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Abstract
From an SU(2)⊗SU(2) chiral quark potential model incorporating spontaneous chiral symmetry

breaking the asymptotic π and σ exchange pieces of the NN potential are generated. From them

the πNN and σNN coupling constants can be extracted. The generalization to SU(3)⊗SU(3)

allows for a determination of πB8B8 and σB8B8 coupling constants according to exact SU(3)

hadron symmetry. The implementation of the values of the couplings at Q2 = 0 provided by QCD

sum rules and/or phenomenology makes also feasible the extraction of the meson-baryon-baryon

form factors. In this manner a quite complete knowledge of the couplings may be attained.

PACS numbers: 12.39.Jh, 14.20.-c, 14.20.Gk
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I. INTRODUCTION

The meson-baryon-baryon (mBB′) couplings play a central role in hadron physics con-
cerning the baryon-baryon (BB′) interactions as well as the formation and decay of baryon
resonances. To study these couplings effective hadron lagrangians involving the mesons and
baryons under consideration are postulated. All the complexity of the mBB′ vertices is
assumed to be taken into account through running couplings depending on Q2, the trans-
fer momentum in the vertex. This dependency is usually parametrized in terms of a form
factor and a coupling constant defined as the value of the running coupling at a particular
Q2, usually on-shell Q2 = M2

m. Then one can calculate physical processes and compare to
data to extract these values. Thus the πNN coupling constant is obtained from πN and/or
NN scattering data [1]. For couplings involving baryons and/or mesons for which scattering
or decay data are not so complete or unavailable one can also rely on symmetry to derive
predictions, see for instance [2].

From a more fundamental point of view hadrons are made up of quarks. Hence hadron
structures and decays as well as hadron-hadron interactions should come out from quark
dynamics as dictated by QCD. Due to the technical difficulty to achieve this objective at
present quark models of hadrons incorporating QCD-motivated symmetries and dynamics
have been successfully applied to generate the baryon-baryon interactions, and consistently
the baryon spectrum, in the light (u, d) [3] as well as in the light + strange (u, d, s) quark
sectors [4, 5, 6]. These models, sometimes less precise than effective hadronic treatments,
offer the advantage of providing a consistent unified description of all baryon-baryon pro-
cesses from the same hamiltonian at the quark level. This confers them in principle a great
predictive power once the model parameters are tightly constrained from some selected set
of existing data.

We shall make use of this power to predict, within a non-relativistic chiral quark model
framework, mB8B8 (B8: baryon of the flavor octet) coupling constants in terms of meson-
quark-quark (mqq) couplings. More precisely we shall generate, from a mqq lagrangian
incorporating the effect of spontaneous chiral symmetry breaking (SCSB), the quark-quark
meson exchange potentials and from them, through a Born–Oppenheimer (BO) approxi-
mation, the asymptotic baryon–baryon meson exchange interactions. The use of justified
harmonic oscillator baryon wave functions (in terms of quarks) will allow us to perform
analytic calculations. By comparing the resulting interactions to the ones postulated at the
effective hadronic level we shall identify the meson-baryon-baryon coupling constants. This
procedure has been applied in the literature to the πNN coupling [7]. Here we shall be
more precise in the extraction of coupling constants and form factors and we shall extend
its application to the σ meson and the other B8 baryons making feasible the comparison of
our results to the ones obtained with alternative methods based on quark or hadron degrees
of freedom.

The contents are organized as follows. In Sect. II we shall center on the light quark
sector where spontaneously broken chiral SU(2)⊗SU(2) symmetry serves as an underlying
general guide to generate the quark-quark meson-exchange potentials. We shall revisit the
calculation of the πNN coupling in terms of the πqq one and apply the same procedure
to the σNN case. We shall also comment on the possibility of applying our method to
∆ and nucleon resonances. Then in Sect. III we shall consider the extension, via chiral
SU(3)⊗SU(3), to the SU(3) octet of baryons. Finally in Sect. IV we shall summarize our
main results and conclusions.
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II. LIGHT QUARK SECTOR: SU(2)⊗SU(2).

Our starting point is the chiral lagrangian

Lch = −gch q̄ (11SU(2)σ + i γ5~τ~π)q , (1)

where q has components u and d, and gch is the chiral mqq coupling constant (m : π, σ). The
spontaneous chiral symmetry breaking gives rise to a vertex form factor F (Q2) [8]. From
the parametrization given in references [9, 10] we propose the Lorentz invariant form (note

that for the purpose of the derivation of static potentials Q2 = −~Q2),

F (Q2) =

(

Λ2

Λ2 − Q2

)1/2

, (2)

where Λ is an effective cutoff parameter fitted from data. We should keep in mind that this
parametrization of F (Q2) makes only sense for Q2 < Λ2.

From the form proposed (F (Q2 = 0) = 1) it is clear that gch represents the value of the
mqq coupling, gchF (Q2), at Q2 = M2

m in the limit M2
m = 0. In order to deal with coupling

constants defined on the physical meson masses (M2
π 6= 0 6= M2

σ) we identify (it is implicitly
assumed that M2

π , M2
σ < Λ2)

gπqq ≡ gch

(

Λ2

Λ2 − M2
π

)1/2

(3)

gσqq ≡ gch

(

Λ2

Λ2 − M2
σ

)1/2

, (4)

as the values of the coupling gchF (Q2) at Q2 = M2
π and Q2 = M2

σ , respectively.
Let us point out that the use of the experimental pion mass may have required the

introduction of an explicit symmetry breaking term proportional to σ in the lagrangian but
this term has not any further effect in the analysis we perform. Regarding the σ mass it
will be taken as a parameter to be fitted from data around the value provided by the SCSB
relation [11],

M2
σ − M2

π = 4M2
q (5)

where Mq denotes the constituent quark mass at Q2 = 0.
In terms of gπqq we write the pion lagrangian as

Lπqq = −gπqq q̄ iγ5~τ~π q (6)

with a vertex form factor Fπqq(Q
2) given by

Fπqq(Q
2) ≡

(

Λ2 − M2
π

Λ2 − Q2

)1/2

. (7)

Analogously, the sigma lagrangian reads

Lσqq = −gσqq q̄ 11SU(2)σ q (8)

with a vertex form factor Fσqq(Q
2) given by

Fσqq(Q
2) ≡

(

Λ2 − M2
σ

Λ2 − Q2

)1/2

. (9)

Note that both form factors are of the same type Fmqq(Q
2) ≡ (Λ2 − M2

m/Λ2 − Q2)
1/2

so that
Fmqq(Q

2 = M2
m) = 1.
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A. mqq and induced mBB potentials

From Lmqq and the form factors the static OPE and OSE central potentials (to the
respective lowest order in Q2) can be obtained through a non-relativistic reduction of the
corresponding Feynman diagram amplitudes. They are

V ij
OPE(~rij) =

1

3

g2
πqq

4π

M2
π

4MiMj

Mπ

[

Y (Mπ rij) −
Λ3

M3
π

Y (Λ rij)

]

(~σi · ~σj)(~τi · ~τj) , (10)

V ij
OSE(~rij) = −

g2
σqq

4π
Mσ

[

Y (Mσ rij) −
Λ

Mσ
Y (Λ rij)

]

. (11)

Here i and j are numbers denoting quarks, Mi,j = Mq , ~σi,j (~τi,j) are the spin (isospin) Pauli
operators, rij is the interquark distance and the function Y is defined as,

Y (x) =
e−x

x
. (12)

Once the potentials at the quark level have been derived we shall use them to obtain the
baryon-baryon potentials. From V ij

OmE the asymptotic baryon-baryon meson exchange static
potential is defined as

(Vq)
BaBb→BcBd

OmE (R → ∞) ≡ lim
R→∞

< ΨBcBd
|
∑

i∈Ba,Bc

j∈Bb,Bd

V ij
OmE|ΨBaBb

> , (13)

where ΨBiBj
stands for the two-baryon wave function, R for the interbaryon distance and

the integration is over the quark coordinates.
We shall concentrate on BaBb → BcBd interactions involving baryons with the same

mass. Then the asymptotic two-baryon wave function will be expressed in the center of
mass system as

ΨBaBb
= ΦBa

(1, 2, 3; +~R/2) ΦBb
(4, 5, 6;−~R/2) (14)

where (1, 2, 3) and (4, 5, 6) denote the quarks forming the baryons, ±~R/2 the baryons posi-
tion and

ΦBi
= (ΦBi

)spatial(ΦBi
)spin−flavor(ΦBi

)color (15)

is the one-baryon wave function expressed as the direct product of its spatial, spin–flavor
and color parts. For the sake of simplicity the baryon spatial wave function will be chosen
of harmonic oscillator type

(ΦB)spatial(1, 2, 3; +~R/2) =

3
∏

i=1

(

1

πb2

)
3
4

exp

[

−
(

~ri − ~R/2
)2

/2b2

]

(16)

with an harmonic oscillator parameter, b, related to the size of the baryon.

B. Parameters

In order to fix the parameters at the quark level: Mq, Mπ, Mσ, gch, Λ, and b, we shall
rely on the efficient description of NN data provided by the Chiral Quark Cluster Model
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(CQCM) [3]. Such model contains, apart from OPE and OSE potentials derived from Lmqq,
a confinement plus a residual one-gluon exchange (OGE) interactions. We should realize
though that the precise fitting of the parameters in the CQCM relies on a RGM calculation
so that the two-baryon wave function as well as the baryon-baryon potentials are different
from the ones obtained via the Born-Oppenheimer (BO) approach we follow, Eq. (13). We
shall take this into account in an effective manner by keeping the same values for Mq, Mπ,
Mσ, Λ, and b, and fitting a new value for gch to reproduce, with our BO approach, the
experimental value of the pion-nucleon-nucleon coupling constant (see next section). The
values of the parameters used henceforth are listed in Table I.

TABLE I: Quark model parameters [3].

Mq b Mσ Mπ Λ

(MeV) (fm) (fm−1) (fm−1) (fm−1)

313 0.518 3.42 0.7 4.2

C. πNN

From Eqs. (10), (13) and (16) the asymptotic OPE central potential for NN → NN ,
corresponding to the diagram of Fig. 1 (there are nine equivalent ones), can be obtained. It
reads (the calculation has been explicitly done in Ref. [7])

(Vq)
NN→NN
OPE (R → ∞) =

g2
πqq

4π

[

9 < (~σ3 · ~σ6)NN .(~τ3 · ~τ6)NN > e
M2

πb2

2

]

M2
π

4M2
q

1

3

e−MπR

R
. (17)

To extract the πNN coupling we have to compare this potential with the one derived from

σ, π

N N

N N

FIG. 1: Asymptotic NN OPE or OSE interactions at quark level.

a postulated hadronic lagrangian. Assuming for instance a pseudoscalar coupling we can
write a lagrangian

LπNN = −(gπNN)Q2=M2
π
N̄ i γ5~τ ~π N , (18)

with a vertex form factor GπNN(Q2) so that GπNN(Q2 = M2
π) = 1. Notice that we have

indicated explicitly the on-shell character of the coupling gπNN through the subindex. In
order to derive from this lagrangian a Yukawa-like pion exchange potential, monopole or
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dipole type form factors are usually assumed. Concerning the asymptotic potential both
give the same result. We shall use in parallel with the form factor at the quark level a form

GπNN(Q2) ≡
(

Λ2
πNN − M2

π

Λ2
πNN − Q2

)
1
2

, (19)

valid for Q2 < Λ2
πNN and M2

π < Λ2
πNN (ΛπNN is a cutoff parameter to be fitted).

Note that if we had preferred to refer the lagrangian to the value of the coupling at
Q2 = 0, i.e., to (gπNN)Q2=0 , then we would have a different form factor such that

(gπNN)Q2=M2
π

GπNN (Q2) = (gπNN)Q2=0

(

Λ2
πNN

Λ2
πNN − Q2

)
1
2

, (20)

where the second term on the right hand side represents the form factor normalized at
Q2 = 0.

From LπNN and GπNN(Q2) the non-relativistic reduction of the one-pion exchange
diagram, Fig. 2, to the lowest order in Q2, provides us with the pion exchange static potential
at the baryonic level. The asymptotic behavior of its central part is given by

(VB)NN→NN
OPE (R → ∞) =

(g2
πNN)Q2=M2

π

4π
[〈(~σN · ~σN)(~τN · ~τN)〉] M2

π

4M2
N

1

3

e−MπR

R
. (21)

Note that (VB)NN→NN
OPE (R → ∞) only depends on the coupling constant and not on the

N

σ, π

N

N N

FIG. 2: Asymptotic NN OPE or OSE interactions at baryon level.

form factor. Then no information on the form factors at the baryon level can be extracted
from it. Regarding the coupling constant we can make use of the relation (25/9) < (~σN ·
~σN )(~τN · ~τN) >= 9 < (~σ3 · ~σ6)NN .(~τ3 · ~τ6)NN > [7] to compare Eqs. (17) and (21). From this
comparison we extract

(g2
πNN)Q2=M2

π
= g2

πqq

M2
N

M2
q

25

9
e

M2
πb2

2 . (22)

Having chosen Mq = 313 MeV so that MN = 3Mq we can re-express

(g2
πNN)Q2=M2

π
= 25 g2

πqq e
M2

πb2

2 . (23)
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1. Pseudovector couplings

Alternatively to gπqq and gπNN we could have used pseudovector couplings fπqq and fπNN

so that

LPV
πqq = −fπqq

Mπ

q̄ iγ5γµ~τ∂µ~π q (24)

with the vertex form factor Fπqq(Q
2) and

LPV
πNN = −(fπNN )Q2=M2

π

Mπ

N̄ i γ5γµ~τ∂µ~π N . (25)

with the vertex form factor GπNN(Q2).
It turns out that LPV give rise to exactly the same potentials as L , to the lowest Q2 order,
under the identifications

f 2
πqq

M2
π

=
g2

πqq

4M2
q

(26)

(f 2
πNN)Q2=M2

π

M2
π

=
(g2

πNN)Q2=M2
π

4M2
N

. (27)

If we now substitute these relations in Eq. (22) we get

(f 2
πNN)Q2=M2

π
= f 2

πqq

25

9
e

M2
πb2

2 . (28)

The corresponding constant fch is consistently defined as

fch =

(

Λ2 − M2
π

Λ2

)1/2

fπqq = lim
Mπ→0

fπqq . (29)

2. Coupling constants and form factor values

From a standard experimental value (f 2
πNN)Q2=M2

π
/4π ≃ 0.079 (see [1] and references

therein) or (g2
πNN)Q2=M2

π
/4π ≃ 14.6 we fit the pion-quark-quark coupling constant

f 2
πqq/4π = 0.027 (30)

or
g2

πqq/4π = 0.55 , (31)

and

|gch| ≡ |fch|
2 Mq

Mπ
= 2.6 . (32)

Let us emphasize that this value for gch differs less than a 10% from the one obtained via
QCD sum rules (QCDSR) (gch)QCDSR ≃ 2.83 [12].

Regarding ΛπNN , the cutoff parameter, its range of values can be estimated. In Ref. [13]

a fit to data was attained from a gaussian form factor eQ2/Λ2
HM with ΛHM varying from 2.6

to 4.2 fm−1. This form factor is normalized at Q2 = 0. By requiring its low Q2 behavior
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(1+Q2/Λ2
HM), to be the same than that of our form factor normalized at Q2 = 0 in Eq. (20),

(1 + Q2/2Λ2
πNN), we get Λ2

HM = 2Λ2
πNN . Hence the resulting range for ΛπNN is

ΛπNN = 1.84 − 2.97 fm−1 . (33)

From Eqs. (19) and (20) this range can be translated in an interval of values for the coupling
at Q2 = 0 :

(f 2
πNN)Q2=0

4π
= 0.068 − 0.075 ,

(g2
πNN)Q2=0

4π
= 12.5 − 13.8 . (34)

These values are in perfect agreement with the phenomenological analysis done in Ref. [14]
(let us comment that for the form factor used in this reference the range of values for the
cutoff parameter is the same as for ΛHM). The preferred value in Ref. [14] is (f 2

πNN)Q2=0/4π ≃
0.073 which corresponds to (g2

πNN)Q2=0/4π ≃ 13.5. It is worthwhile to point out that this
corresponds quite approximately to the Mπ → 0 limit of our expression (f 2

πNN)Q2=M2
π

=

f 2
πqq (25/9) e

M2
πb2

2 , i.e.,

(f 2
πNN)Q2=M2

π→0

4π
=

f 2
ch

4π

25

9
= 0.072 (35)

indicating the quite approximate Goldstone boson character of the pion.

D. σNN

By proceeding in exactly the same way for the σ exchange we obtain from Eqs. (11), (13)
and (16) at the quark level

(Vq)
NN→NN
OSE (R → ∞) = −

g2
σqq

4π
9 e

M2
σb2

2
e−MσR

R
. (36)

On the other hand from the hadronic lagrangian

LσNN = −(gσNN )Q2=M2
σ
N̄ 11SU(2)σ N , (37)

with a vertex form factor

GσNN (Q2) =

(

Λ2
σNN − M2

σ

Λ2
σNN − Q2

)
1
2

, (38)

we get

(VB)NN→NN
OSE (R → ∞) = −(g2

σNN )Q2=M2
σ

4π

e−MσR

R
. (39)

From their comparison

(g2
σNN)Q2=M2

σ
= 9 g2

σqq e
M2

σb2

2 . (40)

Let us note that once the value of gπqq has been fitted our model predicts the value of gσqq

through
g2

σqq

g2
πqq

=
Λ2 − M2

π

Λ2 − M2
σ

. (41)
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Equivalently
(g2

σNN )Q2=M2
σ

(g2
πNN)Q2=M2

π

=
9

25

Λ2 − M2
π

Λ2 − M2
σ

e
(M2

σ−M2
π)b2

2 . (42)

1. Coupling constant and form factor values

From Eq. (42) we predict
(g2

σNN )Q2=M2
σ

4π
= 68.2 (43)

and from Eq. (40)
g2

σqq

4π
= 1.59 . (44)

As mentioned above our asymptotic comparison does not give any information on the cutoff
parameter ΛσNN . Nonetheless we can combine our result for the coupling constant with the
value of the coupling at Q2 = 0 provided by QCDSR to get an insight into it. From Ref. [15]

(gσNN )Q2=0

gσ
q

= 3.9 ± 1.0. (45)

If we tentatively identify gσ
q with our gσqq (= 4.47) we get

(g2
σNN )Q2=0

4π
= 17.4 ± 4.5 , (46)

and using the relation (g2
σNN)Q2=0 = (g2

σNN )Q2=M2
σ

G2
σNN (Q2 = 0) we extract

ΛσNN =







M2
σ

1 − (g2
σNN

)
Q2=0

(g2
σNN

)
Q2=M2

σ







1
2

= 3.97 ± 0.18 fm−1 . (47)

It is again interesting to consider the limit Mσ → 0 of Eq. (40)

(g2
σNN )Q2=M2

σ→0

4π
=

9g2
ch

4π
= 4.8 , (48)

or
(g2

σNN)Q2=M2
σ→0

g2
ch

= 9 (49)

and compare it to the interval of values of the coupling at Q2 = 0 from Eq. (46). As can be
seen the Mσ → 0 value from Eq. (48) is out of this interval. This might be interpreted as
reflecting the non-Goldstone boson nature of the σ.

9



E. πN∆

Strictly speaking our procedure to extract the couplings only makes sense when the lowest
order expansion in Q2 we follow is simultaneously valid at the baryonic level (EB ≃ MB)
and at the quark level (Eq ≃ Mq). We do not expect this to be true for light-quark baryons
in general since the quarks can move relativistically inside them. However the structure
of the ground states, the N (and Λ, Σ, and Ξ when considering SU(3)), is well described
by non-relativistic constituent quark models through the effective parameters in the quark-
quark potential. Then we expect our procedure to make sense for them. Regarding other
baryon states like ∆ and N(1440) one should be more cautious as we illustrate next.

In order to extract the πN∆ coupling constant we consider the NN → N∆ interaction.
According to the harmonic oscillator model we are using the spatial wave function of ∆
has exactly the same structure than the N one. However the real ∆ differs from the N.
To implement the bigger size for ∆ predicted by non-relativistic spectroscopic models we
shall consider the possibility of a slightly different value for the size parameter. Thus the ∆
spatial wave function we shall use is

(Φ∆)spatial(4, 5, 6; +~R/2) =
6
∏

i=4

(

1

πb2
∆

)
3
4

exp

[

−
(

~ri − ~R/2
)2

/2b2
∆

]

(50)

with a baryon size parameter, b∆. One should also keep in mind that the mass of the ∆ is
a 30% bigger than the mass of the N . In our harmonic oscillator quark model this means
that the quarks in the ∆ have more potential and kinetic energy (virial theorem) than the
quarks in the N . According to our comments above this could give rise to corrections in
the expression of the static potential at the quark level. Moreover due to the ∆ − N mass
difference the positions of the baryons in the initial and final states should not be the same.
Therefore we should not expect an accurate prediction for the coupling constant in this case.
To derive such prediction we first calculate at the quark level, from Eqs. (13), (16) and (50)

σ, π

N N

N ∆

FIG. 3: Asymptotic NN → N∆ OPE or OSE interactions at quark level.

(we use for easiness the pseudovector form of the coupling) the asymptotic NN → N∆ pion
exchange static central potential, Fig. 3. It is

(Vq)
NN→N∆
OPE (R → ∞) =

f 2
πqq

4π

[

160

9
√

2
2
√

2
b6
µb

3
+b3

e

(b15b9
∆)

1
2

e
M2

πb2e
2

]

1

3

e−MπR

R
, (51)
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where the factor 160/9
√

2 corresponds to 〈N∆ |(~σ3 · ~σ6)(~τ3 · ~τ6)|NN〉 for total spin and
isospin equal to 1, multiplied by 9 the number of equivalent diagrams, and bµ, b+ and be are
defined as

1

b2
µ

=
1

2b2
+

1

2b2
∆

1

b2
±

= ± 1

b2
+

1

b2
µ

(52)

1

b2
e

=
1

2b2
+

− b2
+

2b4
−

.

Note that when b∆ = b we also have be = bµ =
√

2b+ = b hence reproducing, except for the
spin-isospin factor, the NN result.

At the baryonic level we have the lagrangians LPV
πNN as given by Eq. (25) and

LPV
πN∆ = −(fπN∆)Q2=M2

π

Mπ

N̄ ~T∂~π ∆ , (53)

with a form factor GπN∆(Q2) which we shall choose as,

GπN∆(Q2) ≡
(

Λ2
πN∆ − M2

π

Λ2
πN∆ − Q2

)
1
2

, (54)

In Eq. (53) ∆ corresponds to a Rarita-Schwinger 3/2 spinor field and ~T is the isospin nucleon-
delta transition operator. The corresponding pion exchange static central potential behaves
asymptotically as

(VB)NN→N∆
OPE (R → ∞) =

(fπNN)Q2=M2
π
(fπN∆)Q2=M2

π

4π

[〈

(~σN · ~S)(~τN · ~T )
〉] 1

3

e−MπR

R
(55)

where ~S is the spin nucleon-delta transition operator and
〈

(~σN · ~S)(~τN · ~T )
〉

= 8/3 for total

spin and isospin equal to 1. Thus we identify,

(fπNN)Q2=M2
π
(fπN∆)Q2=M2

π

4π
=

f 2
πqq

4π

[

20

3
√

2
2
√

2
b6
µb

3
+b3

e

(b15b9
∆)

1
2

e
M2

πb2e
2

]

. (56)

By using Eq. (28) we get,

(fπN∆)Q2=M2
π

(fπNN)Q2=M2
π

=

[

6
√

2

5
2
√

2
b6
µb

3
+b3

e

(b15b9
∆)

1
2

e
M2

π(b2e−b2)

2

]

(57)

so that for b∆ = b one obtains the usual spin-isospin relation (fπN∆)Q2=M2
π
/(fπNN)Q2=M2

π
=

6
√

2/5.
For b∆ in the interval [b, 1.2b] we predict (f 2

πN∆)Q2=M2
π
/4π = [0.23, 0.20] to be compared

to (f 2
πN∆)Q2=M2

π
/4π ≃ 0.37, estimated from the ∆ decay to Nπ. This discrepancy seems

to confirm our initial expectations. If instead fπqq we had written an effective (fπqq)N∆

as a manner to take into account the ∆ − N mass difference effect then the needed value

11



to reproduce the experimental number would have been (fπqq)N∆/fπqq = [1.28, 1.37] for
b∆ ∈ [b, 1.2b], i.e. (fπqq)N∆ should be a 30% bigger than fπqq.

For nucleon resonances in general and in particular for N∗(1440) we expect the calculation
of the coupling constants to be much more uncertain. As a matter of fact the importance
of relativistic corrections in the description of the structure and decay of N∗(1440) in terms
of quarks have been emphasized for a long time in the literature (see for instance [16]).
Furthermore the nature of the N∗(1440) may involve more than a simple 3q structure and
the coupling of qq pairs to the meson structure can be relevant. Therefore the calculation of
πNN∗(1440) and σNN∗(1440) coupling constants carried out in a preceding paper within the
same framework [17] should be considered too simplistic. A less approximative calculation
for the pion case (involving also πN∆, πN∆(1600) and πNN(1535)) has been carried out in
reference [18] with Poincaré covariant constituent quark models with instant, point and front
forms of relativistic kinematics; from the persistent deviation from data of the calculated
results the authors suggest the presence of sizable qqqqq components in the baryon wave
functions.

III. LIGHT AND STRANGE QUARK SECTOR: SU(3)⊗ SU(3).

The generalization of the chiral lagrangian to SU(3)⊗SU(3) is straightforward. It is
expressed as

L̃ch = −g̃ch q̄

(

8
∑

a=0

σaλa + i
8
∑

a=0

γ5πaλa

)

q , (58)

where q has components u, d and s, σ0 and π0 stand for the scalar and pseudoscalar meson
singlets whereas σi and πi (i = 1...8) are the scalar and pseudoscalar meson octets.

In order to derive a potential involving the exchange of σ, the SU(2) singlet, we shall
assume the ideal mixing

σ0 =
√

2/3σ +
√

1/3 (ss)

σ8 =
√

1/3σ −
√

2/3 (ss) . (59)

When substituting these expressions in Eq. (58) the piece containing the σ and the ~π read,

L̃ch(π,σ) = −g̃ch q̄
[

σ
(

√

2/3λ0 +
√

1/3λ8

)

+ iγ5~τ~π
]

q (60)

where λ0 ≡
√

2/3 11SU(3) and λ8 ≡
√

3Y , being Y the hypercharge. It is then clear that for
q = u, d (Y u = 1/3 = Y d) one formally recovers the SU(2)⊗SU(2) lagrangian: 11SU(2) ≡
2/3 11SU(3) + Y .

Again we take into account SCSB through a vertex form factor F̃ (Q2)

F̃ (Q2) =

(

Λ̃2

Λ̃2 − Q2

)1/2

(61)

Note also that the SCSB relation, M2
σ − M2

π = 4M2
q , is preserved since it is derived for a

non-strange σ [11].

12



A. Parameters

One should realize that the values of the couplings g̃ch F̃ (Q2) (or equivalently the on-shell

couplings g̃πqq, g̃σqq and the cutoff parameter Λ̃) and the size parameter b̃ in SU(3)⊗SU(3)
need not be the same as in SU(2)⊗SU(2). This is easily understandable by thinking
for instance of the extra contribution to the NN interaction coming from η, η′ and
a0 in SU(3)⊗SU(3). This contribution is taken into account in an effective manner in
SU(2)⊗SU(2), where no η, η′, and a0 are present, through the fitted values of gπqq, gσqq,

Λ and b. Fortunately we can correlate the variations of b and Λ (or b̃ and Λ̃) through the
relation Eq. (42),

(g2
σNN )Q2=M2

σ

(g2
πNN)Q2=M2

π

=
9

25

Λ2 − M2
π

Λ2 − M2
σ

e
(M2

σ−M2
π)b2

2 =
9

25

Λ̃2 − M2
π

Λ̃2 − M2
σ

e
(M2

σ−M2
π)b̃2

2 . (62)

Then from the selected experimental value (g2
πNN)Q2=M2

π
/4π ≃ 14.6 and from our prediction

(g2
σNN )Q2=M2

σ
/4π = 68.2 we get, for a typical value of Λ̃ ≃ 5.2 fm−1 (≃ 1.0 GeV) (note that

it has to be higher than any mass of the scalar or pseudoscalar meson octets) an harmonic

oscillator parameter b̃ ≃ 0.6 fm. Then from equivalent relations to Eqs. (23) and (40) we
get

g̃2
πqq

4π
= 0.54 (63)

g̃2
σqq

4π
= 0.93 , (64)

and
g̃ch = gch . (65)

For the sake of completeness we give the B8 spatial wave function in the SU(3)flavor limit,

(ΦB8)spatial(1, 2, 3; +~R/2) =

3
∏

i=1

(

1

πb̃2

)
3
4

exp

[

−
(

~ri − ~R/2
)2

/2b̃2

]

. (66)

B. σB8B8

According to our preceding discussions the σqq lagrangian will be written as

L̃σqq = −g̃σqq q̄ 11SU(2) σ q , (67)

with a vertex form factor

F̃σqq(Q
2) ≡

(

Λ̃2 − M2
σ

Λ̃2 − Q2

)1/2

. (68)

From this lagrangian it is clear that the only difference when calculating the asymptotic
potential at the quark level for the several B8B8’s has to do with the number of the pairs
of light quarks (u, d) in them allowing for the exchange of the σ, i.e., with the number of

13



σ, π

Λ, Σ Λ, Σ

Λ, Σ Λ, Σ

σ, π

Ξ Ξ

Ξ Ξ

FIG. 4: Asymptotic ΛΛ, ΣΣ, and ΞΞ OPE and OSE interactions at quark level. Thin lines stand

for light (u, d) quarks and thick lines for strange (s) quarks.

equivalent diagrams, Figs. 1 and 4. This number is 9 for NN, 4 for ΛΛ and ΣΣ, and 1 for
ΞΞ. Thus

(Ṽq)
ΛΛ→ΛΛ
OSE (R → ∞) = (Ṽq)

ΣΣ→ΣΣ
OSE (R → ∞) =

4

9
(Ṽq)

NN→NN
OSE (R → ∞)

(Ṽq)
ΞΞ→ΞΞ
OSE (R → ∞) =

1

9
(Ṽq)

NN→NN
OSE (R → ∞) . (69)

On the other hand at the baryonic level we shall write the lagrangian as

LσB8B8 ≡ −(gσB8B8)Q2=M2
σ

B̄8 σ B8 , (70)

with a vertex form factor

GσB8B8(Q
2) =

(

Λ2
σB8B8

− M2
σ

Λ2
σB8B8

− Q2

)1/2

. (71)

so that GσB8B8(Q
2 = M2

σ) = 1 and where the (gσB8B8)Q2=M2
σ

are expressed in conventional
notation

(gσNN)Q2=M2
σ

≡
√

2/3 gs,1 + 1/3 gs,+ (4αs − 1)

(gσΛΛ)Q2=M2
σ

≡
√

2/3 gs,1 − 2/3 gs,+ (1 − αs)

(gσΣΣ)Q2=M2
σ

≡
√

2/3gs,1 + 2/3 gs,+ (1 − αs) (72)

(gσΞΞ)Q2=M2
σ

≡
√

2/3 gs,1 − 1/3 gs,+ (1 + 2αs) ,

being gs,1 ≡ (gσ0B8B8)Q2=M2
σ

the scalar SU(3) singlet coupling constant, gs,+ ≡ gs,D +gs,F the
sum of the D (symmetric) and the F (antisymmetric) scalar coupling constants in SU(3)
and αs ≡ gs,F/gs,+ the F/(F + D) ratio of the scalar octet.

From this baryonic lagrangian the following relations between the asymptotic potentials

14



come out

(VB)ΛΛ→ΛΛ
OSE (R → ∞) =

(g2
σΛΛ)Q2=M2

σ

(g2
σNN )Q2=M2

σ

(VB)NN→NN
OSE (R → ∞)

(VB)ΣΣ→ΣΣ
OSE (R → ∞) =

(g2
σΣΣ)Q2=M2

σ

(g2
σNN )Q2=M2

σ

(VB)NN→NN
OSE (R → ∞) (73)

(VB)ΞΞ→ΞΞ
OSE (R → ∞) =

(g2
σΞΞ)Q2=M2

σ

(g2
σNN )Q2=M2

σ

(VB)NN→NN
OSE (R → ∞) .

From the comparison of the asymptotic potentials at the quark and baryon levels we imme-
diately get relations between the coupling constants

(g2
σΛΛ)Q2=M2

σ

(g2
σNN )Q2=M2

σ

=
(g2

σΣΣ)Q2=M2
σ

(g2
σNN )Q2=M2

σ

=
4

9

(g2
σΞΞ)Q2=M2

σ

(g2
σNN )Q2=M2

σ

=
1

9
. (74)

We should emphasize that these ratios are preserved in the limit Mσ → 0, i.e.,

(g2
σΛΛ)Q2=M2

σ→0

(g2
σNN )Q2=M2

σ→0

=
(g2

σΣΣ)Q2=M2
σ→0

(g2
σNN )Q2=M2

σ→0

=
4

9

(g2
σΞΞ)Q2=M2

σ→0

(g2
σNN )Q2=M2

σ→0

=
1

9
. (75)

It is interesting to compare these Mσ → 0 ratios with the average QCDSR predictions at
Q2 = 0 in the SU(3) limit. From Ref. [19] we take

(g2
σΛΛ)Q2=0

(g2
σNN )Q2=0

= (0.43)2 = 0.19

(g2
σΣΣ)Q2=0

(g2
σNN )Q2=0

= (0.91)2 = 0.83

(g2
σΞΞ)Q2=0

(g2
σNN )Q2=0

= (0.08)2 = 0.006. (76)

As can be checked our ratios differ by a factor 2 (1/2) for Λ−N and Σ−N (Ξ−N) from the
QCDSR ones. We may interpret this again as a reflection of the non-Goldstone character of
the σ meson.

1. Coupling constants and form factors values

From Eq. (74) and from the calculated value (g2
σNN )Q2=M2

σ
/4π = 68.2 we predict the

coupling constants

(g2
σΛΛ)Q2=M2

σ

4π
=

(g2
σΣΣ)Q2=M2

σ

4π
= 30.3

(g2
σΞΞ)Q2=M2

σ

4π
= 7.6 . (77)

15



Concerning the F/(F + D) ratio we have from Eq. (74) (gσΛΛ)Q2=M2
σ

= (gσΣΣ)Q2=M2
σ

what
implies from Eq. (72)

αs = 1 , (78)

or
gS,D = 0. (79)

Regarding gs,1 and gS,+ we can use the fact that from the ideal mixing we have assumed

g(ss)NN = −1/
√

3 gs,1 +
√

2 gs,F −
√

2/3 gs,D = 0. Then from Eq. (79) we immediately obtain

gs,+ = 1/
√

6 gs,1. If we substitute this relation and Eq. (78) in the first expression of Eq. (72)
we get (gσNN )Q2=M2

σ
= 3gs,+ from where

g2
s,+

4π
= 7.6 (80)

g2
s,1

4π
= 45.5 , (81)

satisfying
g2

s,1

g2
s,+

= 6 . (82)

With respect to the cutoff parameters ΛσB8B8 we can tentatively use our on-shell couplings
ratios, Eq. (74), altogether with the QCDSR ones at Q2 = 0 detailed above, Eq. (76), to
establish a range of variation for them. Explicitly we can write

(

(g2
σB8B8

)Q2=0

(g2
σNN )Q2=0

)

=

(

(g2
σB8B8

)Q2=M2
σ

(g2
σNN)Q2=M2

σ

)

(

Λ2
σB8B8

−M2
σ

Λ2
σB8B8

)

(

Λ2
σNN

−M2
σ

Λ2
σNN

) , (83)

or equivalently

ΛσB8B8 = ΛσNN

(

M2
σ

Λ2
σNN(1 − xB8) + xB8M

2
σ

)
1
2

, (84)

where

xB8 ≡

(

(g2
σB8B8

)
Q2=0

(g2
σNN

)
Q2=0

)

(

(g2
σB8B8

)
Q2=M2

σ

(g2
σNN

)
Q2=M2

σ

) . (85)

By using the average value ΛσNN = 3.97 fm−1, Eq. (47), we get

ΛσNN = 3.97 fm−1

ΛσΛΛ = 4.48 fm−1

ΛσΣΣ = 4.75 fm−1 (86)

ΛσΞΞ = 3.45 fm−1 .

Thus we can use ΛσB8B8 ≃ 4.0 fm−1 as an average value for the whole baryon octet.
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C. a0B8B8

The results obtained for σ can be extrapolated to the a0 meson in a straightforward
way. Let us recall that in the additive constituent quark pattern one has degenerate masses
Ma0 = Mσ (see Ref. [11] for an explanation of the non–degeneracy). Then by writing the a0

on–shell couplings in SU(3) language

(ga0NN)Q2=M2
a0

= gs,+

(ga0ΣΣ)Q2=M2
a0

= 2gs,+αs (87)

(ga0ΞΞ)Q2=M2
a0

= gs,+(2αs − 1) ,

and imposing the degeneracy we predict from our value for gs,+ (Eq. (80))

(g2
a0NN)Q2=M2

a0

4π
=

(g2
a0ΞΞ)Q2=M2

a0

4π
= 7.6

(g2
a0ΣΣ)Q2=M2

a0

4π
= 30.3 . (88)

D. πB8B8

In order to avoid mass factors we shall use the pseudovector coupling for the pion, i.e.,
the lagrangian

L̃PV
πqq = − f̃πqq

Mπ
q̄ iγ5γµ~τ∂µ~π q (89)

with the vertex form factor

F̃πqq(Q
2) ≡

(

Λ̃2 − M2
π

Λ̃2 − Q2

)1/2

(90)

to derive the asymptotic pion exchange central potentials. To perform the calculation we
choose a total (spin, isospin) in each case. By considering the 1S0 partial wave for instance
we take (0, 1) for NN and ΞΞ and (0, 0) for ΣΣ interactions. Then we have

(Vq)
NN→NN
OPE (R → ∞) =

f̃ 2
πqq

4π

[

−75

9
e

M2
πb̃2

2

]

1

3

e−MπR

R

(Vq)
ΣΣ→ΣΣ
OPE (R → ∞) =

f̃ 2
πqq

4π

[

32

3
e

M2
πb̃2

2

]

1

3

e−MπR

R
(91)

(Vq)
ΞΞ→ΞΞ
OPE (R → ∞) =

f̃ 2
πqq

4π

[

−3

9
e

M2
πb̃2

2

]

1

3

e−MπR

R
.

On the other hand at the baryonic level the lagrangians can be expressed as

LPV
πNN = −(fπNN )Q2=M2

π

Mπ

N̄ iγ5γµ ~τ ∂µ~π N (92)

LPV
πΣΣ = −(fπΣΣ)Q2=M2

π

Mπ
(~̄Σ × ~Σ )γ5 γµ ∂µ~π (93)
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LPV
πΞΞ = −(fπΞΞ)Q2=M2

π

Mπ
Ξ̄ iγ5 γµ ~τ ∂µ ~π Ξ , (94)

with form factors

GπNN (Q2) =

(

Λ2
πNN − M2

π

Λ2
πNN − Q2

)
1
2

GπΣΣ(Q2) =

(

Λ2
πΣΣ − M2

π

Λ2
πΣΣ − Q2

)
1
2

(95)

GπΞΞ(Q2) =

(

Λ2
πΞΞ − M2

π

Λ2
πΞΞ − Q2

)
1
2

, (96)

and where in conventional SU(3) notation

(fπNN)Q2=M2
π

= fp,+

(fπΣΣ)Q2=M2
π

= 2fp,+ αp

(fπΞΞ)Q2=M2
π

= −fp,+(1 − 2αp) ,

having introduced fp,+ ≡ (fp,D + fp,F ) as the sum of the symmetric and antisymmetric
pseudoscalar octet coupling constants, and αp ≡ fP,F/(fP,D + fP,F ) as the F/(F + D) ratio
of the pseudoscalar octet.

By using the same total (spin, isospin) channels as above the corresponding asymptotic
pion exchange central potentials are

(VB)NN→NN
OPE (R → ∞) =

(f 2
πNN)Q2=M2

π

4π
[−3]

1

3

e−MπR

R

(VB)ΣΣ→ΣΣ
OPE (R → ∞) =

(f 2
πΣΣ)Q2=M2

π

4π
[6]

1

3

e−MπR

R
(97)

(VB)ΞΞ→ΞΞ
OPE (R → ∞) =

(f 2
πΞΞ)Q2=M2

π

4π
[−3]

1

3

e−MπR

R
.

Then from the comparison of the asymptotic potentials at the baryon level and quark level
the following relations come out

(f 2
πNN )Q2=M2

π
= f̃ 2

πqq

25

9
e

M2
πb̃2

2

(f 2
πΣΣ)Q2=M2

π
= f̃ 2

πqq

16

9
e

M2
πb̃2

2 (98)

(f 2
πΞΞ)Q2=M2

π
= f̃ 2

πqq

1

9
e

M2
πb̃2

2 ,

and

(f 2
πΣΣ)Q2=M2

π

(f 2
πNN )Q2=M2

π

=
16

25

(f 2
πΞΞ)Q2=M2

π

(f 2
πNN )Q2=M2

π

=
1

25
. (99)
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1. Coupling constants and form factors values

From Eqs. (99) and the standard value (f 2
πNN )Q2=M2

π
/4π = 0.079 we predict the numerical

values

(f 2
πΣΣ)Q2=M2

π

4π
= 0.051

(f 2
πΞΞ)Q2=M2

π

4π
= 0.0032 , (100)

or

(g2
πΣΣ)Q2=M2

π

4π
= 9.4

(g2
πΞΞ)Q2=M2

π

4π
= 0.6 , (101)

and
αp = 0.4 . (102)

This compares quite well with a derived value of αp ≃ 0.365 ± 0.007 from the F/D ratio
extracted from semileptonic decays of baryons [20].

With respect to the couplings at Q2 = 0 we can rely on the quite approximate Goldstone
boson character of the pion and assume they are given by (f 2

πB8B8
)Q2=0 ≃ (f 2

πB8B8
)Q2=M2

π→0.
As in this limit the ratios between the couplings are the same than the on-shell ones obtained
above, Eq. (99), we can use them altogether with (f 2

πNN )Q2=M2
π→0/4π = 0.072, Eq. (35), to

predict

(f 2
πΣΣ)Q2=0

4π
≃ 0.046

(f 2
πΞΞ)Q2=0

4π
≃ 0.0029 , (103)

or

(g2
πΣΣ)Q2=0

4π
≃ 8.5

(g2
πΞΞ)Q2=0

4π
≃ 0.5 . (104)

Moreover the preservation of the ratios implies the equality of the form factors. From
(f 2

πNN)Q2=0 ≃ (f 2
πNN )Q2=M2

π→0 and (f 2
πNN)Q2=M2

π
we deduce

ΛπB8B8 ≃ 2.35 fm−1. (105)

IV. SUMMARY

From a SU(2)⊗SU(2) chiral quark lagrangian incorporating spontaneous chiral symmetry
breaking, and its generalization to SU(3)⊗SU(3), asymptotic meson exchange B8B8 → B8B8

interaction potentials are derived in the Born-Oppenheimer approximation. The comparison
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with the corresponding potentials from a SU(2) or SU(3) invariant hadronic lagrangian allows
for the expression of the πB8B8 and σB8B8 coupling constants in terms of the elementary
πqq and σqq ones. By using the πNN coupling constant as an input the πqq one gets
fixed. From it the rest of coupling constants (σqq, πB8B8 and σB8B8) are predicted. Their
Mm → 0 limits are also of interest to be compared with the values of the couplings at
Q2 = 0 provided by phenomenological analyses or QCDSR. The similar value obtained for
πNN indicates the quite approximate Goldstone boson nature of the pion. On the contrary
σB8B8 couplings are significantly different as might be expected.

Further information about the couplings can be extracted under the assumption that our
on-shell model predictions and the Q2 = 0 values from external analyses can be managed
jointly. Though this assumption is debatable it allows to get some insight into the cutoff
parameters ΛmB8B8 at the baryonic level.

TABLE II: Pion and sigma coupling constants to quarks in our SU(2)⊗SU(2) and SU(3)⊗SU(3)

models.

m SU(2)⊗SU(2) SU(3)⊗SU(3)

(π, σ) g2
ch/4π =0.535 g̃2

ch/4π =0.535

π g2
πqq/4π =0.55 g̃2

πqq/4π =0.54

σ g2
σqq/4π =1.59 g̃2

σqq/4π =0.93

We summarize in Table II the pion and sigma coupling constants to quarks in our models.
In Table III the values obtained for the coupling constants and the form factors parame-
ters at the baryon level are listed. By making use of the a0 − σ degeneracy in our quark

TABLE III: Predicted pairs
(

(g2
mB8B8

/4π)Q2=M2
m

, ΛmB8B8(fm−1)
)

from the chiral quark potential

model, for exact SU(3) symmetry (MΛ = MΣ = MΞ = MN = 939 MeV). The superindex *

indicates the πNN coupling constant value used as input.

m mNN mΛΛ mΣΣ mΞΞ

π (14.6∗ , 2.35) (9.4 , 2.35) (0.6 , 2.35)

σ (68.2 , 3.97) (30.3 , 4.48) (30.3 , 4.75) (7.6 , 3.45)

model we have also predicted a0B8B8 on–shell couplings. Concerning other diagonal mBB
couplings such as f0B8B8, ηB8B8 and η′B8B8 to which our formalism could be also applied
the situation gets complicated by the presence of the strange quark and/or antiquark which
may give rise to relevant SU(3) breaking effects out of the scope of our symmetry treatment.

Let us finally add that in our model Goldberger-Treiman relations of the form
(gA)πB8B8/2fπ = (fπB8B8)Q2=M2

π
/Mπ, where gA stands for the axial coupling constant and fπ

for the pion decay constant, can be immediately applied. In our non-relativistic description
(gA)πNN = 5/3, a value considerable larger than the experimental one 1.267. Consequently
fπ = 116 MeV, which is 20% bigger than the experimental value of 93 MeV. Regarding
these discrepancies it has been shown [18] that a relativistic treatment, beyond our present
approach, could correct them to a good extent.
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