as the science of single cell-based analyses that links 

genomics and proteomics with the dynamics of cell and tissue function, 

as modulated by external influences (83-85). Cytomics technology is 

based on the use of specific fluorescent probes to assess the status of 

the cell. With a suitable combination of fluorescent markers, many 

different parameters of interest in toxicological studies such as nuclear 

morphology, mitochondrial function (transmembrane potential), cell 

viability, intracellular calcium concentration, ROS generation or lipid 

accumulation may be recorded simultaneously. Among cytomic 

technologies, a new image-based technology called high content 

screening (HCS) integrates the fluorescence microscopy with image 

analysis algorithms and informatics to automate cell analysis (49, 84, 

86), what allows to record spatial information of the fluorescence signals 

while maintaining high throughput thanks to the automation (84). The 

nature of this technology makes it especially suitable for its application 

in drug toxicity as several parameters can be recorded simultaneously in 

individual cells. Many examples of the application of different 

methodological variants of cytomics applied to hepatotoxicity prediction 

or mechanistic classification can be found in the recent literature (52, 87-

93).  
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1.7 Metabolomics 

 

The term metabolome was initially defined as the quantitative 

complement of all the low molecular weight molecules present in a cell 

in a particular physiological or developmental state (94, 95). This 

definition has been updated to cover the broader range of applications 

that have arisen within this field and can be defined as the quantitative 

determination of all the low-molecular-weight (approximately below 1 

kDa) endogenous metabolites in a specified biological sample. Each cell 

type/biological fluid has specific levels of metabolites depending on the 

specific environmental conditions and fluctuate through time according 

to physiological demands (96). Two different terms were initially coined 

to name the science focused on the study of the metabolome: 

metabolomics (97) and metabonomics (98). The term metabolomics was 

defined as “the comprehensive and quantitative analysis of all 

metabolites present in a specific cellular, tissue or biological sample” and 

it was originated by semantic analogy with other 'omics' disciplines (97). 

On the other hand, the term metabonomics was defined as “the 

quantitative measurement of the time-related multiparametric metabolic 

response of living systems to pathophysiological stimuli or genetic 

modification” (98) and is derived from the Greek roots 'meta' and 'nomos' 

meaning changes and rules/laws, respectively, to describe the 

generation of pattern recognition-based models that have the ability to 

classify changes in metabolism (99). The initial discrepancy between the 

two definitions was mainly philosophical. While metabolomics aimed to 

characterize and quantify all the small molecules present in a biological 

sample, metabonomics was focused on the global changes in the 

metabolome as a response to a given stress, stimuli or genetic 

manipulation (100). Nowadays both terms are often used 

interchangeably to define those studies aimed at the untargeted analysis 

of the metabolites in a given biological system under study (100). Their 
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main applications include toxicity assessment, pharmaceutical drug 

development, cell culture monitoring, disease diagnosis, nutrition, 

oncology and transplantation (101-106). 

Metabolomics measures the downstream products of the 'omics 

cascade', thus providing information that is not accessible through other 

alternative 'omics' such as genomics, transcriptomics or proteomics (103, 

107) (Figure 1.3). Metabolites are the intermediates of biochemical 

reactions, thus their levels are determined by both the concentration and 

properties of the enzymes, these last being the result of the integration 

of transcription, translation, post-translational modifications and 

allosteric effects, thus resulting in an integrative effect between the 

capabilities of the system under study and its interaction with the 

environment (108). Therefore, thanks to amplification, as a result of 

being downstream of the activity of genes and proteins, the integration 

of intra- and extracellular signals and a more dynamic nature, the 

metabolome, and metabolomic changes, represent a closer 

approximation to phenotype than genes, transcripts or proteins (103, 

107, 109). Thus, metabolomics is more informative of functional status 

of cells than other 'omics'. 

Within the classical approximations of the 'omics cascade', each step 

closer to the phenotype represents a huge increase in the figures of 

entities of interest: from about 20000 genes to 100000 transcripts and 

1000000 proteins. However, the number of metabolites in humans is 

estimated to be around 40000 (110), although the number of major 

metabolites, those being at higher concentrations and with the most 

relevant functions, is estimated to be around 2000 (111). Moreover, 

while genes, transcripts and proteins are species specific, and therefore 

different probes have to be designed for each species, most of the 

metabolites are common to all the species and only a part of the 

metabolome is species specific (81). 
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Figure 1.3. Representation of the 'omics cascade' along with the figures of the 

estimated number of components belonging to each of the levels. Metabolomics 

focus is on the last step of the information cascade thus amplifying and 

integrating the signals of the preceding levels of regulation and therefore being 

the closest approximation to the actual phenotype.  

 

 

1.7.1 Basic structure of a metabolomic study  

 

The typical structure of a metabolomic study is depicted in Figure 1.4. 

The first step is to establish the hypothesis of work and define the main 

objectives to be achieved with the study, that is, the biological question 

to be answered. Closely related to this point is the definition of the 

experimental conditions in order to achieve the proposed objectives. 

This step, with regards to a toxicological study, includes the selection of 

the experimental model (e.g. in vitro vs in vivo, immortalized cell lines vs 

primary cultured cells...), the drugs to be tested (e.g., model compounds 

associated to well known mechanisms of toxicity), the concentrations 

and the schedule/pattern of the treatment, and the analytical platform. 

In addition to that, it is necessary to perform a careful selection of the 

type of sample to be analyzed (e.g., cell monolayer and/or culture 
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medium; that is endometabolome vs exometabolome) and sampling 

protocol processing methods. One key pre-requisite is that samples have 

to be representative and informative of the phenomenon under study. 

Therefore sample processing has to allow the extraction of the 

metabolites of interest while providing a correct quenching of the cell 

metabolism in order to avoid metabolite degradation or alterations in 

their levels at the time of the sampling. After the samples have been 

generated, they have to be analyzed under the appropriate analytical 

platform in an environment that ensures the quality of the generated 

results. Finally, the use of suitable data analysis techniques will allow the 

generation of biologically meaningful results that with the correct 

interpretation and validation, will answer the question of interest. The 

decisions made at every step of the workflow are crucial in obtaining 

high quality and informative results (103). 

 

 

 

Figure 1.4. Scheme of a general workflow in a metabolomics study. Figure 

adapted from reference (103)  

 

 

1.7.2 Techniques for the study of the metabolome 

 

The metabolome presents a large diversity of components 

(aminoacids, carbohydrates, lipids, organic acids...) with highly different 

chemical structures and properties (from ionic or very polar to highly 

hydrophobic compounds). It is almost impossible to determine the 

complete metabolome using a single analytical platform and thus the 
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combination of complementary techniques (covering both sample 

preparation and analysis) is required to achieve a comprehensive 

coverage of the metabolome (108). 

The most common analytical techniques used to study the 

metabolome are nuclear magnetic resonance (NMR) spectroscopy and 

mass spectrometry (MS), the later usually hyphenated to previous 

separation techniques (112). NMR and MS, in their different 

configurations, are complementary rather than opposite platforms and 

thus the use of different analytical techniques has a positive impact in 

widening the coverage of the metabolome. 

1

H-NMR spectroscopy is based on the detection of all the proton 

signals present in a given sample. The main advantages of NMR 

spectroscopy are: i) it is a non-destructive technique, therefore the 

samples may be used in further analysis; ii) it requires non or low sample 

preparation; iii) it is possible to perform analysis with solid samples; iv) it 

is an intrinsically quantitative technique; v) it is possible to perform 

structural analysis; and vi) its high robustness allows easy lab-to-lab 

comparisons. However the application of NMR is hampered by its low 

resolution and sensitivity, the difficulty in the interpretation of the 

obtained spectra and the presence of analytes deficient in protons or 

that possess protons that can be readily interchanged with the solvent 

(108, 113). 

In MS, the analytes present in the sample are ionized and characterized 

by their mass-to-charge ratio (m/z). MS detection is usually preceded by 

a separation technique in order to separate the individual components 

present in the complex biological matrices. The most popular separation 

techniques coupled to MS are: gas chromatography (GC), liquid 

chromatography (LC) and capillary electrophoresis (CE). GC is used to 

separate volatile (and no-volatile, after derivatization) metabolites. CE 

separate polar ionizable compounds based on their m/z. LC is by far the 

most popular separation technique used in metabolomics and allows the 
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separation of the metabolites based on their chemical properties as a 

function of the stationary phase of the selected chromatographic 

column. The main advantages of MS hyphenated to separation 

techniques are: i) its high sensitivity, several orders of magnitude lower 

than NMR; ii) its high resolution and selectivity; iii) the possibility of 

performing fragmentation analysis thus confirming the identity of the 

detected metabolites and the identification of unknown and unexpected 

compounds; and iv) the information is easier to handle than in the case 

of NMR spectroscopy (80, 103, 108).  

 

1.7.3 LC-MS-based metabolomics 

 

Currently two approaches are used for LC-MS-based metabolomic 

investigations: i) untargeted and ii) targeted. Although the latter may not 

be considered as a true 'omic' approach because it basically consists in a 

biased analysis which is driven usually by a hypothesis or by a priori 

knowledge of the system under study, targeted analysis may be 

considered an important part of untargeted metabolomics. Once 

potential biomarkers have been deciphered by untargeted metabolomics 

analysis, they should be validated by performing targeted quantitative 

analysis (Figures 1.4, 1.5). 
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Figure 1.5. Scheme of the proposed global metabolite profile strategy. The 

strategy is based in the combination of both untargeted and targeted 

metabolomics analysis with the workflow described in Figure 1.4 as starting 

point. Untargeted analysis is able to provide candidate biomarkers that can be 

validated by the use of targeted quantitative analysis. Moreover targeted analysis 

is a complementary tool to untargeted analysis when addressing metabolites 

belonging to a specific class. Adapted from reference (103) 
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Untargeted metabolomics 

 

Untargeted metabolomics aims to characterize the maximum possible 

number of metabolites in a given biological sample. It is focused on an 

unbiased profiling of the metabolome in order to link specific patterns of 

metabolites to a given treatment or condition (103, 108). As previously 

mentioned, the broad chemical and physical diversity of the metabolome 

renders the simultaneous analysis of all the existing metabolites in a 

given sample via a single technique impossible. In LC-MS-based 

metabolomics, this aim can be achieved with the combination of the 

right separation strategy with a detection system that covers a wide 

range of m/z in an unbiased way (103).  

Traditional LC separations have been performed using reversed phase 

(RP) chromatography (107, 114, 115). RP columns, typically C18-bonded 

silicas, are able to retain and separate medium-polar and non-polar 

metabolites and are a good option as starting point in metabolomic 

studies. However, very polar compounds elute in the void volume or with 

minimal retention. Recent advances in column technology, such as 

hydrophilic interaction chromatography (HILIC) (116), allow the detection 

of polar/ionic analytes which, typically, are poorly retained by RP phases 

or indeed are not retained at all (117-119). Stationary phases used in 

HILIC chromatography include amine, amide or free silanol groups. The 

retention of a metabolite is a combination of liquid-liquid partitioning, 

adsorption, ionic interactions, and hydrophobic retention and is heavily 

dependent on the nature of the analyte and the composition of the 

mobile phase (117). Using HILIC chromatography coupled to MS may also 

offer higher sensitivity than conventional RP phases because of increased 

ionization efficiency resulting from the use of mobile phases containing 

a high proportion of organic solvents. No single separation technique is 

able to resolve and detect the complete range of metabolites that may be 

present in a complex biological sample; therefore, achieving the most 
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comprehensive metabolome coverage may require the use of several 

column chemistries (103, 107). 

With respect to MS detection, untargeted metabolomics require 

instruments with a sensitive full scan mode and accurate mass 

measurement. The quadrupole time of flight (QTOF) mass spectrometer 

meets such requirements as it combines the stability of a quadrupole 

with the high efficiency, sensitivity and accuracy (< 5ppm) of a TOF. It 

also offers mass fragmentation capabilities for unknown metabolite 

identification. Thanks to its capabilities, the QTOF mass spectrometer 

has become the instrument of choice for untargeted analysis 

approaches, although other instruments such as Orbitrap or Fourier 

Transform Ion Cyclotron Resonance also meet high mass resolution 

capabilities (103). 

 

Targeted metabolomics 

 

Targeted metabolomics aims at the quantitative determination of a 

previously selected set or class of metabolites. The recent advances in 

MS instruments along with the development of ultra performance liquid 

chromatography (UPLC) have permitted the simultaneous quantification 

of dozens to hundreds of target metabolites in a single chromatographic 

run (103, 108). The usefulness of targeted metabolomics resides in 

mapping some metabolites of interest, instead of the whole metabolome. 

This approach is especially suitable in hypothesis-driven studies, where 

the focus is on a specific pathway or class of compounds, or to validate 

previously discovered biomarkers (Figure 1.5).  

Targeted metabolomics requires the unambiguous identification and 

the quantification of the metabolites of interest. With respect LC, the 

chromatographic separation is optimized according to the chemical 

properties of the group of metabolites of interest. Triple quadrupole (TQ) 

mass spectrometers, mostly working in multiple reaction monitoring 
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(MRM) mode, are the most common platform to perform targeted 

analysis. TQ mass spectrometers have a lower mass resolution than 

QTOF, however they have greater sensitivity, specificity, robustness, and 

a broader dynamic range. In TQ operating in MRM, the first quadrupole 

selects a parent ion that is fragmented in the second quadrupole 

(collision cell) to give specific fragments (daughter ions) that are selected 

in the third quadrupole before arriving to the detector. Thus in UPLC-TQ 

targeted metabolomics the high selectivity, that ultimately favors its high 

sensitivity, is provided by a triple filter: 1) retention time (RT) in the 

UPLC; 2) molecular formula/mass, determined by the first quadrupole; 

and 3) structure, determined by the fragmentation process and the 

selection of daughter ions in the third quadrupole (103, 120).  

 

1.7.4 Data analysis in metabolomics 

 

LC-MS untargeted analysis generates huge amounts of data in form of 

a three-dimensional matrix (RT, m/z and signal intensity). The ultimate 

goal of data analysis applied to metabolomics is to transform the raw 

data provided by the analytical platform into reliable, useful and 

intelligible biological information (103, 121). After several preprocessing 

steps, the result is a two-dimensional matrix (usually RT_m/z, signal 

intensity) in which the data from all the samples have been aligned, 

normalized, centered... and are ready to be subjected to univariate and 

multivariate data analysis (MVDA) (103).  

Univariate methods analyze only one variable at a time and they 

include tests to compare different sets of samples such as t test (or its 

non-parametric analog Mann-Whitney test) for two-group problems or 

ANOVA (analysis of variance) for multiple-class problems. Multivariate 

methods use all variables simultaneously and deal with the relationship 

among variables. (121). The MVDA workflow typically involves two 

statistical approaches comprising unsupervised and supervised methods. 
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Unsupervised multivariate data analysis 

 

Unsupervised multivariate methods, in which no a priori knowledge 

about the samples is used by the employed algorithm, are usually 

performed in order to visualize the natural interrelationship among the 

different samples thus revealing groups, trends and outliers (122). Two 

of the most commonly used tools to performed unsupervised 

multivariate analysis in metabolomics studies are hierarchical cluster 

analysis (HCA) and principal component analysis (PCA). 

In HCA, the multidimensional data obtained by untargeted 

metabolomics analysis is reduced to a correlation/distance matrix. Then, 

the samples are clustered together in a single dendogram and the 

distances between the samples reflect the similarities and differences 

between their metabolomic patterns (123). Different distance measures 

(e.g. Euclidean, Pearson, Spearman) and clustering algorithms (e.g. 

average linkage, single linkage, complete linkage, ward, centroids) can 

be used in the development of HCA models (124).  

PCA is a statistical method that reduces a great number of variables 

(usually correlated) into a smaller number of uncorrelated variables, 

which are called principal components (112, 122). This transformation is 

defined in such a way that the first principal component has the largest 

possible variance (that is, accounts for as much of the variability in the 

data as possible), and each succeeding component in turn has the 

highest variance possible under the constraint that it is orthogonal to 

(i.e., uncorrelated with) the preceding components. The goal of the 

exercise is dimensional reduction (usually to two or three components), 

while sacrificing as little accuracy as possible. The results of a PCA are 

usually discussed in terms of ‘scores’ that indicate the relationship 

between samples and 'loadings', which indicates the relationships 

(correlations) between the variables The scores represent the original 

data in the new coordinate system and the loadings are the weights 
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applied to the original data during the projection process. Each point in 

the scores plot represents one sample and each point in the loading plot 

represents one feature. Sample points that cluster together have more 

similar metabolomic patterns (and hence more similar biochemical 

composition) than those that cluster apart (112, 122). 

 

Supervised multivariate data analysis 

 

If the objective of data analysis is classification or regression, 

supervised predictive models have to be created. Several tools have been 

applied in metabolomics to achieve this purpose: random forests, 

artificial neural networks, support vector machine classification, 

discriminant analysis, SIMCA (soft independent modeling of class 

analogy)... However, partial least squares–discriminant analysis (PLS-DA) 

and orthogonal projection to latent structures-discriminant analysis 

(OPLS-DA) are the most popular ones (122, 125, 126). PLS-DA is a PLS-

based model in which the dependent variable (Y block) represents class 

membership (127, 128). OPLS-DA is a variant of the PLS method in which 

the variation in X (in metabolomics it corresponds to the intensity of the 

detected features) is divided in two parts, one that is linearly related to Y 

and one that is unrelated (orthogonal) to Y (122, 129). PLS-DA and OPLS-

DA are projection based methods, like PCA, however, they are preferred 

to PCA because the dimension reduction that PLS offers is guided 

explicitly by the among-groups variability, whereas PCA is only capable 

of identifying gross variability directions and is not designed to 

distinguish 'among-groups' and 'within-groups' variability (103, 128, 

130). A common problem with PLS-DA is its propensity to data 

overfitting. This occurs when the algorithm appears to achieve good 

separation but has done so by picking up random noise rather than real 

signals (121, 131). This problem is addressed by using double cross 

validation (2CV) (132) in combination with permutation tests (133, 134). 
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In a 2CV procedure, the data are subdivided into two different subsets 

(the size depends on the times the validation loop is performed), one is 

used for model development and the other is reserved as a validation 

set. Within the first subset a second division into two different subsets is 

performed (the usual procedure at this stage is to develop the model 

with all the samples except one, that is used for model validation) in 

order to optimize model parameters such as the number of latent 

variables (LVs) employed to develop the model (132). The samples 

included in each of the subsets are interchanged until all the samples 

have been included in each one. The developed model is an average of 

all the generated during the cross validation (CV) strategy. 

A permutation test involves randomly reassigning the class labels and 

performing PLS-DA on the newly relabeled data set. The process is 

repeated hundreds or thousands of times, and the performance 

measures are plotted on a histogram for visual assessment. From the 

resulting histogram, it is possible to determine whether the original class 

assignment is significantly different from, or a part of, the distribution 

based on the permuted class assignments (133). 

 

1.7.5 State of the art in the application of metabolomics to 

hepatotoxicity prediction 

 

Metabolomics is increasingly being used in toxicological studies and is 

now recognized as a promising technology with potential application in 

different areas of toxicology such as screening of drug-candidates, 

identification of biomarkers of toxicity and elucidating mechanisms of 

toxicity (109, 112, 135). Several recent studies have highlighted the 

usefulness of metabolomics applied to the study of hepatotoxic effects, 

usually targeting body fluids such as urine and serum, using rodents as 

in vivo models (104, 136-140). However, the presence of metabolomic 

studies associated to hepatotoxicity in humans is scarce (141-143).  
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The application of metabolomics to cells in culture is an active field of 

research and several groups have put their efforts in the optimization of 

sample processing conditions applied to different types of cells and 

metabolomic applications (103). A number of cells including human 

fibroblasts (144, 145), human induced pluripotent stem cells (146), CHO 

cells (147, 148), primary-cultured human hepatocytes (149), cancer cells 

(150, 151), INS-1 cells (152, 153), HepaRG cells (154) and HepG2 cells 

(155, 156) have been used in metabolomic studies. In spite of the 

extensive available literature about the topic, there is no general 

consensus about the harvesting, extraction or analysis methods to be 

applied to mammalian cells in adherent culture. Therefore, optimization 

of sample processing and analysis conditions is a pre-requisite prior to 

the performance of metabolomic studies. Much more limited has been 

the application of metabolomics to cell culture systems for toxicity 

purposes and, in particular, for DILI studies. In contrast to 

transcriptomics or cytomics that have been widely applied to in vitro 

hepatotoxicity assessment, relatively few studies have used 

metabolomics (154, 156-158). Moreover, previously reported 

toxicometabolomic studies using liver-derived cell models (HepG2 cells, 

HepaRG cells and primary hepatocytes) were focused in the effects of a 

single hepatotoxin (or a very reduced number of them). Therefore, the 

potential utility of cell metabolomics to identify and classify drugs able 

to induce hepatotoxicity through different mechanisms has not been 

explored yet.  
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1.8 Hypothesis of work and objectives. 

 

Based on the previous evidences our hypothesis stands that in vitro 

toxicometabolomics could be a valuable tool to study and decipher 

patterns associated to DILI. This approach may lead to high sensitive and 

specific predictions of hepatotoxicity risk to be used in drug 

development and pre-clinical safety studies as well as it could provide 

valuable information about candidate biomarkers, opening the possibility 

to discover generic and mechanism-specific biomarkers of 

hepatotoxicity. 

We propose the following objectives: 

 

1. Development of an analytical strategy for the LC-MS analysis of 

the metabolome: from sample processing and analysis to data 

analysis and biomarker validation. 

 

2. Identification of biomarkers and metabolomic patterns associated 

to drug-induced hepatotoxicity using HepG2 as in vitro cellular 

model. 

 

3. Extrapolation of in vitro biomarkers to in vivo medaka (Oryzias 

lapites) and rat models, and comparison of the molecular 

mechanisms among these models. 
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2.1 General procedures, equipment and reagents 

 

All the LC solvents (i.e. water, methanol, acetonitrile and isopropanol) 

were of LC-MS grade and were purchased from Fisher Scientific 

(Loughborough, U.K.). All the LC-MS additives (i.e. formic acid and 

ammonium acetate) and the analytical standards (when available) were 

acquired from Sigma-Aldrich (Madrid, Spain). BA (deuterium labeled BA 

included) were obtained from Steraloids (Newport, USA). Peptides were 

acquired from Xaia Custom Peptides (Göteborg, Sweden) and Bachem 

(Bubendorf, Switzerland). The rest of deuterated internal standards (IS) 

were purchased from Cambridge Isotope Laboratories (Tewksbury, USA). 

Protein determinations were performed using a 96-well adapted Lowry 

method (159, 160). 

Tissue homogenizations were performed using a Precellys 24 dual 

system equipped with a Cryolys cooler (Precellys, Saint Quentin en 

Yvelines, France) in order to maintain the samples at a controlled 

temperature during the homogenization process (Figure 2.1.A). 

Sample evaporations were performed using a Savant SPD 121P SpeeVac 

concentrator equipped with a refrigerated vapor trap (Thermo Fisher 

Scientific, Watham, USA) (Figure 2.1.B). 

 

 

 

Figure 2.1. A) Precellys 24 Dual equipped with a Cryolys cooler. B) Savant 

SpeedVac connected to an oil-free vacuum pump and a refrigerated vapor trap.  
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2.2 Instrumentation used in MS-based metabolomics 

analysis 

 

All the metabolomics analyses were performed using an LC-MS 

analytical platform. The LC separations were performed using a Waters 

Acquity UPLC system (Waters, UK), with regards to analytes detection two 

different mass spectrometers were employed: a Waters Synapt HDMS 

QToF mass spectrometer (Waters, UK) for untargeted metabolomics 

analysis and a Waters Xevo TQ-S mass spectrometer (Waters, UK) for 

targeted analysis (Figure 2.2). 

 

 

 

Figure 2.2. LC-MS metabolomic platforms employed. A) Instrument employed for 

untargeted metabolomic studies: a Waters Acquity UPLC system coupled to a 

Waters Synapt HDMS QToF mass spectrometer. B) Instument employed for 

targeted metabolomic studies: a Waters Acquity UPLC system coupled to a Waters 

Xevo TQ-S mass spectrometer. 

 

 

2.2.1 Waters Acquity UPLC system 

 

UPLC is a variant of high performance liquid chromatography (HPLC) 

that uses columns with a particle size below 2 µm (typically 1.7-1.8 µm), 

which provides significant better separations than the traditional (3-5 

µm) columns and enables much faster analysis. This technique allows the 

combination of columns with small particles and the use of higher flow 
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rates, thus obtaining an increased speed separation with superior 

resolution and sensitivity (161). This is achieved thanks to the high 

pressure (up to 15000 psi) that can be reached with the combined used 

of UPLC systems and sub 2 µm particle size columns. 

The Waters Acquity UPLC system employed to carry out the analysis is 

equipped with a binary solvent manager that enables to perform gradient 

elutions with a maximum of two eluents, a refrigerated sample manager 

that allows to keep the samples at low temperature to minimize sample 

degradation while waiting to be analyzed, and a thermostated column 

manager that allows to perform separations at a controlled temperature. 

The system requires two elution solvents which are selected to achieve 

an appropriate chromatographic separation of the components present 

in a given sample and they are selected taking into account the 

chemistry of the employed chromatographic column. Additionally, two 

wash solvents that allow the cleaning of the injection system between 

injection cycles have to be selected: the weak needle wash (WNW) solvent 

and the strong needle wash (SNW) solvent. The WNW solvent has to be as 

close as possible to the initial conditions of the chromatographic 

separation. The SNW is aimed to clean the syringe in order to avoid inter-

sample contamination. 

Information about column temperature, flow rate, elution and wash 

solvents composition and gradient will be detailed for each of the used 

analytical methods. 

 

2.2.2 Waters Synapt HDMS QToF mass spectrometer 

 

Untargeted metabolomic studies were performed using a Waters 

Synapt HDMS QToF as mass spectrometer. This instrument enables the 

scan of a wide range of masses (50-1200 Da) with a high resolution (> 

5000 full width at half maximum (FWHM)) (see Formula 2.1) and high 

mass accuracy (< 5 ppm) (see Formula 2.2).  
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𝑚𝑎𝑠𝑠 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝐹𝑊𝐻𝑀)  =  
𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝑖𝑜𝑛 𝑚𝑎𝑠𝑠

𝑚𝑎𝑠𝑠 𝑝𝑒𝑎𝑘 𝑤𝑖𝑑𝑡ℎ 𝑎𝑡 ℎ𝑎𝑙𝑓 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 
 

 

Formula 2.1. Expression to calculate mass resolution using the full width at half 

maximum (FWHM) approximation. 

 

 

𝑚𝑎𝑠𝑠 𝑒𝑟𝑟𝑜𝑟 (𝑝𝑝𝑚) = 106 𝑥 
(𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝑖𝑜𝑛 𝑚𝑎𝑠𝑠 −  𝑒𝑥𝑎𝑐𝑡 𝑖𝑜𝑛 𝑚𝑎𝑠𝑠)

𝑒𝑥𝑎𝑐𝑡 𝑖𝑜𝑛 𝑚𝑎𝑠𝑠
 

 

Formula 2.2. Expression employed to calculate mass error in parts per million 

(ppm). 

 

 

This mass spectrometer is equipped with an electro spray ionization 

(ESI) source and is able to operate in both positive and negative 

ionization modes. Moreover, mass acquisition can be recorded in MS and 

in MS/MS modes simultaneously, thus allowing to perform mass 

fragmentation to confirm identities of putative biomarkers. The data 

station operating software was Masslynx v4.1 (Waters, UK). 

To ensure reliable mass measurements, the software requires mass 

axis calibration so that the m/z values for sample peaks can be 

accurately determined. Two different kinds of calibration procedures are 

performed before and during sample analysis, that is, off line and on line 

calibrations. The objective of off line calibration is to fix the relationship 

between the m/z and the time of flight of the ions inside the TOF tube, 

while on line calibration performs a real on time correction of that 

adjustment. Off line calibration is performed using a set of known 

reference peaks (i.e. via infusion of a solution containing 10% formic 

acid/0.1 M NaOH/acetonitrile (1:1/8)) so that the software determines 

the differences between the real mass of the reference peaks and the 

observed measurement of them along the mass axis. A calibration curve 

can then be generated allowing the accurate determination of masses 

included in the calibration mass range. On the other hand, on line 

calibration relies on the measurement of a single reference mass (i.e. 
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Leucine Enkephalin, m/z 556.2771 or 554.2615, in ESI positive (+) and 

ESI negative (-), respectively, prepared at 50 pg/mL in acetonitrile/water 

(1:1) plus 0.1% formic acid) that is acquired during sample acquisition 

thanks to a dual electro spray ion source that allows the co-introduction 

of analyte and reference compounds directly into the ion source. The 

reference mass (also called lock mass) performs a real time correction of 

the calibration curve allowing to achieve a high accuracy in mass 

determination (< 5 ppm). 

 

2.2.3 Waters Xevo TQ-S mass spectrometer 

 

Targeted metabolomics analyses were performed using a Waters Xevo 

TQ-S mass spectrometer equipped with an ESI probe that allows the 

simultaneous acquisition in positive and negative ionization modes. The 

data station operating system was Masslynx v4.1 (Waters, UK). TQ mass 

spectrometers are designed for targeted analysis as they allow sensitive, 

selective and quantitative analysis of a known group of metabolites. The 

most common operational mode of TQ mass spectrometer is MRM. In TQ 

operating in MRM mode, the first quadrupole selects a parent ion that is 

fragmented in the collision cell to give specific fragments (daughter ions) 

that are selected in the second quadrupole before arriving to the 

detector. QuanOptimizer software (Waters, UK) was employed to 

optimize transitions (selection of parent and daughter ions), cone 

voltages and collision energies for each of the targeted metabolites. 
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2.3 Analytical conditions for LC-MS untargeted analysis 

 

In all the cases the temperatures of the column and the autosampler 

were set at 40 °C and 4 °C, respectively. The sample injection volume was 

5 µL and the flow rate was set at 0.4 mL/min. The ESI conditions were as 

follows: capillary was set at 3.2 kV and 2.8 kV in the positive and 

negative modes, respectively; cone voltage was set at 40 V; desolvation 

and source temperatures were set at 380 and 120 ºC, respectively; the 

flow rates of cone and nebulization gases were set at 50 and 800 L/h, 

respectively. The same parameters were applied for simultaneous MS and 

MS/MS analysis, with a collision energy ramp from 5 to 60 eV in the 

MS/MS channel. 

 

2.3.1 Generic-RP untargeted analysis 

 

LC-MS conditions for generic-RP untargeted analysis were adapted 

from reference (162). UPLC separation was performed using an Acquity 

UPLC HSST3 (1.7 µm, 2.1 × 100 mm; Waters) column. Eluent and washing 

solutions composition were: i) Solvent A: 0.1% formic acid in water; ii) 

Solvent B: 0.1% formic acid in acetonitrile; iii) WNW and seal wash (SW): 

water/acetonitrile (90:10, v/v); and iv) SNW: acetonitrile. A 26-min 

elution gradient was performed as follows: during the first 2 min, eluent 

composition was set at 99.9% A and 0.1% B, which was linearly changed 

to 75% A and 25% B in 4 min; then the proportion of B was increased to 

80% in the next 4 min, followed by a further increase to 90% B reached at 

min 12 and 100% B at min 17 and kept for 5.5 min. Finally, the initial 

conditions were recovered and maintained for 2 min for column 

conditioning.  

Mass detection was performed in the MS scan mode from 50 to 1000 

Da with a scan time of 0.1 s.  
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2.3.2 Lipidomic-RP untargeted analysis 

 

LC-MS conditions for lipidomic-RP untargeted analysis were adapted 

from reference (163). UPLC separation was performed using an Acquity 

UPLC BEH C18 (1.7 µm, 2.1 × 100 mm; Waters) column. Eluent and 

washing solutions composition were: i) Solvent A: 0.1% formic acid and 

1% ammonium acetate 1M in water; ii) Solvent B: 0.1% formic acid and 1% 

ammonium acetate 1M in acetonitrile:isopropanol (5:2); iii) WNW and SW: 

water/acetonitrile (90:10, v/v); and iv) SNW: acetonitrile:isopropanol 

(5:2). Two different chromatographic separations were performed for ESI 

(+) and ESI (-) modes, respectively. In ESI (+) mode a 18-min elution 

gradient was performed as follows: initial eluent composition was set at 

65 % A and 35% B, which was linearly changed to 20% A and 80% B in 2 

min; then the proportion of B was increased to reach 100% at min 9 and 

kept for 7 min. Finally, the initial conditions were recovered and 

maintained for 2 min for column conditioning. In ESI (-) mode a 18-min 

elution gradient was performed as follows: initial eluent composition was 

set at 85% A and 15% B, which was linearly changed to 35% A and 65% B 

in 2 min; then the proportion of B was increased to reach 100% at min 11 

and kept for 5 min. Finally, the initial conditions were recovered and 

maintained for 2 min for column conditioning. 

Mass detection was performed in the MS scan mode from 200 to 1200 

Da in ESI (+) and from 100 to 1200 Da in ESI (-), with a scan time of 0.1 s.  
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2.3.3 HILIC untargeted analysis 

 

UPLC separation was performed using an Acquity UPLC BEH Amide (1.7 

µm, 2.1 × 100 mm; Waters) column. Eluent and washing solutions 

composition were: i) Solvent A: acetonitrile; ii) Solvent B: 20 mM 

ammonium acetate pH 3 in water; iii) WNW: acetonitrile/water (90:10, 

v/v); and iv) SNW and SW: water/acetonitrile (90:10, v/v). A 18-min 

elution gradient was performed as follows: during the first 3 minutes 

eluent composition was set at 95% A and 5% B, which was linearly 

changed to 75% A and 25% B in 6 min; then the proportion of B was 

increased to reach 65% at min 13 and kept for 2 min. Finally, the initial 

conditions were recovered and maintained for 2.5 min for column 

conditioning. 

Mass detection was performed in the MS scan mode from 50 to 1000 

Da, with a scan time of 0.1 s.  
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2.4 Raw data processing and metabolite identification in 

untargeted metabolomic analysis 

 

The main goal in data processing is to correctly arrange the huge 

amount of raw data generated by the MS files into a matrix data that 

eases later data handling as MVDA. Thus, data is arranged into a 2D 

matrix in which each row represent one sample (object) and each column 

one ion detected by the MS (variable). Variables (columns) are expressed 

by the combination of three characteristics, two that define the identity 

of the ion, that is m/z and RT, and the ion intensity measured for each 

sample (164). 

Raw data was acquired using Masslynx v 4.1 software (Waters, UK) and 

was subsequently converted from *.raw format to *.cdf format using 

Data Bridge tool from Masslynx v4.1 software. Data processing was 

performed using the MZMine v.2.9.1 free software (165). The following 

steps were sequentially executed within the data processing (Figure 2.3): 

i) Peak picking/detection, it involves the detection of all signals above a 

given threshold, thus distinguishing true signals from noise; ii) 

Deconvolution of the detected signals in order to integrate mass and 

chromatographic information, as a result, the list of peaks (features) - 

characterized by RT, m/z and intensity for each sample - is obtained; iii) 

Alignment, in order to be able to compare among different samples, 

features must be matched and aligned across all the samples included in 

the sample set; iv) Gap filling, it involves gathering intensity information 

from peaks that were initially not detected in all the samples; v) Filtering, 

it consists in the elimination of those non informative features that are 

not present in a given number of samples, initial filtering was set to 

remove those features that are not present in at least 20% of the problem 

samples belonging to a common class or in 50% of a given type of 

quality control (QC) sample, once QC checking procedures have been 

performed, additional filters are applied and those features not present 
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in the problem samples or present in the blank QC samples are also 

removed (166, 167); vi) Normalization, different normalization 

approaches have been described in the bibliography (164, 168), however 

we decided to normalize data with respect the IS added to each sample 

during the homogenization and preparation processes (166, 167). As the 

response of the IS is affected by factors such as sample losses during 

preparation, volume of injection or mass detection, after IS normalization 

those confounding factors are corrected and removed from the data 

before further analysis steps. Additional normalization procedures for 

some types of samples - i.e. samples from HepG2 cultures and from liver 

tissue samples from medaka (Oryzias latipes) - include the normalization 

of the signal with respect the total amount of the biological sample, 

represented by the total amount of protein (103). 

 

 

Figure 2.3. Schematic representation of the most important steps performed 

during data processing. 
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Finally, metabolite identification was performed by the query of the 

exact mass of the detected features against on line databases within a 

certain mass range (±5 ppm). The online databases employed to perform 

metabolite identification are: the Human Metabolome Database (HMDB) 

(110), the LIPID MAPS-Nature Lipidomics Gateway (169) and the Metlin 

database (170). The identity of metabolites of interest was confirmed by 

comparing the MS/MS spectra of the selected features with those of the 

proposed metabolites on the online databases HMDB (110), Metlin (170) 

and MassBank (171). The identities of the selected metabolites were 

further confirmed by the use of authentic standards when available.  
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2.5 Data analysis 

 

All the univariate and multivariate statistical analysis as well as data 

plots were performed using R (172). The following packages were 

employed: 'pcaMethods' (173), 'mixOmics' (174), 'DiscriMiner' (175), 

'gplots' (176), 'boot' (177), 'caret' (178), 'FactoMineR' (179), 'cvTools', 

'pROC' (180), 'rgl' (181) and 'VennDiagram' (182). To perform data 

analysis, all the information for a given sample (i.e. the information 

provided by different analytical conditions) was joined into a single 

matrix comprising all the data available for each biological sample. The 

data analysis strategy is depicted in Figure 2.4 (183) 

 

 

 

Figure 2.4. Workflow of data analysis strategy. Data analysis strategy is 

developed in three different stages. I) Outlier detection and elimination is 

performed based on the examination of the intensity distribution of the samples 

and non-supervised multivariate analysis such as hierarchical cluster analysis 

(HCA) and principal component analysis (PCA). II) In order to decipher those 

metabolomic patterns associated with specific mechanisms of toxicity, data is 

split in control vs one treatment datasets and those variables showing a q value < 

0.05 (based on a Student's t test with FDR correction for multiple testing) or a VIP 

(variable importance in the projection) value > 1.2 (in PLS-DA models) are 

considered to be significantly different as a result of the mechanism of toxicity 

under study. III) Finally, predictive/classificatory models are developed based on 

PLS-DA modeling with a VIP-based selection criteria of discriminant variables.  
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2.5.1 Detection of outliers 

 

The first step in data analysis is the detection of potential outliers. 

They are defined as those samples that show a behavior that stands out 

from the average one. Abnormal sample compositions can be due to 

sample degradation, instrumental errors, changes in measurement 

conditions or faults due to human errors (131). Two different strategies 

were implemented in order to perform an early detection of outliers in 

the data analysis process. First, density and box-and-whisker plots, in 

which all the information about the intensity distribution of all the 

features for a single sample is visualized using a single graphic, were 

drawn. Those samples whose distributions considerably differed with 

respect to the rest of samples belonging to their same class (i.e. control 

samples, steatosis samples...) were considered outliers and eliminated 

from the following steps. Then, unsupervised (that is, without using any 

a priori knowledge about the samples) multivariate analyses were 

performed in order to visualize the natural interrelationship among the 

different samples and to detect outliers that have not been previously 

detected and may interfere in the subsequent analysis. In the case of 

multiclass approaches (more than two groups) this was performed 

testing one treated group with respect to its control at the time (i.e. 

steatosis vs control, phospholipidosis vs control and so on). The tools 

employed to this end were HCA and PCA. In both approaches, samples 

that cluster together are considered to have more similar metabolomic 

patterns than those that cluster apart. Data sets were mean-centered and 

unit variance-scaled before performing HCA. Data sets were log-

transformed, mean-centered and unit variance-scaled before carrying out 

the PCA. Samples whose position in the PCA scores plot is far from the 

rest of the samples of belonging to the same group (i.e. outside the 

Hotelling's T
2

 95% confidence ellipse (184)) may be considered outliers.  
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The process of outlier detection and elimination is exemplified in 

Figure 2.5 using a simulated data set. The data set used in the example 

is composed of 100 variables and 20 observations, 10 belonging to 

group A and 10 belonging to group B. For group A the first 50 variables 

follow a normal distribution with mean 80 and standard deviation 15, the 

second 50 variables follow a normal distribution with mean 120 and 

standard deviation 15. For group B, the variables share the same 

characteristics but with the means inverted. For sample B5, a value of 

160 is assigned for the mean of the first 50 variables. Figure 2.5.A 

shows that the mean value and the deviation of the intensity of the 

variables for sample B5 are greater than the ones obtained for the rest of 

samples. The PCA scores plot showes that sample B5 falls out of the 

Hotelling's T
2

 95% confidence ellipse obtained for group B (represented 

in red) (Figure 2.5.B). Finally, the dendogram drawn at the top of the 

Figure 2.5.C shows that two clusters are obtained, corresponding to 

groups A and B, respectively. However, it can be seen that within the 

cluster corresponding to group B, sample B5 shows the greater distance 

with respect to the rest of the samples and is clustered apart of the rest 

samples of the group. Moreover, a close look at the heatmap reveals that 

the reason of this distance is an increase in the intensity in a group of 

variables with respect to the rest of the samples of the group. Then, 

sample B5 is identified as an outlier and the reason of its abnormal 

behavior with respect of the rest of samples of the group is evidenced.  
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Figure 2.5. Simulated example of the application of boxplot of intensity 

distribution (A), PCA (B) and HCA (C) for the detection of outliers. A) The boxplot 

intensity distribution shows that sample B5 has a higher mean and a higher 

deviation compared to the rest of samples belonging to its same class (red 

color). Boxes denote interquartile ranges, lines denote medians, and whiskers 

denote the 10th and 90th percentiles. B) PCA scores plot. The Hotelling's T
2

 95% 

confidence ellipse is drawn for each group (green, class A, and red, class B). 

Sample B5 is out of the ellipse and far from the rest of samples of its same 

group. C) HCA, the dendogram drawn at the top of the heatmap shows the big 

distance between sample B5 and the rest of the samples of the group, which are 

clustered together. Based on this information, sample B5 would be considered to 

be an outlier. 
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2.5.2 Identification of metabolomic alterations 

 

In order to visualize the metabolomic changes provoked by each 

specific treatment with views to mechanistic elucidation, a t test with 

Benjamini-Hochberg (false discovery rate, FDR) correction for multiple 

testing was applied (185). Those variables with a q value < 0.05 were 

considered to be significantly altered as a result of the treatment. As 

univariate tests do not reflect the multivariate nature of the data and the 

relationship among the different variables, PLS-DA models were built for 

each control-treatment case and those variables with a VIP (variable 

importance in the projection) value > 1.2 were also considered to have a 

marked impact in discriminating between control and treatment groups. 

Based on those significantly altered metabolites, the pathway analysis 

tool of Metaboanalyst (186) and MBRole (187) were employed to map 

which pathways were significantly altered as a consequence of the toxic 

insult. Then, box-and-whisker plots of significantly altered 

metabolites/groups of metabolites/pathways were drawn to facilitate 

data visualization and interpretation. 

To exemplify the proposed data analysis strategy with respect to 

detection of altered variables (metabolites) a simulated data set 

consisting of 100 variables and 30 samples, split in two groups of equal 

size, was created. The variables were generated following a normal 

distribution of mean 100 and standard deviation 15. Among the 100 

variables, 10 variables were selected to have different mean between the 

two groups: V1 (A= 120, B= 100), V11 (A= 80, B= 100), V21 (A= 100, 

B=120), V31 (A= 100, B= 120), V41 (A= 140, B= 100), V51 (A= 60, B= 

100), V61(A=100, B= 140), V71 (A= 100, B= 140), V81 (A= 120, B= 100), 

and V91(A= 100, B= 120). Table 2.1 shows the results of selected 

variables using a simple t Student's test (p < 0.05), a t Student's test with 

FDR correction (q < 0.05) and using VIP value (VIP > 1.2) as criteria. FDR 

was the most restrictive criteria, with only 8 selected variables, all of 
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them belonging to those made up to be altered between the two groups. 

Similar results were obtained with respect the total number and the 

identity of the variables selected with the p value and the VIP strategies. 

In both cases all the variables with a predefined difference in the mean 

between the two classes were selected, however, a number of variables 

that were not supposed to be different between the two groups were also 

included.  

 

Table 2.1. Figures of the different strategies employed for variable selection over 

the simulated data described in Section 2.5.2. 

 

Strategy 

Number of 

selected 

variables 

Number of really 

altered variables 

selected 

Selected Variables 

FDR 8 8 

V1, V31, V41, V51, 

V61, V71, V81, V91 

p value 15 10 

V1, V4, V11, V21, 

V31, V36, V41, V42, 

V44, V51, V61, V71, 

V81, V90, V91 

VIP 16 10 

V1, V4, V11, V21, 

V31, V36, V41, V42, 

V44, V51, V61, V71, 

V75, V81, V90, V91 

FDR: variables with a q value < 0.05; p value: variables with a t Student's p value 

< 0.05; VIP: variables with VIP value > 1.2, VIP value corresponding to a PLS-DA 

model developed using 1 LV. Variables in italics represent variables with made up 

differences.  
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2.5.3 Predictive model development 

 

The main aim in the development of predictive models is to use the 

model showing maximum parsimony, that is, the one that best fits with 

the minimum possible number of predictors. To this end, a PLS-DA 

analysis using VIP-based variable ranking and selection was performed. 

 

Model validation 

 

Two different strategies with respect to model validation were 

attempted: CV and permutation testing (132, 133). While the optimum 

way of validating any model is to use an external data set, the limitations 

in the number of samples and compounds tested drove us to use CV and 

permutation testing instead. 

In a CV strategy the data is split in different subsets and depending on 

the way the CV is performed, some of the subsets are used to build the 

model and the rest are used to evaluate the capabilities of the model. 

Two different CV strategies were employed. For model development a 7-

fold CV strategy was employed (Figure 2.6.A). Using this approximation, 

the data was split into 7 different subsets. In each round of the CV, 6 of 

the subsets were used to develop the model and the last one was used 

as test set to evaluate the capabilities of the model. The process was 

repeated until all the subsets were used as test set. 

For model validation, two different parameters were employed: 

misclassification error and AUROC (area under the receiver operating 

characteristic curve), for multiclass problems the method developed by 

Hand and Till was employed (188). A randomized CV strategy was 

performed to estimate these parameters: 2/3 of the data were employed 

to develop the model and the rest 1/3 was used as test set (Figure 

2.6.B). The partitions were repeated 100 times in a randomized manner. 

 



Methodology 

85 

 

 

Figure 2.6. A) 7-fold CV, the data is split in 7 different subsets. 6 subsets are 

used as train set to build the model and the last one as test set to evaluate it. 

The process is repeated until all the subsets have been used as test set. B) The 

data is split in two subsets, 2/3 of the data are used as train set and the rest 1/3 

as test set. The partitions are repeated 100 times randomly. C) In permutation 

testing the classes (Y) are randomly assigned (Yp) and the model is developed 

and validated using the permuted classes. 
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Finally, permutation testing was also employed as validation strategy. 

A permutation test involves the random reassignation of the class labels 

and the model development and evaluation based on the newly relabeled 

data set (Figure 2.6.C). Permutation testing compares the original 

model’s goodness of fit with the values obtained after class 

randomization. The model performance figures of merit can be plotted 

on a histogram for visual assessment, making possible to determine 

whether the original class assignment is significantly different from, or a 

part of, the distribution based on the permuted class assignments. An 

empirical p-value can be calculated by determining the number of times 

the permuted data yielded a better result than the one using the original 

labels (133). The process was repeated 1000 times and the performance 

results were compared to those obtained with the real classes labelling 

(133). 

 

PLS-DA 

 

PLS-DA is a PLS-based model in which the dependent variable (Y block) 

represents class membership (127, 128). The whole objective in PLS-DA 

is to model the relationship between X (the MS data set) and Y (classes). 

The fundamental equations of PLS-DA (127) are written and graphically 

represented in Figure 2.7.  
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[eq 1] 
𝑻 = 𝑿𝑾 

[eq 2] 
𝑿 = 𝑻𝑷′ + 𝑬 

 

 

[eq 3] 
𝒀 = 𝑼𝑪′ +  𝑭 

 

 

[eq 4] 
𝒀 = 𝑻𝑪′ + 𝑭∗ = 𝑿𝑾𝑪′ + 𝑭∗ = 𝑿𝑩 + 𝑭∗

 

 

 

[eq 5] 
𝑩 = 𝑾𝑪′ 

 

Figure 2.7. Fundamental equations of PLS-DA. n represents the number of 

observation, k the number of independent variables, m the number of classes in 

which the observations can be classified and a the number of LVs employed to 

develop the PLS-DA model. X is a n x k matrix of predictors, and Y a n x m matrix 

of responses. P (k x a) and C (m x a) are the matrix loadings of X and Y, 

respectively. T and U are n x a scores matrices for X and Y, respectively. E, F and 

F* represent residual (i.e. error) matrices. W (k x a) represents the X-weight 

matrix and B (k x a) represents the matrix of regression coefficients for all Ys. X 

scores (T) are calculated as a linear combination of the original predictors with 

the weights [eq 1]. X and Y can be projected in the new a dimensional space [eq 

2,3]. Y can be predicted based on X scores (T) [eq 4], which can be reformulated 

based on eq 1,5 to look as a multiple regression model in which the responses 

(Y) can be predicted based on a series of predictors (X) via the corresponding 

coefficients (B). Equations 2, 3 and 4 are graphically represented. 
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Data sets were log-transformed, mean-centered and unit variance-

scaled before carrying out the PLS-DA. The selection of the optimum 

number of LVs and the evaluation of the quality of the PLS-DA models 

was conducted by the typical CV procedure by leaving one-seventh of 

samples out of each round (Figure 2.6.A) (189). Different model 

parameters were used to evaluate model performance: i) total Y 

explained variance (i.e., R
2

); ii) predictable Y variation (i.e., Q
2

); iii) 

prediction accuracy, evaluated as misclassification error rate; and iv) 

AUROC. Different methods can be used in order to evaluate the 

importance of a variable in the output provided by a PLS-DA model (167), 

among them, we decided to employ the VIP value. The VIP score of a 

predictor summarizes the importance for the projections to find a LVs. 

Since the average of the squared VIP scores equals 1, the ‘‘greater than 

one’’ rule is generally used as a variable selection criterion (190). 

Therefore, an uninformative variable elimination process can be 

performed based on the VIP scores obtained (167). Such procedure not 

only improves model performance, but also achieves model 

simplification, a relevant issue concerning the further development of 

‘target’ MS approaches to quantitatively determine biomarkers (167). As 

overfitting is a common problem associated with PLS-DA modeling (122, 

189), a bootstrapping (191, 192) strategy coupled to VIP values 

determination was setup to select those metabolites that should be 

included in the final predictive model. 

Bootstrapping is based on random resampling with replacement to 

estimate a statistic parameter. For each of the datasets used for PLS-DA 

model building, two hundred derived datasets were obtained by random 

sampling with replacement of the observations. A PLS-DA model was 

built for each of those derived datasets and the median VIP value for 

each predictor was calculated. PLS-DA models were built with decreasing 

number of variables according to their ranked median VIP value. For each 

model, R
2

, Q
2

 and prediction accuracy were recorded. The optimum 
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predictive model was selected as the one providing the highest accuracy 

with the lowest number of retained variables. To further assess model 

consistency and performance, a response permutation test (n = 1000) 

based on R
2

, Q
2

, prediction accuracy and AUROC was applied (133, 134).  

In order to facilitate the understanding of the PLS-DA data analysis 

strategy, the whole process was applied over the simulated data 

described in Section 2.5.2. Figure 2.8 shows the values of R
2

, Q
2

 and 

misclassification error obtained for PLS-DA models built using all the 

variables and a number of LVs varying from 1 to 3. From the obtained 

results it can be concluded that the optimum number of LVs to be used 

for PLS-DA model development is 1 as it provides the highest values of 

Q
2

, which evaluates the predictive capabilities of the system, and 

accuracy. 

 

 

 

Figure 2.8. Values of R
2

, Q
2

 and misclassification error as a function of the 

number of LVs employed to build the PLS-DA model using the simulated data 

described in Section 2.5.2. The values obtained for each parameter and model 

are written over the corresponding bar. 
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After the determination of the optimum number of LVs, the next step 

is to determine the variables that should be be included in the final 

predictive/classificatory model. To this end, PLS-DA models with an 

increasing number of variables, ranked according to the previously 

described strategy, were built and their performance was evaluated. 

Following the analysis of the example, all the variables with made up 

differences were within the top 15 ranked variables, furthermore the four 

variables with the highest simulated differences (i.e. V51, V61, V71 and 

V81) were the ones with the highest median VIP value. Moreover, Figure 

2.9, shows that the model with the highest performance (i.e. AUROC = 1, 

misclassification error = 0) was achieved with only those four variables. 

 

 

 

Figure 2.9. Values obtained for the AUROC (green) and misclassification error 

(red) versus the number of retained variables using the simulated data described 

in Section 2.5.2 based on the bootstrapped resampling coupled to VIP ranking 

strategy. The data is expressed as mean ± standard deviation. The minimum 

value for the misclassification error and the maximum value for the AUROC are 

obtained with the model developed using only the four top ranked variables. 
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The scores and loadings plots corresponding to the optimum PLS-DA 

model are represented in Figure 2.10.A and Figure 2.10.B, respectively. 

The position of a variable in the loadings plot is determined by its 

relation to other variables and to the class assignments. In the example 

represented in Figure 2.10.B, variables V41 and V71 are positively 

correlated to each other and to Class A, as represented by their close 

values obtained with respect to the first LV. The same conclusion can be 

obtained with respect to variables V51 and V61and Class B.  

 

 

 

Figure 2.10. Scores (A) and loadings (B) plots corresponding to the PLS-DA model 

developed using the top 4 ranked variables and 1LV using the simulated data 

described in Section 2.5.2 and a bootstrapping coupled to VIP-based ranking and 

variable selection strategy. Class A is represented in green, class B in red and 

variables in blue. X axis represents sample order. 
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Model validation was performed by using a permutation test. The 

results are shown in Figure 2.11. Four parameters were evaluated: R
2

, Q
2

 

misclassification error and AUROC. The histograms represent the 

distribution of values obtained for the permuted models and the value 

obtained with the real classes is represented by a red dot. For all the 

parameters it can be seen that the real value is outside the distribution 

of the values obtained with the permuted classes, as 1000 permutations 

have been performed, an experimental p value < 0.001 can be assigned. 

These results indicate that the developed PLS-DA model is consistent and 

based on a real difference between the classes and does not reflect a 

chance correlation between them. 

 

 

Figure 2.11. Permutations tests (n=1000) for R
2

 (A), Q
2

 (B), misclassification error 

(C) and AUROC (D) corresponding to the PLS-DA model developed using the top 4 

ranked variables and 1LV from the simulated data described in Section 2.5.2 and 

a bootstrapping coupled to VIP-based ranking and variable selection strategy. 

Histograms represent the values provided by the PLS-DA models obtained using 

permuted classes. The red dots represent the value obtained for the PLS-DA 

model developed using the real classes, with the value written above it.  
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2.6 Culture and treatment of HepG2 cells with model 

hepatotoxic compounds 

 

Human hepatoma HepG2 cell line (ECACC 85011430) was used for in 

vitro hepatotoxicity studies. HepG2 are adherent cells with a high 

proliferation rate. They are epithelial-like cells growing as monolayers 

and forming characteristic cell clusters or islands (Figure 2.12). HepG2 

cells were routinely grown in culture grade flasks at 37 ºC under a 

humidified atmosphere 5% CO2 / 95% air in Ham’s F-12 / Leibovitz L-15 

(1:1, v/v) supplemented with 7% fetal bovine serum, 50 U/mL penicillin 

and 50 µg/mL streptomycin. Medium was renewed every 2 days. Cells 

reaching 70-80% confluence were ready to be used or passed. For 

subculturing purposes, cells were detached by treatment with 0.25% 

trypsin / 0.02% EDTA at 37 ºC. A sample of the obtained cell suspension 

was used to determine cell viability (by the trypan blue exclusion test) 

and cell number (e.g., using a cell counter) (193). For metabolomic 

studies, cells were seeded at a density of 8x10
4

 cells/cm
2

 on 3.5 cm (for 

specific-conditions analysis and processing method optimization) or 6 

cm culture dishes (for generic analysis in drug incubations). 

 

 

 

Figure 2.12. HepG2 cells cultured at low (panel A) and high (panel B) densities.  
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A total of 13 compounds were selected for the in vitro hepatotoxicity 

study based on data available in the literature (29, 69, 88, 89, 91, 92). 

Compounds with well-documented in vivo hepatotoxicity were classified 

according to the main mechanism involved in their toxicity (i.e. steatosis, 

phospholipidosis, cholestasis or OS) (Table 2.2) (29, 69, 88, 89, 91, 92). 

In addition, two compounds with no reports of hepatotoxic effects were 

used as negative controls (29). The stock solutions of the test 

compounds were prepared in DMSO and were freshly diluted in the 

culture medium to obtain the desired final concentration. Only sub-lethal 

concentrations of the compounds were used (Table 2.2) (29, 69, 88, 89, 

91, 92). HepG2 cells (70-80% confluence) were treated for 24 h with the 

compounds. After incubation, cells were processed according to the 

procedures described below. 

A specific additional culture design was applied to drugs causing 

steatosis and phospholipidosis in order to favor and accelerate the 

development of the hepatotoxic injury. Prior to being exposed to the 

model compounds, HepG2 cells were incubated for 14 h with a 62 µM 

mixture of oleate and palmitate (2:1 ratio). Then, cells were incubated 

with the test compounds for 24 h in a FA free medium (32, 193). 
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Table 2.2. Model hepatotoxins included in the HepG2 cell studies classified by 

their mechanism of hepatotoxicity. 

 

Mechanism Compound Concentrations 

Negative Control 

Culture medium 

DMSO (Solvent) 

Citrate 

Ketotifen 

 

0.5, 1.2% 

500, 1000 µM 

50, 100 µM 

Cholestasis 

Chlorpromazine 

Cyclosporine 

Troglitazone 

10, 20 µM  

10, 25, 50 µM 

10, 20 µM 

Oxidative Stress 

Cumene Hydroperoxide 

Tert-Butyl Hydroperoxide 

50, 100, 250 µM 

50, 100, 250 µM 

Phospholipidosis 

Amiodarone 

Clozapine 

Fluoxetine 

Tilorone 

Tamoxifen 

5, 10, 20 µM 

10, 20, 40 µM 

10, 20 µM 

5, 10, 20 µM 

15, 30 µM 

Steatosis 

Doxycycline 

Tetracycline 

Valproic acid 

250, 500 µM 

50, 100, 200, 400 µM 

1, 2, 4, 8 mM 
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2.7 Sample processing and analysis optimization for 

HepG2 cells 

 

Sample preparation is a crucial step in the onset of a metabolomic 

analysis involving mammalian cells in adherent culture. Different aspects 

regarding the untargeted analysis of the endometabolome of cultured 

HepG2 cells were evaluated: i) sample analysis; ii) metabolome 

extraction; and iii) sample harvesting and processing methodology 

(Figure 2.13). 

 

 

 

Figure 2.13. Schematic representation of the parameters evaluated during 

sample processing and analysis strategy optimization. 
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Each condition was tested using three biological replicates of HepG2 

cells cultured in 3.5 cm plates. The optimum condition for each of the 

evaluated parameters was selected based on the number, nature and 

intensity of the detected features and metabolites. 

In a first step, the extraction solvent and the different analytical 

conditions were tested and optimized in a combined manner. As a 

general procedure for sample processing of HepG2 cultures, the medium 

was removed and the cells were washed with phosphate buffer saline 

(PBS); then the cell monolayer was frozen using liquid N2 to halt cellular 

metabolism and prevent metabolite degradation; finally, the cells were 

scrapped by using an organic solvent and submitted to three 

freeze/thaw cycles in order to increase cell lysis and metabolite 

extraction. In a second step, and based on the optimized extraction 

solvent and analysis strategy, the different sample harvesting and 

processing methods were evaluated. 

 

2.7.1 Sample analysis 

 

Three different LC conditions, each one using both ESI (+) and ESI (-) 

MS detection, were tested in order to optimize the untargeted 

metabolomic analysis: i) Generic-RP analysis; ii) Lipidomic-RP analysis; 

and iii) HILIC analysis (Figure 2.13). 

 

i). Generic-RP analysis  

 

The analytical conditions for the untargeted LC-MS analysis using a 

generic-RP chromatographic separation are detailed in Section 2.3.1. 

For the analysis in ESI (+) mode, samples were resuspended in 75 µL of 

water:methanol (70:30) supplemented with the following IS: 

 Paracetamol, C8H9NO2, m/z 152.0712, RT 4.75 min, 10 µg/mL. 

 Caffeine, C8H10N4O2, m/z 195.0882, RT 6.74 min, 5 µg/mL. 
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 Sulfadimethoxine, C12H14N4O4S,m/z 311.0814,RT 8.11 min,1 µg/mL. 

 Val-Tyr-Val, C19H29N3O5, m/z 380.2185, RT 6.93 min, 10 µg/mL. 

 Verapamil, C27H38N2O4, m/z 455.2910, RT 8.93 min, 0.5 µg/mL. 

 Terfenadine, C32H41NO2, m/z 472.3216, RT 9.97 min, 5 µg/mL. 

 Reserpine, C33H40N2O9, m/z 609.2812, RT 9.27 min, 2.5 µg/mL. 

 

For the analysis in ESI (-) mode, samples were resuspended in 75 µL of 

water:methanol (70:30) supplemented with the following IS: 

 Lithocholic acid-2,2,4,4-D4 (LCA-D4), C24H36D4O3, m/z 379.3150, RT 

10.50 min, 4 µg/mL. 

 Deoxycholic acid-2,2,4,4-D4 (DCA-D4), C24H36D4O4, m/z 395.3099, 

RT 9.46 min, 2 µg/mL. 

 Cholic acid-2,2,4,4-D4 (CA-D4), C24H36D4O5, m/z 411.3049, RT 8.53 

min, 2 µg/mL. 

 Glycochenodeoxycholic acid-2,2,4,4-D4 (GCDCA-D4), C26H39D4NO5, 

m/z 452.3314, RT 7.98 min, 2 µg/mL. 

 Glycocholic acid-2,2,4,4-D4 (GCA-D4), C26H39D4NO6, m/z 468.3263, 

RT 7.59 min, 2 µg/mL. 

 Reserpine, C33H40N2O9, m/z 607.2656, RT 9.59 min, 2.5 µg/mL. 

 

ii) Lipidomic-RP analysis 

 

The analytical conditions for the untargeted LC-MS analysis using a 

lipidomic-RP chromatographic separation are detailed in Section 2.3.2. 

For the analysis in ESI (+) mode, samples were resuspended in 75 µL of 

methanol:chloroform (3:1) supplemented with the following IS: 

 LysoPC(13:0), C21H44NO7P, m/z 454.2934, RT 1.48 min, 25 ng/mL. 

 Terfenadine, C32H41NO2, m/z 472.3216, RT 1.89 min, 25 ng/mL. 
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For the analysis in ESI (-) mode, samples were resuspended in 75 µL of 

methanol:chloroform (3:1) supplemented with the following IS: 

 LCA-D4, C24H36D4O3, m/z 379.3150, RT 3.96 min, 4 µg/mL. 

 DCA-D4, C24H36D4O4, m/z 395.3099, RT 3.18 min, 2 µg/mL. 

 CA-D4, C24H36-D4O5, m/z 411.3049, RT 2.61 min, 2 µg/mL. 

 GCDCA-D4, C26H39D4NO5, m/z 452.3314, RT 2.55 min, 2 µg/mL. 

 GCA-D4, C26H39D4NO6, m/z 468.3263, RT 2.23 min, 2 µg/mL. 

 

iii)  HILIC analysis 

 

The analytical conditions for the untargeted LC-MS analysis using HILIC 

chromatographic separation are detailed in Section 2.3.3. 

For the analysis in both ESI (+) and ESI (-) modes, samples were 

resuspended in 75 µL of acetonitrile:water (70:30) supplemented with 

the following IS: 

 Phenylalanine-D5 (Phe-D5), C9H6D5NO2, m/z 171.1182 / 169.1020, 

RT 7.10 min, 40 µg/mL. 

 Val-Tyr-Val, C19H29N3O5, m/z 380.2185 / 378.2029, RT 6.33 min,  

10 µg/mL. 

 8-BrAMP, C10H13BrN5O7P, m/z 425.9814 / 423.9658, RT 3.96 min, 

20 µg/mL. 

 Leucine Enkephalin, C28H37N5O7, m/z 556.2771 / 554.2615, RT 6.45 

min, 10 µg/mL. 

 

2.7.2 Metabolome extraction 

 

Five different solvents, leading to seven different extracts, were tested: 

Solvent 1: 1mM Hepes, 1mM EDTA pH7.2 in water (monophasic 

extraction) (146), extract 1 (E1); Solvent 2: Water:methanol:chloroform 

(10:27:3) (monophasic extraction) (152), extract 2 (E2); Solvent 3: 

Methanol (monophasic extraction) (194), extract 3 (E3); Solvent 4: 
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Water:methanol:chloroform (1:1:1) (biphasic extraction) (195), extracts 4 

(E4, aqueous) and 5 (E5, organic); and Solvent 5: Water:methanol (1:1), 

followed by methanol:chloroform (1:3) (sequential extraction) (162), 

extracts 6 (E6, aqueous) and 7 (E7, organic) (Figure2.13). 

The volumes and specific considerations derived from the nature of 

the different combination of solvents are described below. In all the 

cases after the crude extract was obtained, it was subjected to three 

freeze/thaw cycles in order to maximize cell lysis and metabolite 

extraction. The final step in all the cases and once the clean extracts 

were obtained was to evaporate them to dryness and resuspend them in 

the suitable solvent in concordance with the analytical condition to be 

employed 

 

1. Monophasic extractions 

 

This procedure was performed with solvents 1, 2 and 3. An initial 

volume of 750 µL was used to scrap the cells, and a second volume of 

250 µL was employed (and pooled in the tube with the first one) to 

recover possible rests. After the freeze/thaw cycles, a 75 µL aliquot of 

cell extract was taken and mixed with 75 µL of 1 M NaOH to carry out 

protein quantification. Finally, the extracts were separated from the cell 

rests by centrifugation (10000 g, 10 min). 

 

2. Biphasic extraction: solvent 4 

 

Cells were scraped with 750 µL of methanol:water (1:1) and an 

additional volume (250 µL) was used to recover possible rests (and 

pooled in the tube with the first one). After the freeze/thaw cycles, a 75 

µL aliquot was taken and mixed with 75 µL of 1 M NaOH to carry out 

protein quantification. Then, 500 µL of chloroform were added to the 

rest of the extract and the tube was vortexed (3 x 10 s). After vortexing, 
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samples were allowed to rest for 20 min at -20 ºC and centrifuged 

(10000 g, 10 min). The upper aqueous phase and the lower organic 

phase were transferred to separate clean tubes. 

 

3. Sequential extraction: solvent 5 

 

750 µL of methanol:water (1:1) were used to scrap the cells, and a 

second volume of 250 µL was employed (and pooled in the tube with the 

first one) to recover possible rests. After the freeze/thaw cycles a 75 µL 

aliquot was taken and mixed with 75 µL of 1 M NaOH to carry out protein 

quantification. Then the samples were centrifuged (10000 g, 10 min) and 

the supernatants were transferred to clean tubes. The pellets were 

reextracted with 1 mL of methanol:chloroform (1:3). After centrifugation 

(10000 g, 10 min), the supernatants were transferred to clean tubes. 

 

2.7.3 Sample processing strategy optimization 

 

Three key steps are involved in adherent cells processing with respect 

to the analysis of the endometabolome: i) metabolism quenching; ii) 

metabolite extraction and iii) cell detachment from the surface of the 

plate (103). Three different configurations were tested: Method A, 

quenching, followed by simultaneous detachment and extraction; 

Method B, simultaneous quenching, extraction and detachment; and 

Method C, detachment, followed by quenching, followed by extraction 

(Figure 2.13, 2.14). 

To specifically evaluate these issues, the different cells harvesting and 

processing configurations were evaluated using the previously optimized 

sample analysis and extraction solvent conditions. In all the cases the 

first two steps regarding sample processing using HepG2 cells in culture 

consisted in the removal of the culture medium by aspiration and the 

washing of the cell monolayer with PBS. The final steps in all the cases 
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were to perform three freeze/thaw cycles in order to increase cell lysis 

and metabolites extraction, the separation of the cellular rests from the 

cellular extract and the evaporation to dryness of the clean extracts in 

order to be ready for resuspension in the suitable solvent for its analysis. 

The specific steps of each of the configurations are detailed below. 

 

 

 

Figure 2.14. Sample processing strategies tested during the development and 

optimization phase. Figure adapted from reference (103).  
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Method A 

 

After washing, cell metabolism was immediately quenched by the 

addition of liquid N2 over the cell monolayer. Frozen plates were stored 

at -80 ºC until further processing. Simultaneous metabolite extraction 

and cell detachment were performed by the addition of the extraction 

solvent over the cell monolayer followed by cell detachment with a 

rubber cell scrapper.  

 

Method B 

 

Simultaneous quenching, extraction and detachment were achieved by 

the addition of cold extraction solvent over the cell monolayer and the 

use of a rubber cell scrapper to detach the cells from the surface of the 

plate.  

 

Method C 

 

Cells harvesting was performed by treatment with 0.25% trypsin / 

0.02% EDTA at 37 ºC. Thereafter, cells were recovered in 5% fetal bovine 

serum in PBS and transferred to a clean tube. After centrifugation (3000 

g, 3 min), the supernatant was removed by aspiration and the cells were 

washed with PBS, thus repeating the centrifugation and the removal of 

the supernatant steps. The pellet was frozen in liquid N2, and stored at    

-80 ºC until further processing. Metabolites were extracted by adding the 

extraction solvent to the cell pellet and vortexing until its complete 

resuspension.  
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2.8 Optimized sample extraction protocols for untargeted 

metabolomic analysis in HepG2 cells 

 

2.8.1 Generic protocol 

 

Each experimental condition (test compound and concentration) was 

tested in triplicate using 6 cm diameter plates. After processing, each 

biological sample was split into four different fractions, one to perform 

protein quantification and three destined to be analyzed under four 

different conditions.  

After removing the medium by aspiration and washing the monolayer 

with PBS, cells were frozen by the addition of liquid N2. At this point the 

plates were stored at -80 ºC until further processing. 

Metabolite extraction and cell detachment were performed by 

scrapping the cells with 800 µL of a water:methanol:chloroform (10:27:3) 

solution containing 0.375 µg/mL reserpine and 0.075 µg/mL 

sulfadimethoxine as IS. The cell extract/suspension was transferred to a 

clean 1.5 mL tube. The possible cellular rests present in the plate were 

recovered with 400 µL of the same extraction solution and pooled with 

the previous volume. The cellular extract/suspension was submitted to 3 

freeze/thaw cycles (liquid N2, room temperature) in order to increase cell 

disruption and metabolite extraction. At this point three different 

aliquots were taken and processed independently. 

A 50 µL aliquot was mixed with 100 µL of 0.66 N NaOH and used for 

protein determination. 

A 600 µL aliquot was submitted to liquid-liquid extraction with 

chloroform. To this end, 300 µL of water and 450 µL of chloroform 

containing 0.01 µg/mL terfenadine as IS were added and the samples 

were vortexed (3 x 10 s) to put in contact both phases. Then, the 

samples were allowed to rest at -20 ºC for 20 min and centrifuged (10 

min, 10000 g, 4 ºC). Each phase (the upper aqueous phase and the lower 
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organic phase) was transferred to a clean tube and evaporated to 

dryness. The organic phase was resuspended in 75 µL of a 

methanol:chloroform (3:1) solution containing 0.5 µg/mL verapamil as IS 

and analyzed using the lipidomic-RP ESI (+) approximation. The aqueous 

phase was resuspended in 75 µL of acetonitrile:water (70:30) solution 

with IS (40 µg/mL Phe-D5, 20 µg/mL 8-BrAMP and 10 µg/mL Val-Tyr-Val) 

and analyzed using the HILIC approximation in both ESI (+) and ESI (-) 

modes. 

Finally, the rest of the volume was centrifuged (10 min, 10000 g, 4 ºC) 

and the supernatant was transferred to a clean tube and evaporated to 

dryness. The residue was resuspended in 75 µL of methanol:water (1:1) 

solution containing 4 µg/mL LCA-D4 as IS and analyzed using the 

generic-RP ESI (-) approximation. 

In all the cases the dry residue was stored at -80 ºC until its analysis, 

and, once resuspended, it was centrifuged (10000 g, 10 min, 4 ºC) 

before transferring the clean supernatant to a 96-well plate for its LC-MS 

untargeted analysis. 

 

2.8.2 Steatosis/Phospholipidosis specific protocol 

 

Each drug and concentration was tested by triplicate in 3.5 cm plates 

using a lipidomic-RP approximation adapted from reference (163). First 

of all, the medium was removed by aspiration, and the cell monolayer 

was washed once with PBS. Then the cell monolayer was frozen by the 

addition of liquid N2. At this point the plates were stored at -80 ºC until 

further processing. 

The cells were scrapped using 400 µL of cold PBS containing 0.375 

µg/mL reserpine as IS. The cell suspension/extract was transferred to a 

clean 2 mL tube. The possible cellular rests present in the plate were 

recovered with 200 µL of the solution and pooled with the previous 

volume. The cellular extract/suspension was submitted to 3 freeze/thaw 
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cycles (liquid N2, room temperature) in order to increase cell disruption 

and metabolite extraction. An aliquot of 50 µL was mixed with 100 µL of 

0.66 N NaOH and used for protein determination. The rest of the volume 

was mixed with 1100 µL of a methanol:chloroform (1:2) solution 

containing 0.01 µg/mL terfenadine as IS. After vortexing (3 x 10 s), the 

samples were allowed to rest at -20 ºC for 20 min and centrifuged (10 

min, 10000 g, 4 ºC). The lower organic phase was transferred to a clean 

2 mL tube and the aqueous phase was reextracted with 1100 µL of the 

methanol:chloroform (1:2) solution containing 0.01 µg/mL terfenadine 

as previously described. The second organic fraction was pooled with the 

first one. A 1 mL aliquot was taken and evaporated to dryness in a 

speedvac. The dry residue was stored at -80 ºC until analysis. The 

residue was resuspended in 75 µL of a methanol:chloroform (3:1) 

solution containing 0.5 µg/mL verapamil and 4 µg/mL LCA-D4 as IS and 

analyzed using the lipidomic-RP approximation in both ESI (+) and ESI (-) 

modes (Section 2.3.2). 

  



Methodology 

107 

2.9 In vivo hepatotoxicity studies in medakafish (Oryzias 

latipes) 

 

2.9.1 Animal handling 

 

Adult medaka (Oryzias latipes) CAB strain animals (Figure 2.15) (196) 

were kept in recirculating water 10 L aquaria at 28 °C on a 14 h light/10 

h dark daily cycle. Daily, they were fed with Artemia nauplii twice and dry 

fed once (197).  

 

 

 

Figure 2.15. Adult medaka (Oryzias latipes). 

 

 

Animals were exposed to different hepatotoxic compounds classified 

according to their mechanism of toxicity (Table 2.3). Sub-lethal 

concentrations were used based on previous in house experimental data 

and bibliographic information (198-204). Stock solutions of the drugs 

were prepared in water or methanol (according to the manufacturer's 

instructions). For treatments, the fishes were transferred to 4L aquaria 

containing either drug at the specified concentration or 0.005% methanol 

as vehicle control (Table 2.3). After a 2h treatment, the fishes were 

returned to 10 L aquaria containing clean water. The treatment was 

repeated for 5 consecutive days and the fishes were sacrificed at the end 

of treatment.  
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Table 2.3. Model hepatotoxins included in the study using Oryzias latipes. 

 

Mechanism Compound Concentration 

Negative Control Methanol (solvent) 0.005% 

Cholestasis 

17α Ethynylestradiol 

Chlorpromazine 

Cyclosporine 

3 µM 

2 µM 

2.5 µM 

Phospholipidosis 

Amiodarone 

Tilorone 

Tamoxifen 

2 µM 

2 µM 

2 µM 

Steatosis 

Doxycycline 

Tetracycline 

Valproic acid 

50 µM 

50 µM 

200 µM 

 

 

Individual adult medaka were anesthetized in cold PBS at 0 ºC and 

immediately transferred to a dry plate and sacrificed by decapitation. The 

liver was extracted, placed in a tube, flash-frozen in liquid N2, and stored 

at -80 ºC until further processing. All the experimental protocols were 

approved by the Institutional Animal Ethics Committee. 

 

2.9.2 Sample processing and analysis 

 

Frozen tissue samples (2 - 6 mg) were placed in 2 mL tubes containing 

CK14 ceramic beads and 650 µL of methanol:water (3:1) containing the 

IS reserpine (0.375 µg/mL) and sulfadimethoxine (0.075 µg/mL) were 

added. Then, livers were homogenized twice for 25 s at 6,000 rpm at 4 

ºC in a Precellys 24 Dual system equipped with a Criolys cooler. Tubes 

were centrifuged at 3000 g for 5 min at 4°C, and the supernatants were 

transferred to clean tubes. A second extraction was performed with 350 

µL of the same solvent. Finally, the two extraction supernatants were 

pooled and stored at -80 ºC until further processing. 
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An aliquot of 50 µL was mixed with 100 µL of 0.66N NaOH and used 

for protein determination. 

A 600 µL aliquot was transferred to a clean tube and evaporated to 

dryness. The dry residue was stored at -80 ºC until analysis. The residue 

was resuspended in 100 µL of water:methanol (1:1) containing 0.5 

µg/mL verapamil and 4 µg/mL LCA-D4 as IS. After centrifugation (10 

min, 10000g, 4 ºC), the clean supernatant was transferred to a 96-well 

HPLC plate and analyzed using the generic-RP analysis conditions in ESI(-) 

mode (Section 2.3.1).  

A 400 µL aliquot was transferred to a clean tube and 200 µL of 

chloroform containing 0.01 µg/mL terfenadine as IS were added. After 

vortexing (3 x 10 s), samples were allowed to rest at -20 ºC for 20 min 

and centrifuged (10 min, 10000 g, 4 ºC). The upper aqueous phase and 

the lower organic phase were separately transferred to clean tubes and 

evaporated to dryness. The organic phase was resuspended in 100 µL of 

methanol:chloroform (3:1) containing 0.5 µg/mL verapamil as IS and 

analyzed using the lipidomic-RP approximation in ESI (+) mode (Section 

2.3.2). The aqueous phase was resuspended in 100 µL of 

acetonitrile:water (70:30) solution containing 40 µg/mL Phe-D5, 20 

µg/mL 8-BrAMP and 10 µg/mL Val-Tyr-Val as IS and analyzed using the 

HILIC approximation in both ESI (+) and ESI (-) modes (Section 2.3.3). 
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2.10 In vivo hepatotoxicity studies in rats 

 

2.10.1 Animal handling 

 

Six-week-old male OFA rats (200 – 240 g) were purchased from Charles 

River (Barcelona, Spain) and acclimatized to laboratory conditions for at 

least 7 days. Animals were housed in individual cages with woodchip 

bedding in a room maintained at 21 – 25 °C, 30 – 70% humidity and a 12 

h light-dark cycle. Each animal was allowed free access to water and 

standard chow diet (Scientific Animal Food and Engineering, Augy, 

France). 

Rats were divided into three different groups: i) Tetracycline (2 

g/Kg/day); ii) Paracetamol (1 g/kg/day); and iii) Control. Drugs were 

administered orally at the indicated doses in a 0.5 % methylcellulose 

solution, control rats were administered vehicle (205). Treatments were 

repeated during 4 or 2 consecutive days for rats receiving the 

tetracycline or paracetamol treatment, respectively. The rats were 

sacrificed 24 h after the last administration.  

Rats were anesthetized with sodium thiobarbital (0.1 g/kg). Blood was 

collected by cardiac puncture. After coagulation and centrifugation (1000 

g for 10 min at 4 °C), serum samples were aliquoted and stored at -80 °C 

until their analysis by LC-MS. An aliquot was destined to perform serum 

biochemistry and enzymatic activities using standard laboratory 

procedures. Livers were removed, rinsed in PBS, divided into small 

portions, flash-frozen in liquid N2, and stored at -80 ºC until the analysis. 

Serum and liver samples were obtained from the same animals. All the 

experimental protocols were approved by the Institutional Animal Ethics 

Committee. 
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2.10.2 Sample processing and untargeted LC-MS analysis 

 

Liver tissue samples 

 

Each frozen tissue sample (around 100 mg) was placed in a 2 mL tube 

containing CK14 ceramic beads and weighted. For each 100 mg of 

tissue, 650 µL of methanol:water (3:1) containing the IS reserpine (0.375 

µg/mL) and sulfadimethoxine (0.075 µg/mL) were added. Then, tissue 

was homogenized twice for 25 s at 6,000 rpm at 4 ºC in a Precellys 24 

Dual system. After centrifugation (3000 g, 5 min, 4°C), the supernatant 

was transferred to a clean tube. A second extraction was performed with 

350 µL per 100 mg of tissue of the solvent. Finally, the two extraction 

supernatants were pooled and stored at -80 ºC until further processing. 

A 100 µL aliquot was transferred to a clean tube and evaporated to 

dryness using a speedvac. The dry residue was stored at -80 ºC until 

analysis. The residue was resuspended in 100 µL of water:methanol (1:1) 

containing 0.5 µg/mL verapamil and 4 µg/mL LCA-D4 as IS. After 

centrifugation (10 min, 10000g, 4 ºC), the clean supernatant was 

transferred to a 96-well HPLC plate and analyzed using the generic-RP 

analysis conditions in ESI (-) mode (Section 2.3.1).  

A 200 µL aliquot was transferred to a clean tube and 100 µL of 

chloroform containing 0.01 µg/mL terfenadine as IS were added. After 

vortexing (3 x 10 s), samples were allowed to rest at -20 ºC for 20 min 

and centrifuged (10 min, 10000 g, 4 ºC). Each phase (the upper aqueous 

and the lower organic) was separately transferred to a clean tube and 

evaporated to dryness in a speedvac. The organic phase was 

resuspended in 100 µL of methanol:chloroform (3:1) containing 0.5 

µg/mL verapamil as IS and analyzed using the lipidomic-RP 

approximation in ESI (+) mode (Section 2.3.2). The aqueous phase was 

resuspended in 100 µL of acetonitrile:water (70:30) containing 40 µg/mL 

Phe-D5, 20 µg/mL 8-BrAMP and 10 µg/mL Val-Tyr-Val as IS and analyzed 
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using the HILIC approximation in both ESI (+) and ESI (-) modes (Section 

2.3.3). 

 

Serum samples 

 

For lipidomic-RP analysis, a 10 µL aliquot was mixed with 40 µL of PBS 

and 250 µL of chloroform:methanol (2:1) containing 0.01 µg/mL 

terfenadine as IS. After vortexing (3 x 10 s), samples were allowed to rest 

at -20 ºC for 20 min and centrifuged (10 min, 10000 g, 4 ºC). A 100 µL 

aliquot of the lower organic phase was transferred to a 96-well HPLC and 

10 µL of the IS verapamil (5.5 µg/mL in methanol) were added. The 

analysis was performed using the lipidomic-RP approximation in ESI (+) 

mode (Section 2.3.2). 

For generic-RP analysis, a 100 µL aliquot was mixed with 300 µL of 

cold methanol containing reserpine (0.375 µg/mL) and sulfadimethoxine 

(0.075 µg/mL) as IS. After vortexing (3 x 10 s), samples were allowed to 

rest at -20 ºC for 30 min and centrifuged (10 min, 10000 g, 4 ºC). The 

clean supernatant was transferred to a clean tube and evaporated to 

dryness. The dry residue was stored at -80 ºC until analysis. The residue 

was resuspended in 100 µL of water:methanol (1:1) containing 0.5 

µg/mL verapamil and 4 µg/mL LCA-D4 as IS. After centrifugation (10 

min, 10000 g, 4 ºC), the clean supernatant was transferred to a 96-well 

HPLC plate and analyzed using the generic-RP analysis conditions in both 

ESI (+) and ESI (-) modes (Section 2.3.1). 
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2.11 Method validation for LC-MS/MS targeted analyses 

 

The bioanalytical methods described in the following sections were 

developed and validated in terms of linearity, accuracy, and precision 

following the compliance criteria described by the FDA Guidance for 

industry: bioanalytical method validation (206). 

The lower limit of quantification (LLOQ) was defined as the lowest 

concentration at which the analyte could be quantified with relative 

standard deviation (RSD) below 20% and below ± 20% deviation from the 

nominal value. The limit of detection (LOD) was determined as the lowest 

concentration at which the analyte response was at least three times the 

blank response. Calibration curves were generated by plotting the peak 

area ratio of the respective compound to the corresponding IS versus the 

nominal concentration. The line of best fit was determined by linear-

weighted (1/×) least-squares regression. The linearity acceptance 

criterion for the correlation coefficient was 0.99 or better. Each back 

calculated standard concentration should be within ± 15% deviation from 

the nominal value, except for the LLOQ, for which the maximum 

acceptable deviation was ± 20%. 
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2.12 Targeted analysis of bile acids 

 

A targeted UPLC-MS MRM method for the simultaneous quantification 

of 31 BAs, including both major and minor non-conjugated or 

conjugated forms, was developed (207). It allows the comprehensive 

quantitative profiling of BAs in different biological matrices (i.e., serum, 

liver tissue, cultured cells) from different species (i.e., human, mouse 

and rat) (103, 207, 208).  

 

2.12.1 Bile acids included in the method 

 

The following BAs were included in the analysis: lithocholic acid (LCA), 

murocholic acid (MuroCA), chenodeoxycholic acid (CDCA), deoxycholic 

acid (DCA), ursodeoxycholic acid (UDCA), hyodeoxycholic acid (HDCA), 

dehydrocholic acid (DHCA), cholic acid (CA), α-muricholic acid (αMCA), β-

muricholic acid (βMCA), ω-muricholic acid (ωMCA), hyocholic acid (HCA), 

glycolithocholic acid (GLCA), glycochenodeoxycholic acid (GCDCA), 

glycodeoxycholic acid (GDCA), glycoursodeoxycholic acid (GUDCA), 

glycohyodeoxycholic acid (GHDCA), glycodehydrocholic acid (GDHCA), 

glycocholic acid (GCA), glycohyocholic acid (GHCA), taurolithocholic acid 

(TLCA), taurochenodeoxycholic acid (TCDCA), taurodeoxycholic acid 

(TDCA), tauroursodeoxycholic acid (TUDCA), taurohyodeoxycholic acid 

(THDCA), taurodehydrocholic acid (TDHCA), taurocholic acid (TCA), 

tauro-α-muricholic acid (TαMCA), tauro-β-muricholic acid (TβMCA), tauro-

ω-muricholic acid (TωMCA), taurohyocholic acid (THCA). 

Deuterated IS: LCA-D4, DCA-D4, CA-D4) GCDCA-D4 and GCA-D4. 
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2.12.2 UPLC-MS analysis 

 

UPLC separation was performed in an Acquity UPLC system (Waters, 

UK) equipped with an Acquity UPLC BEH C18 (1.7 µm, 2.1 × 100 mm; 

Waters) column. The temperatures of the column and the autosampler 

were set at 65 °C and 4 °C, respectively. The sample injection volume was 

4 µL. Eluent and washing solutions composition were: i) solvent A: 0.1% 

formic acid in water; ii) solvent B: 0.1% formic acid in acetonitrile; iii) 

WNW and SW: water:acetonitrile (90:10, v/v); and iv) SNW: acetonitrile. 

The flow rate was set at 0.5 ml/min. A 21-min elution gradient was 

performed as follows: during the first 0.5 min, eluent composition was 

set at 95% A and 5% B, which was linearly changed to 75% A and 25% B in 

5 min; then the proportion of B was increased to 40% in the next 10.5 

min, followed by a further increase to 95% B reached at min 17.5 and 

kept for 1.5 min. Finally, the initial conditions were recovered and 

maintained for 2 min for column conditioning. 

The MS analysis was performed using a Waters Xevo TQ-S mass 

spectrometer equipped with an ESI source operating in the negative-ion 

mode working in the MRM mode. A capillary voltage of 2 kV, a source 

temperature of 120 °C and a desolvation temperature of 380 °C were 

used. Desolvation and cone gas flows were set as 800 L/h and 150 L/h, 

respectively, and the collision gas was 0.25 mL/min. Transitions, cone 

voltages, and collision energies were automatically tuned for each BA 

using the QuanOptimizer software (Waters, UK) (Table 2.4) 

Standards calibration curves prepared in methanol:water (50:50, v/v) 

with concentrations in the 0.62 – 10000 nM range for each BA. IS 

concentrations were kept constant at all the calibration points at 1 µM 

for LCA-D4 and at 0.5 µM for CA-D4, DCA-D4, GCA-D4, and GCDCA-D4. 

Figure 2.16 shows the chromatograms obtained by injecting a mix 

standard solution at 300 nM (IS concentrations: 1 µM for LCA-D4 and 0.5 

µM for CA-D4, DCA-D4, GCA-D4, and GCDCA-D4). 
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Table 2.4. Mass spectrometer setup for the quantification of selected bile acids. 

 

Bile acid 

Parent ion 

(m/z) 

Fragment 

(m/z) 

Cone  

(V) 

Collision 

energy (eV) 

Retention 

time (min) 

Internal 

standard 

LCA 375.3 375.3 90 10 17.74 LCA-D4 

MuroCA 391.3 391.3 120 10 12.69 DCA-D4 

CDCA 391.3 391.3 120 10 17.13 DCA-D4 

DCA 391.3 391.3 120 10 17.22 DCA-D4 

UDCA 391.3 391.3 120 10 14.00 DCA-D4 

HDCA 391.3 391.3 120 10 14.41 DCA-D4 

DHCA 401.2 401.2 90 10 9.14 CA-D4 

CA 407.3 407.3 120 10 13.90 CA-D4 

ωMCA 407.3 407.3 120 10 10.57 CA-D4 

αMCA 407.3 407.3 120 10 10.92 CA-D4 

βMCA 407.3 407.3 120 10 11.30 CA-D4 

HCA 407.3 407.3 120 10 12.71 CA-D4 

GLCA 432.3 73.8 80 40 17.31 LCA-D4 

GCDCA 448.3 73.8 80 40 14.61 GCDCA-D4 

GDCA 448.3 73.8 80 40 15.32 GCDCA-D4 

GUDCA 448.3 73.8 80 40 10.71 GCDCA-D4 

GHDCA 448.3 73.8 80 40 10.97 GCDCA-D4 

GDHCA 458.3 73.8 80 40 6.98 GCA-D4 

GCA 464.3 73.8 80 40 11.08 GCA-D4 

GHCA 464.3 73.8 80 40 9.71 GCA-D4 

TLCA 482.3 80 130 60 16.17 LCA-D4 

TCDCA 498.3 80 130 60 11.85 GCDCA-D4 

TDCA 498.3 80 130 60 12.55 GCDCA-D4 

TUDCA 498.3 80 130 60 8.61 GCDCA-D4 

THDCA 498.3 80 130 60 8.71 GCDCA-D4 

TDHCA 508.3 80 130 60 5.87 GCA-D4 

TCA 514.3 80 130 60 9.10 GCA-D4 

TωMCA 514.3 80 130 60 6.59 GCA-D4 

TαMCA 514.3 80 130 60 6.73 GCA-D4 

TβMCA 514.3 80 130 60 6.80 GCA-D4 

THCA 514.3 80 130 60 7.80 GCA-D4 

LCA-D4 379.3 379.3 90 10 17.74 

 

DCA-D4 395.3 395.3 120 10 17.22 

 

CA-D4 411.3 411.3 120 10 13.90 

 

GCDCA-D4 452.4 73.8 80 40 14.61 

 

GCA-D4 468.4 73.8 80 40 11.08 
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Figure 2.16. Chromatograms corresponding to the targeted LC-MS/MS analysis 

of BAs. A) Non-conjugated BAs. B) Glycine-conjugated BAs. C) Taurine-conjugated 

BAs. D) Deuterium-labeled IS. All the BAs were separated and detected in a single 

analytical run. Green: DHCA; blue: tri-hydroxylated BAs; red: di-hydroxylated BAs; 

dark blue: mono-hydroxylated BAs.  
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2.12.3 Sample processing 

 

A mixed stock solution of all the IS was prepared in methanol:water 

(50:50, v/v) at a final concentration of 100 µM, except LCA-D4, whose 

concentration was 200 µM. 

For serum samples, aliquots of 50 µL were allowed to thaw on ice and 

were subsequently spiked with 25 µL of a 1/100 dilution of the 

deuterated IS stock solution . Then, cold methanol (225 µL) was added 

for protein precipitation, and samples were vortexed (3 × 10 s) and 

allowed to rest at -20 ºC for 20 min. After centrifugation (10000 g, 10 

min, 4 ºC), supernatants were transferred to clean tubes and evaporated 

to dryness. Samples were stored at -80 ºC until analysis. 

Frozen hepatic tissue samples (5 – 100 mg) were placed in 2 mL tubes 

containing CK14 ceramic beads. For each 100 mg of tissue, 600 µL of 

cold methanol and 200 µL of a 1/100 dilution of the IS stock solution 

were added. Then, liver tissues were homogenized twice for 25 s at 6000 

rpm at 4 ºC in a Precellys 24 Dual system. After centrifugation (3000 g, 5 

min, 4 °C), supernatants were transferred to clean tubes. A second BA 

extraction was performed with 400 µl of cold methanol. Finally, the two 

extraction supernatants were pooled and 150 µL aliquots were 

evaporated to dryness and stored at -80 ºC until analysis. 

For the LC-MS analysis, dry extracts (from serum or liver) were 

reconstituted in 50 µL of methanol:water (50:50, v/v), centrifuged (1 

min, 10000 g, 4 ºC), and transferred into 350 µL volume 96-well plates 

for further analysis. 
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2.13 Targeted analysis of oxidative stress biomarkers 

 

A targeted UPLC-MS MRM method was developed in our group in order 

to evaluate the oxidative stress damage induced to proteins, DNA and 

lipids in serum, tissue liver and cultured cells samples (209).  

 

2.13.1 OS markers included in the method 

 

The markers included in the method are: GSH, oxidized glutathione 

(GSSG), ophthalmic acid, S-(5-adenosyl)-L-methionine (SAM), S-(5-

adenosyl)-L-homocysteine (SAH), phenylalanine (Phe), tyrosines (3-iodo-L-

tyrosine (I-Tyr), 3-nitro-tyrosine (N-Tyr), 3-chloro-L-tyrosine (Cl-Tyr), DL-o-

tyrosine (o-Tyr), DL-m-tyrosine (m-Tyr), L-tyrosine (p-Tyr)), 8-hydroxy-2’-

deoxyguanosine (8-OH-dG), 2-deoxyguanosine (2-dG) and 

malondialdehyde (MDA). 

 

2.13.2 UPLC-MS analysis 

 

UPLC separation was performed in an Acquity UPLC system (Waters, 

UK) equipped with an Acquity UPLC HSST3 (1.8 µm, 2.1 × 100 mm; 

Waters) column. The temperatures of the column and the autosampler 

were set at 60 °C and 4 °C, respectively. The sample injection volume was 

5 µL Eluent and washing solutions composition were: i) solvent A: 0.1% 

formic acid in water; ii) solvent B: 0.1% formic acid in acetonitrile; iii) 

WNW and SW: water:acetonitrile (90:10, v/v); and iv) SNW: 

water:acetonitrile (10:90, v/v). The flow rate was set at 0.3 mL/min. A 7-

min elution gradient was performed as follows: during the first 2 min, 

eluent composition was set at 95% A and 5% B, which was linearly 

changed to 5% A and 95% B in 1.5 min and kept for 2 min. Finally, the 

initial conditions were recovered and maintained for 1 min for column 

conditioning. 
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The MS analysis was performed using a Waters Xevo TQ-S mass 

spectrometer (Waters) equipped with an ESI source operating in the 

positive-ion mode working in the MRM mode. A capillary voltage of 3 kV, 

a source temperature of 150 °C and a desolvation temperature of 380 °C 

were used. Desolvation and cone gas flows were set as 800 L/h and 150 

L/h, respectively, and the collision gas was 0.25 mL/min. Transitions, 

cone voltages, and collision energies are shown in Table 2.5. 

 

Table 2.5. Mass spectrometer setup for the quantification of selected oxidative 

stress markers.  

 

Compound 

Parent ion 

(m/z) 

Fragment 

(m/z) 

Cone  

(V) 

Collision 

energy (eV) 

Retention 

time (min) 

GSSG 613.2 355.0 60 15 1.10 

GSH
a 

433.1 201.0 20 20 3.32 

SAM 398.9 136.0 22 17 0.74 

SAHC 385.1 136.0 35 25 1.09 

I-Tyr 308.1 291.0 40 15 3.33 

Ophthalmic acid 290.2 161.1 15 15 1.16 

8-OH-dG 284.0 168.0 30 15 2.16 

2-dG 268.0 152.0 25 15 1.60 

MDA
b 

235.0 159.0 30 30 4.08 

N-Tyr 227.1 181.0 25 10 3.21 

Cl-Tyr 216.0 170.0 30 15 2.37 

o-Tyr 182.1 136.0 20 10 2.09 

m-Tyr 182.1 136.0 20 10 1.52 

p-Tyr 182.1 136.0 20 10 1.27 

Phe 166.1 120.1 20 20 2.62 

Phe-D5  171.1 125.1 20 20 2.62 

a

 Compound quantified as the N-ethylmaleimide (NEM) derivative. 
b

 Compound 

derivatized with 2,4-dinitrophenylhydrazine (DNPH). 
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A derivatization step was required to avoid degradation of some labile 

analytes, thus improving compound stability, detection and 

quantification. Thereby, MDA and GSH were determined after reaction 

with 2, 4-dinitrophenylhydrazine (DNPH) (210-212) and N-ethylmaleimide 

(NEM) (213, 214), respectively. 

Standards calibration curves were prepared in PBS (containing 0.5 mM 

DNPH and 5 mM NEM) in the concentration range from 1.25 µg/mL to 

0.725 ng/mL. for each compound. Phe-D5 (IS) concentration was kept 

constant at 0.2 µg/mL in all calibration points. Figure 2.17 shows the 

chromatograms obtained by injecting a mix standard solution at a 

concentration of 1 µg/mL. 

 

2.13.3 Sample processing 

 

Biological samples were processed differently depending on their 

nature. Moreover, to allow optimal detection of all biomarkers in the 

different biological matrices, three different sample fractions were 

prepared : i) fraction I, obtained after a concentration step to determine 

low concentrated analytes; ii) fraction II, obtained after a dilution step to 

determine the high concentrated analytes ; and iii) fraction III, obtained 

after a basic hydrolysis and derivatization step (212), to determine MDA 

due to its instability. 

Cell monolayers (previously washed and frozen in liquid N2) were 

scraped with 1 mL of 50 mM NEM in PBS and three freeze and thawing 

cycles were applied to ensure cell lysis. Frozen tissue samples (5–100 

mg) were extracted using a Precellys 24 Dual system with a total of 1mL 

of 50 mM NEM in PBS. Culture medium and serum samples were directly 

used to prepare the different fractions. 

To obtain fraction I, 1200 µL or 600 µL of cold methanol were added 

to 400 µL of extract from cultured cells or 200 µL of liver tissue extract, 

respectively, and tubes were vortexed. For culture medium or serum 
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samples, 200 µL of 10 mM NEM in PBS were added to 200 µL of sample 

and, after vortexing, 1200 µL of cold methanol were added. The 

obtained mix (from cultured cells, tissue, medium or serum) was allowed 

to rest for 20 min at -20 ºC and then centrifuged for 10 min at 10000 g 

at 4 ºC. The clean supernatant was transferred to a clean tube and 

evaporated to dryness in a speedvac. The dry residue was reconstituted 

in 50 µL of PBS containing 200 ng/mL Phe-D5, centrifuged (10 min, 

10000 g, 4ºC), and the clean supernatant was transferred to a 96-well 

HPLC plate for its analysis.  

To obtain fraction II, 115 µL or 245 µL of cold methanol were added to 

10 µL of cultured cell or 5 µL of liver tissue extract. For culture medium 

or serum samples, 15 µL of 10 mM NEM in PBS were added to 10 µL of 

sample and, after vortexing, 100 µL of cold methanol were added. Then 

the mix (from cultured cells, tissue, medium or serum) was allowed to 

rest for 20 min at -20 ºC and after centrifugation (10 min, 10000 g, 4 

ºC), 50 µL clean supernatant were transferred to 96-well HPLC plate and 

mixed with 50 µL of PBS containing 400 ng/mL Phe-D5 for its analysis. 

To obtain fraction III, 25 µL of 6 N NaOH were added to 100 µL of 

sample (cellular or tissue extract, medium or serum), and the mix was 

incubated at 60 ºC for 30 min. Then, 60 µL of 35% perchloric acid were 

added. The mix was centrifuged (10 min, 10000 g, 4 ºC). The clean 

supernatant was transferred to a clean tube and mixed with 15 µL 5 mM 

of DNPH, 2660 ng/mL Phe-D5 in PBS. The mix was incubated for 60 min 

at 37 ºC and transferred to a 96-well HPLC plate. 
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Figure 2.17. Chromatograms corresponding to the targeted LC-MS/MS analysis 

of OS markers and related compounds. A) Sulphur containing and related 

compounds; B) Markers of OS damage to proteins; C) Markers of OS damage to 

DNA; D) MDA; E) IS.  
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2.14 Targeted analysis of -glutamyl dipeptides 

 

A targeted HILIC-UPLC-MS MRM method for the simultaneous 

quantification of 32 -glutamyl dipeptides and related metabolites was 

developed. 

 

2.14.1 Compounds included in the method 

 

-Glutamyl-dipeptides: -glutamyl-glycine, -glutamyl-alanine, -

glutamyl-serine, -glutamyl-valine, -glutamyl-threonine, -glutamyl-

homoserine, -glutamyl-taurine, -glutamyl-isoleucine, -glutamyl-leucine, 

-glutamyl-asparagine, -glutamyl-ornithine, -glutamyl-aspartate, -

glutamyl-glutamine, -glutamyl-lysine, -glutamyl-glutamate, -glutamyl-

methionine, -glutamyl-histidine, -glutamyl-phenylalanine, -glutamyl-

arginine, -glutamyl-citrulline, -glutamyl-tyrosine, -glutamyl-triptophan, 

-glutamyl-cysteine, -glutamyl-homocysteine. Related compounds: 

pyroglutamic acid, glutamine, glutamic acid, GSSG, GSH, cysteinyl-

glycine, bis-cysteinyl-glycine. Phe-D5 was used as IS. 

 

2.14.2 UPLC-MS analysis 

 

UPLC separation was performed in an Acquity UPLC system (Waters, 

UK) equipped with an Acquity UPLC BEH Amide (1.7 µm, 2.1 × 100 mm; 

Waters) column. The temperatures of the column and the autosampler 

were set at 40 °C and 4 °C, respectively. The sample injection volume was 

4 µL. Eluent and washing solutions composition were: i) solvent A: 

acetonitrile; ii) solvent B: ammonium acetate pH3 200 mM in water; iii) 

WNW and SW: water:acetonitrile (10:90, v/v); and iv) SNW: 

water:acetonitrile (90:10, v/v). The flow rate was set at 0.3 mL/min.  

A 12-min elution gradient was performed as follows: initial conditions 

were set at 85% A and 15% B and maintained for 1 min, the proportion of 
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B was increased to 35% in 5 min and then increased to 55% at min 9 and 

maintained for 0.5 min. Finally, the initial conditions were recovered and 

maintained for 2 min for column conditioning. 

The MS analysis was performed using a Waters Xevo TQ-S mass 

spectrometer (Waters) equipped with an ESI source operating in the 

positive-ion mode working in the MRM mode. A capillary voltage of 3 kV, 

a source temperature of 120 °C and a desolvation temperature of 380 °C 

were used. Desolvation and cone gas flows were set as 800 L/h and 150 

L/h, respectively, and the collision gas was 0.25 mL/min. Transitions, 

cone voltages, and collision energies were automatically tuned for each 

compound using the QuanOptimizer software (Waters, UK) (Table 2.6) 

A derivatization step was required to avoid degradation of some labile 

analytes, thus improving compound stability, detection and 

quantification. Thereby, GSH, -glutamyl-cysteine, -glutamyl-

homocysteine and cysteinyl-glycine were determined as NEM derivates 

(213, 214). 

Standard calibration curves (ranging 1.14 – 20000 nM for each 

compound) were prepared by serial half dilutions of a 100 µM stock 

solution in acetonitrile:ammonium acetate pH3 100 mM in water (7:3). 

Phe-D5 (IS) concentration was kept constant at 1 µM. Figure 2.18 shows 

the chromatograms obtained by injecting a 625 nM mix standard 

solution. 
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Table 2.6. Mass spectrometer setup for the quantification of selected -glutamyl 

dipeptides and related compounds.  

 

Compound 
Retention time  

(min) 

Parent ion 

(m/z) 

Cone  

(V) 

Fragment 

(m/z) 

Ce  

(eV) 

Pyroglutamate 3.94 130 30 84 20 

Glutamine 5.77 147.1 40 84 15 

Glutamate 6.17 148.1 40 84 15 

γ-Glu-Gly 7.03 205.1 40 84 10 

γ-Glu-Ala 6.59 219.1 40 90.1 10 

γ-Glu-Ser 7.35 235.1 40 106.1 10 

γ-Glu-Val 5.79 247.1 40 118.1 10 

γ-Glu-Thr 7.00 249.1 40 120.1 10 

γ-Glu-HomoSer 7.13 249.1 40 120.1 10 

γ-Glu-Tau 6.84 255.1 40 126 15 

γ-Glu-Leu 5.25 261.1 40 132.1 10 

γ-Glu-Ile 5.34 261.1 40 132.1 10 

γ-Glu-Asn 7.51 262.1 40 133.1 10 

γ-Glu-Orn 7.83 262.1 40 133.1 10 

γ-Glu-Asp 7.36 263.1 40 134 10 

γ-Glu-Gln 7.32 276.1 40 147.1 10 

γ-Glu-Lys 7.74 276.2 40 147.1 10 

γ-Glu-Glu 7.16 277.1 40 148.1 10 

γ-Glu-Met 5.81 279.1 40 150.1 10 

γ-Glu-His 7.65 285.1 40 156.1 10 

Ophthalmic acid 6.47 290.1 40 161.1 10 

γ-Glu-Phe 5.34 295.1 50 166.1 10 

Cys-Gly
a 

4.11 304.1 40 158 25 

γ-Glu-Arg 7.65 304.2 40 175.1 10 

γ-Glu-Citr 7.27 305.1 40 176.1 15 

γ-Glu-Tyr 5.99 311.1 50 182.1 10 

γ-Glu-Trp 5.22 334.1 50 205.1 15 

(H-Cys-Gly-OH)2 8.32 355.1 50 177 20 

γ-Glu-Cys
a 

5.58 376.1 50 247.1 10 

γ-Glu-HomoCys
a

 5.29 390.1 60 261.1 10 

GSH
a

 5.64 433.1 50 304.1 10 

GSSG 8.64 613.2 60 484.1 15 

Phe-D5 (IS) 3.34 171.1 40 125 20 

a

 Compounds quantified as the N-ethylmaleimide (NEM) derivative.  
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Figure 2.18. Chromatograms corresponding to the targeted LC-MS/MS analysis 

of γ-glutamyl dipeptides and related compounds. A) IS Phe-D5; B) Aminoacids; C) 

Ophthalmic acid; D) γ-Glutamyl dipeptides; E) Compounds detected as NEM 

derivates; F) Oxidized compounds.    



Methodology 

128

2.14.3 Sample processing 

 

Biological samples were processed differently depending on their 

nature. Moreover, to allow optimal detection of all biomarkers in the 

different biological matrices, different dilutions and/or concentrations 

were used. 

For hepatic tissue and cultured cells samples, the extracts were 

obtained as previously described in Section 2.13.3. 

To obtain a 2x concentrated extract, 600 µL of cold methanol were 

added to 200 µL of extract. After vortexing, the mix was allowed to rest 

for 20 min at -20 ºC, centrifuged (10 min, 10000 g, 4 ºC) and the clean 

supernatant was transferred to a clean tube and evaporated to dryness in 

a speedvac. The dry residue was reconstituted in 100 µL of 

acetonitrile:100 mM ammonium acetate pH3 in water (7:3) containing 1 

µM Phe-D5, centrifuged (10 min, 10000 g, 4 ºC) and the clean 

supernatant was transferred to a 96-well HPLC plate for its analysis.  

To obtain 1/10 and 1/100 diluted samples, 120 µL of cold methanol 

were added to 30 µL of extract. After vortexing, the mix was allowed to 

rest for 20 min at -20 ºC. The extract was centrifuged (10 min, 10000 g, 

4 ºC). To prepare a 1/10 dilution, 50 µL clean supernatant were 

transferred to 96-well HPLC plate and mixed with 50 µL of 

acetonitrile:100 mM ammonium acetate pH3 in water (7:3) containing 

Phe-D5 2 µM. To prepare a 1/100 dilution, 5 µL clean supernatant were 

transferred to 96-well HPLC plate and mixed with 95 µL of 

acetonitrile:100 mM ammonium acetate pH3 in water (7:3) containing 

1.05 µM Phe-D5. 

For serum samples, to obtain a non-diluted sample, 100 µL of 50 mM 

NEM in were added to 100 µL of serum. After vortexing, 600 µL of cold 

methanol were added. The mix was vortexed, allowed to rest for 20 min 

at -20 ºC, centrifuged (10 min, 10000 g, 4 ºC) and the clean supernatant 

was transferred to a clean tube and evaporated to dryness in a speedvac. 
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The dry residue was reconstituted in 100 µL of acetonitrile:100 mM 

ammonium acetate pH3 in water (7:3) containing 1 µM Phe-D5, 

centrifuged (10 min, 10000 g, 4ºC) and the clean supernatant was 

transferred to a 96-well HPLC plate for its analysis.  

To obtain 1/16 and 1/80 dilutions, 30 µL of 50 mM NEM were added 

to 30 µL of serum. After vortexing, 240 µL of cold methanol were added. 

After vortexing, the mix was allowed to rest for 20 min at -20 ºC and 

centrifuged (10 min, 10000 g, 4 ºC). To prepare a 1/16 dilution, 50 µL 

clean supernatant were transferred to 96-well HPLC plate and mixed with 

50 µL of acetonitrile:100 mM ammonium acetate pH3 in water (7:3) 

containing 2 µM Phe-D5. To prepare a 1/80 dilution, 10 µL of clean 

supernatant were transferred to a 96-well HPLC plate and mixed with 90 

µL of acetonitrile:100 mM ammonium acetate pH3 in water (7:3) 

containing 1.11 µM Phe-D5. 
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3.1 Quality assurance strategy in untargeted 

metabolomic analysis 

 

The main premise in a metabolomics study is that the levels of the 

detected metabolites reflect the biological status of the system under 

study. Thus, a quality assurance strategy was implanted in sample 

preparation and analysis in order to ensure the quality of the results and 

to minimize and detect any sources of variation unrelated to the 

biological nature of the samples (166, 167). This was accomplished by 

the addition of IS to the problem samples, the inclusion of QC samples, a 

careful design of the sample acquisition process and a thorough 

equipment cleaning and maintenance before starting a batch analysis. 

Different IS were incorporated to the samples at different steps of 

sample processing (i.e. sample homogenization and sample preparation 

for the LC-MS analysis). These IS have a dual function, on one hand the 

levels of the IS are used to evaluate the efficiency of the metabolome 

extraction along the different samples and to account for any possible 

sample loss; on the other hand, the IS also assists to monitor, within the 

problem samples, the robustness of the analysis regarding both 

chromatography (RT and peak shape) and detection (mass accuracy and 

peak area) aspects. Detailed information about the IS employed for each 

type of sample and analytical condition is provided in Methodology. 

Here, different QC samples were used: i) Blank QC samples; ii) 

Pooled/commercially available QC samples; and iii) Class/treatment-

specific pooled samples. Blank QC samples were processed like problem 

samples, but without the addition of the biological matrix; their purpose 

was to detect any contaminant ions coming from both sample processing 

and sample analysis. Pooled/commercially available samples QC were 

employed, when possible, to check the performance of the LC-MS 

analysis with samples of equal nature to the problem samples. In this 

sense, different QCs have been used: i) commercially available pooled 



Results & Discussion 

134 

serum (Sigma Aldrich, Spain); ii) a pool of liver tissue from Liver Bank at 

the Hospital La Fe (UHE-LAFE / CIBERehd, Valencia, Spain); and iii) pooled 

control samples from cellular cultures. These QC were spiked with 

different IS specifically selected to cover both a wide m/z and RT ranges 

for each analytical condition. Thus LC-MS performance was not only 

checked with respect to the metabolomic pattern, but also with respect 

to a few known peaks. Finally, class/treatment-specific pooled samples 

were also included in each batch analysis to perform simultaneous MS 

and MS/MS acquisition to facilitate feature identification. 

The following considerations were taken into account with respect to 

each batch analysis or sample queue: i) As mass accuracy and response 

reproducibility may be compromised for long batch analysis times, total 

analysis time was limited to 48 h (215); ii) Pooled/commercially available 

QC sample was injected six times before starting the analysis of the 

problem samples, not only to condition the column but also to check 

system performance; iii) QC samples were alternated throughout the 

analysis batch sequence as follows: 1 pooled/commercially available QC 

every 15 problem samples and 1 blank QC every 10 problem samples; iv) 

Problem samples were analyzed in a random order but divided in 

representative blocks (e.g. blocks of the same number of samples 

belonging to different classes) (216); and v) Class/treatment-specific 

pooled samples were analyzed per triplicate at the end of the batch. The 

design of sample queue analysis is exemplified in Figure 3.1. 

To test instrument’s performance, the RSD of RT, peak area and mass 

accuracy of each IS was calculated for both problem samples and QCs. 

Acceptable RSD cutoffs for the peak area and RT were set at 15% and 1% 

respectively, while the threshold for mass error was set at 5 ppm. These 

figures were selected following the criteria described by the FDA 

Guidance for industry: bioanalytical method validation (206). Moreover, 

the analytical performance was evaluated with respect to the whole 

metabolomic pattern by using PCA. The relative position of a sample in 
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the principal component scores plot is determined by the metabolomic 

pattern obtained, that is, the sum of its composition and the response 

obtained by the analytical platform. Samples that cluster together have a 

more similar metabolic pattern than those that cluster apart. Therefore, 

all the samples belonging to a given class (i.e. pooled QC, blank QC, 

problem samples...) are supposed to cluster together and apart from the 

samples belonging to a different class. Thus, a correct clustering of the 

samples is an indicative of a good performance of the UPLC-QToF 

system. 

 

 

Figure 3.1. Analysis queue example in LC-MS untargeted metabolomic study. 

Problem samples are distributed in representative blocks and randomized within 

those blocks. Pooled quality control (QC) is injected 6 times before starting the 

analysis of problem samples in order to condition the column and to check 

system's performance. Blank QC is injected every 10 problem samples and 

pooled QC every 15 samples. 

 

 

By way of example, Figure 3.2 shows the values for area, mass 

accuracy and RT for the IS sulfadimethoxine and reserpine, under the 

generic RP in ESI (+) conditions, for all the samples included in the 
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example study. Figures 3.3-3.5 show the values for area, mass accuracy 

and RT for all the IS added to the pooled QC analyzed under the same 

conditions. All the recorded values, in both the QC and the samples, met 

the acceptance values.  

 

 

 

Figure 3.2. The peak area (upper panel), mass error (middle panel) and retention 

time (RT, lower panel) for the IS sulfadimethoxine and reserpine spiked in the 

problem samples. Each plot shows the values for all the problem samples 

analyzed under the generic-RP analysis in ESI (+) conditions. The red lines in the 

plots indicate the acceptance criterion for each parameter: 15% deviation for 

area, 1% deviation for RT and 5 ppm for mass error. 
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Figure 3.3. Peak area (arbitrary units) variation along sample batch analysis for 

the different IS spiked in the pooled QC. Each plot shows the values for the 11 

analytical replicates of the pooled QC analyzed throughout the batch in the 

generic RP analysis in ESI (+) conditions. At the top of each plot, the relative 

standard deviation (RSD as a percentage) for the 11 measures is shown. The red 

lines indicate the ±15% accepted deviation for the area. 
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Figure. 3.4. Mass error (ppm) variation along sample batch analysis for the 

different IS spiked in the pooled QC. Each plot shows the values for the 11 

analytical replicates of the pooled QC analyzed throughout the batch in the 

generic RP analysis in ESI (+) conditions. The red lines indicate the ±5 ppm 

acceptance criterion as specified in the text. 
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Figure. 3.5. Retention time (RT, expressed in minutes) variation along sample 

batch analysis for the different IS spiked in the pooled QC. Each plot shows the 

values for the 11 analytical replicates of the pooled QC analyzed throughout the 

batch under the generic RP analysis in ESI (+) conditions. At the top of each plot, 

the relative standard deviation (RSD, percentage) for the 11 measures is shown. 

The red lines indicate the ±1% accepted deviation for the RT. 

  



Results & Discussion 

140 

To investigate the natural sample relationship among the different QC 

and samples, a PCA was conducted (Figure 3.6). All the replicates of a 

given QC type were clustered together and separate from other QC 

samples or problem samples, thus indicating a good performance of the 

UPLC-QToF system throughout the batch analysis in terms of not only the 

targeted IS compounds, but the whole metabolomic profile. 

 

 

 

Figure 3.6. PCA scores plot showing the natural interrelationship among the 

different QC and problem samples included in the example study. Each point in 

the scores plot represents all the information provided by the generic-RP analysis 

in ESI (+) conditions for a given sample. Blue: problem samples; Green: Pooled 

QC; Red: Blank QC. 

 

 

The present quality assurance strategy constitutes a straightforward 

method to evaluate system performance before, during and after 

problem samples acquisition. Pre-batch checks are designed to ensure 

that the system is in optimal conditions before starting the analysis, or 

before finishing the preparation of the problem samples. All the 

parameters (IS peak area, RT, peak symmetry, mass accuracy, QC global 

profile…) are checked during sample acquisition. Therefore, if a trouble 

is detected, the analysis can be halted and the samples can be stored 

(preventing sample injection or degradation). Finally, post-injection 

checks are the final evaluation previous to data analysis, thus preventing 
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to waste time processing samples or batches that did not meet the 

quality standards. Moreover, the incorporation of analysis-specific IS is a 

helpful tool in the normalization data analysis stage as the IS levels 

reflect inter-samples differences in aspects such as injection volume, 

volume losses while preparing the sample, detection sensitivity...(133). 

Recent publications have highlighted the importance of quality 

assurance strategy in metabolomic studies (133, 162, 215, 217). 

Common strategies to check systems performance in LC-MS based 

metabolomics include the use of QC samples and the addition of IS. 

However, previously reported strategies focused on checking the system 

performance before the start of the analysis and once it has finished. The 

strategy described here has the added value of carrying out live 

instrument performance checking as the parameters can be evaluated 

during the acquisition, what is especially important when the sample size 

is limited as it prevents samples to be injected (and consumed) or 

degraded while waiting or after being injected. 

  



Results & Discussion 

142 

3.2 Optimization of metabolome coverage for mammalian 

cells in adherent culture by using LC-MS 

 

Untargeted metabolomics aims to detect the maximum possible 

number of metabolites in a given biological sample. In order to avoid 

metabolite degradation or alterations in their levels at the time of the 

sampling, sample processing has to allow the extraction of the 

metabolites of interest while providing a correct quenching of the cell 

metabolism. After the samples have been generated, they should be 

analyzed under the appropriate analytical conditions to achieve optimal 

chromatographic separation and detection of both polar and lipidic 

metabolites and maximize the information about their metabolomic 

profiles. 

Several examples of the application of metabolomics to different 

cellular models are available in the literature (reviewed in reference 

(103)). However, there is no general consensus about the harvesting, 

extraction or analysis methods. Therefore, we evaluated different sample 

analysis and processing conditions in order to determine the best sample 

processing (including metabolism quenching, cell harvesting and 

metabolite extraction) and analysis protocol using HepG2 cells as cellular 

in vitro model (Figure 2.13). 

 

3.2.1 Optimization of endometabolome analysis by LC-MS 

 

First, we evaluated the metabolome coverage offered by six different 

analytical conditions using three different chromatographic separations 

and each one tested in both ESI (+) and ESI (-) modes. Based on our 

previous experience in human liver tissue metabolomic profiling analysis 

(166), we decided to evaluate both HILIC and RP stationary phases. With 

respect to RP chromatography, two different approximations were used, 

one directed to detect the lipidome (lipidomic-RP) (163), and one 
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intended to cover a wider set of metabolites from different polarities 

(generic-RP) (162). The seven HepG2 cells extracts (E1 to E7) obtained by 

the use of five different extraction solvents (solvent 1 to solvent 5) were 

analyzed by the six proposed analytical configurations (Figure 2.13). In 

all the cases the same cell harvesting and processing configuration (i.e. 

the way metabolism quenching, cell harvesting and metabolite extraction 

were applied) was performed based on a previously published one (152).  

Results are summarized in Table 3.1, a detailed analysis of the figures 

revealed that a total of 103 polar and 492 lipidic unique metabolites 

were detected. As expected, no polar compounds were detected using 

the lipidomic-RP approximation, and no lipidic species were detected by 

using the HILIC conditions, however the generic-RP approximation was 

able to identify a range of polar and lipidic metabolites. Actually, polar 

metabolites could be detected using the lipidomic approximation and 

lipids using the HILIC one, however, the chromatographic signal, in 

terms of RT, peak shape and reproducibility, was not adequate and 

therefore those peaks were not considered for further analysis. As 

expected based on the characteristics (stationary and mobile phases) of 

the separation methods, lipidomic-RP approximation provided a broad 

coverage of lipidic species, with most of them being detected in ESI (+), 

although part of them were detected in ESI (-) mode as 

phosphatidylserine (PS), phosphatidylglycerol (PG), phosphatidic acid 

(PA).... On the other hand, although HILIC analysis did not provide a 

complete polar metabolite coverage, this approach rendered an 

acceptable number of polar compounds. Finally, the generic-RP 

approximation provided a complementary detection of both polar and 

non-polar compounds (i.e. FA and PL) thanks to the combined use of a RP 

column designed to enhance the retention of polar compounds and a 

chromatographic gradient set up to properly resolve both polar and 

lipidic metabolites.  
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Table 3.1. Summary of the metabolites detected by each extract under the 

different analytical conditions. 

  
E1 E2 E3 E4 E5 E6 E7 

Lipidomic-RP 

ESI(+) 

ChE 10  11 16 0 17 4 15 

Cer 7 8 11 0 12 5 12 

DG 13 20 22 0 22 11 20 

FA 3 4 8 0 10 5 8 

LysoPC 11 12 16 0 18 9 18 

LysoPE 6 6 12 0 12 3 12 

PC 46 52 63 0 64 46 64 

PE 40 45 47 0 47 39 47 

PG 14 18 22 0 25 5 25 

PI 6 6 7 0 7 5 7 

PS 11 14 16 0 19 11 19 

SM 15 17 20 0 21 14 21 

TG 87 93 107 0 108 73 105 

Lipidomic-RP  

ESI(-) 

Cer 3 3 3 0 3 2 2 

FA 3 6 6 0 5 3 5 

LysoPE 5 11 12 0 12 9 10 

PC 3 9 8 0 9 7 8 

PE 17 18 17 0 17 17 15 

PG 3 11 11 0 11 9 9 

PI 4 8 10 0 10 7 8 

PS 13 21 20 0 20 17 16 

Generic-RP  

ESI(+) 

Polar 4 2 2 4 0 4 0 

DG 9 12 17 2 23 12 15 

LysoPC 1 7 7 0 8 4 5 

LysoPE 0 5 5 0 6 2 3 

MG 1 2 2 1 15 2 5 

PC 14 30 32 0 33 15 23 

PE 2 24 24 0 24 3 15 

PS 0 8 8 0 8 0 3 

SM 1 11 11 0 11 2 6 

Generic-RP  

ESI(-) 

Polar 12 21 16 21 0 21 0 

FA 5 12 11 7 15 13 11 

LysoPA 0 3 3 2 3 3 0 

LysoPE 0 7 7 0 7 2 1 

LysoPG 0 1 1 0 0 1 4 

LysoPI 0 2 2 0 0 1 0 

PG 0 9 9 0 9 2 4 

PI 0 12 12 0 12 1 7 

PS 0 5 5 0 5 1 3 

HILIC ESI(+) Polar 59 42 34 52 0 39 0 

HILIC ESI(-) Polar 44 34 25 41 0 37 0 

 

E1-E7 refer to the different extracts obtained (see Figure 2.13). Color code refers 

to by-row centered and normalized mean intensity from the lower (blue) to 

higher (red) values. ChE: cholesterol ester, Cer: ceramides, DG: diacylglyceride, 

FA: free fatty acid, LysoPA: lysophosphatidic acid, LysoPC: 

lysophosphatidylcholine, LysoPE: lysophosphatidylethanolamine, LysoPG: 

lysophosphatidylglycerol, LysoPI: lysophosphatidylinositol, MG: 

monoacylglyceride, PC: phosphatidylcholine, PE: phosphatidylethanolamine, PG: 

phosphatidylglycerol, PI: phosphatidylinositol, Polar: polar metabolites, PS: 

phosphatidylserine, SM: sphingomieline, TG: triacylglyceride  
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To graphically assess the relationship and the overlap between the 

metabolites extracted and detected by each analytical condition Venn 

diagrams were drawn (Figure 3.7).  

 

 

 

Figure 3.7. Venn diagrams showing the overlap between the different analytical 

conditions with respect to polar (A) and lipidic metabolites (B).  

 

 

From the total 151 polar metabolites detected, the HILIC conditions 

provided the highest coverage detecting 113 species with 92 unique 

identifications. Generic-RP detected a total of 38 polar metabolites, 31 of 

them detected by using ESI (-), where 9 metabolites were not detected by 

any other analytical condition (Figure 3.7.A).  
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With respect to the lidipidome (Figure 3.7.B), a total of 661 lipids were 

detected. Generic-RP was able to achieve a good chromatographic 

separation of high to medium polar lipids as FA, PL, LysoPL… (Table 

3.1), detecting a total of 143 metabolites with 138 unique metabolites. 

The lipidomic-RP approximation extended the coverage to highly apolar 

lipid species (e.g. TG and ChE) covering a total of 518 metabolites with 

451 unique metabolites (Figure 3.7.B). Due to the diversity of the lipids, 

differences were obtained between ESI (+) and ESI (-) ionization modes 

that provided complementary information. Results showed that 

lipidomic-RP ESI (+) showed the highest lipidome coverage and no 

important complementary information was provided by generic-RP ESI 

(+), although using ESI (-) further information was obtained. 

The overall analysis of the results revealed that using the combination 

of HILIC, lipidomic-RP with ESI (+) and generic-RP with ESI (-) the 90% of 

the total unique metabolites were covered. 

LC-MS based metabolomics have been usually performed based on RP 

chromatography (107, 114, 115). However, the combination of HILIC and 

RP chromatographies has been satisfactory employed by our group (166, 

183) and others (218-220) as an analytical strategy suitable to expand 

the coverage of the metabolome. The added value of the strategy 

described herein resides not only in the combination of RP and HILIC 

stationary phases, but also in an experimental design that allows a 

comprehensive characterization of the entire lipidome. It has been 

recently suggested the use of HILIC chromatography to perform 

lipidomic analysis, mainly to cover highly to medium polar lipids such as 

PL, LysoPL and SM (221-223). Therefore, in our opinion, it is more 

appropriate to use a RP-based lipidomic as the one developed by the 

group of Professor Matej Orêsic (163), whose usefulness and robustness 

have been extensively proven in many studies (224-226). Recently, Fei et 

al proposed an analytical strategy in which both polar and lipidic species 

were simultaneously analyzed using an HILIC-based chromatographic 
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separation, thus reducing analysis time per sample (227). However, the 

usefulness of such approach might be limited by the fact that highly 

apolar lipids (i.e. FA, ChE, TG...) were not detected and the co-elution of 

polar and lipidic species, what could lead to ion suppression differences 

between samples and thus to misunderstanding of the results. 

 

3.2.2 Optimization of endometabolome extraction  

 

Five different extraction solvents that generated seven extracts were 

evaluated (Figure 2.13). Huge differences were obtained both in the 

nature, number and intensity of metabolites efficiently covered by each 

solvent combination (Table 3.1). A PCA analysis was performed in order 

to analyze the natural interrelationship between the different extracts 

(Figure 3.8).  

 

 

 

Figure 3.8. The PCA scores plot showing the natural interrelationship among the 

different extracts. Each cluster is represented by a different color and the lines 

denote 95 % confidence interval Hotelling's ellipse each one.  
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Three different clusters were identified): i) E4, formed by extracts 

composed exclusively of polar metabolites; ii) E1, E2, E3 and E6, 

composed by extracts that achieved the extraction of both polar and 

lipidic compounds; and iii) E5 and E7, grouping extracts composed 

exclusively by lipidic metabolites. The direction along the first 

component is driven by an increased extraction of lipidic compounds, 

while the second component separated those extracts containing polar 

and/or lipidic compounds from those containing only lipidic metabolites 

(Figure 3.8). 

With respect to the extraction of polar metabolites, extracts E1 and E4 

provided the highest number and intensity of metabolites detected using 

HILIC conditions. With respect to lipids, extracts E3 and E5 were the ones 

providing the highest performance in lipidomic-RP ESI (+) conditions with 

a total of 367 and 382 detected compounds, respectively. However in 

general terms, and particularly for highly apolar lipids (i.e. ChE and TG), 

E5 provided higher extraction yields. Extracts E1, E2, E3 and E6 were 

able to extract both polar and lipidic metabolites. Among them, extract 

E1 was the one that achieved the best coverage of polar metabolites and 

E3 of lipids. However extract E2 was the one that provided the highest 

combined coverage of both polar and lipidic metabolites both in terms of 

detected metabolites (21 and 51, respectively in generic-RP ESI (-) 

conditions) and intensity (Table 3.1). 

The overall review of these results showed that the combined analysis 

of E4 (HILIC), E5 (lipidomic-RP/ESI (+)), and E2 (generic-RP/ESI (-)), 

covered 90% of the metabolites comprised in the seven extracts. 

Extraction with methanol alone or combined with other solvents (i.e. 

water or water and chloroform) is usually employed as a first 

approximation to metabolomic studies as a wide range of polar to 

medium apolar metabolites are extracted (103, 108). However, when the 

objective is to achieve a wider metabolome coverage and to exploit the 

capabilities of the analytical platform employed, different combinations 
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of extraction solvents can be tested. For example, with respect to the 

characterization of the lipidome, methanol extracts represent a good 

option to perform metabolomics studies covering the phospholipidome, 

while the addition of more apolar solvents (i.e. chloroform or 

dichloromethane) is needed when the focus is also put in highly apolar 

lipids such as TG or ChE (228). Our sample processing strategy, in which 

the combination of extraction solvents has been performed in a joint 

manner with respect the selection of the analytical conditions, allows to 

maximize the detection of metabolites of interest in each condition while 

minimizing the interferences provided by other groups of metabolites.  

 

3.2.3 Optimization of cell harvesting and processing 

 

Sample processing for adherent cells needs to overcome the following 

aspects: i) metabolism quenching; ii) cell detachment; and iii) 

metabolome extraction (103). These steps can be performed 

simultaneously or sequentially (103).  

Three different approaches were tested to optimize cell harvesting and 

processing (Figures 2.13, 2.14). To focus on the influence of these 

specific factors on the metabolome coverage, the rest of operational 

variables were kept constant and all the samples were processed and 

analyzed based on the above mentioned results. All the methods showed 

similar figures in terms of the number of detected lipids (around 380 

and 50 in lipidomic-RP ESI (+) and generic-RP ESI (-) conditions, 

respectively), although lower total intensities were obtained for method 

C with a mean decrease around 20% with respect to methods A and B 

(Table 3.2). An important decrease in both the intensity and number of 

identified polar metabolites was observed for method C: a total of 124 

and 123 polar metabolites were identified using method A and B, 

respectively, while only 93 polar metabolites an a mean decrease in the 

total intensity near to 30% were detected using method C (Table 3.2).  
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Table 3.2. Summary of the metabolites detected with each sample processing 

strategy under each analytical condition. 

 

  
 Method A Method B Method C 

Lipidomic-RP 

ESI(+) 

ChE  17 15 16 

Cer  12 12 12 

DG  22 19 21 

FA  10 8 8 

LysoPC  18 17 17 

LysoPE  12 13 12 

PC  64 65 64 

PE  46 46 46 

PG  25 27 28 

PI  7 7 7 

PS  19 19 17 

SM  21 20 21 

TG  108 110 112 

Generic-RP  

ESI(-) 

Polar  21 18 13 

FA  12 13 11 

LysoPA  3 3 3 

LysoPE  7 7 7 

LysoPG  1 2 0 

LysoPI  2 2 2 

PG  9 7 9 

PI  12 11 12 

PS  5 5 5 

HILIC ESI(+) Polar  59 59 45 

HILIC ESI(-) Polar  44 46 36 

 

Color code refers to fold of change with respect the mean value: blue = 0.5, 

white = 1, red = 2. ChE: cholesterol ester, Cer: ceramides, DG: diacylglyceride, 

FA: free fatty acid, LysoPA: lysophosphatidic acid, LysoPC: 

lysophosphatidilcholine, LysoPE: lysophosphatidilethanolamine, LysoPG: 

lysophosphatidilglycerol, LysoPI: lysophosphatidilinositol, MG: 

monoacylglyceride, PC: phosphatidylcholine, PE: phosphatidylethanolamine, PG: 

phosphatidylglycerol, PI: phosphatidylinositol, Polar: polar metabolites, PS: 

phosphatidylserine, SM: sphingomieline, TG: triacylglyceride.  

 

 

Method C involves the use of trypsin to detach the cells from the plate 

surface and metabolism quenching is delayed with respect to the other 

two methods. It has been reported that trypsinization may compromise 

the cellular membrane integrity, leading to the loss of intracellular 

metabolites (150, 229, 230). Moreover, the delay in metabolism 

quenching may contribute to the enzymatic degradation of some 

metabolites (103). No significant differences were found with respect to 

methods A and B. However, from a practical point of view, an important 
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advantage of method A is that several samples can be simultaneously 

generated and stored at -80 ºC after metabolism quenching without the 

need of processing them just after their collection. This is especially 

useful when a high number of samples are generated at the same time, 

allowing to focus on time sensitive biological transformations, and when 

performing complex extraction procedures (152). Moreover, it has been 

previously shown an increased stability if the cells are stored previously 

to be extracted (as frozen plates), rather than the cellular extracts (152). 

Therefore, metabolism quenching with liquid N2 followed by the 

simultaneous cells detachment and metabolite extraction was selected as 

the optimum strategy to perform sample processing when analyzing the 

endometabolome of cultured adherent cells. 

 

3.2.4 Assembling an appropriate protocol for  sample processing and 

analysis 

 

The optimized sample processing and analysis strategy is depicted in 

Figure 3.9. The first step in sample processing involves the removal of 

the culture medium followed by cell washing with PBS. Then, metabolism 

is quenched by the addition of liquid N2 over the cell monolayer. At this 

step the cells can be stored at -80 ºC, thus delaying the rest of sample 

processing steps. Cell detachment and metabolite extraction are 

performed simultaneously by scrapping the cells in 

water:methanol:chloroform (10:27:3) (152). The cell extract/suspension 

is submitted to three freeze/thaw cycles (liquid N2/room temperature) in 

order to increase cell disruption and metabolite extraction. The extract is 

then split in two different aliquots for untargeted metabolomic analysis 

plus an additional one for protein quantification. The first aliquot is 

destined to be analyzed using generic-RP ESI (-) conditions. The second 

aliquot is extracted with chloroform thus generating two different 

fractions: an aqueous fraction, that will be analyzed using HILIC 
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separation coupled to both ESI (+) and ESI (-) detection, and an organic 

fraction, that will be analyzed using lipidomic-RP ESI (+) conditions. Then, 

three different aliquots are generated for each biological sample, which 

will be analyzed using four analytical conditions (Figure 3.9). 

 

 

 

Figure 3.9. Workflow of the optimized sample processing and analysis strategy 

for the analysis of the endometabolome of HepG2 cells.  

 

 

Few studies have evaluated different aspects of sample processing for 

mammalian adherent cell cultures (150-152, 227, 229, 231). These 

studies focused on the optimization of sample processing for a particular 

cell line, however, a series of conclusions can be extracted. Most of them 

focused on the detection of polar metabolites. The only study that 

evaluated some lipidic metabolites is the one performed by Fei et al 
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(227). In all of them the decisions were taken on the basis of the levels of 

a set of metabolites and the total number/intensity of detected features. 

This strategy could lead to misunderstandings in results interpretation 

and decision making.  

Our results agree with respect to the basic operational steps (i.e. 

metabolism quenching, cell detachment and cell disruption) described in 

the literature (103). It is not possible to compare our results with the 

previous ones in terms of metabolome extraction and analysis as our 

protocol aims to cover a wider range of metabolites, from highly polar 

(e.g. aminoacids, nucleotides, cofactors...) to lipidic (e.g. lysoPLs, PLs, 

TGs...) metabolites, compared to the previously mentioned studies. To 

analyze the extent of the improvement of metabolome coverage reached 

by each protocol modification, we decided to evaluate only those 

features that were matched with a known identity. This strategy allows a 

more accurate and reliable evaluation of the capabilities of the sample 

processing and analytical procedures. 

The main strength of our study approach was the simultaneous 

optimization of sample processing and analysis, this allows to evaluate 

the capabilities of each analytical modification in combination with the 

extraction properties of each solvent mixture, thus maximizing the 

information that can be obtained from each biological sample. Our aim 

was to set up a sample processing and analysis strategy that allowed the 

determination of the widest possible number of metabolites. This 

approximation allows to get a more comprehensive information about 

the events that are occurring within the cell, which supposes a crucial 

advantage to the metabolic phenotyping of the cells and the possibility 

of the discovery of biomarkers. Moreover, as several different aliquots 

can be extracted from a single biological sample, it supposes an 

important saving of economic, biological and time resources. While the 

strategy described here provides a thorough mapping of the 

metabolome, it has some disadvantages. The proposed extraction 
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method involves more complex sample manipulations compared to the 

extractions using aqueous:methanolic mixtures (103). Moreover, the 

analytical strategy involves the analysis of each biological sample under 

four different conditions. That supposes a considerable increase in the 

analysis time and the time and complexity of data analysis, and therefore 

a reduction in the efficiency compared to those methods that perform 

the analysis of the samples using a single analytical condition.  

No comprehensive sample processing and analysis optimization has 

been previously performed using liver-derived cells although some 

metabolomic studies are available in the literature (154-157, 232). After 

the evaluation of several parameters regarding sample processing (i.e. 

metabolism quenching, cell harvesting and metabolome extraction) and 

analysis, we propose a strategy that allows a comprehensive coverage of 

the metabolome ranging from polar metabolites (e.g. aminoacids, 

nucleotides, cofactors, organic acids...) to the whole spectra of lipidic 

species (i.e. LysoPL, PL, FA, TG...). This strategy can be applied to any 

study involving the use of mammallian cells and mass spectrometry 

analysis. 
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3.3 Metabolomic analysis of HepG2 cells exposed to 

model hepatotoxic compounds 

 

The main objective of the present thesis was the identification of 

mechanism-specific biomarkers, metabolomic patterns and altered 

pathways associated to drug-induced hepatotoxicity using HepG2 cells as 

in vitro model. HepG2 is the most commonly used and best 

characterized human liver-derived cell line. The main strengths 

associated to the use of HepG2 cells in pre-clinical testing are its human 

origin, unlimited availability, high reproducibility, easy culture and 

handle conditions, complete characterization and wide bibliographic 

documentation (5, 49). Their limited drug metabolizing and transport 

capabilities are the main drawbacks associated to their use.  

The optimized analytical strategy described in Section 3.2 was applied 

to unravel the metabolomic changes associated to hepatotoxicity in 

general and to specific mechanisms of hepatotoxicity in HepG2 cells. 

Model hepatotoxins and concentrations were selected based on 

previously published studies (Table 2.2) (29, 69, 88, 89, 91, 92). Four 

different mechanism of toxicity were tested: i) OS; ii) phospholipidosis; 

iii) steatosis and iv) cholestasis (29). 

Figure 3.10 shows the scores plots corresponding to the PCA analysis 

performed by comparing the metabolic profile of cells treated with 

control (i.e. non-hepatotoxic) compounds vs cells treated with 

compounds corresponding to each of the different mechanisms of 

hepatotoxicity included in the study.  
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Figure 3.10. PCA scores plots corresponding to data obtained from HepG2 cells 

treated with hepatotoxins acting through different mechanisms of toxicity and 

analyzed using the generic metabolomic strategy. The lines denote 95 % 

confidence interval Hotelling's ellipse. PCA models were developed using two 

principal components. A) Control vs OS. B) Control vs Steatosis. C) Control vs 

Cholestasis. D) Control vs Phospholipidosis. Green: Control; Orange: OS; Purple: 

Steatosis; Blue: Cholestasis; Red: Phospholipidosis.  
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The scores plots corresponding to the comparison of non-hepatotoxic 

compounds vs OS (Figure 3.10.A), steatosis (Figure 3.10.B) and 

phospholipidosis (Figure 3.10.D) show that the samples corresponding 

to cells treated with control compounds were clustered together and 

separated from those corresponding to hepatotoxic compounds. This 

trend indicates that the toxic insult induced changes in the metabolome 

that were detected by using our sample processing and analysis strategy. 

The PCA scores plot in Figure 3.10.C reveals that the changes induced in 

the metabolome by the three drugs from the cholestasis group were not 

homogeneous. While the samples corresponding to the treatment with 

cyclosporine were located far from the cluster of control samples in the 

scores plot, those corresponding to troglitazone and chlorpromazine 

were located within the 95% confidence interval Hotelling's ellipse 

corresponding to the control samples. This finding suggests no 

detectable changes in the HepG2 metabolome after treatment with 

troglitazone and chlorpromazine, at least at the concentrations and 

analytical conditions used in our study. 

 

3.3.1 Identification of markers of hepatotoxicity 

 

The PCA analyses shown in Figure 3.10 revealed that the observed 

metabolome alterations were strong enough to be able to differentiate 

between control and hepatotoxic compounds using a non-supervised 

multivariate analysis. Thus, the next step in the data analysis workflow 

was to identify which metabolites and pathways were altered as a 

consequence of the different treatments. First, a general comparison 

between non-hepatotoxic and hepatotoxic compounds was performed in 

order to identify non-specific markers of hepatotoxicity. Then, the 

analysis was focused on the identification of specific markers and 

patterns associated to each of the studied mechanisms of toxicity. Two 

different strategies were performed to select those altered metabolites 
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with the aim of capturing both the alterations reflecting uni- and 

multivariate dependencies (121). Those metabolites showing a q value < 

0.05 (p value using a Student's t test corrected using FDR) or a VIP value 

> 1.2 (based on a PLS-DA model discriminating between control and the 

treatment of interest) were considered to be significantly altered as a 

result of the exposure to the toxicant. 

 

Non-specific metabolome changes triggered by hepatotoxic compounds 

 

Those metabolites which were altered by all the hepatotoxic 

compounds may be considered as general biomarkers of toxicity. With 

respect to polar metabolites the most important changes were related to 

aminoacids (i.e. glutamine, histidine, methionine, phenylalanine, 

threonine, tyrosine, tryptophan, citrulline...), glycolysis (i.e. glucose-6-

phosphate), OS markers (i.e. GSH/GSSG, cysteine-GSH disulfide (CSSG) 

and -glutamyl-glutamine), metabolism of purines (i.e. adenine and 

xanthine) and intermediates in PL metabolism (i.e. phosphocholine, 

glycerophosphocholine, LysoPL...). With respect to the lipidic species, 

several changes were observed in PL, FA, TG and acylcarnititines (Figure 

3.11). 

From a general point of view these results suggest that the 

hepatotoxic insult affected some of the most basic metabolic functions. 

Pathways such as glycolysis, urea cycle and metabolism of FA, 

aminoacids, nitrogen, purines and PL, that were revealed to be 

significantly altered using pathway enrichment analysis, are among the 

most important ones controlling energy production and maintaining 

cellular integrity and homeostasis. Moreover, the appearance of OS 

markers in conjunction with the alteration of metabolites related to the 

metabolism of FA suggests that the mitochondrion is a common target in 

hepatotoxic damage (34, 35).  
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Figure 3.11. Boxplots showing the most important changes associated to generic 

hepatotoxicity in HepG2 cells analyzed following the generic untargeted 

metabolomic analysis strategy. Values are expressed as relative intensity. Boxes 

denote interquartile ranges, lines denote medians, and whiskers denote the 10th 

and 90th percentiles. 

 

 

Metabolomic changes provoked by OS inducers  

 

Among the hepatotoxic compounds used in our study, cumene 

hydroperoxide and tert-butyl hydroperoxide were selected as pure OS 

inducers (Table 2.2). A total of 66 metabolites were significantly altered 

in HepG2 cells exposed to these model toxicants. A pathway enrichment 

analysis revealed that FA and TG metabolism, PL metabolism, glutamate 

and GSH metabolism, nitrogen and aminoacid metabolism and 
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nucleobases metabolism were the pathways suffering the greatest 

impact. The most important metabolic changes are shown in Figure 

3.12. As expected, a characteristic increase in well-known low-molecular-

weight OS markers was found. Moreover, noteworthy changes in the 

lipidome, that can be interpreted as a secondary damage associated to 

the oxidative insult, were also observed (Figure 3.12).  

 

 

 

Figure 3.12. Boxplots showing the most important changes associated to OS 

treatment in HepG2 cells analyzed using the generic untargeted strategy. Values 

are expressed as relative intensity. Boxes denote interquartile ranges, lines 

denote medians, and whiskers denote the 10th and 90th percentiles. 
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The most common change associated to OS damage is a decrease in 

the GSH/GSSG ratio. GSH is the predominant low-molecular-weight thiol 

(0.5 – 10 mmol/L) in animal cells, mainly located in the cytosol (85 – 

90%), but also in many organelles (233, 234). Its high intracellular 

concentration, compared to other redox systems (i.e. NADP
+

/NADPH and 

thioredoxin (TrxSS/Trx(SH)2), makes the GSH/GSSG pool the principal 

redox buffer of the cell (50, 235). As seen in Figure 3.12, an important 

reduction in GSH levels and GSH/GSSG ratio was observed in HepG2 cells 

treated with OS-inducers, in agreement with previous in vitro studies in 

liver-based cellular models (236, 237). The shift of GSH/GSSG toward the 

oxidizing state activates several signaling pathways which, in 

conjunction with GSH efflux, has been associated to increased apoptosis 

in liver cells (234, 238, 239). 

According to the observed changes in GSH and GSH/GSSG, increased 

levels of CSSG were also found (Figure 3.12). CSSG is a marker of 

oxidative damage to GSH (240). CSSG, usually assessed in serum, is the 

result of the reaction between cystine (the oxidized form of cysteine, 

which constitutes the major thiol pool in blood) and GSH, supplied from 

the cells to preserve the cysteine to cystine ratio (241). Nevertheless, 

CSSG is ubiquitously found in mammalian cells and under OS conditions 

its production is enhanced (240). Increased levels of CSSG have been 

reported in the liver of rats treated with paracetamol (140).  

Tightly related, several compounds belonging to the -glutamyl cycle 

(i.e. -glutamyl-glutamine, -glutamyl-glutamate, glutamine and 

glutamate) showed altered levels as a result of the oxidative damage. 

The -glutamyl cycle (Figure 3.13) was postulated by Meister in the mid-

seventies (242, 243) and accounts for the biosynthesis and degradation 

of GSH. GSH is synthesized from its constituent amino acids in two 

consecutive reactions (Figure 3.13) (233, 244). The first step, considered 

rate limiting, is catalyzed by glutamate cysteine ligase (GCL). GCL is 

specific for the glutamyl moiety and is regulated physiologically by 
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inhibition by GSH and availability of its precursor, L-cysteine (243). The 

second step is catalyzed by GSH synthase (GS). In addition, the rate of 

GSH biosynthesis in the hepatocyte is balanced by its rate of export, 

mainly into plasma and bile (233, 244).  

 

 

 

Figure 3.13. -glutamyl cycle. Enzymes are denoted in italics. Square boxes 

denote transmembrane transporters. GGT: -glutamyl transpeptidase. DP: 

dipeptidase. Figure adapted from references (233, 245). 

 

 

Storage of cysteine is one of the most important functions of GSH 

because extracellular cysteine is extremely unstable and rapidly auto-

oxidizes to cystine, in a process that produces potentially toxic oxygen 

free radicals (242). The -glutamyl cycle describes how GSH can be used 

as a continuous source of cysteine. GSH is released from the cell by 

carrier mediated transporter(s) and then -glutamyl transpeptidase (GGT) 

transfers the -glutamyl moiety of GSH to an amino acid, forming -

glutamyl amino acid and cysteinylglycine which can be further 

metabolized to retrieve their constitutive amino acids. (233, 242, 244) 

(Figure 3.13).  
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Two different theories can explain the appearance of -glutamyl 

dipeptides as a result of OS. Soga et al found increased serum levels of 

different -glutamyl dipeptides in different forms of liver disease (246). 

They hypothesized that -glutamyl dipeptides are synthesized via the 

ligation of glutamate with various amino acids and amines by GCS, and 

are indicative of the amount of GSH production (Figure 3.14) (246). 

 

 

 

Figure 3.14. Hypothesis postulated by Soga et al (246) to explain the 

accumulation of -glutamyl dipeptides under OS conditions. Under reducing 

conditions, GCS is feedback inhibited by GSH and small amounts of -glutamyl 

dipeptides are synthesized (left panel). During OS, GSH is consumed, leading to 

GCS activation, which could result in biosynthesis of -glutamyl dipeptides. GCS: 
-glutamyl-cysteine synthetase; GS: glutathione synthetase. Figure adapted from 

reference (246). 

 

 

However, not only -glutamyl dipeptides, but other components of the 

-glutamyl cycle were altered as a result of the oxidative damage. Under 

OS conditions, the flux of GSH to the -glutamyl cycle is enhanced to 

restore reduced thiol status of the cell (mainly as reduced cysteine) what 

could be an alternative theory to explain the observed metabolomic 

alterations (Figures 3.12, 3.13). Additional studies (measurement of 

enzyme activities and metabolic fluxes) would be required to clarify the 
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contribution of each of the aforementioned pathways in the protection of 

the cell under OS conditions and the appearance of -glutamyl 

dipeptides. 

With respect to the alterations in the lipidome, the most remarkable 

changes were a decrease in the levels of free FA and an increase in the 

levels of acylcarnitines and TG (Figure 3.12). Although the oxidative 

insult can induce damage in different molecules and cell organelles, the 

oxidative processes that take place in the mitochondria (along with the 

presence of an unprotected mtDNA) make them sensitive targets of 

oxidative damage (32-34). A consequence of mitochondrial damage is 

the inhibition of metabolic pathways in the mitochondria, including FA β-

oxidation. This situation results in an accumulation of FA and 

intermediates of FA oxidation such as acylcarnitines. FA can either be 

esterified into TG or remain as a free form, this later reinforcing 

mitochondrial dysfunction and increasing OS (32-34, 247). 

 

Metabolomic alterations induced by steatogenic drugs 

 

Three model drugs causing steatosis as main mechanism of toxicity 

were included in the study (Table 2.2): doxycycline, tetracycline and 

valproic acid. Drug-induced steatosis resulted in the alteration of 91 

metabolites in HepG2 cells. A functional enrichment analysis revealed 

that FA and TG metabolism, aminoacid metabolism, urea cycle and 

nitrogen metabolism, PL metabolism and glutamate, cysteine and GSH 

metabolism were the most altered pathways. 

The main alterations related to lipidic species were the increase in the 

levels of TG, DG, PL and LysoPL and the decrease in FA (Figure 3.15). 

With respect to polar metabolites, although several compounds were 

altered as a result of drug-induced steatosis, it is worthy to remark the 

changes in several OS markers (Figure 3.15). 
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Figure 3.15. Boxplots showing the most important changes associated to 

steatosis treatment in HepG2 cells analyzed using the generic untargeted 

metabolomic analysis strategy. Values are expressed as relative intensity. Boxes 

denote interquartile ranges, lines denote medians, and whiskers denote the 10th 

and 90th percentiles. 

 

 

The accumulation of TG inside the hepatic cells is the hallmark of 

hepatic steatosis. Increased TG deposits has been previously observed in 

the liver of patients suffering steatosis (106, 166, 248), in animal models 

of diet-induced (249-252) or drug-induced (253-255) steatosis and in 

cellular models of in vitro hepatosteatosis (88, 154, 256). Different 

mechanisms leading to drug-induced hepatic steatosis have been 

identified (29, 32). Among them, impairment of FA β-oxidation due to 

mitochondrial disturbances is of special relevance (29, 32, 34, 35). There 
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is substantial evidence that FA can directly cause toxicity by increasing 

OS and through the activation of inflammatory pathways (247); therefore, 

the accumulation of FA as TG is thought to be an adaptive and protective 

response of hepatocytes to excessive availability of free FA to the liver 

and its associated liver toxicity (257-259). Impairment of TG synthesis 

has been shown to improve of hepatic steatosis but increase cytotoxicity 

and liver damage (252, 260). 

While TG are considered to be a non-lipotoxic counterpart in steatosis, 

the list of possible lipotoxic metabolites include FA, PA, LysoPA, LysoPC, 

ceramides, and DG (257, 259). Among them, the levels of LysoPL and DG 

were found to be elevated in cells treated with steatogenic drugs (Figure 

3.15). The levels of LysoPL have been previously found to be elevated in 

liver biopsies and serum samples from patients suffering hepatic 

steatosis (166, 248, 261, 262), in palmitate-loaded HepaRG cells (154) 

and in mouse models of fatty liver disease and obesity (251, 263). 

LysoPL are generated through the action of phospholipases. LysoPC, 

produced by phospholipase A2 (PLA2), which catalyzes the hydrolysis of 

the fatty acyl ester bond at the sn-2 position of glycerophospholipids 

(Figure 3.16), have been implicated in several types of cell death (264-

266). One recent study related elevated LysoPC content in the liver with 

the genesis and progression of necroinflammatory injury of hepatocytes 

(267). A direct role of LysoPC in lipotoxic liver injury was then 

demonstrated using human liver cell lines, mouse hepatocytes in primary 

culture, and in mice. Consistently, induction of phospholipase A2 genes 

has been found in non-alcoholic steatohepatitis (NASH) (106, 267). 
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Figure 3.16. Main lipidic pathways showing alterations as a result of drug-

induced steatosis. See the text for a detailed explanation of the consequences 

derived of the blockade and enhancement of specific routes. The glycerol 

backbone is highlighted in blue, the polar groups of the different PL are 

highlighted in different colors. 
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Together with TG accumulation, increased levels of DG is the most 

common lipidomic pattern associated to hepatic steatosis and has been 

described in both liver (106, 248, 268) and serum (261, 262, 269) 

samples from patients with steatosis and in palmitate-loaded HepaRG 

cells (29). DG are intermediates in the synthesis of TG and their elevated 

levels may be a consequence of the elevated traffic of FA from its free 

form to MG, DG and finally TG (Figure 3.16). However, DG species are 

well-known activating ligands of most protein kinase C (PKC) isoforms 

and increases in DG species have been suspected as a major contributor 

to hepatic lipotoxicity (259). Moreover, DG signaling through PKC has 

been shown to be an important event in cancer progression (270, 271) 

and specific DG transferases have been implicated in the progression of 

non-alcoholic fatty liver disease (NAFLD) and liver fibrosis (272, 273). 

The increased levels of DG in combination with the increased levels of 

phosphocholine could lead to higher rates of PC biosynthesis via the 

CDP-choline pathway (i.e. Kennedy pathway) (274, 275), thus resulting in 

increased levels of PL as observed (Figures 3.15, 3.16).  

Impairment of FA β-oxidation by steatogenic drugs can lead to an 

enhancement of extramitochondrial FA oxidation, thus promoting higher 

rates of ROS production and lipid peroxidation (276). Accordingly, a 

decrease in GSH levels and GSH/GSSG ratio, and an increase of CSSG 

levels were observed in HepG2 cells exposed to steatosis-inducing drugs 

(Figure 3.15). GSH depletion and oxidative damage to macromolecules 

have been reported in liver biopsies from patients with steatosis (166, 

268). Increased ROS levels have also been described in palmitate-loaded 

HepaRG (154) and H4IIEC3 (277) cells and in primary cultured human 

hepatocytes and HepG2 cells treated with steatogenic drugs (88, 92). 
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Metabolomics changes associated to cholestatic damage 

 

Chlorpromazine, cyclosporine and troglitazone, three compounds 

reported to induce cholestasis, were included in the study (Table 2.2). 

The PCA scores plot shown in Figure 3.10.C revealed that 

chlorpromazine and troglitazone did not induce any detectable changes 

at the employed concentrations. Therefore, we decided to exclude those 

samples from the data analysis and focused on the alterations induced in 

HepG2 cells as a consequence of the incubation with cyclosporine.  

A total of 92 metabolites were altered in cyclosporine-treated cells. 

Aminoacid metabolism, urea cycle and nitrogen metabolism, FA and TG 

metabolism, PL metabolism and glutamate and GSH metabolism were 

revealed as the most affected pathways using enrichment analysis. The 

altered metabolites and pathways did not suggest an obvious relation to 

the expected mechanism of toxicity through a cholestatic effect. 

However, the results suggest that cyclosporine was able to induce 

changes that were consistent with OS and steatosis mechanisms of 

hepatotoxicity. Figure 3.17 shows increased levels of GSSG, CSSG and -

glutamyl-glutamine and a decreased GSH/GSSG ratio as previously 

observed for OS (Figure 3.12). On the other hand, the increase in 

acylcarnitines, DG, TG, phosphocholine and PL (Figure 3.17) is similar to 

the pattern previously observed for steatosis-inducing compounds 

(Figure 3.15). Cyclosporine is not only a cholestasis-inducing drug, but 

has also been reported as being able to induce OS and lipid 

accumulation (89, 92, 278, 279) and inhibit β oxidation of FA, thus 

resulting in the accumulation of FA and TG (280, 281). Cyclosporine is an 

immunosuppressant drug widely used in organ transplantation to 

prevent rejection, accumulation of free FA has been described in post-

transplant recipients after the treatment with cyclosporine (282). 

Moreover, a recent study comparing the effect of steatotic compounds in 

the expression profile of 47 transcription factors revealed that the 
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pattern induced by cyclosporine was similar to the obtained with a set of 

well-defined steatotic drugs (69). 

 

 

 

Figure 3.17. Boxplots showing the most important changes associated to HepG2 

cells exposed to cyclosporine A and analyzed using the generic untargeted 

metabolomic strategy. Values are expressed as relative intensity. Boxes denote 

interquartile ranges, lines denote medians, and whiskers denote the 10th and 

90th percentiles. 

 

 

The development of drug-induced cholestasis is based on the direct or 

indirect effect that the drugs induces in the function of BA transporters 

such as the basolateral uptake transporters (NTCP and OATPs), the 

canalicular efflux transporters (BSEP, MRP2, and MDR3), and the 

basolateral efflux transporters (MRP3 and MRP4) (38, 45, 48). Therefore, 
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the study of cholestasis requires the choice of an experimental model in 

which those transporters are active and correctly located. Unfortunately 

the loss of native cell polarization in HepG2 cells affects the correct 

expression, location and activity of transporters (49). Hilgendorf et al 

compared the expression profile of 36 transporters (related or relevant 

for drug transport) in HepG2 and human liver and both qualitative and 

quantitative differences were found (283). A study performed by 

Ulvestad et al revealed decreased levels of mRNA for BSEP, MDR1, NTCP 

and OATP1B1 in HepG2 cells and other hepatocellular models with 

respect to the levels observed in primary cultured human hepatocytes 

(284). Moreover, OATP1B1 and NTCP showed low levels of activity in 

HepG2 cells that were correlated with a cytoplasmic localization instead 

of a membrane localization of the transporters (284).  

In contrast to HepG2 cells, hepatocytes cultured in a collagen sandwich 

configuration reestablish cell polarity and tight junctional complexes, 

leading to the formation of sealed bile canaliculi (285, 286). Therefore, 

sandwich-cultured hepatocytes are the most commonly used cellular 

model for BA uptake and efflux studies and to identify hepatotoxicity 

associated to drugs that cause iatrogenic cholestasis (287, 288). As an 

alternative to the use of primary cultured hepatocytes, HepaRG cell line 

has shown its potential in the study of the mechanisms involved in the 

development of drug-induced cholestasis (289-291). However, although 

no consistent results were obtained with the selected drugs and no 

characteristic pattern associated to cholestasis in HepG2 cells was 

defined, our analytical conditions were able to identify metabolomic 

alterations besides the ones directly associated to cholestatic injury and 

consistent with the information available in the literature. 
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Metabolomic changes associated to phospholipidogenic insult 

 

Five model hepatotoxic drugs causing phospholipidosis as main 

mechanism of toxicity were used in the study (Table 2.2): amiodarone, 

clozapine, fluoxetine, tilorone and tamoxifen. Phospholipidogenic drugs 

induced changes in 65 identified metabolites. A pathway enrichment 

analysis showed that PL metabolism, unsaturated FA metabolism, urea 

cycle, aminoacid metabolism and glutamate and GSH metabolism were 

the most affected pathways as a result of the treatment with 

phospholipidogenic drugs (Figure 3.18).  

 

 

 

Figure 3.18. Boxplots showing the most important changes associated to HepG2 

cells treated with phospholipidogenic drugs and analyzed following the 

untargeted metabolomic strategy. Values are expressed as relative intensity. 

Boxes denote interquartile ranges, lines denote medians, and whiskers denote 

the 10th and 90th percentiles. 
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A slight increase in the PL levels and a slight decrease in the LysoPL 

levels in the phospholipidosis group were observed. However, it is 

noteworthy to point out the decrease in the most abundant LysoPE, 

LysoPE(18:1), and the decrease in the LysoPL/PL ratio. Moreover, a slight 

increase in the amount of TG was also detected (Figure 3.18). With 

respect to polar metabolites, the most remarkable changes were 

associated with the appearance of OS markers (i.e. increased levels of 

CSSG and decreased levels of GSH and the ratio GSH/GSSG) (Figure 3.18). 

The most characteristic alteration associated to phospholipidosis is an 

excessive accumulation of PL; however, such hallmark was not 

reproduced under our experimental conditions (24h incubation with sub-

lethal concentrations of the drugs) and only slight but non-significant 

increases in PL were observed in HepG2 cells. Phospholipidosis is a 

chronic process and PL accumulation in the liver is only observed after 

long-term/repeated treatments with the drug (32). The observed 

decrease in LysoPL and in the LysoPL/PL ratio can be interpreted as an 

inhibition of the degradation of PL that ultimately would lead to their 

excessive accumulation (Figure 3.16). It is well known that drugs 

inducing phospholipidosis, especially CADs, inhibit lysosomal 

phospholipase activity (292, 293). Indeed, inhibition of phospholipases 

A1, A2 and C by CADs has been observed both in vitro and in vivo (294, 

295) and a dose dependent inhibition has been reported in the case of 

amiodarone (296, 297). The mechanism responsible of this inhibition is 

unknown. It has been suggested that the drug can bind to PL, thus 

resulting in the formation of complexes that are either resistant to 

breakdown or can act as enzyme (phospholipase) inhibitors (294). As an 

alternative mechanism, the accumulation of phospholipidosis-inducing 

drugs (usually cations) can neutralize the anionic surface charge in 

lysosomal lipid bilayers required by phospholipase activity (298). Besides 

this simple and attractive view of the problem, recent studies have 

suggested that not only impaired phospholipase activity, but also 
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alterations in lysosomal enzyme transport and PL or cholesterol 

biosynthesis are mechanisms likely involved in the development of drug-

induced phospholipidosis (71). 

Besides the alterations in PL and LysoPL levels, increases in TG and OS 

markers were also observed in HepG2 cells treated with 

phospholipidosis-inducing drugs (Figure 3.18). It is known that some 

drugs that cause phospholipidosis (especially CADs) can also induce 

mitochondria damage and steatosis (299, 300) and manifestations such 

as impaired lysosomal protein degradation, decreased pinocytosis and 

endocytosis, and increased free radical formation have also been 

reported in studies using in vitro models (37, 301, 302). Alakoskela et al 

suggested that drug (CAD)-lipid interactions may lead to changes in lipid-

dependent protein activities not only in lysosomes, but also in other 

cellular compartments (303). In particular, the complex structure and 

physicochemical characteristics of mitochondria (e.g., double membrane, 

mitochondrial membrane potential) facilitate the progressive 

accumulation of CADs, thus damaging their function (32, 303).  

 

3.3.2 Development of a metabolomic approximation focused on the 

detection of lipidomic alterations induced by steatogenic and 

phospholipidogenic drugs 

 

Our general untargeted metabolomic analysis strategy allowed us to 

detect metabolic alterations in HepG2 cells treated with drugs inducing 

steatosis or phospholipidosis (Figures 3.15, 3.18). These results showed 

that although the drugs induced important alterations in the 

metabolome which can be directly associated to a particular mechanism 

of toxicity, only early markers of toxicity were detected. For example, in 

the case of phospholipidosis a decrease in the LysoPL/PL ratio (Figure 

3.18) was observed, which can be directly related to the mechanism of 
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toxicity, however, no significant increases in the total content of PL, or 

particular classes of PL, were detected.  

Steatosis and phospholipidosis-inducing drugs usually require chronic 

treatments to show their characteristic clinical manifestations (32). 

Therefore, we decided to apply a new experimental design that favored a 

faster development of the toxic events associated to phospholipidosis 

and steatosis. Gomez-Lechón et al studied the fat accumulation dynamics 

in HepG2 cells as a function of the concentration and composition of free 

FAs in the culture medium (193). Donato et al adapted this strategy to 

develop an experimental design in which a low concentration of free FAs 

is provided to cultured cells to serve as an external source of FA that 

facilitates and accelerates the evolution of the toxic insult (88). Palmitic 

(FA(16:0)) and oleic (FA(18:1)) acids are the most abundant free FAs in 

the liver in both normal subjects and patients with NAFLD (268). Thus, 

HepG2 cells were pre-incubated for 14 h with a mixture of FA (62 µM 2:1 

ratio of oleate and palmitate) before being exposed to drugs (88). As the 

main alterations associated to phospholipidosis and steatosis were found 

in the lipidome (Figures 3.15, 3.18), our new analytical strategy was 

focused on the analysis of lipidic species (see Section 2.8.2 for detailed 

information). 

Figure 3.19.A-B show the scores plots corresponding to the PCA 

analysis performed by comparing the lipidomic profiles of HepG2 cells 

treated with control compounds vs HepG2 cells treated with 

phospholipidogenic or steatogenic drugs, respectively. The clear 

separation in the PCA scores plots between control and treated cells 

suggests that the experimental design and analytical strategy were 

appropriate for the detection of phospholipidosis and steatosis-induced 

alterations. Moreover, Figure 3.19.C shows the PCA scores plot 

corresponding to the three groups included in the study. Three different 

clusters are observed, one corresponding to each different class (i.e. 

control, phospholipidosis and steatosis). The first component seems to 
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be describing the differences caused by steatogenic drugs, while the 

second component describes the separation of the phospholipidogenic 

ones. Therefore, the proposed experimental design seems to be suitable 

to differentiate not only between control and treated samples, but even a 

non-supervised analysis such a PCA was able to detect that steatosis and 

phospholipidosis-inducing drugs provoked different alterations in the 

lipidome of HepG2 cells previously incubated with a mixture of free FAs. 

 

 

Figure 3.19. PCA scores plots corresponding to the lipidomic analysis of HepG2 

cells preloaded with a mixture of free FAs and treated with phospholipidogenic 

and steatogenic compounds. A) Control (green) vs phospholipidosis (red). B) 

Control (green) vs steatosis (purple). C) All groups together. All the PCA analysis 

were performed using only two PCs. The lines denote 95 % confidence interval 

Hotelling's ellipse..  



Results & Discussion 

177 

Alterations in the lipidome  

 

The new experimental conditions (cells pre-incubated with a FA 

mixture) reproduced all the changes previously observed in the lipidome 

of cells treated with the drugs in absence of an external source of FAs 

(Figures 3.15, 3.18), but additional metabolite alterations were observed 

(Figures 3.20, 3.21). In general, the differences found in cells cultured in 

standard medium (without FA) were subtle and indicative of a very early 

stage of hepatotoxicity, whereas the changes observed in cells pre-

incubated with FA were more extensive and indicative of a more 

advanced damage. 

The supplementation of culture medium with FA facilitated PL 

accumulation (the hallmark of phospholipidosis) in HepG2 cells treated 

with phospholipidosis-inducing drugs. Increased levels of PC, PE and PS 

were observed as well as a subtle increase in the levels of PI and PG 

(Figure 3.20). The decrease in LysoPL content was more evident with 

lowered levels of both LysoPC and LysoPE, thus resulting in a decrease in 

the LysoPC/PC and LysoPE/PE ratios. Besides these changes in the 

phospholipidome, increases in TG, ceramides and SM levels were also 

produced (Figure 3.21). The increased levels of different lipids, and PL in 

particular, are in agreement with previous reports found in the literature. 

Baronas et al found several types of PL altered in urine from rats treated 

with different compounds inducing phospholipidosis (304). Notable 

increase in PC and PE, primary substrates for PLA2, as well as PS were 

described in MDCK cells treated with amiodarone or D-threo-1-phenyl-2-

decanoylamino-3-morpholino-propanol, whereas no changes in PI levels 

were found (297). These changes were consistent with the known 

substrate specificity of PLA2 (297). Our results showing decreased levels 

of LysoPC, LysoPE, LysoPC/PC and LysoPE/PE (Figure 3.20) are also in 

concordance with a diminished hydrolytic activity of PLA2, although 

other potential mechanism explaining PL over accumulation cannot be 
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discarded (32, 37). Finally, a previous study in HepaRG cells exposed to 

amiodarone for 2 weeks showed strong increases in PE and PC levels and 

moderate increases in SM, PI, PS and TG (107). Interestingly, by using our 

experimental strategy a similar pattern of PL alterations was detected in 

HepG2 cells shortly exposed to amiodarone and other phospholipidosis 

inducers (Figures 3.20, 3.21), evidencing the utility of this approach to 

the study the early stages of drug-induced phospholipidosis.  

 

 

 

Figure 3.20. Boxplots showing the changes induced in the levels of PLs and 

LysoPLs as a result of the treatment with steatosis and phospholipidosis-inducing 

drugs in HepG2 cells previously incubated with a mixture of free FAs. Values are 

expressed as relative intensity. Boxes denote interquartile ranges, lines denote 

medians, and whiskers denote the 10th and 90th percentiles. Green: control; 

Red: phospholipidosis; Purple: steatosis.  
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Figure 3.21. Boxplots showing the changes induced in the lipidome (except 

phospholipids) as a result of the treatment with steatosis and phospholipidosis-

inducing drugs in HepG2 cells previously incubated with a mixture of FA. Values 

are expressed as relative intensity. Boxes denote interquartile ranges, lines 

denote medians, and whiskers denote the 10th and 90th percentiles. Green: 

control; Red: phospholipidosis; Purple: steatosis. 

 

 

In relation to steatogenic drugs, the presence of an external source of 

free FA in combination with a lipidomic focused analysis allowed the 

detection of changes not previously observed in the generic analysis 

(cells cultured in absence of FA supplement). Thus, besides the increase 

in TG and DG, an increase in the levels of MG, acylcarnitines, ChE, 

ceramides and SM was also observed (Figure 3.21). A detailed analysis of 

the phospholipidome revealed that only the levels of PC (the most 

abundant PL inside the cells) were increased by steatosis inducers, while 
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the levels of the rest of PL did not show any significant change (Figure 

3.20). This suggests a contribution of de novo synthesis of PC via the 

CDP-choline pathway as a result of the elevated levels of DG and 

phosphocholine (274, 275) (Figures 3.15, 3.16). A higher increase in the 

levels of both LysoPC and LysoPE was also found (Figure 3.20). Drug-

induced steatosis is characterized by TG accumulation, mainly, but not 

exclusively, due to FA oxidation impairment as a result of mitochondrial 

disturbances (29, 32, 34, 35). The result of this situation is the 

accumulation of both intermediates of FA oxidation, such as 

acylcarnitines, and of TG synthesis, such as MG, and DG (Figures 3.16, 

3.21). Similar results have been previously reported in humans, animal 

and cell-based models of steatosis (106, 154, 248, 250, 268). Besides 

the expected alterations related to FA metabolism and TG synthesis, 

increased levels of ceramides and SM were also observed (Figure 3.21). 

Ceramides are complex lipids composed of sphingosine and a FA. 

Ceramides further combine with phosphocholine forming SM, the major 

sphingophospholipid in humans. Ceramides can also be rapidly 

generated from SM by sphingomyelinase induced hydrolysis (305, 306). 

Previous reports have found elevated hepatic levels of ceramides in fatty 

liver disease (248, 307, 308) and increased levels of sphingosine, the 

precursor in ceramide synthesis, in FA overloaded HepaRG cells (154).  

It is well described that the degree of saturation of free FAs has a 

strong effect on the tendency of the cells to store them as TG, while 

unsaturated FAs are more likely incorporated into TG, their saturated 

counterparts are channeled towards other cellular fates (258). Thus 

steatosis- and cytotoxicity-inducing properties of palmitic and oleic acids 

are different, while the steatogenic capacity of oleic acid is higher, 

palmitic acid induces a higher cytotoxicity as it remains as a free FA 

(193). Our results showed that when HepG2 cells pre-treated with the 

oleic and palmitic acids mixture were exposed to model steatogenic 

drugs, there was an intracellular accumulation of palmitic acid (FA(16:0)), 
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whereas a decrease in the levels of oleic acid (FA(18:1)) was observed 

(Figure 3.22). Accordingly, the levels of SM and TG containing only 

FA(16:0) and FA(18:1) moieties showed a higher increase for those 

species incorporating a higher proportion of oleate (Figure 3.22). Thus, 

the fold of change for SM follows the tendency SM(d36:2) > SM(d34:1) > 

SM(d32:0). With respect to TG, the same tendency was observed: 

TG(54:3) > TG(52:2) > TG(50:1) > TG(48:0) (Figure 3.22).  

 

 

 

Figure 3.22. Boxplots showing the differences in palmitic and oleic acid 

distribution in lipidic species as a result of drug-induced steatosis in HepG2 cells 

pre-incubated with a mix of palmitic and oleic acids and analyzed using a 

lipidomic strategy. Boxes denote interquartile ranges, lines denote medians, and 

whiskers denote the 10th and 90th percentiles. Green: control; Purple: steatosis. 
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The combined use of a lipidomic-specific chromatographic separation 

in combination with high mass-resolution MS allowed us to describe not 

only changes in the total amount of lipids or TG, as is the case of 

enzymatic- or fluorescence-based methods, but to provide a more 

detailed description and a deeper understanding of the changes induced 

in specific species of lipids. 

 

Alterations in the levels of lipidic species containing only FA(16:0) and/or 

FA(18:1) moieties  

 

The follow up of the compounds provided to the cells represents an 

appealing option to the development of target analyses to evaluate the 

evolution of the hepatotoxic damage. Palmitic and oleic acids can be 

directed to different cell metabolic pathways. They can be converted into 

other FA by desaturases and elongases (248, 269) or can be incorporated 

into the different lipid classes that compose the lipidome (Figure 3.16). 

This information could be obtained by deuterium-labeled FA incubations 

or acyl-CoA desaturase/elongase activity measurement. We propose a 

simpler approximation based on the comparative analysis of the 

different types of lipids containing only palmitic or oleic acid moieties. 

Table 3.3 shows a good concordance between the changes in the total 

levels of each of the lipidic species detected and the changes observed 

for those species containing only palmitic and oleic acid moieties. While 

the fold of change for specific species (i.e. those containing only palmitic 

or only oleic acid as moieties) might differ, the average value for all the 

species containing only palmitic and/or oleic acid as components 

provided similar results than the average of all the different 

combinations of FA for a given lipid class. Therefore, the evaluation of 

those lipidic species containing only palmitic and/or oleic acid as 

moieties constitutes a good option for the development of targeted 

analysis that would result in the generation of quantitative results and 
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the save of both time and economical resources, while providing a 

representative snapshot of the alterations produced in the lipidome. 

 

Table 3.3. Values of fold of change for control vs treated cells for each of the 

lipid classes and treatments indicated. The values correspond to the lipidomic 

analysis of HepG2 treated either with steatogenic or phospholipidogenic 

compounds in the presence of an external source of FA. 16:0 column 

corresponds to lipidic species containing only the FA(16:0). 18:1 column 

corresponds to lipidic species containing only the FA(18:1). Mean column 

correspond to the mean value obtained for those lipidic species containing only 

FA(16:0) and/or FA(18:1) moieties. Total corresponds to the mean value obtained 

for all the species of a given class. 

 

 

Phospholipidosis Steatosis 

 

16:0 18:1 Mean Total 16:0 18:1 Mean Total 

Acylcarnitine 0.99 0.95 0.97 0.86 2.70* 2.69* 2.7* 2.45* 

ChE 1.03 1.1 1.08 1.1 2.08** 1.99* 2.03** 1.64* 

Cer n.d. 0.89 2.09*** 1.75*** n.d. 3.74*** 2.28* 1.15* 

DG 1.24 1.47 1.31 1.11 1.40* 1.38* 1.33* 1.3** 

FA 1.46** 0.33*** 0.88 1.05 1.56** 0.31*** 0.92 1.08 

LysoPC 0.73* 0.82 0.77* 0.80* 1.45* 1.43* 1.44* 1.56* 

LysoPE 1.18 1.02 1.07 0.93 1.54 1.25 1.33 1.23 

MG 0.65* 0.79 0.74 0.77 1.57* 1.69* 1.65* 1.96* 

PC 1.85** 1.19* 1.25** 1.20** 1.7* 1.42** 1.54** 1.28** 

PE 2.38*** 2.78*** 2.59*** 2.25*** 1.1 1.2 1.16 0.64 

PG 1.99*** 2.12* 1.9* 1.83* 1.57 0.87 1.11 0.79 

PI n.d. 2.53** 2.45** 1.14 n.d. 0.81 0.9 0.66 

PS n.d. 2.52*** 2.52*** 2.17*** n.d. 1.28 1.28 0.73 

SM 1.1 1.17 1.42* 1.35* 1.13 1.94*** 1.73*** 1.26** 

TG 1.69 1.28** 1.31** 1.40*** 1.31 1.76** 1.67* 1.45** 

Comparisons between control and each treatment were performed using a 

Student t test. *: p value < 0.05; ** p value < 0.01; *** p value < 0.001. 
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3.3.3 Targeted analysis of OS markers 

 

The untargeted analysis of HepG2 exposed to hepatotoxic compounds 

(Section 3.3.1) revealed that the presence of OS markers is a common 

hepatotoxicity event, even in the case of hepatotoxins whose primary 

mechanism of toxicity is not directly related to OS (29, 88, 89, 92). In 

order to achieve a deeper insight in the involvement of OS in 

hepatotoxicity, a quantitative targeted analytical method aimed to 

determine a set of well-known OS biomarkers was developed in our 

laboratory (209). The markers included in the method are: i) sulfur-

containing substances, as GSH, GSSG, SAM and SAH (214, 309); ii) 

phenylalanine (310) and tyrosines I-Tyr, N-Tyr, Cl-Tyr, o-Tyr, m-Tyr and p-

Tyr as markers of oxidative protein damage (311, 312); iii) 8-OH-dG and 

2-dG, which indicate DNA damage (313), iv) MDA, which indicate 

peroxidation (314); and v) ophthalmic acid, that indicates GSH 

consumption (138). 

The targeted analysis was applied to a set of four compounds that 

induce hepatotoxicity through different mechanism (tert-butyl 

hydroperoxide (OS), amiodarone (phospholipidosis), tetracycline 

(steatosis) and cyclosporine (cholestasis)) and with previous reports of 

OS and mitochondrial impairment (29, 88, 89, 91, 92, 291). Among the 

OS markers analyzed, GSH/GSSG ratio, ophthalmic acid and MDA were 

significantly altered following a dose-dependent tendency Figure 3.23. 
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Figure 3.23. Boxplots showing the results obtained with the targeted analysis of 

OS markers (GSH/GSSG, upper panel; ophthalmic acid, middle panel; and MDA, 

lower panel) for HepG2 cells treated with control compounds (green), tert-butyl 

hydroperoxide (orange), amiodarone (red), tetracycline (purple) and cyclosporine 

(blue). Boxes denote interquartile ranges, lines denote medians, and whiskers 

denote the 10th and 90th percentiles. The value in the x-axis denotes the 

concentration at which the indicated compound has been employed. 
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As expected, all compounds induced a concentration-dependent 

decrease in the GSH/GSSG ratio (Figure 3.23). These results confirm the 

tendency of a decreased GSH/GSSG ratio observed in the untargeted 

analysis (Figures 3.12, 3.15, 3.17, 3.18) and are in agreement with those 

previously reported for both OS as a primary (209, 236, 237) and 

secondary (88, 140, 279, 315) hepatotoxic damage both in vivo and in 

liver-based cellular models.  

An increase in the levels of ophthalmic, in parallel to the decrease in 

the GSH/GSSG ratio, was also observed for the four compounds (Figure 

3.23). Ophthalmic acid was not detected using the untargeted analysis 

strategy, however the increased sensitivity provided by the UPLC/MS-MS 

targeted method allowed its detection and quantification. Ophthalmic 

acid (-glutamyl-2-aminobutyrate-glycine) is a nonsulfur-containing 

analog of GSH in which the cysteine moiety has been substituted by 2-

aminobutyric acid. It shares the same biosynthetic pathway than GSH: 

the first step in the synthesis of ophthalmic acid is the linking of 2-

aminobutyrate to glutamate, a step catalyzed by GCS; subsequently, 

glycine is linked to this dipeptide via GS (138, 316, 317) (Figure 3.13, 

3.14). Under OS conditions, the activity of the enzyme GCS is enhanced 

thus leading to an increased synthesis of ophthalmic acid (Figure 3.14). 

However, due to the lack of a thiol group, ophthalmic acid is not further 

metabolized under OS conditions and thus accumulates (138). 

Ophthalmic acid was first proposed as a marker of OS and GSH depletion 

by Soga et al (138). They found increased levels of ophthalmic acid in the 

liver and serum of mice treated with acetaminophen following a pattern 

that correlated with GSH depletion (138). Increased levels of ophthalmic 

acid have also been reported in THLE-2E1 cells and in the liver of rats 

treated with acetaminophen (140, 318). More recently, we have reported 

increased levels of ophthalmic acid in primary-cultured rat hepatocytes 

incubated for 24 h with 500 µM cumene hydroperoxide and in the serum 

of patients suffering non-alcoholic steatohepatitis (209). It is not clear 
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whether ophthalmic acid has any meaningful physiological role or it is 

simply a byproduct associated to GCS activation during OS (138, 316). 

Nevertheless, it has been shown that ophthalmic acid is able to 

competitively inhibit and trans-stimulate GSH transport in liver 

canalicular membranes (319), which can be interpreted as an adaptive 

mechanism to minimize GSH efflux during OS. Therefore, it has been 

hypothesized that it can act as a GSH analog for functions that do not 

require the presence of the thiol group (138).  

Increased levels of MDA, a marker of lipid peroxidation, were observed 

in HepG2 cells treated with amiodarone, tetracycline or cyclosporine but 

not with tert-butyl hydroperoxide (Figure 3.23). Increased MDA levels 

have been reported in hepG2 cells shortly (3 h) treated with tert-butyl-

hydroperoxide and hydrogen peroxide (211) but not after longer 

incubation (24 h) with the OS inducer cumene hydroperoxide (209). High 

MDA levels have been previously reported in HepG2 cells exposed to 

amiodarone (320), in the liver of rats administered cyclosporine (321, 

322) and in the liver of patients with steatosis (209, 268). Moreover, 

increased lipid peroxidation has been previously described in liver 

mitochondria of rats previously administered amiodarone (315). 

Interestingly, amiodarone, tetracycline and cyclosporine have been 

previously described to induce mitochondrial impairment while tert-butyl 

hydroperoxide is considered a pure OS inducer (32, 88, 92). Amiodarone 

inhibits β-oxidation of FA (30, 323-325), inhibits complexes I, II, and III in 

the respiratory chain (315, 325, 326), uncouples oxidative 

phosphorylation (324, 327) and decreases mitochondrial membrane 

potential (325, 328). Tetracycline has been reported to inhibit β-

oxidation (323, 329, 330) and cyclosporine inhibits β-oxidation (280, 

281) and complexes I and II (331). Therefore, the oxidative damage 

produced by amiodarone, tetracycline or cyclosporine is secondary to 

other hepatotoxic effects, thus resulting in a delayed appearance of the 

OS markers and a situation that is more likely to become chronic and 
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amplified. In contrast, tert-butyl hydroperoxide is able to induce OS by 

itself and its effects are detected shortly after exposure (209). 

 

3.3.4 Development of predictive/classificatory models of 

hepatotoxicity 

 

One of our goals was to develop a model able to predict and classify 

the potential hepatotoxicity of new drug candidates. Thus, firstly, we 

considered the development of a model aimed to discriminate between 

non-toxic and hepatotoxic compounds. Secondly, we tried to develop a 

more sophisticated model aimed to discriminate among the different 

mechanisms of toxicity included in our study. Cholestasis was not 

considered to develop the model and finally four different classes (i.e. 

control, OS, phospholipidosis and steatosis) were used. 

Predictive models were built using PLS-DA and a bootstrapped strategy 

coupled to VIP ranking to order and select variables according to their 

importance in the model, fitting and predictive (predictability) capacity. 

The optimum number of variables was selected as the one that provided 

the highest figures or merit (accuracy and AUROC).  

 

Predictive model for the discrimination between non-toxic and 

hepatotoxic compounds 

 

Here the objective was to develop a mathematical model able to 

classify between non-toxic and hepatotoxic compounds. CV was used to 

select the optimum number of LVs in the PLS-DA model. Based on the 

values of R
2

, Q
2

 and misclassification error, two LVs were selected (Figure 

3.24.A). After fixing the number of LVs, the variables were ranked 

according to their importance in the model. The results of model 

performance (evaluated based on AUROC and misclassification error) vs 
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the number of retained variables included in the model are shown in the 

Figure 3.24.B. 

 

 

 

Figure 3.24. A) Values of R
2

 (blue), Q
2

 (red) and misclassification error (green) as 

a function of the number of LVs employed to build the PLS-DA model using all 

the variables from the data obtained with the generic untargeted metabolomic 

analysis of HepG2 treated with either non-toxic or hepatotoxic compounds. The 

values obtained for each parameter and model are written over the 

corresponding bar. B) Values obtained for the AUROC (green) and 

misclassification error (red) vs the number of retained variables for the top-20 

ranked variables using PLS-DA models with two LVs. The data is expressed as 

mean ± standard deviation.  

 

 

A perfect classification (AUROC = 1, misclassification error = 0) was 

obtained using only 8 variables (i.e. adenine, FA(20:4), LysoPC(18:2), 

FA(22:6), phosphocholine, GMP, FA(20:3) and LysoPE(24:1). The PLS-DA 

scores and loadings plot corresponding to the model developed using 

2LV and 8 retained variables are shown in Figure 3.25. A clear 

separation was observed between non-toxic and hepatotoxic 

compounds, with no overlap between the 95 % confidence interval 

Hotelling's ellipse drawn for each of the classes (Figure 3.25.A). The 

loadings plot revealed that only 2 of the 8 variables included in the final 

model showed a positive correlation with the onset of hepatotoxicity (i.e. 

adenine and phosphocholine) (Figure 3.25.B), whereas the remaining 6 

variables correlated with the assignment to the non-toxic group. The 

model retrieved good figures of performance based on CV: R
2

 = 0.82, Q
2
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= 0.81, misclassification error = 0.00 and AUROC = 1. Moreover, a 

permutation test was also performed in order to further validate model 

consistency and performance (133). No overlap was obtained between 

the actual figures estimated using CV and the distribution of values 

calculated for the permuted models (Figure 3.25.C-D).  

 

 

 

Figure 3.25. Summary of the results provided by the PLS-DA model built using 2 

LVs and the top-ranked 8 variables based on the data obtained with the generic 

untargeted metabolomic analysis of HepG2 treated with either non-toxic or 

hepatotoxic compounds. A) Scores plot. The lines denote 95 % confidence 

interval Hotelling's ellipse for each class. Green: non-toxic; Grey: hepatotoxic B) 

Loadings plot. Green: non-toxic; Grey: hepatotoxic; Blue: metabolites. C) 

Permutation test for the misclassification error. D) Permutation test for the 

AUROC. In both cases the histograms represent the values obtained using the 

permuted classes. The actual value obtained with the real classes is indicated by 

the red dot and the value written above it.  

 

 

 



Results & Discussion 

191 

The results obtained for the PLS-DA model suggest that our 

experimental and data analysis strategies represent a good option to 

discriminate hepatotoxic and non-hepatotoxic drugs. However, the 

validation methods were based only on CV and permutation testing and 

only a limited number of model hepatotoxins were included in the study, 

what would result in overoptimistic results. 

The present model, constitute the first metabolomic-based strategy to 

discriminate hepatotoxic compounds in human hepatic cells in culture. 

Several examples of the development of predictive models of 

hepatotoxicity are available in the literature. Both in vivo and in vitro 

assays based on the analysis of traditional cytotoxicity end points (e.g. 

ATP content, lactate dehydrogenase (LDH) release, urea syntesis...) (332), 

transcriptomics/gene expression (64, 333, 334), proteomics (62, 78, 

335) and HCS (52, 87, 90, 93, 336, 337) have been proposed. Among 

them, the combined used of in vitro liver-based cellular models and HCS 

is the most popular strategy. HCS assays are usually performed in 96-

well or 386-well formats, what allows for high throughput analyses and, 

therefore, large lists of compounds have been tested. Cell count, ROS 

generation, mitochondrial damage, lipid accumulation and intracellular 

calcium are the most commonly parameters analyzed by HCS assays 

(338). With respect to their predictive capabilities, high specificity values 

(~90%) but sensitivity values ranging from 50 to 90% have been reported 

(338). This low sensitivity, specially associated to drugs that do not 

induce cell death or even in the case of non-proliferative cellular models, 

constitute an important drawback (338).  

An important advantage of metabolomics, compared to other 

screening methods, is the detection of early metabolic alterations that 

occur in absence of cell death. However, to be competitive with respect 

to techniques such as HCS a higher number of hepatotoxins must be 

tested in order to identify a set of highly reliable markers of toxicity. 

Then, the development of quantitative targeted analysis of selected 
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markers would considerably increase sample throughput and minimize 

sample requirements. 

 

Predictive model for the discrimination of specific mechanisms of 

hepatotoxicity 

 

After the development of a classificatory model to discriminate 

between hepatotoxic and non-hepatotoxic compounds, our next goal 

was to develop a model able to discriminate among the different 

mechanism of toxicity. Using a CV strategy the optimum number of LV to 

develop the PLS-DA model was set to three (Figure 3.26.A). Then the 

model performance (evaluated based on AUROC and misclassification 

error) vs the number of retained variables included in the model was 

assessed (Figure 3.26.B).  

 

 

 

Figure 3.26. A) Values of R
2

 (blue), Q
2

 (red) and misclassification error (green) as 

a function of the number of LVs employed to build the PLS-DA model using all 

the variables from the data obtained with the generic untargeted metabolomic 

analysis of HepG2 treated with either non-toxic or hepatotoxic compounds acting 

through different mechanism of hepatotoxicity (i.e. OS, phospholidosis and 

steatosis). The values obtained for each parameter and model are written over 

the corresponding bar. B) Values obtained for the AUROC (green) and 

misclassification error (red) calculated using CV vs the number of retained 

variables for the top-30 ranked variables using PLS-DA models with three LVs. 

The data is expressed as mean ± standard deviation. 
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The maximum value of AUROC and minimum value of misclassification 

error were obtained using the top 22 ranked variables (i.e. adenine, GSH, 

LysoPC(20:0), GSH/GSSG, LysoPC(18:2), phosphocholine, -glutamyl-

glutamine, LysoPC(22:1), LysoPC(20:1), LysoPC(24:0), SM(d44:2), 

LysoPC(24:1), LysoPC(22:6), PC(44:11), LysoPC(26:1), FA(20:4), aspartic 

acid, carnitine(5:0), SM(d32:2), LysoPC(18:1), TG(60:8), and AMP). The 

final PLS-DA model rendered the following figures using CV: R
2

 = 0.73, Q
2

 

= 0.72, misclassification error = 0.06 ± 0.08, AUROC = 0.96 ± 0.05. The 

good values obtained with respect the AUROC and the misclassification 

represent good indicators of the capabilities of the PLS-DA model.  

 

 

Figure 3.27. Summary of the results provided by the PLS-DA model built using 3 

LVs and the top-22 ranked variables based on the data obtained with the generic 

untargeted metabolomic analysis of HepG2 treated with either non-toxic or 

hepatotoxic compounds acting through different mechanism of hepatotoxicity 

(i.e. OS, phospholipidosis and steatosis). A) Scores plot. The lines denote 95 % 

confidence interval Hotelling's ellipse for each class. Green: non-toxic; orange: 

OS; red: phospholipidosis; purple; steatosis. B) Permutation test for the 

misclassification error. C) Permutation test for the multiclass AUROC. In both 

cases the histograms represent the values obtained using the permuted classes. 

The actual value obtained with the real classes is indicated by the red dot and the 

value written above it.  
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A good separation between the different groups is observed in the PLS-

DA scores plot (Figure 3.27. A), and there is almost no overlap between 

the 95 % confidence interval Hotelling's ellipses drawn for each class. 

The model was further validated using a permutation test strategy with 

excellent results, as no overlap was obtained for values obtained using 

the permuted classes and the real values obtained with the actual PLS-DA 

for the misclassification error (Figure 3.27. B) and the AUROC (Figure 

3.27. C) 

As previously discussed for the model aimed at the discrimination 

between non-hepatotoxic and hepatotoxic compounds, although the 

results obtained for the present PLS-DA model were very encouraging, 

they must be carefully analyzed as only a limited number of compounds 

were evaluated and no external validation was performed. 

Only a few studies aimed at the classification/prediction of different 

mechanisms of toxicity have been reported in the literature (92, 332). 

The HCS-based assay developed by Tolosa et al aimed to screen and 

classify drugs according to their hepatotoxicity mechanism (apoptosis, 

genotoxicity, OS, mitochondrial damage and bioactivation) (92). To this 

end, cell viability, morphological nuclear changes, mitochondrial 

membrane potential, intracellular calcium concentration and OS were 

measured in HepG2 cells and a mean sensitivity of 90 % was obtained 

when evaluating the different mechanisms of toxicity (92). On the other 

hand, Germano et al employed sandwich-cultured rat hepatocytes and a 

combination of different techniques in order to distinguish between 

steatosis, phospholipidosis and cholestasis. The assay included 

biochemical assays (i.e. ATP content, LDH release, urea synthesis and 

albumin secretion), HCS (i.e. Mrp-2 mediated transport, neutral lipid 

accumulation and PL accumulation) and gene expression quantification 

(i.e. nuclear receptors, transporters and CYPs). Their results suggested 

that the strategy might be a suitable tool for the evaluation of 

phospholipidosis and cholestasis but not for steatosis (332).  
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Our method was able to distinguish between non-toxic compounds 

and compounds inducing OS, steatosis and phospholipidosis. However, it 

failed in the evaluation of cholestatic drugs. As indicated above, 

identification of drug-induced cholestasis would require the use of liver-

based cellular models that correctly express the transporters of interest 

(i.e. HepaRG or sandwich-cultured hepatocytes). However, and besides its 

limitations, our method supposes a valuable alternative to detect 

mechanism-specific alterations at subcytotoxic concentrations. Moreover, 

while the number of parameters evaluated simultaneously using other 

strategies such as HCS is highly limited (338), untargeted metabolomics 

allows to measure hundreds of signals that could be later ranked and 

selected. Similarly, targeted analysis allows the simultaneous 

quantification of dozens up to hundreds of compounds (103, 108). 

Finally, the applicability of the present strategy to routine toxicological 

evaluation and compound screening would be conditioned to the 

definition of set of reliable mechanism-specific markers to be quantified 

by the use of a LC-MS/MS targeted method. 

 

Predictive model for steatosis and phospholipidosis based on lipidic 

species containing only FA(16:0) and/or FA(18:1) moieties  

 

As seen above, the changes induced in lipidic species containing only 

FA(16:0) and/or FA(18:1) were representative of the general changes 

induced in the lipidome by treatment with drugs inducing either 

phospholipidosis or steatosis (Table 3.3). Then, we decided to develop a 

predictive/classificatory model based on those lipidic species composed 

only by FA(16:0) and/or FA(18:1) moieties.  

Using a CV strategy, the optimum number of LV to develop the PLS-DA 

model was set to two based on the values of R
2

, Q
2

 and misclassification 

error (Figure 3.28.A). The results of model performance (evaluated based 

on multiclass AUROC and misclassification error) vs the number of 
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retained variables included in the model retrieved a maximum value of 

AUROC and minimum value of misclassification error for the model built 

using the top 8 ranked variables (i.e. Cer(d36:2), FA(18:1), SM(d36:2), 

LysoPC(16:0), PE(32:0), PE(36:2), PC(36:2), PC(34:1)) (Figure 3.28.B). 

 

 

Figure 3.28. A) Values of R
2

 (blue), Q
2

 (red) and misclassification error (green) as 

a function of the number of LVs employed to build the PLS-DA model using all 

the variables from the data obtained with the lipidomic analysis of HepG2 treated 

with either non-toxic or hepatotoxic compounds inducing steatosis or 

phospholipidosis in the presence of an external source of FA. and using those 

lipididc compounds containing only FA(16:0) and/or FA(18:1) moieties. The 

values obtained for each parameter and model are written over the 

corresponding bar. B) Values obtained for the AUROC (green) and 

misclassification error (red) calculated using CV vs. the number of retained 

variables for the top-20 ranked variables using PLS-DA models with two LVs. The 

data is expressed as mean ± standard deviation. 

 

 

The final PLS-DA model rendered the following figures using CV: R
2

 = 

0.76, Q
2

 = 0.73, misclassification error = 0.03 ± 0.08, AUROC = 0.98 ± 

0.03. A good separation between the different groups was observed in 

the PLS-DA scores plot (Figure 3.29.A), with only a few overlap between 

the 95 % confidence interval Hotelling's ellipses drawn for steatosis and 

phospholipidosis. The first component was driven by the differences 

induced by steatogenic compounds and the second component 

described the separation between non-toxic and hepatotoxic compounds 

(in particular between phospholipidosis and control samples). The 

contribution of each of the variables included in the final model can be 

evaluated by their position in the loadings plot (Figure 3.29.B). FA(18:1) 
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was associated to the assignment to control class, PE(32:0) and PE(36:2) 

to phospholipidosis, LysoPC(16:0), SM(d36:2) and Cer(d36:2) to steatosis 

and PC(34:1) and PC(36:2) to both steatosis and phospholipidosis. These 

results are in concordance with the alterations shown in Table 3.3. The 

model was further validated using permutation testing (Figure 3.29.C-D). 

No overlap was obtained between the values obtained using the 

permuted classes and the real values obtained with the actual PLS-DA for 

the misclassification error (Figure 3.29.C) and the AUROC (Figure 

3.29.D) thus pointing the excellent consistency of the developed model. 

 

 

Figure 3.29. Summary of the results provided by the PLS-DA model built using 2 

LVs and the top-ranked 8 variables based on the data obtained with the lipidomic 

analysis of HepG2 treated with either non-toxic or hepatotoxic compounds 

inducing steatosis or phospholipidosis in the presence of an external source of 

FA. A) Scores plot. The lines denote 95 % confidence interval Hotelling's ellipse 

for each class. Green: control; Red: phospholipidosis; Purple: steatosis. B) 

Loadings plot. Green: control; Red: phospholipidosis; Purple: steatosis; Blue: 

metabolites. C) Permutation test for the misclassification error. D) Permutation 

test for the AUROC. In both cases the histograms represent the values obtained 

using the permuted classes. The actual value obtained with the real classes is 

indicated by the red dot and the value written above it.  
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The results reinforce the idea that the development of a targeted 

quantitative analysis of those species containing only palmitic and oleic 

acids as moieties (in cells pre-incubated with a palmitate/oleate mixture) 

might constitute a straightforward strategy for the prediction of drug-

induced phospholipidosis and steatosis.  

Different examples are available in the literature with respect to the 

prediction of drug-induced steatosis (69, 88, 89), phospholipidosis (71, 

339-341) or both simultaneously (300, 332).  

Two different approximations have been applied to the study of drug-

induced steatosis in cultured cells, Donato et al performed an HCS 

analysis using HepG2 cells as model (88, 89). Among the different 

evaluated parameters, the combination of lipid accumulation (measured 

using BODIPY) and ROS generation was the one that provided the best 

performance (88, 89). On the other hand, Benet et al identified a series 

of transcription factors (i.e. FOXA, HEX and SBREP1C) whose expression 

levels in HepG2 cells might be used to predict drug-induced steatosis 

(69). 

The gold standard confirmatory method for the detection of 

phospholipidosis is electron microscopy (342). However, the method is 

expensive, time consuming, and not dedicated to medium and high-

throughput screenings. In addition, drug-induced phospholipidosis 

detected by electron microscopy could be discovered only after 

subchronic/chronic intake of compounds (343). Two alternative 

techniques, feasible to be adapted to high throughput, have arisen as an 

alternative: HCS and gene expression. HCS methods are usually based on 

the incorporation of fluorescent PL analog or a lipid-specific fluorescent 

dye (i.e. NBD-PE, NBD-PE, LipidTox, Nile red...) (339-341, 344, 345). Gene 

expression methods (71, 339, 341, 343) are based on the measure of 

the expression of 17 genes associated to phospholipidosis and 

previously identified by Sawada et al (71). Both methods provided high 

values of sensitivity and specificity (~90 %), however, it has been 
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reported that HCS based assays allow multiplexing and a higher 

throughput (341). 

The few studies that simultaneously evaluated steatosis and 

phospholipidosis (300, 332) reported unsatisfactory results with respect 

their capabilities to accurately classify steatogenic drugs. 

In summary, our strategy based on the pre-incubation of the cells with 

a mixture of free FA achieved to accelerate the development of the 

hepatotoxic damage. Moreover the metabolomic analysis of the lipidomic 

alterations was able to detect events that occur in early stages of the 

toxic insult thus being able to differentiate between control, steatogenic 

and phospholipidogenic drugs. This fact represents an advantage with 

respect the methods available in the literature and after the suitable 

validation and development of a targeted quantitative analysis might 

represent a real alternative to the established methods. 
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3.4 Extrapolation of in vitro results to in vivo models 

 

After exploring the capabilities of HepG2 cells coupled to MS-based 

metabolomics to predict DILI, we decided to test whether the results 

obtained using a simple in vitro model could be extrapolated to in vivo 

models. First we evaluated the usefulness of medaka fish (Oryzias 

latipes) to predict human hepatotoxicity using a study design 

comparable to that performed in HepG2. Then, the changes were 

compared with those obtained using rats, an in vivo animal model 

widespreadly used in hepatotoxicity studies (137, 140, 205, 304). 

Finally, the rat model was used to search for non-invasive serum markers 

of hepatotoxicity. 

 

3.4.1 Differential metabolomic profiling analysis of medaka  

 

Medaka fish (Oryzias latipes) allows to use a high number of 

individuals with minimum requirements and provides information of 

relevance to human metabolism. The main advantages of medaka are its 

high reproductive rate, rapid maturation, and little cost in terms of 

rearing space and daily maintenance owing to their small size (203, 346). 

Moreover, the use of small fishes like medaka is in line with the 3R’s 

(reduce, refine, and replace) approach of animal use for scientific 

purposes by replacing higher order animals with lower order ones (347). 

Physiologically, medaka are omnivores and metabolize sugars and 

lipids in a manner analogous to that of mammals (348, 349). With the 

exception of some structural and anatomical differences, the general 

cellular composition and function of a healthy medaka liver is virtually 

the same as in mammals (350). It is worthy to mention that significant 

differences exist in the lipid composition between medaka and human 

liver. The most abundant FA in healthy human liver are palmitate 

(FA(16:0), 28%) and oleate (FA(18:1), 35%), and polyunsaturated FA 
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represent around 19% of the total (106, 268, 351). The most abundant 

FA in medaka liver are palmitate (FA (16:0), 27% ), oleate (FA(18:1), 16%) 

and docosahexaenoate (FA(22:6), 24%), with a 39% of the FA being 

polyunsaturated (352, 353). With respect to xenobiotic metabolism, 

medaka metabolize drugs using similar pathways as humans as they 

possess a wide range of CYPs, enabling metabolic reactions including 

hydroxylation, conjugation, oxidation, demethylation and de-ethylation 

(202, 203, 354, 355). 

Small fish models (mainly medaka and zebrafish) are being 

increasingly used as an in vivo model system for the evaluation of novel 

drug candidates for efficacy and safety testing (201, 203, 356) and 

recent literature has confirmed that mammalian and small fish toxicity 

profiles are strikingly similar (203, 357, 358). It is worthy to mention the 

contribution of small fish models in the understanding of diet-induced 

steatosis and steatohepatitis development (346, 359). 

The hepatic metabolomic profiles of medaka fish treated with model 

hepatotoxic compounds were compared with those obtained using 

HepG2 cells and with the data available in the literature regarding 

toxicity in humans and other animal models. The compounds were 

administered once a day for five consecutive days. This dosing protocol 

is closer to drug dosage in humans than treatment protocols in in vitro 

experiments in which the cells are exposed uninterruptedly to the drug 

for a given period of time (e.g., 24 h).  

The analytical strategy was equivalent to that applied to unravel the 

metabolomic changes in HepG2 cells. Figure 3.30 shows the scores plots 

corresponding to the PCA analysis comparing the hepatic metabolic 

profile of medaka exposed to vehicle vs medaka treated with compounds 

inducing cholestasis, phospholipidosis or stetatosis. Samples from 

control group clustered together and separated from those 

corresponding to hepatotoxic compounds. These results suggest that 

the treatments induced marked changes in the hepatic metabolome. 
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Figure 3.30. Scores plots corresponding to the PCA performed using the data 

obtained from the metabolomic analysis of liver of medaka treated either with 

control (i.e. non-toxic) or hepatotoxic compounds acting thorugh different 

mechanisms of toxicity (i.e. cholestasis, phospholipidosis and steatosis). The 

lines denote 95 % confidence interval Hotelling's ellipse drawn for each class. 

PCA models were developed using two principal components. A) Control vs 

cholestasis. B) Control vs Phospholipidosis. C) Control vs Steatosis. Green: 

Control; Blue: Cholestasis; Red: Phospholipidosis; Purple: Steatosis. 
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Identification of markers of hepatotoxicity 

 

First, a general comparison between untreated medaka (control group) 

and those treated with hepatotoxic compounds was performed in order 

to identify non-specific markers of hepatotoxicity. Then, the analysis was 

focused on the identification of specific markers and patterns associated 

to each of the studied mechanisms of hepatotoxicity. 

A total of 9 compounds acting through different mechanism of toxicity 

were included in the study (Table 2.3). The generic changes observed in 

medaka were comparable to those observed for HepG2 cells (Figure 

3.11). With respect to the lipidic species, several changes were observed 

in PLs, FAs, TG and acylcarnititines. With respect to polar metabolites the 

most important changes were related to glycolysis (i.e. glucose-6-

phosphate), pentose phosphate pathway (i.e. ribose-5-phosphate), OS 

markers (i.e. GSH/GSSG and ophthalmic acid) and intermediates in PL 

metabolism (i.e. choline and glycerophosphoethanolamine) (Figure 

3.31). Besides the similarities between HepG2 and medaka models, some 

differences were also observed as no relevant changes were detected in 

the metabolism of purines or aminoacids in the case of medaka. A main 

reason for these differences could be the proliferative nature of HepG2 

cells compared to the normal non-proliferative state of hepatocytes (5). 

From the detected alterations it can be concluded that the generic 

changes induced by hepatotoxic insults in medaka are directed to key 

aspects of lipid metabolism (i.e. PL, TG, FA and TG) and that 

mitochondrial damage is likely to be implied as suggested by the altered 

energetic metabolism and the appearance of markers of OS (34, 35).  
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Figure 3.31. Boxplots showing the most important changes associated to generic 

hepatotoxicity in the liver of medaka analyzed following the generic untargeted 

metabolomic analysis strategy. Values are expressed as relative intensity. Boxes 

denote interquartile ranges, lines denote medians, and whiskers denote the 10th 

and 90th percentiles. 

 

 

Liver's metabolome changes triggered by cholestatic drugs 

 

Three compounds classified as cholestatic were included in the study 

(Table 2.3): 17α-ethynylestradiol, chlorpromazine and cyclosporine. Up 

to 197 metabolites were altered in the liver of medaka treated with 

cholestatic drugs, with impact on FA, TG and PL, urea cycle, nitrogen 

metabolism, aminoacid metabolism, and glutamate and GSH metabolism 

revealed by pathway enrichment analysis (Figure 3.32). 
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Figure 3.32. Boxplots showing the most important changes associated to 

cholestasis treatment in the liver of medaka analyzed following a generic 

untargeted analysis strategy. Values are expressed as relative intensity. Boxes 

denote interquartile ranges, lines denote medians, and whiskers denote the 10th 

and 90th percentiles. 

 

 

The altered pathways and metabolites (Figure 3.32) were similar to 

those obtained as a result of drug-induced OS in HepG2 cells (Figure 

3.12) with no characteristic alterations indicative of a specific cholestasis 

hepatotoxicity mechanism. Our results are in agreement with the 

reported ability of these compounds to induce OS and mitochondrial 

impairment both in vitro and in vivo (29, 89, 91, 92). 

Five different species of BAs were found in the liver of medaka: 

trihydroxycholic acid, tauro-trihydroxycholic acid, tauro-dihydroxycholic 
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acid, trihydroxycholestanoic acid and tauro-trihydroxycholestanoic acid. 

These results are in concordance with the data available in the literature 

(360-362). No significant differences were found in the levels of total or 

a particular BA in the liver of medaka treated with cholestatic drugs. 

These results are in agreement with previous studies in medaka and 

zebrafish. Driessen et al compared the changes in gene expression 

induced in zebrafish embryos incubated with hepatotoxicants, including 

three cholestatic drugs (cyclosporine, 17α-ethynylestradiol and 

chlorpromazine) (200). Their results showed alterations in genes and 

pathways that could be related to hepatotoxic responses in general, but 

not specifically to cholestasis (200). Similar results were obtained in a 

study that compared the changes in gene expression in zebrafish 

embryos treated with cyclosporine with those occurring in other models 

(i.e. HepaRG and mouse liver) (357). In a study of α-

naphthylisothiocyanate-induced hepatobiliary toxicity in medaka, a 

similar response at both cellular and systemic levels was obtained in 

comparison with previous studies in rodents, however, no alterations to 

bile transport were found (363). 

The alterations observed are consistent with an OS damage due to 

mitochondrial impairment, although a diminished canalicular efflux may 

play a role. The main alterations in the lipidome include increased levels 

of acylcarnitines, TG and PC (Figure 3.32). With respect to polar 

metabolites, it is worthy to highlight the appearance of OS markers 

related to GSH metabolism: increase in the levels of GSSG, ophthalmic 

acid, glutamate and glutamine and decreased levels of taurine. 

Interestingly, the increases in GSSG and ophthalmic acid are not 

accompanied by a decrease in the levels of GSH or GSH/GSSG ratio 

(Figure 3.32). This could be due to a diminished canalicular efflux of 

GSH by an inhibition of the corresponding transporters by the cholestatic 

drugs. Accordingly, PC, that are usually released into bile, showed 
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increased levels and it cannot be discarded a contribution of decreased 

canalicular efflux to explain it. 

As previously discussed, mitochondrial impairment may result in 

decreased FA oxidation thus leading to the over accumulation of FA 

oxidation intermediates as acylcarnitines, and ultimately of TG as a 

protective response to prevent free FA accumulation (34, 259) (Figure 

3.16). The mitochondrial impairment exacerbates the production of ROS 

that may be accompanied with other mechanisms of ROS production 

and/or GSH depletion, thus leading to OS. As previously discussed, 

increased levels of some OS markers such as GSSG, glutamate, glutamine 

and ophthalmic acid (Figure 3.32) can be related to GSH oxidation, 

synthesis and recycling (Figures 3.13, 3.14). The observed decrease in 

taurine levels could also be due to an oxidative insult. Previous studies 

have reported decreased levels of taurine associated to oxidative damage 

and GSH depletion (138, 140), suggesting that under that circumstances 

cysteine is shunted to GSH production at the expense of taurine 

biosynthesis (140).  

 

Hepatic metabolic alterations induced by phospholipidogenic drugs 

 

Amiodarone, tilorone and tamoxifen were studied as model 

phospholipidosis inducers (Table 2.3). 117 metabolites showed 

significant changes in the liver of medaka fish treated with these drugs. 

The alterations were mainly focused in PL, glutamate and GSH 

metabolism (Figure 3.33).  
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Figure 3.33. Boxplots showing the most important changes associated to 

phospholipidosis treatment in the liver of medaka analyzed following a generic 

untargeted analysis strategy. Values are expressed as relative intensity. Boxes 

denote interquartile ranges, lines denote medians, and whiskers denote the 10th 

and 90th percentiles. 

 

 

These metabolic changes showed a great concordance with those 

obtained in HepG2 cells (Figure 3.18). As observed in HepG2, only a 

discrete (non-significant) increase in the levels of PL was obtained. This 

feature was accompanied by a decrease in the levels of LysoPL thus 

resulting in a lower LysoPL/PL ratio suggestive of a reduction in PL 

degradation (292, 293). An increase in the GSSG levels and a decrease in 

the GSH levels and GSH/GSSG ratio were also observed, indicative of OS 

damage, as previously found for HepG2 cells (Figures 3.18, 3.33). 
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Hepatic metabolomic markers of drug-induced steatosis 

 

Three compounds classified as steatotic were included in the study 

(Table 2.3): doxycicline, tetracycline and valproic acid. A total of 295 

metabolites were altered as a consequence of drug-induced steatosis, 

thus impacting several metabolic pathways: metabolism of unsaturated 

FA, PL metabolism, FA and TG metabolism, pentose phosphate pathway, 

glutamate and GSH metabolism and BA metabolism as revealed by 

pathway enrichment analysis (Figure 3.34). 

 

 

 

Figure 3.34. Boxplots showing the most important changes associated to 

steatosis treatment in the liver of medaka analyzed following a generic 

untargeted analysis strategy. Values are expressed as relative intensity. Boxes 

denote interquartile ranges, lines denote medians, and whiskers denote the 10th 

and 90th percentiles. 
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The main changes in the lipidome included increased levels of 

acylcarnitines, FA, DG, TG, SM, PL, LysoPL and 

taurotrihydroxycholestanoic acid (the main BA in the liver of medaka 

fish). With respect to polar metabolites, the most remarkable alteration 

was the decrease in the GSH/GSSG ratio (Figure 3.34). These changes 

were more similar to those observed in lipid-loaded HepG2 cells (Figures 

3.20, 3.21) than those obtained without an external source of free FA in 

the medium (Figure 3.15). 

In mammals, short-chain FA (SCFA) and medium-chain FA (MCFA) 

absorbed by intestinal epithelial cells are released directly into the portal 

vein without esterification, while most LCFA form TG and are released 

into lymph ducts as chylomicron particles (4, 346). In fish, a two-step 

absorption model for dietary lipids has been proposed. Immediately after 

feeding, a fraction of dietary FA are found in the plasma, either as 

unbound FA (SCFA) or bound to carrier proteins (LCFA) and only later 

LCFA are resynthesized as TG and released as chylomicron particles into 

the blood thus performing an inter-organ transport of lipids that 

resembles the one occurring in mammals (346, 348, 352). The way the 

free FA are delivered into the liver from the intestine is similar to the 

phenomena that takes place in steatotic patients in which an exacerbated 

flux of free FA from adipose tissue to liver occurs (31, 259, 276, 364, 

365). This may be the cause why NAFLD and NASH are developed more 

easily in medaka than in other animal models of high fat diet-induced 

steatosis (346, 366) and the reason of the fast development of NAFLD in 

our experimental conditions compared to HepG2. As observed for 

HepG2, the impairment in FA β-oxidation induced by the steatotic drugs 

resulted in the alteration of the levels of lipidic species not only directly 

related to TG and FA metabolism, but also to PL and SM metabolism 

(Figures 3.20, 3.21, 3.34). Moreover an induction of OS, represented by 

the decrease in the GSH/GSSG ratio, was also observed (Figure 3.34), in 
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concordance with previous results and the known hepatotoxic 

mechanism of action of the employed molecules. 

Finally, an increase in the intrahepatic levels of 

taurotrihydroxycholestanoic acid was observed after treatment with 

steatogenic drugs (Figure 3.34). This finding, not observed in the HepG2 

model, has been reported in the literature as a consequence of diet or 

drug-induced steatosis either in humans or in animal models (140, 166). 

 

Development of predictive/classificatory models of hepatotoxicity based 

on medaka metabolite profiling 

 

After the identification of generic and mechanism-specific markers of 

hepatotoxicity, the next step was the development of 

predictive/classificatory models of hepatotoxicity.  

As an initial approximation, a predictive model centered only in the 

discrimination of hepatotoxic compounds was developed. Using a CV 

strategy the optimum number of LV to develop the PLS-DA model was set 

to two based on the values of R
2

, Q
2

 and misclassification error (Figure 

3.35.A). Once the number of LVs was set, the number of variables to be 

included in the final model was selected based on model performance 

(Figure 3.35.B). The lowest value of misclassification error and the 

highest value of AUROC were obtained with the model developed using 

only the top ranked 6 variables (i.e. PE(40:0), DG(34:3), DG(38:7), 

PC(42:2), TG(46:4), PC(40:1) 
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Figure 3.35. A) Values of R
2

 (blue), Q
2

 (red) and misclassification error (green) as 

a function of the number of LVs employed to build the PLS-DA model using the 

data obtained with the generic untargeted metabolomic analysis of the liver of 

medaka treated with either non-toxic or hepatotoxic compounds. B) Values 

obtained for the AUROC (green) and misclassification error (red) calculated using 

CV vs. the number of retained variables for the top-20 ranked variables using 

PLS-DA models with two LVs. The data is expressed as mean ± standard 

deviation. 

 

 

The PLS-DA scores and loadings plot corresponding to the model 

developed using 2LV and 6 retained variables are shown in Figure 3.36. 

Some overlap can be observed between 95 % confidence interval 

Hotelling's ellipse drawn for each of the classes (Figure 3.36.A). The 

poor separation between the classes was also confirmed by the bad 

results obtained for performance parameters of the model: R
2

 = 0.61, Q
2

 

= 0.60, misclassification error = 0.05 ± 0.03 and AUROC = 0.81 ± 0.14. 

Although the permutation testing rendered good results (Figure 3.36.C-

D), the information provided by the parameters evaluated by CV and the 

PLS-DA scores plot pointed the limited utility of the developed model. 

The results provided by the PCA scores plot suggested that the pattern 

generated by hepatotoxins acting through a specific mechanism can be 

distinguished independently from the control samples (Figure 3.30). 

Therefore, it can be concluded that no useful common pattern can be 

deducted with classificatory or predictive perspectives and each 

mechanism of toxicity has to be evaluated as an independent entity. 
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Figure 3.36. Summary of the results provided by the PLS-DA model built using 2 

LVs and the top-ranked 6 variables based on the data obtained with the generic 

untargeted metabolomic analysis of livers from medaka treated with either non-

toxic or hepatotoxic compounds. A) Scores plot. The lines denote 95 % 

confidence interval Hotelling's ellipse for each class. Green: non-toxic; Grey: 

hepatotoxic. B) Loadings plot. Green: non-toxic; Grey: hepatotoxic; Blue: 

metabolites. C) Permutation test for the misclassification error. D) Permutation 

test for the AUROC. In both cases the histograms represent the values obtained 

using the permuted classes. The actual value obtained with the real classes is 

indicated by the red dot and the value written above it.  

 

 

Following the data analysis workflow, the next step was to develop a 

model focused on the discrimination between specific mechanisms of 

toxicity (i.e. non-toxic, cholestasis/OS, phospholipidosis and steatosis). 

Using a CV strategy the optimum number of LV to develop the PLS-DA 

model was set to three (Figure 3.37.A). The maximum value of AUROC 

and minimum value of misclassification error were obtained for the 

model built using the top 23 ranked variables (i.e. 

glycerophosphoethanolamine, PE(36:0), PE(44:5), PE(44:6), PC(44:12), 
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LysoPA(18:2), LysoPC(20:1), LysoPE(20:4), PE(42:4), PE(44:8), cytidine, 

LysoPC(20:0), ophthalmic acid, carnitine(18:1), FA(20:2), PE(40:0), GSH, 

DG(38:7), carnitine(18:2), DG(40:8), methylhistidine, carnitine(4:0) and 

FA(20:4)) (Figure 3.37.B). 

 

 

 

Figure 3.37. A) Values of R
2

 (blue), Q
2

 (red) and misclassification error (green) as 

a function of the number of LVs employed to build the PLS-DA model using the 

data obtained with the generic untargeted metabolomic analysis of liver from 

medaka treated with either non-toxic or hepatotoxic compounds acting through 

different mechanism of hepatotoxicity (i.e. cholestasis, phospholidosis and 

steatosis). B)Values obtained for the AUROC (green) and misclassification error 

(red) calculated using CV vs. the number of retained variables for the top-30 

ranked variables using PLS-DA models with three LVs using. The data is 

expressed as mean ± standard deviation. 

 

 

The final PLS-DA model provided the following figures: R
2

 = 0.69, Q
2

 = 

0.65, misclassification error = 0.05 ± 0.04, AUROC = 0.92 ± 0.07. A 

good separation between the different groups is observed in the PLS-DA 

scores plot (Figure 3.38.A), with low overlap between the 95 % 

confidence interval Hotelling's ellipses drawn for each class. The model 

was further validated using a permutation test strategy with excellent 

results, as no overlap was obtained for values obtained using the 

permuted classes and the real values obtained with the actual PLS-DA for 

the misclassification error (Figure 3.38.B) and the AUROC (Figure 

3.38.C).  
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Figure 3.38. Summary of the results provided by the PLS-DA model built using 3 

LVs and the top-23 ranked variables based on the data obtained with the generic 

untargeted metabolomic analysis of livers of medaka treated with either non-

toxic or hepatotoxic compounds acting through different mechanism of 

hepatotoxicity. A) Scores plot. The lines denote 95 % confidence interval 

Hotelling's ellipse for each class. Green: non-toxic; blue: cholestasis; red: 

phospholipidosis; purple; steatosis. B) Permutation test for the misclassification 

error. C) Permutation test for the multiclass AUROC. In both cases the 

histograms represent the values obtained using the permuted classes. The actual 

value obtained with the real classes is indicated by the red dot.  

 

 

In summary, although the application of our experimental and 

analytical design to medaka was of limited utility in predicting 

hepatotoxicity in a generic sense, the good results provided by the 

model computing the different mechanisms of hepatotoxicity 

corroborate the trend obtained by the non-supervised analysis (Figure 

3.30). In a general sense, the results provided by the experiments 

performed in medaka were comparable both in terms of hepatotoxicity 

markers and predictive capabilities with those obtained in vitro using 

HepG2 cells, and represent an additional evidence to highlight the 

usefulness of medaka as animal model for the study of hepatotoxicity. 
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3.4.2 Differential metabolomic analysis of rats exposed to 

tetracycline and paracetamol 

 

As a final approximation to predict human hepatotoxicity, our 

metabolomic strategy was applied to the analysis of metabolomic 

changes in serum and liver tissue of rats exposed to hepatotoxic drugs. 

The main drawback of this experimental model is its limitation in the 

number of animals per study due to ethical, economical, space and 

handling restrictions. Therefore only two model hepatotoxins 

(tetracycline, representative of steatosis, and paracetamol, representative 

of OS) were selected as proof of principle of our analytical strategy. First, 

untargeted metabolomic analyses were performed using both liver and 

serum samples and finally targeted analyses of serum hepatotoxicity 

markers were performed. 

The clinical chemistry data obtained in rats treated with paracetamol 

and tetracycline are shown in Table 3.4. Both drugs induced the increase 

of total bilirubin in serum, indicative of hepatobiliary damage. On the 

other hand paracetamol, but not tetracycline provoked an increase in 

alanine aminotransferase (ALT).  

 

Table 3.4. Clinical laboratory analysis of serum samples from rats treated with 

hepatotoxic compounds. 

 

Parameter Control Paracetamol Tetracycline 

Glucose (mg/dL) 110 ± 40 n.d. 180 ± 60* 

TG (mg/dL) 65 ± 19 n.d. 40 ± 30 

Total cholesterol (mg/dL) 82 ± 11 n.d. 90 ± 40 

HDL cholesterol (mg/dL) 45 ± 9 n.d. 58 ± 18 

Total bilirrubin (mg/dL) 0.15 ± 0.03 0.24 ± 0.03 *** 0.4 ± 0.2 ** 

ALT (U/L) 53 ± 12 76 ± 11 ** 50 ± 20 

AST (U/L) 200 ± 80 260 ± 70 190 ± 50 

Data expressed as mean ± standard deviation. Comparisons performed using a 

Student t test. *: p value < 0.05; ** p value < 0.01; *** p value < 0.001. ALT: 

alanine aminotransferase; AST: aspartate aminotransferase; HDL: High density 

lipoprotein.  
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Untargeted metabolomic analysis 

 

First of all, the serum and liver samples from rats administered either 

vehicle, paracetamol or tetracycline were analyzed using an untargeted 

metabolomic strategy. The corresponding PCA scores plots are shown in 

Figure 3.39. In all the cases the non-supervised analysis was able to 

distinguish between samples from rats administered vehicle or 

hepatotoxic compounds. Therefore, following our pre-established data 

analysis workflow, the metabolomic data were explored in order to look 

for the alterations induced in the metabolome by each of the treatments. 

 

Figure 3.39. Scores plots corresponding to the PCA performed using the data 

obtained from the metabolomic analysis of liver (upper panels) and serum (lower 

panels) of rats dosed either vehicle (i.e. control, green) or model hepatotoxins 

(i.e. paracetamol, left panels, orange, and tetracycline, right panels, purple). The 

lines denote 95 % confidence interval Hotelling's ellipse drawn for each class. 

PCA models were developed using two principal components. 
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Metabolomic changes associated to the treatment with tetracycline 

 

As previously observed using HepG2 cells and medaka, steatosis was 

the main mechanism involved in tetracycline hepatotoxicity. Although 

tetracycline treatment induced no or a very subtle hepatic damage (Table 

3.4), the PCA analysis showed a clear separation between tetracycline 

and vehicle-treated rats (Figure 3.39).  

As expected for a steatogenic drug, and following the tendency 

observed for the two experimental models used previously, the 

treatment with tetracycline induced an increase in the levels of hepatic 

TG and a decrease of FAs (Figure 3.40). These changes suggest an 

increased flux of FA to TG synthesis (Figure 3.40). However, the increase 

in intrahepatic levels of TG was not accompanied by TG increase in 

serum (Table 3.4), what can be related to a reduction in lipid export by 

the inhibition of microsomal TG transfer protein activity. Both 

mechanisms of steatosis have been previously associated to tetracycline 

(32, 88). Although the total amount of FA was diminished in the liver, 

increased levels of hydroxylated FA (i.e. FA(14:0)(OH) and FA(16:0)(OH)) 

were observed. Tetracycline is known to inhibit β-oxidation of FA (32, 

88), thus leading to extramitochondrial FA oxidation resulting in higher 

rates of ROS production and lipid peroxidation. Increased levels of 3-

hydroxyadipic acid (3-hydroxyhexanedioic acid) were also observed 

(Figure 3.42). This metabolite is derived from the ω-oxidation of 3-

hydroxy FA and the subsequent β-oxidation of longer chain 3-hydroxy 

dicarboxylic acids (367), which is consistent with the increased levels of 

FA(14:0)(OH) and FA(16:0)(OH) detected in the liver of rats administered 

tetracycline. Moreover, increased urinary levels of 3-hydroxyadipic acid 

and other 3-hydroxy-dicarboxilic acids have been also previously 

reported as a result of inhibition of FA oxidation (367).  
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Figure 3.40. Boxplots showing the most important changes associated to 

tetracycline treatment in the liver of rats. Analysis preformed following a generic 

untargeted metabolomics analysis strategy. Values are expressed as relative 

intensity. Boxes denote interquartile ranges, lines denote medians, and whiskers 

denote the 10th and 90th percentiles. 

 

 

Several changes in the levels of intrahepatic BA were also detected 

(Figure 3.40). Tetracycline-treatment induced an increase in taurine-

conjugated BAs (the main class of BAs in rat liver (207)), accompanied by 

increased levels of taurine, and a decrease in the levels of glycine-

conjugated BAs (a minor class in rat liver (207)). Interestingly, altered 

levels of BA were also detected in the serum of rats treated with 

tetracycline (Figure 3.41), with decreased levels of non-conjugated and 

glycine conjugated BAs and increased levels of taurine-conjugated BAs. 
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Previous reports have pointed out that rats administered tetracycline 

showed alterations in the BA pool in different samples (i.e. liver, serum 

and urine) (137, 140, 368).  

Increased levels of total acylcarnitines were also found (Figure 3.41). 

Similar results have been reported in the serum of rats treated with 

tetracycline (140) and in the serum of patients with steatosis (369). 

These data are coherent with the previously described inhibition of β-

oxidation of FA by tetracycline (32, 88). 

 

 

 

Figure 3.41. Boxplots showing the most important changes associated to 

tetracycline treatment in the serum of rats. Analysis preformed following a 

generic untargeted metabolomics analysis strategy. Values are expressed as 

relative intensity. Boxes denote interquartile ranges, lines denote medians, and 

whiskers denote the 10th and 90th percentiles. 
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Metabolomic changes associated to the treatment with paracetamol 

 

Paracetamol is normally detoxified by sulfation or glucuronidation 

(370). When administered at high doses, it is metabolized by different 

CYPs (i.e. CYP1A2, CYP2A6, CYP2E1 and CYP3A4) to generate the 

reactive intermediate N-acetyl-p-benzoquinone imine (NAPQI) (371), 

which is further inactivated by conjugation with GSH before excretion. In 

absence of sufficient GSH, the reactive NAPQI can cause toxic and 

covalent protein modifications that lead to cell death and tissue injury 

(372). Proteomic and transcriptomic studies have shown that 

paracetamol can cause numerous changes in pathways related to cellular 

stress response, mitochondrial function, and metabolism, as well as in 

cell cycle, structural, signaling, and apoptotic proteins (373, 374). 

Paracetamol administration induced several changes in the hepatic 

metabolome of rats. The most altered pathways were related to FA 

oxidation, PL metabolism, OS and BA metabolism. Paracetamol treatment 

resulted in the alteration of several species of PL and intermediates in PL 

biosynthesis and degradation, such as choline, phosphocholine and 

glycerophosphoethanolamine (Figure 3.42), what can be related to 

NAPQI-mediated damage to intracellular membranes. More interesting is 

the detection of alterations that can be related to the β-oxidation of FA 

such a decrease in the levels of FA and an increase in the levels of 

acylcarnitines (Figure 3.42). These results are in concordance with a 

previous metabolomic study in the serum of paracetamol-treated 

Cyp2e1-null mice which revealed that the CYP2E1-mediated metabolic 

activation and OS following paracetamol treatment can cause irreversible 

inhibition of FA oxidation, potentially through suppression of PPARα-

regulated pathways (220). 
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Figure 3.42. Boxplots showing the most important changes associated to 

paracetamol treatment in the liver of rats. Analysis preformed following a generic 

untargeted metabolomics analysis strategy. Values are expressed as relative 

intensity. Boxes denote interquartile ranges, lines denote medians, and whiskers 

denote the 10th and 90th percentiles. 

 

 

Directly related to the oxidative insult and the GSH consumption 

provoked by NAPQI was the appearance of alterations of metabolites 

related to GSH metabolism and -glutamyl cycle (Figures 3.13, 3.14) such 

as ophthalmic acid and -glutamyl-aspartate (Figure 3.42). Besides these 

alterations, no changes in the levels of GSH, GSSG or GSH/GSSG were 

observed. In a previous study the kinetics of GSH and ophthalmic acid 

were analyzed in paracetamol-overdosed mice (138). The appearance of 

ophthalmic acid is an early event related to GSH decrease and, whereas 

the intrahepatic levels of GSH are rapidly recovered after the 

administration, the levels of ophthalmic acid require longer times to 

recover the pre-dose status (138). Alterations in the intrahepatic levels of 

ɣ-glutamyl-dipeptides and related compounds have been previously 

described as a result of paracetamol overdose in rat (140). Finally, it is 

interesting to point out that alterations in the levels of BAs were also 
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observed (Figure 3.42). Alterations in the hepatic BA pool as a result of 

paracetamol treatment have been previously described (140). 

The main alterations in the serum metabolome of rats administered 

paracetamol were related to BAs and -glutamyl-dipeptides and related 

compounds (see next section for detailed information). 

 

3.4.3 Targeted analysis of non-invasive serum markers of 

hepatotoxicity in rats 

 

As shown in the previous section, the untargeted metabolomic analysis 

of liver and serum samples from rats treated with either tetracycline or 

paracetamol revealed BAs and -glutamyl-dipeptides and related 

compounds as the most promising biomarker candidates. Yamazaki et al 

(140) analyzed the serum and hepatic metabolome of rats treated with 

different model hepatotoxins, including paracetamol and tetracycline, 

and pointed out that perturbation of BA homeostasis and OS are early 

events of DILI in rats. Moreover, a recent study concluded that drugs that 

impaired both mitochondrial energetics and BSEP functional activity 

produced more severe manifestations of DILI than drugs that only have a 

single liability factor (375).  

Based on these evidences we decided to develop targeted analysis 

methods for the evaluation of the serum levels of BAs and -glutamyl-

dipeptides and related compounds. 

 

Targeted analysis of BA 

 

BAs are major components of bile formed from cholesterol through 

various enzymatic reactions in hepatocytes. Before being excreted into 

bile canaliculi, primary BAs synthesized in the liver (i.e., CA and CDCA in 

humans plus αMCA and βMCA in rodents) (41, 42, 376-380) are mainly 

conjugated with taurine or glycine amino acids through the terminal 
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side-chain carboxylic group present in the BA structure (42). BAs are 

transported across the canalicular membrane of the hepatocytes into the 

bile and stored in the gallbladder before being released into the 

intestinal tract (381). In the intestine, primary BAs are deconjugated and 

converted into secondary BAs by microbiota through dehydroxylation 

and epimerization reactions (39, 42, 377, 382). Then, most BAs are 

reabsorbed back to the liver, conjugated by hepatocytes, and re-excreted 

into bile to complete enterohepatic circulation (41, 42, 381) (Figure 

3.43).  

In the past, BAs were considered to be mere detergents required for 

the solubilization and absorption of dietary fats. However, BAs are now 

recognized as regulatory molecules capable of activating specific 

receptors. BAs are physiological ligands for the farnesoid X receptor 

(FXR), an intracellular BA sensor that controls the expression of the 

genes involved in BA synthesis, metabolism, and transport in order to 

minimize the deleterious effects of their accumulation (39, 42). BAs are 

also able to bind other nuclear receptors (e.g. PXR or VDR) and the G-

protein coupled receptor TGR5 and can activate several cell signaling 

pathways (i.e., JNK, ERK, or AKT) (39, 40, 43, 44). By activating these 

receptors and signaling cascades, BAs regulate not only their own 

homeostasis but also FA, lipoprotein, glucose, and energy metabolism 

(39-41). The primary signaling function of BAs seems to be the 

regulation of metabolic flux in the liver and the gastrointestinal tract 

during the feed/fast cycle; however, they are also involved in the control 

of cell proliferation and inflammatory processes (39, 41). Alterations in 

the levels of BAs have been described in a series of pathological 

situations including hepatobiliary or drug-induced liver injury (140, 166, 

183, 368, 383). 
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Figure 3.43. Summary of BA metabolism and transport processes. Primary BAs 

are synthesized in the hepatocytes from cholesterol through various enzymatic 

reactions. BAs are mainly conjugated with taurine and glycine before being 

excreted into the bile canaliculi. In the intestine, primary BAs are deconjugated 

and converted into secondary BAs by microbiota. Most BAs are reabsorbed back 

to the liver to complete enterohepatic circulation. Although BAs recycling is a 

very efficient process, a little amount is excreted in the faeces. Moreover, a low 

percentage of reabsorbed BAs escape hepatic uptake and enter into the systemic 

circulation. Under cholestatic conditions urinary excretion might occur. At the 

basolateral membrane of hepatocytes, BA efflux is an important spillover route 

for BA and bilirubin (bili) that has accumulated during BA overload under 

cholestatic conditions.  



Results & Discussion 

226 

BAs targeted analysis was performed using a validated LC-MS/MS 

method that allowed the simultaneous quantification of 31BAs including 

non-conjugated, taurine-conjugated and glycine-conjugated major and 

minor species (207, 384). The results are shown in Table 3.5 and Figure 

3.44. 

 

Table 3.5. BA concentration (expressed as nM) in the serum of rats as a result of 

the indicated treatments. 

 

Bile Acid Control Paracetamol Tetracycline 

CDCA 2100 ± 1500 2400 ± 1600 50 ± 50 ** 

DCA 900 ± 1000 2100 ± 900 * 1.6 ± 1.5 * 

UDCA 180 ± 120 220 ± 120 7 ± 5 ** 

HDCA 2000 ± 2000 1100 ± 500 35 ± 7 * 

CA 9000 ± 6000 28000 ± 7000 *** 160 ± 150 ** 

ωMCA 3000 ± 4000 15000 ± 9000 ** 17 ± 17 * 

αMCA 3000 ± 2000 8000 ± 5000 * 16 ± 18 * 

βMCA 1800 ± 1800 9000 ± 4000 *** 30 ± 30 * 

HCA 400 ± 500 1800 ± 1500 ** n.d. 

GCDCA 70 ± 70 90 ± 70 n.q. 

GDCA 200 ± 200 500 ± 600 n.q. 

GHDCA 100 ± 100 40 ± 30 n.d. 

GCA 700 ± 700 2800 ± 1700 ** 36 ± 19 * 

GHCA 10 ± 10 20 ± 20 n.d. 

TCDCA 45 ± 17 60 ± 40 140 ± 70 *** 

TDCA 60 ± 60 160 ± 60 ** 8 ± 4 * 

TUDCA 5 ± 2 10 ± 4 5 ± 3 

THDCA 170 ± 140 50 ± 30 3 ± 3 ** 

TCA 280 ± 130 2100 ± 1000 *** 1300 ± 600 *** 

TωMCA 40 ± 30 80 ± 40 * 16 ± 3 

TαMCA 190 ± 130 380 ± 130 * 330 ± 180 * 

TβMCA 80 ± 40 200 ± 200 * 170 ± 90 ** 

Non-conjugated 23000 ± 15000 70000 ± 30000 *** 300 ± 300 ** 

Glycine-conjugated 1100 ± 900 3000 ± 2000 ** 40 ± 20 ** 

Taurine-conjugated 900 ± 300 3100 ± 1200 *** 2000 ± 900 ** 

Total 25000 ± 16000 70000 ± 30000 *** 2400 ± 800 ** 

Data expressed as mean ± standard deviation. Comparisons between control and 

each treatment were performed using a Student t test, p values were adjusted for 

multiple comparisons using false discovery rate method. *: p value < 0.05; ** p 

value < 0.01; ** p value < 0.001. n.d. not detected; n.q. not quantified 
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Figure 3.44. BA composition in the serum of rats as a result of the indicated 

treatments. Results expressed as percentage of the indicated group of BA (non-

conjugated, glycine-conjugated and taurine-conjugated) with respect the total 

pool of BA.  

 

 

With respect to tetracycline, a generic reduction in the levels of all the 

individual species was observed except for those taurine-conjugated 

species of primary BAs (i.e. TCA, TCDCA, TαMCA and TβMCA). Similar 

results have been reported by Yamazaki et al (140). Under normal 

circumstances the serum BA pool is dominated by non-conjugated BA 

(Table 3.5, Figure 3.44) (207). The changes induced by tetracycline 

result in a decrease of both non-conjugated and glycine-conjugated BAs, 

what, besides the increase in taurine-conjugated BAs, leads to a decrease 

in the total amount of BAs in the serum. Moreover, Figure 3.44 shows 

how the circulating BA pool of tetracycline-dosed rats is dominated by 

taurine-conjugated BAs. Tetracycline is a broad-spectrum antibiotic which 

can induce severe alterations in the microbiota, which in the end may be 

responsible of the changes observed in the BA pool (Figure 3.43). 

Therefore rather than a specific pattern of hepatic damage, changes in 

the BA pool might be the consequence of the damages in the 

gastrointestinal microbiota. Furthermore, these alterations in the BA pool 

can have severe consequences in the hepatic FA, lipoprotein, glucose 

and energy metabolism (39-42). 
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With respect to paracetamol, the induced changes in the serum levels 

of BAs were more quantitative than qualitative. While the proportion 

between non-conjugated, taurine-conjugated and glycine-conjugated BAs 

was maintained (Figure 3.44), the total amount of each group species 

was increased around 3-fold with contribution of both primary and 

secondary BAs (Table 3.5). 

These results, in conjunction with the extensive available literature of 

BAs alterations in hepatobiliary diseases and DILI (137, 140, 166, 183, 

368), reinforce the usefulness of BA profiling for the discovery of 

biomarkers of disease and toxicity (207, 384). 

 

Targeted analysis of -glutamyl dipeptides and related compounds 

 

-glutamyl dipeptides and ophthalmic acid have been previously 

described as markers of OS both as a result of different hepatobiliary 

diseases (246, 369) and as a result of DILI (138, 140). -glutamyl 

dipeptides can be synthesized in the liver via two different mechanisms 

(Figures 3.13, 3.14): i) via the ligation of glutamate with various amino 

acids and amines by GCS (246); ii) via the action of GGT over GSH. In 

both cases their appearance can be related to a (temporary or 

permanent) decrease in the intrahepatic levels of GSH due to an oxidative 

insult. Given the utility of -glutamyl dipeptides and related compounds 

(i.e. ophthalmic acid, GSH, GSSG, cysteinyl-glycine,...) as OS markers, a 

LC-MS/MS targeted analytical method was developed (Section 2.14). 

The targeted analysis of serum samples revealed that, as expected, 

several compounds were altered in paracetamol overdosed rats, while no 

significant alterations were produced as a result of the administration of 

tetracycline (Table 3.6).  
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Table 3.6. -Glutamyl dipeptides and related compounds concentration 

(expressed as nM) in the serum of rats as a result of the indicated treatments. 

 

Compound Control Paracetamol Tetracycline 

Pyroglutamate 8400 ± 1900 10600 ± 400 5700 ± 800 

Glutamine 360000 ± 60000 400000 ± 30000 330000 ± 70000 

Glutamate 123000 ± 16000 117000 ± 5000 110000 ± 10000 

-Glutamyl-Glycine 12000 ± 4000 13000 ± 1000 9000 ± 3000 

-Glutamyl-Alanine 3900 ± 1400 6500 ± 1700 * 4400 ± 800 

-Glutamyl- Serine 8000 ± 2000 13300 ± 1900 ** 7000 ± 2000 

-Glutamyl-Valine 1000 ± 300 1400 ± 300 900 ± 400 

-Glutamyl-Threonine 7100 ± 800 12000 ± 2000 *** 6000 ± 2000 

-Glutamyl-Taurine 1600 ± 400 1700 ± 300 1400 ± 100 

-Glutamyl-Leucine 2400 ± 700 3100 ± 400 1900 ± 500 

-Glutamyl-Isoleucine 290 ± 140 380 ± 140 180 ± 120 

-Glutamyl-Asparagine 2300 ± 700 3300 ± 300 2400 ± 600 

-Glutamyl-Glutamine 48000 ± 14000 55000 ± 19000 42000 ± 13000 

-Glutamyl-Lysine 11000 ± 5000 14000 ± 5000 10000 ± 2000 

-Glutamyl-Glutamate 1500 ± 500 3000 ± 500 ** 1170 ± 190 

-Glutamyl-Metthionine 1300 ± 400 1900 ± 1100 1280 ± 170 

-Glutamyl-Histidine 1700 ± 600 2700 ± 500 * 1900 ± 500 

Ophthalmate 1200 ± 600 10000 ± 4000 *** 1200 ± 300 

-Glutamyl-Phenylalanine 900 ± 300 1800 ± 300 ** 1200 ± 400 

-Glutamyl-Arginine 5900 ± 1400 10000 ± 2000 ** 4500 ± 1300 

-Glutamyl-Citrulline 4100 ± 1500 5000 ± 2000 1400 ± 400 * 

-Glutamyl-Tyrosine 2000 ± 400 3400 ± 700 ** 1500 ± 400 

-Glutamyl-Triptophan 270 ± 70 530 ± 150 ** 270 ± 50 

-Glutamyl-Cysteine 900 ± 400 1500 ± 600 700 ± 300 

GSH 2700 ± 1600 6000 ± 6000 2800 ± 1400 

GSSG 8000 ± 2000 16100 ± 1700 *** 8800 ± 1900 

Data expressed as mean ± standard deviation. Comparisons between control and 

each treatment were performed using a Student t test, p values were adjusted for 

multiple comparisons using false discovery rate method. *: p value < 0.05; ** p 

value < 0.01; ** p value < 0.001. 

 

 

We have previously observed alterations in the levels of ophthalmic 

acid in HepG2 cells treated with tetracycline (Figure 3.26), thus 

indicating that OS was a mechanism involved in the hepatotoxic effect. In 

contrast, no alterations in the levels of OS markers were detected in the 

serum of tetracycline-dosed rats. Similar results have been previously 
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reported by Yamazaki et al (140). Tetracycline can induce OS damage as 

a result of the mitochondrial disturbances induced by the inhibition of β-

oxidation of FA and their extramitochondrial catabolism (32, 88, 276). 

HepG2 cells are less efficient in preventing oxidative damage than 

hepatocytes within the physiological environment provided by the liver 

(5), which may explain the higher oxidative damage in HepG2 cells 

compared to the in the in vivo model. Moreover, OS markers (a decrease 

in the GSH/GSSG ratio) were also detected in the liver of medaka 

administered steatogenic drugs (Figure 3.40). As previously discussed, 

lipid metabolism in medaka favors the development of the drug-induced 

steatosis insult to an extent comparable to that observed in NASH, a 

clinical situation in which OS play an essential role (31, 246, 276, 369). 

Several metabolites related to GSH metabolism were altered in the 

serum of rats overdosed paracetamol (Table 3.6). These finding are in 

agreement with GSH depletion induced by NAPQI which results in 

increased GSH recycling via the -glutamyl cycle and GSH synthesis via 

the consecutive action of GCS and GS. No significant alterations in the 

levels of GSH were observed. These results are in concordance with a 

previously published study showing a rapid recovery of GSH levels after 

the oxidative insult (138). Upon OS, GSH/GSSG pair shift toward the 

oxidized state and then GSSG may either recycle to GSH or exit from the 

cells to prevent its intracellular accumulation (385). This could explain 

the high GSSG levels detected in the serum of rats overdosed 

paracetamol (Table 3.6). Overall, the increased levels of γ-glutamyl 

dipeptides were indicative of an OS state; however, the identification of 

specific patterns of altered γ-glutamyl and its potential utility to identify 

the mechanisms responsible of OS remain to be investigated. 
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4.1. Conclusions 

 

The work presented in this thesis can be divided into two different 

stages. First, our efforts were devoted to the development of the suitable 

protocols to apply LC-MS-based metabolomics to mammalian cells in 

culture. And in the second stage the developed protocols were applied to 

the metabolic profiling of different in vitro and in vivo models. Based on 

the work described in the present thesis, the following conclusions can 

be drawn: 

 

1. The use of IS and QC samples in conjunction with a carefully 

designed sample analysis define a quality assurance framework that 

allows to monitor the performance of the analytical platform before, 

during and after sample analysis. 

 

2. The combined used of uni- and multivariate data analyses represent 

a straightforward strategy for the identification of metabolomic 

alterations and the development of predictive/classificatory models. 

 

3. The use of bespoke metabolome extraction and analysis protocols 

based on the chemical properties of each metabolite class allows to 

expand the endometabolome coverage of HepG2 cells. 

 

4. The application of metabolomics to the study of DILI using HepG2 

represents a suitable tool to detect pre-lethal alterations associated 

to hepatotoxicity and thus it may be implemented as a sensitive 

tool in pre-clinical testing. 

 

4.1 Metabolomics revealed generic and mechanism-specific 

sensitive pre-lethal markers of hepatotoxicity in HepG2 cells 

that were coherent with the known in vivo alterations. 
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4.2 Predictive models aimed to distinguish between non-

hepatotoxic and hepatotoxic compounds or between non-

hepatotoxic compounds and those acting through specific 

mechanisms of hepatotoxicity (i.e. oxidative stress, steatosis 

and phospholipidosis) were satisfactorily developed. 

 

5. The combination of a lipid-focused metabolomics analysis in 

conjunction with HepG2 cells pre-loaded with fatty acids constitutes 

a suitable strategy for the fast development of drug-induced 

phospholipidosis and steatosis, the detection of sensitive 

mechanism-specific lipid markers and the development of 

predictive/classificatory models.  

 

6. Oxidative insult was revealed as a common event associated to 

hepatotoxicity and the development of a specific targeted analysis 

method allowed to quantify different markers of oxidative stress in 

HepG2 cells. 

 

7. Metabolomic alterations in medaka (Oryzias latipes) are in 

agreement with those observed in HepG2 cells and suggest this in 

vivo model as a suitable alternative for high throughput 

hepatotoxicity testing. 

 

8. Experiments in rats revealed that BAs and -glutamyl dipeptides are 

common serum markers associated to hepatotoxicity and could be 

good candidates as biomarkers of DILI in pre-clinical and clinical 

testing.  
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4.2. Outlook 

 

The first aim achieved within the framework herein defined was the 

development of a global sample preparation and analysis strategy for the 

determination of HepG2’s endometabolome. While the methodology 

developed here expands the metabolome coverage, it presents some 

limitations that are intrinsic to the employed analytical platform (i.e. LC-

MS). Thus, we are planning to evaluate whether the incorporation of GC-

MS into our analytical workflow could suppose a significant improvement 

in the detection and characterization of any group of metabolites of 

interest. 

The results obtained in the development of this thesis have allowed us 

to identify metabolomic alterations associated to specific mechanisms of 

hepatotoxicity using HepG2 cells as in vitro model. However, HepG2 cells 

present some limitations such as low biotransformation capabilities, low 

expression and activity of transporters relevant to hepatotoxicity and the 

lack of a cell polarity that resembles the in vivo phenotype. Different 

alternatives are available to circumvent these limitations, and among 

them, HepaRG cells are the most promising one. Moreover, we plan to 

evaluate a higher number of model hepatotoxins in order to select a well 

defined set of biomarkers with respect to the development of LC-MS/MS 

targeted quantitative analyses.  

The in vivo experiments in rats, allowed us to identify BAs and -

glutamyl dipeptides and related compounds as promising serum 

biomarkers of hepatotoxicity. Moreover, the development of targeted LC-

MS/MS analyses allowed us their quantification in a highly sensitive and 

specific way. Two different lines of experimentation could arise from 

these observations. On one hand, the increase in the number of model 

hepatotoxins tested in rodent models would allow us to identify patterns 

of BAs and -glutamyl dipeptides associated to hepatotoxicity in general 

or to specific mechanism of hepatotoxicity. On the other hand, the 
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analysis of serum samples from patients who have suffered a DILI event 

would allow us to determine whether those alterations and biomarkers 

identified in rodents are applicable to human hepatotoxicity. 
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RESUMEN EN CASTELLANO 

 

El hígado es un órgano especialmente susceptible a sufrir toxicidad 

debido a su particular localización anatómica y a su papel en el 

metabolismo y detoxificación de xenobióticos en general y fármacos en 

particular. Múltiples mecanismos están implicados en el daño que un 

fármaco o sus metabolitos pueden producir en los hepatocitos. El modo 

en que los orgánulos, macromoléculas y/o funciones se ven afectadas 

define el patrón del daño hepático. En base a la manifestación clínica 

inicial provocada a raíz del daño hepático, cuatro mecanismos de 

toxicidad diferentes pueden tener lugar: i) Esteatosis, caracterizada por 

la acumulación de lípidos, principalmente triglicéridos, en el interior de 

los hepatocitos; ii) Fosfolipidosis, caracterizada por la excesiva 

acumulación de fosfolípidos en el interior de las células; iii) Colestasis, 

producida a raíz de un disminución en el flujo biliar que conduce a la 

acumulación de sales biliares con los consecuentes daños para el 

hepatocito; y iv) Estrés oxidativo, producido cuando la generación de 

especies oxidantes sobrepasa la capacidad antioxidante de las células. 

El daño hepático causado por fármacos es un problema de gran 

relevancia a nivel sanitario y económico y la hepatotoxicidad es la 

principal causa de finalización de ensayos clínicos y de retirada de 

fármacos tras su comercialización. Uno de los principales problemas 

asociados a la hepatotoxicidad es el fallo a la hora de detectar fármacos 

potencialmente hepatotóxicos durante el proceso de desarrollo de 

nuevos fármacos. Los ensayos pre-clínicos deberían ser capaces de 

detectar posibles hepatotoxinas en etapas tempranas del proceso de 

desarrollo con el fin de minimizar los riesgos sanitarios y las pérdidas 

económicas. Múltiples modelos celulares hepáticos in vitro han sido 

desarrollados para su uso en la investigación toxicológica con el fin de 

conseguir una mayor comprensión de los mecanismos de 

hepatotoxicidad y detectar el potencial de nuevas entidades químicas de 
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producir toxicidad a nivel hepático. Aunque no consiguen reproducir 

fielmente la fisiología de un organismo completo o la complejidad del 

hígado, su bajo coste, alta reproducibilidad y la posibilidad de disponer 

de modelos de origen humano hacen de ellas un buen complemento 

para los tradicionales estudios in vivo y especialmente útiles para la 

predicción de fenómenos tóxicos en etapas tempranas del desarrollo de 

fármacos. 

Los estudios toxicológicos basados en modelos celulares in vitro se 

han llevado a cabo tradicionalmente usando ensayos de citotoxicidad, 

basados en la estimación de la viabilidad celular y/o el estado 

metabólico o funcional de las células previamente expuestas al tóxico en 

estudio. No obstante, la utilidad de este tipo de estudios es limitada ya 

que monitorizan eventos que tienen lugar en etapas avanzadas del daño 

celular, cuando las células se encuentran cercanas a la muerte, y por 

tanto no se puede extraer información mecanística alguna. La aplicación 

de las nuevas tecnologías "ómicas" (transcriptómica, proteómica, 

citómica y metabonómica) permite la determinación simultánea de 

múltiples parámetros en una misma muestra biológica y representa una 

herramienta más sensible y potente para el estudio de eventos 

relacionados con la hepatotoxicidad. Entre ellas la metabonómica se 

dedica al estudio de los productos finales de la "cascada ómica" 

proporcionando de este modo una información que no está accesible a 

través de otras "ómicas", lo que representa una mayor proximidad al 

fenotipo que el estudio de los genes, los transcritos o las proteínas. 

En base a estas evidencias, decidimos evaluar si la metabonómica en 

combinación con modelos celulares in vitro y con modelos animales in 

vivo puede representar una alternativa útil para el estudio de 

mecanismos de hepatotoxicidad y el reconocimiento de patrones 

característicos asociados a estos. Los siguientes objetivos fueron 

definidos dentro del marco de trabajo de la presente tesis: 1) Puesta a 

punto de una estrategia analítica basada en LC-MS para el estudio del 
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metaboloma: desde el procesamiento y análisis de las muestras hasta el 

análisis de los datos y la validación de biomarcadores; 2) Identificación 

de biomarcadores y patrones metabonómicos específicos asociados a 

mecanismos de hepatotoxicidad usando HepG2 como modelo celular in 

vitro; 3) Comparación de los resultados obtenidos in vitro con modelos 

animales in vivo. 

En primer lugar definimos un marco de trabajo adecuado que, gracias 

a la combinación de un cuidadoso diseño del análisis de las muestras, en 

conjunción con la incorporación de diferentes patrones internos y 

controles de calidad, nos permitió llevar a cabo los análisis 

metabonómicos en un ambiente que aseguraba la calidad de los 

resultados obtenidos.  

A continuación optimizamos una estrategia de procesamiento y 

análisis de las muestras de interés que nos permitió la extracción y 

análisis diferenciado de un gran rango de metabolitos, desde altamente 

polares hasta muy apolares, lo que nos permitió maximizar la cobertura 

del metaboloma. Con respecto a la extracción del metaboloma esto se 

consiguió gracias a una extracción en múltiples pasos en la que la 

combinación de solventes con diferentes características hizo posible la 

extracción diferencial de los metabolitos en base a sus propiedades 

químicas. Con respecto al análisis, se consiguió gracias a la combinación 

de cromatografía en fase reversa e HILIC, lo que permite la separación y 

detección de las diferentes clases de metabolitos en condiciones 

óptimas, maximizando la cobertura y minimizando las interferencias. 

La aplicación de las herramientas previamente desarrolladas a células 

HepG2 previamente tratadas con hepatotoxinas modelo que actúan a 

través de diferentes mecanismos de hepatotoxicidad nos permitió la 

identificación de patrones metabonómicos específicos asociados a cada 

uno de los mecanismos de interés. Además, los metabolitos y rutas 

metabólicas alteradas fueron coherentes con los mecanismos de 

hepatotoxicidad previamente descritos en humanos. En base a los 
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resultados obtenidos, experimentos adicionales fueron llevados a cabo 

para lograr una mejor caracterización de las alteraciones provocadas a 

consecuencia de daños por estrés oxidativo o desórdenes relacionados 

con lípidos como son la esteatosis y la fosfolipidosis. 

La utilidad de la estrategia analítica fue confirmada mediante su 

aplicación a estudios in vivo con medaka (Oryzias latipes) y rata como 

modelos animales. Los resultados in vivo mostraron una gran 

concordancia con los obtenidos in vitro usando HepG2 como modelo. 

Además, el uso de rata como modelo animal nos permitió identificar 

marcadores comunes de hepatotoxicidad en sangre que podrían ser 

usados como marcadores en estudios preclínicos o incluso extrapolados 

a humanos.  

En base al trabajo presentado en esta tesis, las siguientes conclusiones 

pueden ser extraídas: 

 

1. El uso de patrones internos y muestras de control de calidad en 

conjunción con un cuidadoso diseño del análisis de las muestras 

supone un marco adecuado de control de calidad para la 

monitorización del funcionamiento de la plataforma analítica antes, 

durante y después del análisis de las muestras. 

2. El uso combinado de técnicas de análisis uni- y multivariante 

representa una estrategia adecuada de análisis de datos para la 

identificación de alteraciones metabolómicas y el desarrollo de 

modelos clasificatorios/predictivos. 

3. El uso de un protocolo de extracción y análisis del metabonoma 

adaptado a las propiedades químicas de las clases de metabolitos 

permite expandir la cobertura del endometaboloma en células 

HepG2. 
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4. La aplicación de la metabonómica al estudio del daño hepático 

inducido por fármacos en HepG2 representa una herramienta 

adecuada para la detección de alteraciones pre-letales asociadas a 

hepatotoxicidad y por tanto puede ser implementada como una 

herramienta sensible en ensayos preclínicos. 

4.1 Los estudios metabolómicos revelaron marcadores asociados 

con hepatotoxicidad genérica y asociada a mecanismos 

específicos de hepatotoxicidad en células HepG2 que además 

eran coherentes con las alteraciones in vivo previamente 

descritas. 

4.2 Se desarrollaron modelos predictivos dirigidos a la 

discriminación entre compuestos no tóxicos y compuestos 

hepatotoxicos y entre compuestos no tóxicos y compuestos 

que actúan a través de mecanismos de hepatotoxicidad 

específicos: estrés oxidativo, esteatosis y fosfolipidosis. 

5. La combinación de una aproximación lipidómica en conjunción con 

HepG2 precargardas con ácidos grasos representa una estrategia 

adecuada para el rápido desarrollo de esteatosis y fosfolipidosis 

inducidos por fármacos, la detección de marcadores lipídicos 

asociados a dichos mecanismos y el desarrollo de modelos 

clasificatorios/predictivos. 

6. El daño oxidativo fue revelado como un evento común asociado a 

hepatotoxicidad, el desarrollo de un análisis dirigido permitió la 

cuantificación de diferentes marcadores de estrés oxidativo en 

células HepG2. 

7. Las alteraciones metabolómicas detectadas en medaka (Oryzias 

latipes) fueron coherentes con las observadas en HepG2 lo que 

sugiere que medaka representa una alternativa válida como modelo 

in vivo de alto rendimiento para la predicción de hepatotoxicidad. 
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8. Experimentos en rata revelaron que las sales biliares y los -glutamil 

dipeptidos son marcadores séricos comunes asociados a 

hepatotoxicidad y pueden ser buenos candidatos a biomarcadores 

de daño hepático inducido por fármacos en ensayos tanto pre-

clínicos como clínicos. 
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