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Electric-magnetic duality and renormalization in curved spacetimes
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We point out that the duality symmetry of free electromagnetism does not hold in the quantum
theory if an arbitrary classical gravitational background is present. The symmetry breaks in the
process of renormalization, as also happens with conformal invariance. We show that a similar
duality anomaly appears for a massless scalar field in 1 + 1 dimensions.

PACS numbers: 04.62.+v, 98.80.-k

I. INTRODUCTION AND SUMMARY

The Maxwell equations in vacuo are highly symmet-
ric. In addition to their relativistic (Poincaré) invari-
ance in Minkowski spacetime, they exhibit two addi-
tional symmetries: conformal—or Weyl—invariance and
electric-magnetic duality. The former is the symmetry
under Weyl transformations (or conformal re-scalings)
gµν → Ω2(x)gµν [1]. This is a symmetry of the clas-
sical theory in arbitrary spacetimes, and it is also an
exact symmetry of the quantum theory in Minkowski
spacetime. However, as first pointed out in [3], Weyl
invariance cannot be extended to quantum field theory
(QFT) in curved backgrounds. Weyl symmetry implies
the tracelessness of the energy-momentum tensor Tµν .
Since Tµν is quadratic in the field Fµν , renormalization
is required to compute its expectation values. It turns
out that generally covariant methods of renormalization
in curved spacetime produce a nonvanishing trace 〈T µ

µ 〉
which breaks the Weyl invariance [4–6]. The value of
this trace is independent of the state in which the ex-
pectation value is evaluated, and is written in terms of
curvature tensors. The breakdown of Weyl symmetry
is a renormalization effect and therefore it is only man-
ifest when composite operators are considered, such as
Tµν (the equations of motion and correlation functions
are still Weyl invariant). This is the celebrated Weyl
or trace anomaly (also called the conformal anomaly),
which constitutes a robust prediction of renormalization
in curved spacetimes and has important physical conse-
quences [4–6].
Another important symmetry of electromagnetism in

the absence of charges is invariance under duality trans-
formations Fµν → ∗Fµν (see e.g. [7, 8]) where the
(Hodge) dual tensor is defined in the standard way,
∗Fµν = 1/2|g|−1/2ǫµναβFαβ . In terms of the electric and

magnetic fields, this discrete transformation reads ~E →
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~B, ~B → − ~E. It can be also viewed as a particular case

of the electric-magnetic rotation ~E → ~E cos θ + ~B sin θ,
~B → ~B cos θ − ~E sin θ. Maxwell’s equations

∇µF
µν = 0 , ∇µ

∗Fµν = 0 ,

are manifestly invariant. The classical (Maxwell) energy-
momentum tensor, which can be written in the symmet-
ric form

TM
µν = −1

2
(FµαF

α
ν + ∗Fµα

∗F α
ν ) , (1)

is also invariant. This duality can be extended to the
QFT in Minkowski spacetime. One can show that the
duality transformation is implemented by a unitary op-
erator in the Fock space which leaves the Minkowski vac-
uum invariant. As a consequence, vacuum-correlation
functions are duality invariant, e.g.

〈Fµα(x)F
α

ν (x′)〉 = 〈∗Fµα(x)
∗F α

ν (x′)〉
for all x 6= x′. Vacuum expectation values of com-
posite (nonlinear) operators are also invariant, although
renormalization is required to make sense of the other-
wise divergent expressions. In Minkowski spacetime nor-
mal order (i.e. subtraction of the vacuum expectation
value) does the job. As an example, one trivially obtains
〈Fµα(x)F

α
ν (x)〉 = 〈∗Fµα(x)

∗F α
ν (x)〉 = 0.

The goal of this paper is to show that the classi-
cal electric-magnetic duality symmetry cannot be ex-
tended to QFT in curved spacetime. In order to
show the influence of the gravitational background in
the sharpest way, we will work as closely as possi-
ble to the theory in Minkowski spacetime. We will
consider free electromagnetism, L = −1/4

√

|g|FµνFµν ,
in a spatially flat Friedman-Lemaitre-Robertson-Walker
(FLRW) spacetime. This background is conformally

Minkowskian and, since the electromagnetic field equa-
tions are Weyl invariant, the quantum theory shares mul-
tiple properties with the Minkowski spacetime formula-
tion. In particular, both theories have the same Hilbert
space. This relation allows the definition of a preferred

vacuum state in FLRW backgrounds (the so-called con-
formal vacuum), and also implies the absence of parti-
cle (i.e. photon) creation by the expanding spacetime, in
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sharp contrast with other non-Weyl invariant fields [4].
However, the presence of a nontrivial spacetime curva-
ture manifests itself in an important way in the process
of renormalization. Although there exists a preferred vac-
uum, the normal order prescription is not a satisfactory
renormalization prescription in FLRW. This is because
that procedure for subtracting the ultraviolet divergences
is neither generally covariant nor local. Therefore, out
of Minkowski spacetime, normal-order does not satisfy
the axioms on which the theory of renormalization in
curved spacetime relies [5]. Instead, we will use the adi-
abatic renormalization method developed by Parker and
Fulling [4, 6, 9]—which has been proven to be equiva-
lent to DeWitt-Schwinger point-splitting renormalization
[6, 10]—adapted to the electromagnetic field. (See also
[11], and see [12] for the extension to fermionic fields.)
We will show that the quantity

∆µν ≡ 〈Fµα(x)F
α

ν (x)〉 − 〈∗Fµα(x)
∗F α

ν (x)〉 (2)

takes a nonvanishing value given (we use the same geo-
metric conventions as in Refs. [4, 6]) by

∆µν =
1

480π2

(

−9

2
RαβR

αβ +
23

12
R2 + 2�R

)

gµν , (3)

where Rαβ is the Ricci tensor and R its trace. This ex-
pression implies that the fluctuations of the electric and
magnetic field in the vacuum state—which is duality in-

variant in FLRW—are different, i.e. 〈 ~E2〉 6= 〈 ~B2〉, and
therefore the duality symmetry is broken.
We analyze the same issue in the case of a mass-

less, minimally coupled scalar field in an arbitrary
1 + 1-dimensional spacetime. We use the Hadamard
renormalization method and reach similar conclusions:
the presence of a classical gravitational background
breaks not only Weyl invariance, but also the duality
symmetry.

II. DUALITY ANOMALY FOR THE

ELECTROMAGNETIC FIELD

The goal of this section is to compute the vacuum
expectation values 〈Fµα(x)F

α
ν (x)〉, 〈∗Fµα(x)

∗F α
ν (x)〉,

and the energy-momentum tensor in a spatially flat
FLRW background with line element

ds2 = a(η)2(dη2 − d~x2) ,

where η is the conformal time. All tensor components
in this section will refer to the coordinates η, ~x. As
pointed out above, the conformal invariance of the equa-
tions of motion greatly facilitates the formulation of the
theory. The electromagnetic field operator can be written
in terms of the vector potential as Fµν = ∇µAν −∇νAµ,
where the operator Aµ can be represented in terms of

Fourier modes of the two physical polarizations (we work
in the Lorenz gauge ∇µAµ = 0) by

Aµ(~x, η) =

∫

d3k

(2π)3

2
∑

α=1

â
(α)
~k

ǫ(α)µ ϕ~k(η) e
i~k~x + H.c. (4)

where ϕ~k(η) = e−ikη/
√
2k, k = |~k| is the length of the

comoving mode ~k, and â
(α)
~k

and â
(α) †
~k

are creation and

annihilation operators for the polarization α. The polar-

ization vectors ǫ
(α)
µ (~k) depend on ~k and are transversal,

kµǫ
(α)
µ = 0. It is convenient to choose them to be mutu-

ally orthogonal, gµνǫ
(α)
µ ǫ

(α′)
ν = −a−2 δαα

′

.
Direct substitution shows that the quantity 〈FµσFν

σ〉
is ultraviolet divergent, and therefore requires renormal-
ization. In adiabatic renormalization the physically rel-
evant, finite expression is obtained by subtracting mode
by mode, i.e. under the Fourier integral sign, terms that
would produce state-independent ultraviolet divergences.
The terms to be subtracted are identified by performing
a Liouville or WKB-type asymptotic expansion for large
values of the physical frequency of the Fourier modes
ω(k) or, mathematically equivalently, an expansion for
small values of the time derivatives of the scale factor
a(η) (this is the reason for the name adiabatic, although
the method is primarily concerned with ultraviolet is-
sues). See [4] for further details.
A lengthy calculation produces (see Appendix A for

details)

〈FµαF
α

ν 〉 = θµν +
1

4
γ(η) gµν + tµν , (5)

〈∗Fµα
∗F α

ν 〉 = θµν − 1

4
γ(η) gµν + ∗tµν . (6)

In these expressions tµν and ∗ tµν are traceless ten-
sors encoding all the information regarding the quantum
state, and both vanish for the conformal vacuum. θµν is
a traceless, local geometric tensor given by

θµν =
1

480π2

[−16

3
RµαR

α
ν +

61

18
RRµν +

2

3
∇ν∇µR

+
4

3
RαβR

αβgµν −
61

72
R2gµν − 1

6
�Rgµν

]

(7)

and

γ(η) =
1

480π2
[−9RαβR

αβ +
23

6
R2 + 4�R] .

Applying Eqs. (5) and (6) for the vacuum state, one ob-
tains ∆µν = 1/2 γ(η) gµν, as anticipated in Eqs. (2) and
(3). This quantity is different from zero for a generic
scale factor a(η). Also note that taking the trace of Eq.

(5) one obtains 〈F 2〉 ≡ 〈FµαF
µα〉 = 〈 ~E2〉 − 〈 ~B2〉 = γ(η).

Since the vacuum state is duality invariant, these results
indicate a breakdown of duality.
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As in Minkowski spacetime, in FLRW there also ex-
ists a unitary operator implementing the duality trans-
formation in the representation of the (linear) Heisen-
berg algebra of field operators. However, the previous
result indicates that the renormalized expectation val-
ues of composite (nonlinear) operators do not transform
as expected under this unitary operator. The geometric
quantities—curvature tensors—involved in the renormal-
ization procedure break the duality symmetry.
We finish this section by providing the expression for

the renormalized energy-momentum tensor. The aim is
to show that our techniques are consistent with well-
known results on curved-space renormalization of the
electromagnetic field, which maintain general covariance
and gauge invariance [10, 13]. From expression (1) the
vacuum expectation value of the Maxwell tensor is

〈TM
µν(x)〉 = −1

2
(〈FµαF

α
ν 〉+ 〈∗Fµα

∗F α
ν 〉) = −θµν . (8)

By construction, this tensor is traceless. However,
〈TM

µν(x)〉 is not a suitable candidate for the source of the
gravitational field, i.e. for the right-hand side of the semi-
classical Einstein equations Gµν = −8πG 〈Tµν〉, since
〈TM

µν(x)〉 is not conserved, ∇µ〈TM
µν(x)〉 6= 0. Explicit com-

putations show that

∇µ〈TM
µν〉 = − 1

2(4π)2
[∇µvµν − 3

4
∇νv

ρ
ρ +∇νv] (9)

where vµν and v are objects constructed from curvature
tensors:

vµν =
1

3
RµαR

α
ν − 3

10
RRµν − 1

45
∇ν∇µR (10)

+
1

180
RαβR

αβgµν +
113

2160
R2gµν − 1

360
�Rgµν ,

v =
13

1080
R2 +

1

30
�R+

1

180
RαβRαβ . (11)

One can construct a suitable conserved energy-
momentum tensor from 〈TM

µν(x)〉 in two different ways.
The shortest one is to use the procedure commonly em-
ployed in Hadamard renormalization [5, 13–15]. It con-
sists of simply adding to 〈TM

µν〉 a geometric tensor that
makes it conserved. From Eq. (9) we find that a solution
is

〈Tµν〉 = 〈TM
µν〉+ T Ad

µν + c1H
(1)
µν . (12)

where

T Ad
µν =

1

2(4π)2
[vµν + (−3

4
vρρ + v)gµν ] .

Of course, this method can only define 〈Tµν〉 up to a
conserved tensor. In FLRW this ambiguity is all encoded
in the last term of the previous equation, where c1 is an

arbitrary real number and H
(1)
µν is the tensor obtained

by functional variation of
√−gR2 with respect to the

metric; therefore it is conserved, ∇µH
(1)
µν = 0. Note that

the freedom in the value of c1 in (12) coincides with the
well-understood ambiguity in the renormalized energy-
momentum tensor in curved spacetimes [5, 14].
Another way of finding 〈Tµν〉 in adiabatic renormaliza-

tion is by direct application of the method. But to follow
this route one has to deal carefully with the gauge in-
variance. A convenient approach in curved backgrounds
is provided by the Faddeev-Popov scheme (see e.g. [6]).
This method introduces new contributions to the energy-
momentum tensor, namely the so-called gauge breaking
terms and the contribution of a ghost field. Explicit com-
putations produce results that agree with (12).
From (12) it is easy to check that the trace of the

renormalized energy-momentum tensor is nonzero and is
given by

〈T µ
µ 〉 =

1

2880π2
[−62(RαβRαβ − 1

3
R2)

− (2 + 6× 2880π2 c1)�R] . (13)

This is the well-known trace anomaly. Any other
renormalization method would provide an expression
for 〈Tµν〉 that would possibly differ from (12) in the
value of the coefficient c1. Note that the existence
of the anomalous trace does not imply the duality
anomaly. The trace arises from the geometric term T Ad

µν

in (12), while the duality anomaly appears already in
the expectation values (5) and (6).

III. RESULTS IN DE SITTER UNIVERSE

For the de Sitter-FLRW solution [a(t) = e−Ht in
cosmic time and a(η) = −1/(Hη) in conformal time,
with dt = a dη] the conformal vacuum—also called the
Bunch-Davies vacuum—is de Sitter invariant. Eval-
uation of Eq. (1) produces 〈TM

µν 〉 = 0. This result is
expected from symmetry arguments, since there are no
two-covariant tensors which are simultaneously de Sitter
invariant and traceless. If one (incorrectly) assumes,
following the standard lore, the validity of electric-
magnetic duality (see e.g. [13, 17]), one would conclude

that 〈 ~B2〉 = 0 = 〈 ~E2〉 in this spacetime [17]. However,
particularizing Eqs. (6) and (5) to de Sitter space one

obtains, instead, 〈 ~B2〉 = 19
160π2H

4—in agreement with

[18]—and 〈 ~E2〉 = −〈 ~B2〉. The negative value of the

quadratic quantity 〈 ~E2〉 should not be surprising since
that is common for renormalized quantities. The same
happens in the usual Casimir effect (see e.g. [19]).

IV. DUALITY ANOMALY IN A 2D
CONFORMAL SCALAR THEORY

The duality anomaly in curved spacetimes can also be
illustrated in a simpler scenario: a minimally coupled,
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massless scalar field in 1 + 1 dimensions. This theory is
very similar to free electromagnetism in the sense that it
can be described by an Abelian 1-form Fµ [20], and clas-
sically it shows both Weyl and duality invariance. This
framework has been extensively discussed in the context
of conformal field theory and string theory [21].
The classical stress-energy tensor can be expressed as

Tµν =
1

2
(FµFν + ∗Fµ

∗F ν) ,

where ∗Fµ = |g|1/2ǫµνF ν is the dual of Fν . The classical
field equations are ∇µFµ = 0 and ∇µ ∗Fµ = 0, where the
scalar field φ plays the role of the potential of the field
Fµ, Fµ = ∇µφ. The classical equations are invariant un-
der both Weyl and duality transformation Fµ → ∗Fµ.
In this section we consider an arbitrary spacetime metric
(not necessarily homogenous), which can always be writ-
ten as ds2 = e2ρdx+dx−, in terms of the null coordinates
x± ≡ t±x. Because the spacetime is not necessarily ho-
mogenous, we cannot use adiabatic regularization. We
will use instead the Hadamard point-splitting method
[5, 13, 15], which gives us the chance to show the ex-
istence of the duality anomaly for a different renormal-
izaton prescription. In this theory there is once again
a preferred vacuum state, the conformal vacuum. This
state is dual invariant, and so are the vacuum-correlation
functions:

〈F±(x)F±(x
′)〉 = −1

4π(x± − x′±)2
= 〈∗F±(x)

∗F±(x
′)〉

〈F+(x)F−(x
′)〉 = 0 = 〈∗F+(x)

∗F−(x
′)〉 ,

for x 6= x′. However, for x = x′ the subtractions required
for renormalization are no longer dual invariant. These
subtractions are obtained from the singular part of the
Hadamard two-point function, 1/4π [V (x, x′) lnσ(x, x′)],
where 2σ(x, x′) is the square of the geodesic distance be-
tween x and x′ and V is a geometric biscalar [15, 16]. We
obtain (see Appendix B for details)

〈Fµ(x)Fν(x)〉 = θ̃µν +
1

4
γ̃ gµν (14)

〈∗Fµ(x)
∗F ν(x)〉 = θ̃µν − 1

4
γ̃ gµν , (15)

where θ̃µν is a traceless tensor with components [23]

θ̃±± = −1/12π[(∂±ρ)
2 − ∂2±ρ] , θ̃+− = 0 , (16)

and γ̃ = 1/(12π)R. Therefore

∆̃µν ≡ 〈Fµ(x)Fν (x)〉 − 〈∗Fµ(x)
∗F ν(x)〉 = 1/2 γ̃ gµν .

From (14) one can also obtain the vacuum expectation
value of the energy-momentum tensor following the pro-
cedure summarized for the electromagnetic case. Tak-
ing into account that ∇µθ̃µν = 1

48π gσν∇σR, one obtains

〈Tµν〉 = θ̃µν − R
48π gµν , in agreement with [23].

It is well known that for x 6= x′ the correlation function
〈∂+φ(x)∂−φ(x′)〉 vanishes, as mentioned before, which is
commonly referred to as the decoupling of left- and right-
moving modes. A consequence of the duality anomaly is
that this is no longer true for x = x′. Rather, Eqs. (14)
and (15) provide 〈∂+φ∂−φ〉 = 1

4 γ̃e
2ρ = 1

12π∂+∂−ρ.

V. CONCLUSIONS AND FINAL COMMENTS

QFT is intrinsically more involved than a quantum-
mechanical system having a finite number of degrees of
freedom. This difference arose in the early stages of quan-
tum electrodynamics due to the emergence of divergent
expressions in physical quantities. It was nicely solved
with the renormalization program, which has provided
many important and surprising results. In particular,
when applied in the presence of a classical gravitational
background, renormalization has been shown to break
some of the important symmetries of the theory under
consideration. The chiral current anomaly for free mass-
less fermions and the Weyl anomaly are examples with
important physical consequences. In this paper we have
proven that the duality symmetry cannot hold in QFT
in arbitrarily curved spacetimes. We have shown this ex-
plicitly with some of the most common renormalization
methods. However, it could still be possible to build a
renormalization scheme for which the symmetry is pre-
served. Even in the case such a method exists, which
we believe is unlikely, it would be highly unnatural or
fine-tuned.

The breakdown of these symmetries mentioned above
have a common origin. The generally covariant singular-
ity structure of the two-point function only knows about
the local properties of the geometry, i.e. the metric, cur-
vature tensors and their derivatives. Those singularities
do not need to share the symmetries of the theory. The
renormalization process subtracts those local and covari-
ant singularities, and therefore may break the symme-
tries of the vacuum. This is precisely the case for the
duality anomaly discussed here, as can be seen from the
renormalization subtractions written in the appendixes.

Phenomenologically, although the duality is an exact
physical symmetry of the classical theory only in the
absence of charges, it still plays an important role in
certain situations in which charge density is negligible.
This happens, for instance, during cosmic inflation. At
the conceptual level, electric-magnetic duality has been
the focus of several theoretical developments, and an
important ingredient in different scenarios, like in the
Montonen-Olive dualities [24] in non-Abelian gauge and
supersymmetric theories. Therefore, the duality anomaly
presented in this paper may have interesting physical and
theoretical consequences which merit further exploration.
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Appendix A:

Adiabatic renormalization of 〈FµαF
α

ν 〉

In this appendix we provide some details of the adi-
abatic renormalization of the vacuum expectation value
〈Fµα(x)F

α
ν (x)〉. The formal (unrenormalized) expres-

sion can be obtained by using Eq. (4). One obtains

〈Fµα(x)F
α

ν (x)〉 = −gµν
1

π2a4(η)

∫ ∞

0

dk k2
k

2
. (A1)

Note that the same formal integral is obtained for
〈∗Fµα(x)

∗F α
ν (x)〉. This integral diverges as the fourth

power of the comoving momentum k. In adiabatic reg-
ularization, and also in the DeWitt-Schwinger method,
to find the renormalization subtraction terms that make
the above integral finite, one has to first temporarily
introduce a mass in the theory, then take the limit
m → 0 at the end of the calculation. On top of that
one has to introduce also the familiar gauge breaking
term −1/2(∇µA

µ)2, ghost term ∇µc∇µc∗, and the cor-
responding (temporary) mass terms 1/2m2AµA

µ−m2c∗c
(see, for instance, [6, 10]). The ghost field is required to
maintaing gauge invariance when taking m → 0. The
introduction of a temporary mass is a fundamental re-
quirement in the adiabatic and DeWitt-Schwinger meth-
ods [9, 10]. The role of the auxiliary mass is to avoid the
emergence of artificial infrared divergences when timing
the UV ones. Note that the DeWitt-Schwinger expansion
of the Feynman propagator is an asymptotic expansion
in inverse powers of m2 [19].
Therefore, the adiabatic expansion of the vector po-

tential, A
(Ad)
µ , contains two transverse and one longitudi-

nal polarization. The expansion of both polarizations up
to fourth adiabatic order provides the subtraction terms
needed to renormalize the expectation values we are look-
ing for. Note that one must include terms of up to fourth
adiabatic order in the subtractions because this is the
order at which divergences appear for generic spacetime
metrics, not necessarily conformally flat, and for general
values of the mass. In the m → 0 limit there are no di-
vergences at fourth order, but one still must apply the
general prescription.
The transverse polarizations take the same form as in

Eq. (4), with the only difference that now the mode func-

tions ϕ
(Ad)
k (η) satisfy the equation

∂2ηϕ
(Ad)
k + ω(k, η)2ϕ

(Ad)
k = 0 , (A2)

with ω(k, η) =
√

k2 +m2a(η)2. This expression is iden-
tical to the equation satisfied by the modes of a scalar
field conformally coupled to the FLRW metric. The adi-

abatic expansion of ϕ
(Ad)
k , up to fourth order, is

ϕ
(Ad)
k (η) =

1
√

2Wtrs(k, η)
e−i

∫
η dη′ Wtrs(k,η

′) , (A3)

with Wtrs(k, η) =W0 +W1 +W2 +W3 +W4, where

W0 = w(k, η)

W2 =
2w′2 − 2ww′′

8w3

W4 =
1

128w7
(−297w′4 − 396ww′2w′′ − 52w2w′′2

− 80w2w′w′′′ + 8w3w′′′′)

W1 =W3 = 0 . (A4)

The prime in the previous equations indicates derivative
with respect to conformal time.

The longitudinal polarization of A
(Ad)
µ can be chosen

as ǫ
(3)
µ χ

(Ad)
k (η), where ǫ

(3)
µ has components

ǫ(3)µ (~k) =







f(k, η)
k1
k2
k3






; f(k, η) = −i k

2

ω2

∂ηχ
(Ad)
k

χ
(Ad)
k

, (A5)

and the rescaled mode ψk(η) =
km
ω χ

(Ad)
k (η) satisfies the

equation

ψ′′
k + 2

a′

a
ψ′
k +

[

ω′′

ω
+ 2

a′

a

ω′

ω
− 2

(

ω′

ω

)2

+ ω2

]

ψk = 0 .

(A6)
The adiabatic expansion of ψk(η) is given by

ψk(η) =
1

a(η)
√

2Wlong(k, η)
e−i

∫
η dη′ Wlong(k,η

′) , (A7)

with Wlong(k, η) = W̃0 + W̃1 + W̃2 + W̃3 + W̃4, where

W̃0 = w(k, η)

W̃2 =
8wa′w′ − 5aw′2 − 4w2a′′ + 2aww′′

8w3

W̃4 =
1

128a3w7
(−64w3a′3w′ − 288aw2a′2w′2

− 400a2wa′w′3 + 455a3w′4 + 32w4a′2a′′

+ 240aw3a′w′a′′ + 312a2w2w′2a′′ − 32aw4a′′2

+ 64aa′2w3w′′ + 288a2w2a′w′w′′ − 540a3ww′2w′′

− 80a2w3a′′w′′ + 60a3w2w′′2 − 32aw4a′a′′′

− 112a2w3w′a′′′ − 32a2w3a′w′′′ + 96a3w2w′w′′′

+ 16a2w4a′′′′ − 8a3w3w′′′′)

W̃1 = W̃3 = 0 . (A8)
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By substituting the adiabatic modes in the expression
for 〈FµαF

α
ν 〉 and keeping terms up to fourth adiabatic

order, one obtains the renormalization subtraction terms.
As an example, the renormalized expression of the time-
time component has the form (recall we work here in
conformal time)

〈F0αF
α

0 〉 = (A9)

− a′4 − 14aa′2a′′ + 4a2a′′2 + 12a2a′a′′′ − 5a3a′′′′

480π2a6
+

−58a′4 + 122aa′2a′′ − 36a2a′a′′′ + a2(−17a′′2 + 4aa′′′′)

480π2a6
.

In the above expression the transverse adiabatic modes
have exactly canceled the quartic divergence of the vac-
uum contribution (A1), and provide, additionally, the fi-
nite term showed in the second line of the previous equa-
tion. The third line of that equation is the contribution
of the longitudinal adiabatic polarization. Expression
(A9) agrees with the time-time component of Eq. (5) for
tµν = 0. The rest of the components are computed in the
same way. In sharp contrast, the longitudinal adiabatic
modes make no contribution to 〈∗F 0α(x)

∗F α
0 (x)〉. This

explains the difference between (5) and (6).

Appendix B:

Hadamard renormalization of 〈FµFν〉

In Hadamard renormalization (for details of the spe-
cific Hadamard prescription used here the reader is re-
ferred to [15, 16]) the physically relevant, finite expecta-
tion values are obtained as

〈Fµ(x)Fν (x)〉 = lim
x′→x

∇µ∇ν′ [〈φ(x)φ(x′)〉 −Hsing(x, x
′)] .

(B1)
In this equation ∇ν′ indicates the covariant derivative
with respect to x′. H(x, x′) is a bidistribution with
Hadamard’s-type singularity structure, which in 1 + 1
dimensions takes the form [16]

Hsing(x, x
′) =

1

4π
[V (x, x′) lnσ(x, x′)] , (B2)

where σ(x, x′) is half of the square of the geodesic dis-
tance between the points x and x′, and V (x, x′) is a bis-
calar which admits an expansion of the form

V (x, x′) =

∞
∑

n=0

Vn(x, x
′)σn . (B3)

The field equations provide recursion relations which
uniquely determine the coefficients Vn(x, x

′) from
V0(x, x

′) = −∆(x, x′)1/2, where ∆(x, x′) is the Van
Vleck-Morette determinant (see e.g. [6]).

The vacuum two-point function of the field φ(x) takes
the same form as in Minkowski spacetime, due to the
conformal symmetry of the field equations. In terms of
the null coordinates that were introduced in Sec. (IV),
it reads

〈φ(x)φ(x′)〉 = − 1

4π
ln |(x+ − x′+)(x− − x′−)| . (B4)

This correlation function can be written in Hadamard
form

〈φ(x)φ(x′)〉 = 1

4π
[V (x, x′) lnσ(x, x′) +Wconf(x, x

′)] ,

where Wconf(x, x
′) = ω(x) + ωµ(x)σ

;µ +
1/2!ωµν(x)σ

;µσ;ν + ... is the biscalar that encodes
the state dependence of the two-point function. Substi-
tuting in Eq. (B1), we have

〈Fµ(x)Fν (x)〉 =
1

4π
lim
x′→x

∇µ∇ν′ [Wconf(x, x
′)]

=
1

4π
(−ωµν +

1

2
ω;µν) . (B5)

In our case, ω±± = 2/3 ∂2±ρ − 5/3 (∂±ρ)
2, ω+− =

2/3 ∂+∂−ρ and ω = 2ρ. Hence, one obtains

〈Fµ(x)Fν (x)〉 = lim
x′→x

∇µ∇ν [Wconf(x, x
′)] = θ̃µν+

R

48π
gµν

(B6)

where θ̃µν was defined in (16). This is the result shown
in Eq. (14). From this it is very easy to get (15).
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