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The extension of the adiabatic regularization method to spin-1/2 fields requires a self-consistent
adiabatic expansion of the field modes. We provide here the details of such expansion, which
differs from the WKB ansatz that works well for scalars, to firmly establish the generalization of
the adiabatic renormalization scheme to spin-1/2 fields. We focus on the computation of particle
production in de Sitter spacetime and obtain an analytic expression of the renormalized stress-energy
tensor for Dirac fermions.
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I. INTRODUCTION

Renormalization in curved spacetime is historically
tied to the discovery of particle creation in a time-
dependent gravitational field [1–4]. If the particle num-
ber of created particles in an expanding universe is calcu-
lated in an assumed asymptotically Minkowskian region,
the result is unambiguous and finite. However, if the par-
ticle number operator is evaluated during the expansion,
the result has potential ultraviolet divergences (UV) even
for a very slow expansion. Adiabatic regularization was
originally introduced as a way to overcome these UV di-
vergences and the rapid oscillations of the particle num-
ber operator [1]. The method was later generalized to
consistently deal with the UV divergences of the stress-
energy tensor of scalar fields in homogeneous cosmologi-
cal backgrounds [5]. The adiabatic regularization method
starts with the formal expression for the expectation val-
ues of the stress-energy tensor 〈Tµν〉. One then performs
a large momentum asymptotic expansion and identify
the leading terms giving rise to formal UV divergences
in the integration over momenta. These terms are the
same for all physical states. Adiabatic renormalization
proceeds then by subtracting those leading terms in the
large momentum expansion. The resulting momentum
integral for the stress-energy tensor is UV finite. Since
the adiabatic subtractions in momentum space give rise
directly to a finite momentum integral, the mechanism
of adiabatic subtraction is also acting as a regularization
procedure. Hence the name of ”adiabatic regularization”
to refer to the whole process of ”renormalization”.

The leading terms in the asymptotic series in momenta
should be uniquely identified. This is strictly required
since the adiabatic subtraction actually involves terms for
all momenta, even small ones. To unambiguously char-
acterize the leading terms one needs a physically sound
and mathematically well-defined procedure. This is nat-
urally offered by the Liouville or WKB-type asymptotic
expansion of the mode functions. This procedure was
suggested by the analysis of the particle number opera-
tor in expanding universes. The use of the WKB-type
expansion for the modes to define particles enforces the
physical requirement that the mean particle number is

an adiabatic invariant. The covariant notion of adiabatic
invariance guaranties the underlying covariance of the
subtraction procedure. Moreover, one should subtract
only the minimum number of terms necessary to obtain
a finite result. This way one keeps as much as possible
the form of the original expression for the stress-energy
tensor [3].

The direct method of adiabatic regularization to re-
move UV divergences in Friedmann-Lemâıtre-Robertson-
Walker (FLRW) universes is equivalent to the more con-
ventional subtraction procedure based on the renormal-
ization of coupling constants in Einstein’s equations. The
three type of UV divergences (quartic, quadratic, and
logarithmic) in the formal expression of the stress-energy
tensor 〈Tµν〉 would be canceled by counterterms associ-
ated to the cosmological constant Λgµν , the Einstein ten-

sor Gµν , and higher-order terms proportional to (1)Hµν

[6]. These three terms are of adiabatic order zero, two,
and four, respectively. The rule of minimal subtraction
in the general procedure of adiabatic regularization can
therefore be additionally justified in terms of renormal-
ization of coupling constants.

An alternative asymptotic expansion to consistently
identify the subtraction terms in a generic spacetime
was suggested by DeWitt [7], generalizing the Schwinger
proper-time formalism. The DeWitt-Schwinger expan-
sion was armed with the powerful point-splitting tech-
nique [8] and applied, mainly for scalar fields, to dif-
ferent spacetimes of major physical interest [4]. The
DeWitt-Schwinger point-splitting method for scalar fields
was proved to be equivalent to adiabatic regularization
[9, 10]. However, a distinguishing characteristic of adia-
batic regularization is its capability to overcome the UV
divergences occurring in the particle number operator.
Moreover, a major practical advantage of adiabatic reg-
ularization is that it is very efficient for numerical calcu-
lations [11–13]. It is also potentially important to scru-
tinize the power spectrum in inflationary cosmology [14]
and to study implications of quantum gravity at low en-
ergies [15].

The point-splitting prescription [7, 8] can be naturally
extended to spin-1/2 fields [16] and one would expect
an analogous extension within the adiabatic subtraction
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scheme. However, the WKB template that works for
scalar field modes is actually closely related to the Klein-
Gordon product, but not to the Dirac product. In fact,
a self-consistent adiabatic expansion for spin one-half
modes has been so far elusive. A solution to this prob-
lem has been recently sketched in [20] and the purpose
of this paper is to provide the details of the proposed
expansion and to firmly establish the extension of the
adiabatic regularization to spin-1/2 fields.

To properly understand the novelties introduced for
spin-1/2 fields, we briefly review in Sec. II the adiabatic
renormalization method for scalar fields. In Sec. III we
describe the proposed adiabatic expansion for the spin-
1/2 field modes to find the renormalization subtraction
terms. In Sec. IV we test the consistency of the extended
adiabatic method by working out the conformal and axial
anomalies. We also study fermionic particle creation in
a FLRW spacetime. In Sec. V we study the creation of
Dirac particles in de Sitter spacetime, and an analytical
expression for the renormalized stress-energy tensor is
obtained. Finally, in Sec. VI we summarize our main
conclusions. Our conventions follows [3, 4] with ~ = c =
1.

II. ADIABATIC REGULARIZATION FOR
SCALAR FIELDS

The equation of motion of a scalar field φ(~x, t) of mass
m propagating in a curved background is

(� +m2 + ξR)φ = 0 (1)

where � ≡ ∇µ∇µ, R is the Ricci scalar of the metric and
ξ is the coupling of the field to the curvature. If the field
propagates in a spatially flat FLRW universe with metric

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2) , (2)

Eq. (1) takes the form

a−3∂t(a
3∂tφ)− a−2

∑
i

∂2
i φ+ (m2 + ξR)φ = 0 . (3)

We assume that the field satisfies periodic boundary con-
ditions in a cube of comoving length L. In that case, φ
can be expanded in terms of mode functions

φ(~x, t) =
∑
~k

(A~kf~k(~x, t) +A†~k
f∗~k (~x, t)) (4)

where ki = 2πni/L with ni an integer, A†~k
and A~k are

creation and annihilation operators and

f~k(~x, t) =
1√

2L3a3(t)
ei
~k~xhk(t) (5)

[k ≡ |~k|]. hk(t) is a time-dependent function. By substi-
tuting (5) into (3), we find that it satisfies

d2hk
dt2

+ (ω2
k + σ)hk = 0 (6)

where ωk(t) =
√
k2/a2(t) +m2 is the frequency of the

mode and σ ≡
(
6ξ − 3

4

)
ȧ2/a2 +

(
6ξ − 3

2

)
ä/a. [The dot

notation means differentiation with respect to time t].
We require these modes to be normalized with respect
to the Klein-Gordon product (f~k, f~k′) = δ~k,~k′ . This is

equivalent to imposing to hk(t) the Wronskian-type con-
dition

h∗kḣk − ḣ∗khk = −2i . (7)

This condition ensures the usual commutation relations
for the creation and annihilation operators. Differential
Eq. (6), together with condition (7), leave us with one
unspecified degree of freedom for the function hk(t), and
then for the vacuum state |0〉 defined as A~k|0〉 ≡ 0. Adi-
abatic regularization and the definition of physical par-
ticles is based on a WKB-type expansion for the modes.
We can substitute into (6) the ansatz

hk(t) =
1√
Wk(t)

e−i
∫ tWk(t′)dt′ , (8)

where Wk(t) is a time-dependent function. This ansatz
obeys condition (7). We get the following equation for
Wk(t):

W 2
k = ω2

k + σ +W
−1/2
k

d2

dt2
W
−1/2
k . (9)

Wk(t) can be expanded as an adiabatic series Wk(t) =
ω(0)(t) + ω(1)(t) + ω(2)(t) + ω(3)(t) + ..., where the term
ω(n) has n time derivatives of the scale factor a(t). If we
impose the leading term ω(0) to be the physical redshifted
frequency ω(0)(t) ≡ ω(t) ≡ ωk(t) =

√
k2/a2(t) +m2, the

other terms can be obtained by solving (9) at a given
adiabatic order. It is found that ω(1) = ω(3) = 0, and

ω(2) = 5m4ȧ2

8a2ω5(t) −
2m2ȧ2+m2aä

4a2ω3(t) − ( 1
6−ξ)R
2ω(t) . This expansion

constitutes the basic cornerstone of the adiabatic regular-
ization method. It allows us to define the particle number
[1, 2] and also to renormalize local operators by removing
their UV divergences, while keeping their covariance [5].

The particle number in an expanding universe is not a
constant of motion, but it is, nevertheless, an adiabatic
invariant. Since the particle number is actually changing
while it is being measured, there is always an intrinsic un-
certainty in the particle number concept. Therefore, one
should expect a fuzzy characterization of the splitting be-
tween positive and negative frequency modes. However,
when the expansion enters into the adiabatic regime, the
characterization is naturally done in terms of the nth-

order adiabatic modes g
(n)
~k

(~x, t), defined as

g
(n)
~k
≡ 1√

2L3a3(t)
ei
~k~xg

(n)
k (t) (10)

with

g
(n)
k (t) ≡ 1√

W
(n)
k (t)

e−i
∫ tW (n)

k (t′)dt′ , (11)
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and W
(n)
k (t) ≡ ω(0) +ω(1) + · · ·+ω(n). We expand the φ

field as

φ(~x, t) =
∑
~k

{a~k(t)g
(n)
~k

(~x, t) + a†~k
(t)g

(n)∗
~k

(~x, t)} , (12)

where the time-dependent operators a†~k
(t) and a~k(t) obey

the usual commutation relations. These operators are

related with the time-independent ones A†~k
and A~k by

the Bogolubov transformations a~k(t) = α
(n)
k (t)A~k +

β
∗(n)
k (t)A†

−~k
. The time-dependent coefficients α

(n)
k (t)

and β
(n)
k (t) can be obtained by writing the exact mode

functions hk(t) in terms of the adiabatic modes g
(n)
k (t),

and one gets α
(n)
k (t) = −i(hkġ(n)∗

k − ḣkg
(n)∗
k )/2 and

β
(n)
k (t) = −i(g(n)

k ḣk−ġ(n)
k hk)/2. The operators a†~k

(t) and

a~k(t) are interpreted as annihilation and creation opera-
tors for real particles created in pairs from the vacuum
|0〉 by the expanding universe.

The number of created particles with momentum ~k is

〈N~k(t)〉 ≡ 〈a†~k(t)a~k(t)〉 = |β(n)
k (t)|2, and the average num-

ber density of total created particles is

〈n(t)〉 =
1

L3a3

∑
~k

〈N~k(t)〉 =
1

L3a3

∑
~k

|β(n)
k (t)|2 . (13)

In order to have a well-defined expression for the mean
number of created particles, we must use the minimum
order n that makes this quantity converge in the ultra-
violet regime. Generically, the sum (13) is UV divergent
for n = 0, while it converges for n = 1 (see also [21]).
Therefore, one needs in this case to use the Bogolubov

coefficient β
(1)
k (t) (this last criteria will change when con-

sidering spin-1/2 particles). Therefore, in the continuous
limit L→∞, the number density of particles created at
a given time t is

〈n(t)〉 =
1

2π2a3(t)

∫ ∞
0

dkk2|β(1)
k (t)|2 . (14)

The adiabatic expansion of the modes can be
moved easily to an expansion of the 2-point function
〈φ(x)φ(x′)〉 ≡ G(x, x′) at coincidence x = x′. Using
(4), (5) and (8), the adiabatic expansion of G(x, x) in
the continuous limit is written as

GAd(x, x) =
1

2(2π)3a3

∫
d3k[w−1 + (W−1)(2)

+ (W−1)(4) + ...] . (15)

G(x, x) is formally a divergent quantity and must be
renormalized. This is done in adiabatic renormalization
by subtracting the expansion GAd(x, x) truncated to the
minimal adiabatic order necessary to cancel all UV diver-
gences that appear in the formal expression of the vac-
uum expectation value that one wants to compute. For

instance, the computation of the renormalized variance
〈φ2〉 requires truncation up to second adiabatic order

〈φ2(x)〉r =
1

2(2π)3a3

∫
d3k[|hk(t)|2 − w−1 − (W−1)(2)]

(16)
while the renormalization of the stress-energy tensor
needs subtraction up to fourth adiabatic order. Since
it has been the observable more studied in the literature,
we refer the reader interested in its full renormalization
to the classical works [5, 6].

III. ADIABATIC EXPANSION FOR SPIN
ONE-HALF FIELDS

With all the previous background on the adiabatic reg-
ularization method for scalars, we now enter into the
main content of this work: its extension to spin-1/2 fields.

The covariant Dirac equation in curved spacetime is
given by (see for instance [3, 4])

iγµ∇µψ −mψ = 0 (17)

where γµ(x) are the spacetime-dependent Dirac-matrices
satisfying the condition {γµ, γν} = 2gµν and ∇µ ≡
∂µ−Γµ is the covariant derivative associated to the spin
connection Γµ.

Let us consider the spatially flat FLRW metric (2).
The matrices γµ(t) are related to the constant Dirac ma-
trices in Minkowski spacetime γα, obeying {γα, γβ} =
2ηαβ , by the simple relations

γ0(t) = γ0 ; γi(t) = γi/a(t) (18)

Moreover, we also have γµΓµ = −3ȧ/2aγ0. The Dirac
equation is then of the form

(iγ0∂0 +
3i

2

ȧ

a
γ0 +

i

a
~γ~∇−m)ψ = 0 . (19)

Let us now work with the standard Dirac-Pauli represen-
tation for the Dirac matrices

γ0 =

(
I 0
0 −I

)
~γ =

(
0 ~σ
−~σ 0

)
(20)

where ~σ are the usual Pauli matrices. After momentum
expansion

ψ =
∑
~k

ψ~k(t)ei
~k~x (21)

it is convenient to write the Dirac field in terms of two
two-component spinors

ψ~k(t) =

(
1√
L3a3

hIk(t)ξλ(~k)
1√
L3a3

hIIk (t)~σ
~k
k ξλ(~k)

)
(22)

where ξλ(~k) is a constant normalized two-component

spinor ξ†λξλ = 1 such that ~σ~k
2k ξλ = λξλ. λ = ±1/2 repre-

sents the eigenvalue for the helicity, or spin component
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along the ~k direction. hIk and hIIk are scalar functions,
which obey from (19) the coupled first-order equations

hIIk = ia
k (∂t + im)hIk , hIk = ia

k (∂t − im)hIIk , (23)

and the uncoupled second order equations:

(∂2
t +

ȧ

a
∂t + im

ȧ

a
+m2 +

k2

a2
)hIk = 0 , (24)

and

(∂2
t +

ȧ

a
∂t − im

ȧ

a
+m2 +

k2

a2
)hIIk = 0 . (25)

The normalization condition for the four-spinor is

|hIk(t)|2 + |hIIk (t)|2 = 1 . (26)

This condition guaranties the standard anticommuta-
tor relations for creation and annihilation operators de-
fined by the expansion

ψ =
∑
~k

∑
λ=±1/2

(B~k,λu~k,λ(t, ~x) +D†~k,λ
v~k,λ(t, ~x)) , (27)

where u~k,λ(t, ~x) is defined from an exact solution to the

above equations

u~k,λ(~x, t) ≡ 1√
L3a3

ei
~k~x

(
hIk(t)ξλ

hIIk (t)~σ
~k
k ξλ

)
. (28)

These modes maintain the standard normalization with
respect to the Dirac scalar product

(u~k,λ, u~k′,λ′) =

∫
d3xa3u†~k,dλu~k′,λ′ = δ(~k−~k′)δλλ′ (29)

The orthogonal modes v~k,λ(t, ~x) are obtained by the

charge conjugation operation v~k,λ = Cu~k,λ = iγ2u∗~k,λ.

We then have

{B~k,λ, B
†
~k′,λ′} = δ3(~k − ~k′)δλλ′ (30)

{B~k,λ, B~k′,λ′} = 0 = {B†~k,λ, B
†
~k′,λ′} , (31)

and similarly for the D~k,λ, D†~k,λ
operators.

A. WKB-type expansions

One could be tempted to use the above Klein-Gordon
type Eqs. (24), (25) to generate a WKB-type expansion
for hIk and hIIk . A redefinition of the field modes as h̄Ik ≡
a1/2hIk and h̄IIk ≡ a1/2hIIk converts those equations in

(∂2
t +m2 +

k2

a2
+

ȧ2

4a2
− ä

2a
+ im

ȧ

a
)h̄Ik = 0 , (32)

and

(∂2
t +m2 +

k2

a2
+

ȧ2

4a2
− ä

2a
− imȧ

a
)h̄IIk = 0 . (33)

The WKB-type ansatz (8) works so well for scalar fields
since it preserves the Klein-Gordon product, and hence
the Wronskian (7). However, it does not preserve in
general the Dirac product and the associated Wronskian
(normalization) condition (26).

The presence of a complex quantity in the above Eqs.
(32), (33) suggests using a generalized form of the WKB-
type expansion [17, 18]

h̄I,IIk =
N I,II
k√

ΩI,IIk (t)
e
−i

∫ t(ΩI,IIk (t′)∓im ȧ(t′)
2a(t′)ΩI,II

k
(t′)

)dt′

,

(34)

where N I,II
k are (time-independent) normalization con-

stants to be fixed. The Eqs. (32), (33) determine an adi-

abatic expansion of the form ΩI,IIk = ω(t) + ΩI,II(1)(t) +

ΩI,II(2)(t)+ ..., where ω(t) =
√
k2/a2 +m2. At first adi-

abatic order one has ΩI(1) = 0 = ΩII(1). The constants
N I,II
k should be determined by imposing, order by or-

der, the normalization condition |hIk(t)|2 + |hIIk (t)|2 = 1.
It is easy to see that, at first adiabatic order, the con-

stants N I,II
k cannot be fixed to fit this condition. Only

at zeroth adiabatic order we have a consistent solution
N I
k =

√
a(ω +m)/2, N II

k =
√
a(ω −m)/2. We should

stress, nevertheless, that the above ansatz is consistent
for a spinor field in Minkowski space in the presence
of a homogeneous time-dependent electric field [18]. To
find an adiabatic expansion for spin-1/2 field modes in a
FLRW universe we have to follow a different strategy.

We also remark that a WKB-type expansion can also
be very useful to find approximate solutions to the Dirac
equation in nontrivial backgrounds, as for instance in
static, spherically symmetric spacetimes [19]. However,
the aim of those applications of the WKB-expansion are
not directly linked to the proper renormalization expan-
sion (in [19] a DeWitt-Schwinger point-splitting expan-
sion is used as the renormalization scheme). The strong
requirements that an asymptotic expansion needs to sat-
isfy to define a consistent renormalization scheme are not
necessary for other purposes.

B. Adiabatic expansion for the spin-1/2 field modes

In any case the zeroth adiabatic order should naturally
generalize the standard solution in Minkowski space

hIMk (t) =

√
ω +m

2ω
e−iωt

hIIMk (t) =

√
ω −m

2ω
e−iωt , (35)
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where here ω =
√
k2 +m2. Therefore, the zeroth adia-

batic order must be of the form

g
I(0)
k (t) =

√
ω(t) +m

2ω(t)
e−i

∫ t ω(t′)dt′

g
II(0)
k (t) =

√
ω(t)−m

2ω(t)
e−i

∫ t ω(t′)dt′ , (36)

where from now on ω(t) =
√
k2/a2 +m2, as usual. It is

easy to see that the zero order obeys the normalization

condition |gI(0)
k (t)|2 + |gII(0)

k (t)|2 = 1.
The form of the above zeroth order modes and the

structure of the field equations for hIk and hIIk suggest the
following template for the adiabatic expansion (truncated
at adiabatic order n)

g
I(n)
k (t) =

√
ω +m

2ω
e−i

∫ t(ω(t′)+ω(1)+...+ω(n))dt′

× (1 + F (1) + ...+ F (n))

g
II(n)
k (t) =

√
ω −m

2ω
e−i

∫ t(ω(t′)+ω(1)+...+ω(n))dt′

× (1 +G(1) + ...+G(n)) , (37)

where ω(n), F (n) and G(n) are local functions of adiabatic
order n.

1. Adiabatic order n = 1

At first adiabatic order, Eqs. (23) imply

2aω2{(ReG(1) −ReF (1) + i(ImG(1) − ImF (1))) (m− ω)

+ ω(1)} − im (m− ω) ȧ = 0 , (38)

and

2aω2{(ImF (1) + ImG(1) + i(ReG(1) −ReF (1))) (m+ ω)

+ iω(1)}+m (m+ ω) ȧ = 0 . (39)

Moreover, the modes at order n = 1 should also respect
the normalization condition at the given order

|gI(1)
k (t)|2 + |gII(1)

k (t)|2 = 1 , (40)

leading to the additional equation

1+ReG(1) +ReF (1) +
m

ω

(
ReF (1) −ReG(1)

)
= 1 . (41)

The solution to Eqs. (38), (39) and (40) is

ReF (1) = 0 = ReG(1),

ω(1) = 0,

ImG(1) = ImF (1) +
m

2ω2

ȧ

a
. (42)

We see that ImF (1) is undetermined. Nevertheless, it
is useful to realize that F (1) andG(1) can be parametrized
as

F (1) = −Ai mȧ
ω2a

+ iK
ȧ

a
G(1) = Bi

mȧ

ω2a
+ iK

ȧ

a
(43)

where A and B are real arbitrary constants satisfying
A + B = 1/2, and K(m,ω) is an arbitrary functional of
m and ω with the adequate dimensions.

2. Adiabatic order n = 2

At second adiabatic order, Eqs. (23) restrict the form
of the functions F (2), G(2) and ω(2). We get((

ReF (2) −ReG(2) + i
(
ImF (2) − ImG(2)

))
(m− ω)− ω(2)

)
×2a2ω4 + 2

(
−2m2 + ω2) (ImF (1)

)′
ȧ2

+aω2
(
ImF (1)m (−m+ ω) ȧ+ 2

(
ImF (1)

)′
ä
)

= 0 , (44)

where
(
ImF (1)

)′
is a zeroth order adiabatic term defined

by the expression

˙(
ImF (1)

)
=

dImF (1)

d(ȧ/ω2a)

d(ȧ/ω2a)

dt

≡
(
ImF (1)

)′ d(ȧ/ω2a)

dt
, (45)

and((
−ReF (2) + ReG(2) − i

(
ImF (2) − ImG(2)

))
(m+ ω) + ω(2)

)
×4a2ω4 + ȧ2 (m(m− 2ω)ω+ 5m3 + 4

(
2m2 − ω2) (ImF (1)

)′)
+2aω2

(
ImF (1)m (m+ ω) ȧ−

(
2
(
ImF (1)

)′
ä+m

))
= 0 . (46)

Moreover, the normalization condition at second adia-

batic order
∣∣∣gI (2)
k (t)

∣∣∣2 +
∣∣∣gII (2)
k (t)

∣∣∣2 = 1 leads to

1 + ReF (2) + ReG(2) +
m

ω

(
ReF (2) −ReG(2)

)
+
(
ImF (1)

)2
+
m2

8ω4

ȧ2

a2

(
1− m

ω

)
+

m

2ω2

ȧ

a
ImF (1)

(
1− m

ω

)
= 1 (47)

As for adiabatic order one, the solution to the above
equations is not univocally fixed. The general solution is
given by

ReF (2) = −1

2

(
ImF (1)

)2
(48)

+
m (m− ω)

(
5m2 − 2ω2

)
ȧ2 + 2maω (−m+ ω) ä

16a2ω6
,

ReG(2) = −1

2

(
ImF (1)

)2
+
m
(
−5m3 − 5m2ω + 2ω3

)
ȧ2

16a2ω6

+
2maω2

(
(m+ ω) ä− 4ω2ȧImF (1)

)
16a2ω6

, (49)

ω(2) =
ȧ2m (m− ω)

(
5m2 + (m− 2ω)ω

)
8a2ω5

(50)

+
8ȧ2ω

(
−2m2 + ω2

) (
ImF (1)

)′
8a2ω5

+
ä
(
−m2 + ω

(
m+ 4

(
ImF (1)

)′))
8a2ω5

,

ImG(2) = ImF (2). (51)
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We note that, as for ImF (1), ImF (2) is also undeter-
mined.

Before going to the third adiabatic order, it is conve-
nient to analyze the expression for the adiabatic subtrac-
tion term involved in the renormalization of local observ-
ables requiring up to second adiabatic order. This is the
case of 〈ψ̄ψ〉. Given a vacuum state characterized by the
exact mode functions hIk, h

II
k , the renormalized observ-

able 〈ψ̄ψ〉r is given by

〈ψ̄ψ〉r =
−2

(2π)3a3
×∫

d3k(|hIk|2 − |hIIk |2 − |g
I(2)
k |2 + |gII(2)

k |2) . (52)

The explicit form of the subtraction terms in (52) is given
by

|gI(2)
k |2 − |gII(2)

k |2 =
m

ω
−m R

24ω3

+
m3
(
7ȧ2 + 2aä

)
8a3ω5

− 5m5ȧ2

8a2ω7
, (53)

which turns out to be independent of the ambiguity in
ImF (1) and ImF (2). This also happens for any local ob-
servable, irrespective of the adiabatic order required in
the renormalization (for further details see [22]). There-
fore, from now on we will fix the ambiguity by choos-
ing that F (n)(−m) = G(n)(m) for every n ≥ 1. This

is equivalent to g
I(n)
k (−m) = g

II(n)
k (m) and implies that

ImF (1) = −ImG(1) and ImF (2) = 0 = ImG(2), and
hence

ω(1) = 0 (54)

F (1) = −i mȧ
4ω2a

(55)

G(1) = i
mȧ

4ω2a
, (56)

and

ω(2) =
5m4ȧ2 − 3ω2m2ȧ2 − 2ω2m2äa

8ω5a2
(57)

F (2) =
m2R

48ω4
− 5m4ȧ2

16ω6a2
− m2ȧ2

32ω4a2
− mR

48ω3
+

5m3ȧ2

16ω5a2
(58)

G(2) =
m2R

48ω4
− 5m4ȧ2

16ω6a2
− m2ȧ2

32ω4a2
+

mR

48ω3
− 5m3ȧ2

16ω5a2
,

(59)

where R = 6(ä/a+ ȧ2/a2).

Let us finally remark that the first two terms in (53)
are, after integration in momenta, UV divergent. This is
similar to what we have seen in the renormalization of
〈φ2〉. The first one is of zeroth adiabatic order and can
be associated to the renormalization of the cosmological
constant. The second one, of adiabatic order two, is pro-
portional to the scalar curvature and it can be associated
to the renormalization of Newton’s constant.

3. Third and fourth adiabatic order

We can proceed in the same way to compute the so-
lutions at third adiabatic order. With the mentioned
simplifying assumption F (3)(−m) = G(3)(m) and after
similar calculations, we get

ω(3) = 0 (60)

ReF (3) = 0 = ReG(3) (61)

ImF (3) = −ImG(3) = −
m
(
−130m4 + 97m2ω2 − 8ω4

)
ȧ3

128a3ω8

− (4maω2(19m2 − 8ω2)ȧä− 8ma2ω4...
a

128a3ω8

(62)

Finally, the fourth-order contributions are given in ap-
pendix A. We can continue the iteration indefinitely for
all adiabatic orders, but relevant observables require at
most subtractions up to fourth adiabatic order.

IV. ADIABATIC REGULARIZATION FOR SPIN
ONE-HALF FIELDS

Having developed the extended adiabatic expansion for
spin-1/2 fields, we move now to its application for the ob-
tention of conformal anomalies and the number operator.

A. Anomalies for spin one-half fields

The purpose of this section is to prove the consistency
of the proposed adiabatic expansion for spin-1/2 field
modes by working out the conformal and axial anomalies
in a FLRW spacetime. We extend in this way the adia-
batic regularization to spin-1/2 fields. We will find exact
agreement with those obtained from other renormaliza-
tion methods.

1. Conformal anomaly

The stress-energy tensor of the Dirac field in a curved
background can be expressed, using the Dirac equation
iγµ∇µψ −mψ = 0, as

Tµν =
i

2

[
ψ̄γ(µ∇ν)ψ − (∇(µψ̄)γν)ψ

]
. (63)

One obtains immediately that the trace of the stress-
energy tensor takes the simple form

Tµµ = mψ̄ψ . (64)

When the field is massless the trace vanishes, signaling
the emergence of the conformal invariance. However, in
the quantum theory the expectation value 〈Tµµ 〉 = m〈ψ̄ψ〉
takes a nonzero value even in the massless limit. Our
purpose is to perform the calculation of this anomalous
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trace using the extension of the adiabatic regularization
method for spin-1/2 introduced above. Since the expec-
tation value 〈ψ̄ψ〉 is now regarded as a piece of the aver-
age value of the stress-energy tensor 〈Tµν〉, the renormal-
ization should be performed up to the fourth adiabatic
order. Taking into account that

〈ψ̄ψ〉r =
−2

(2π)3a3
×∫

d3k(|hIk|2 − |hIIk |2 − |g
I(4)
k |2 + |gII(4)

k |2) , (65)

one can evaluate the trace anomaly by taking the mass-
less limit in the above expression

〈Tµµ 〉r = lim
m→0

−2m

(2π)3a3

∫
d3k(|hIk|2 − |hIIk |2

− |gI(4)
k |2 + |gII(4)

k |2) .

Only the fourth-order adiabatic subtraction terms sur-
vive in limit m → 0. Therefore, the trace anomaly is
given by the massless limit of the following integral

2m

(2πa)3

∫
d3k

(
mȧ4 + 11maȧ2ä+ 4ma2ä2 + 7ma2ȧ

...
a +ma3

....
a

32a4ω5

+
−86m3ȧ4 − 211m3ȧ2ä− 29m3a2ä2 − 42m3a2ȧ

...
a +ma3

....
a

32a4ω7

+
6636m5a2ȧ4 + 6720m5a3ȧ2ä+ 336m5a4ä2 + 448m5a4ȧ

...
a

32a6ω9

+
−158592m7a4ȧ4 − 59136m7a5ȧ2ä

8192a8ω11
+

1155m9ȧ4

128a4ω13

)
. (66)

This integral is finite by construction and can be worked
out analytically. The trace anomaly is then

〈
T µ
µ

〉
r

= lim
m→0

4m

(2π)2 a3

[
−4ȧ2ä+ 9aȧ

...
a + 3a

(
ä2 + a

....
a
)

240m

]

=
−4ȧ2ä+ 9aȧ

...
a + 3a

(
ä2 + a

....
a
)

240π2
(67)

This result can be rewritten as a linear combination of
the covariant scalars

R2 =

[
6

(
ȧ2

a2
+
ä

a

)]2

, (68)

�R = 6

(
ä

a
+

....
a

a
− 5ȧ2ä

a3
+

3ȧ
...
a

a2

)
, (69)

RµνR
µν = 12

(
ȧ4

a4
+
ä2

a2
+
ȧ2ä

a3

)
. (70)

We find〈
T µ
µ

〉
r

=
1

2880π2

[
−11

(
RαβR

αβ − 1

3
R2

)
+ 6�R

]
=

1

2880π2

[
11

2
G+ 6�R

]
, (71)

where in the second line we have introduced the Gauss-
Bonnet invariant G, which for a FLRW spacetime is given
by G = −2(RµνR

µν −R2/3). The conformal anomaly is

generically given for a conformal field of spin 0, 1/2 or 1
in terms of three parameters〈

T µ
µ

〉
r

=
1

2880π2
(ACµνρσC

µνρσ +BG+ C�R) .(72)

The result obtained for a Dirac spin-1/2 field by other
renormalization procedures is A = −9, B = 11/2, C = 6
[4]. Our above result (71) agrees exactly with the re-
sults obtained from other methods. We note that in a
FLRW spacetime the conformal tensor Cµνρσ vanishes
identically.

We stress that no R2 term appears in (71) and (72),
although such a term could have appeared. The vanish-
ing of an R2 term when the trace anomaly is expressed
in terms of G, �R and CµνρσC

µνρσ is required by consis-
tency with the theorem that no creation of particles obey-
ing conformally invariant equations occurs in an FLRW
expanding universe [1, 2]. This is the case for a massless
spin-1/2 field. This theorem is based on the conformal
invariance of the field equations and it is respected by
the conformal anomaly, as shown in [23].. [For physical
implications of this fact for the electromagnetic field see
[24]].

2. Axial anomaly

In curved spacetime the axial vector current JµA ≡
ψ̄γµγ5ψ, where γ5 ≡ iγ0γ1γ2γ3, obeys the covariant
equation ∇µJµA = 2imψ̄γ5ψ. For a massless Dirac field
the classical axial current is conserved, due to the chi-
ral symmetry. At the quantum level the expectation
value 〈∇µJµA〉may acquire a nonzero value in the massless
limit. We want to evaluate this quantity using the adi-
abatic regularization for fermions. The strategy is simi-
lar to the evaluation of the conformal or trace anomaly.
Since the divergences of 〈∇µJµA〉 are of fourth adiabatic
order we have to work out 〈2imψ̄γ5ψ〉 also at fourth adi-
abatic order. In this case

〈ψ̄γ5ψ〉(4)
r =

−2

(2π)3a3

∫
d3k(hI∗k h

II
k − hII∗k hIk

− gI(4)∗
k g

II(4)
k + g

II(4)∗
k g

I(4)
k ) . (73)

Keeping only those terms that survive in the massless
limit we have〈

ψγ5ψ
〉
r

=
−2

(2π)3 a3

∫
d3k

imk

16a3ω9

(
ȧ3
(
−35m4

+ 25m2ω2 − 2ω4)+ 4aω2ȧä
(
5m2 − 2ω2)+ 2a2ω4...

a

)
+O(m) .

The integral is finite and can be computed analytically.
We find

〈∇µJµA〉r = lim
m→0

2im〈ψ̄γ5ψ〉

= lim
m→0

2im
−ia(2ȧä+ a

...
a )

12
= 0 . (74)
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The vanishing of the axial current anomaly in our FLRW
spacetime agrees with the result obtained from other
renormalization methods. In a general spacetime the ax-
ial anomaly is given by (see, for instance, [3])

〈∇µJµA〉r =
1

384π2
εµνρσR λξ

µν Rρσλξ . (75)

It is very easy to check that for a FLRW spacetime the
right-hand side of (75) vanishes identically, in agreement
with our result (74).

B. Number operator

Let us analyze the number operator for spin-1/2 Dirac
particles. As for bosons, the quantized field ψ can also
be expanded in terms of the fermionic adiabatic modes
g~k,λ(~x, t),

ψ =
∑
~k,λ

(b~k,λ(t)g
(n)
~k,λ

(t, ~x) + d†~k,λ
(t)g

c(n)
~k,λ

(t, ~x)) (76)

where gc~k,λ(t, ~x) are the corresponding adiabatic modes

obtained by the charge conjugation operation C and

g
(n)
~k,λ

(t, ~x) =
1√
L3a3

ei
~k~x

(
g
I(n)
k (t)ξλ

g
II(n)
k (t)~σ

~k
k ξλ

)
. (77)

The Bogolubov coefficients can be now obtained from the
exact modes hIk(t) and hIIk (t) by solving the following
system of equations:

hIk(t) = α
(n)
k (t)g

I(n)
k (t)− β(n)

k (t)g
II(n)
k (t)

hIIk (t) = α
(n)
k (t)g

II(n)
k (t) + β

(n)
k (t)g

I(n)
k (t) . (78)

We have restricted for simplicity to the λ = 1/2 case;
similar equations apply for the opposite helicity. The

solution of this system is, using that g
I(n)
k and g

II(n)
k

follow the normalization condition (26),

β
(n)
k (t) = g

I(n)
k hIIk − g

II(n)
k hIk

α
(n)
k (t) = g

I(n)∗
k hIk + g

II(n)∗
k hIIk . (79)

These Bogolubov coefficients obey the relation

|α(n)
k (t)|2 + |β(n)

k (t)|2 = 1 up to order n. On the
other hand, the average number of created fermionic
particles of specific helicity and charge with momentum
~k is

〈N~k〉 = 〈b†~k(t)b~k(t)〉 = |β(n)
k (t)|2 . (80)

As for bosons, we must use the minimum order that
makes this integral converge in the ultraviolet limit. It is

generally found that for large k, |β(0)
k (t)| ∼ O(k−2). This

is confirmed in the next section for de Sitter spacetime.
This behavior guarantees the finiteness of the average

number density of created particles when summed for all
momenta:

1

L3a3

∑
~k

〈N~k(t)〉 =
1

L3a3

∑
~k

|β(0)
k |

2 <∞ (81)

We note that, in contrast with the scalar field, this result
is obtained with the zeroth adiabatic order. [We note for
completeness that in the calculation of the uncertainty

for the particle number, one would need β
(2)
k (t) to have

an UV finite result].
Finally, returning to the continuous limit, the density

of spin one-half particles as a function of time of specific
charge and helicity is

〈n(t)〉 =
1

2π2a3(t)

∫ ∞
0

dkk2|β(0)
k (t)|2 . (82)

V. SPIN ONE-HALF FIELD IN DE SITTER
SPACETIME

We analyze in this section the particle creation and
the renormalized stress-energy tensor for a spin-1/2 field
in de Sitter spacetime. This space is described by the
metric (2) with scale factor

a(t) = eHt (83)

and H constant. The coupled differential Eqs. (23) take
the form

hIIk = ieHt

k (∂t + im)hIk , h
I
k = ieHt

k (∂t − im)hIIk , (84)

while the uncoupled Eqs. (24) and (25) are(
∂2

∂t2
+H

∂

∂t
+ imH +

k2

e2Ht
+m2

)
hIk = 0 , (85)

(
∂2

∂t2
+H

∂

∂t
− imH +

k2

e2Ht
+m2

)
hIIk = 0 . (86)

It is helpful to define the following dimensionless vari-
ables as

z ≡ kH−1e−Ht µ ≡ m

H
. (87)

In terms of these variables, the solution of (85) is

given by the two independent functions
√
zH

(1)
1
2−iµ

(z) and
√
zH

(2)
1
2−iµ

(z), but only the first one satisfies the condi-

tion hIk
t→−∞∼ g

I(n)
k (where the order n is arbitrary). In

the same way, Eq. (86) has two independent solutions√
zH

(1)

− 1
2−iµ

(z) and
√
zH

(2)

− 1
2−iµ

(z) but only the first one

obeys hIIk
t→−∞∼ g

II(n)
k . Therefore, we take

hIk = iα

√
πz

2
e
πµ
2 H

(1)
1
2−iµ

(z) , (88)



9

and

hIIk = β

√
πz

2
e
πµ
2 H

(1)

− 1
2−iµ

(z) (89)

where α and β are real constants to be fixed and the
overall normalization factor

√
πz/2 has been extracted

for convenience. By substituting (88) and (89) into (84),
we find α = β. Finally, by imposing the normalization
condition (26), we find |α| = 1. Therefore, we have

hIk = i

√
πz

2
e
πµ
2 H

(1)
1
2−iµ

(z) (90)

and

hIIk =

√
πz

2
e
πµ
2 H

(1)

− 1
2−iµ

(z) (91)

up to a constant phase factor. Equations (90) and (91)
determine a vacuum for spin one-half fields analogous
to the Bunch-Davies vacuum [25] for scalars, because it
is the solution that reproduces the adiabatic modes for
initial times.

We note that hIIk (m) = hIk(−m). This is seen more
clearly if we write (90) and (91) using the property

H
(1)
−ν (z) = (−1)νH

(1)
ν (z) as

hIk =

√
πz

4

(
ie
πµ
2 H

(1)
1
2−iµ

(z) + e−
πµ
2 H

(1)

− 1
2 +iµ

(z)
)

hIIk =

√
πz

4

(
e
πµ
2 H

(1)

− 1
2−iµ

(z) + ie−
πµ
2 H

(1)
1
2 +iµ

(z)
)
.

(92)

The full orthonormalized spinors u~k,λ(~x, t) and

v~k,λ(~x, t) for de Sitter space can be constructed as

u~k,λ(~x, t) ≡ i
√
z

4πa3/2
ei
~k~xe

πµ
2

(
H

(1)
ν (z)ξλ

−iH(1)
ν−1(z)~σ

~k
k ξλ

)
(93)

v~k,λ(~x, t) ≡
√
z

4πa3/2
ei
~k~xe

πµ
2

(
−iH(1)∗

ν−1(z)~σ
~k
k ξλ

H
(1)∗
ν (z)ξλ

)
(94)

where we have defined the ν coefficient as

ν ≡ 1

2
− iµ . (95)

In order to study the particle number operator and
the stress-energy tensor, we need the first terms of the
adiabatic expansion introduced in Sec. III and partic-
ularized for (83). We assume for simplicity the con-
dition F (n)(m) = G(n)(−m). If we substitute ω =
H(z2 + µ2)1/2, ȧ/a = H and R = 12H2 into (55) and
(58), we obtain

F (1) =
−iµ

4(z2 + µ2)
(96)

and

F (2) =− µ

4(z2 + µ2)3/2
+

7µ2

32(z2 + µ2)2
(97)

+
5µ3

16(z2 + µ2)5/2
− 5µ4

16(z2 + µ2)3
. (98)

The third- and fourth-order contributions can be ob-
tained in a similar way, but they are not explicitly written
here.

We move now to the analysis of the particle number
and the stress-energy tensor in de Sitter spacetime.

A. Particle creation

The β
(n)
k (t) Bogolubov coefficient (79) for de Sitter

space is found to be:

β
(n)
k (t) = e−i

∫ t ω(t′)+...ω(n)(t′)

√
πz

23/2(z2 + µ2)1/4
e
πµ
2 ×{

(1 + · · ·+ F (n))H
(1)
ν−1(z)

√
(z2 + µ2)1/2 + µ −

(1 + · · ·+G(n))iH(1)
ν (z)

√
(z2 + µ2)1/2 − µ

}
. (99)

We find that in the ultraviolet limit

|β(n)
k |

k→∞∼ O
(

1

kn+2

)
. (100)

Therefore, for spin-1/2 fields the zeroth adiabatic order
suffices to give a UV finite expectation value for the num-
ber density and is given by Eq. (82), which is written in
terms of z as

〈n〉f =
H3

2π2

∫ ∞
0

dzz2|β(0)
k |

2 . (101)

This integral can be rewritten more conveniently as

〈n〉f =
H3

16π
eπµJ(µ) , (102)

where J(µ) is a function given by the following expres-
sion:

J(µ) ≡
∫ ∞

0

dz
z3√
z2 + µ2

×
∣∣∣∣H(1)

ν−1(z)
√

(z2 + µ2)1/2 + µ

− iH(1)
ν (z)

√
(z2 + µ2)1/2 − µ

∣∣∣∣2 . (103)

It is useful to compare the fermionic density (102)
with the scalar one, which is obtained with the meth-
ods sketched in Sec. II. The solution of (6) with scale
factor (83) that corresponds to the usual Bunch-Davies

vacuum is hk =
√

(π/2H)e−πImν/2H
(1)
ν (z) with ν ≡√

(9/4)− µ2 (we take ξ = 0). The Bogolubov coeffi-
cients associated to this state are found to behave as
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Figure 1. Number densities for fermions 〈n〉f (continuous
line) and bosons 〈n〉b (dashed line) as a function of the mass
m = µH for H = 1.

|β(n)
k |

k→∞∼ O(k−n−1), so Eq. (14) holds. After some
algebra, we find that the bosonic density can be written
as

〈n〉b =
H3e−πImν

16π
I(µ) (104)

where I(µ) is a function given by the integral

I(µ) ≡
∫ ∞

0

dv
v2√
v2 + µ2

∣∣∣vH(1)
ν−1(v)−(

ν + i
√
v2 + µ2 − v2

2(v2 + µ2)

)
H(1)
ν (v)

∣∣∣∣2 .

(105)

By construction, the integrals J(µ) and I(µ) are conver-
gent in the ultraviolet regime. Also, densities (102) and
(104) are time-independent because de Sitter is a maxi-
mally symmetric spacetime with no preferred coordinate
points.

Figure 1 shows the average densities (102) and (104)
as a function of the particle mass for H = 1. Their be-
haviors are quite different. For bosons, one finds that
limµ→∞〈n〉b = 0, and that 〈n〉b has an infrared diver-
gence in the massless case limµ→0〈n〉b = ∞. [However,
this divergence is somewhat spurious, because it appears
for massless particles with no momentum, which do not
contribute to the total energy content. This is confirmed
because the bosonic 〈Tµν〉 obtained in [26] and [25] is
finite in this limit].

Nevertheless, the behavior of 〈n〉f is quite different.
First, we find that particle creation does not happen for
massless fermions. The statement that creation of mass-
less fermions is forbidden is quite general. It is due to the
conformal invariance of the field theory, because creation
of particles does not happen in any conformally invari-
ant theory in a conformally flat metric such as (2) . As
already stressed, this is compatible with the conformal
anomaly.

On the other hand, it is found that 〈n〉 grows linearly
with the mass. More specifically, for m � H, 〈n〉 grows

as 〈n〉 ∼ αmH2 with α a constant. Therefore, one would
expect that for large masses the effects of spontaneous
particle creation can be so important that backreaction
effects must be taken into account. The final result could
be an instability of de Sitter space. However, our as-
sumed quantum state conspires to protect this to happen,
as we will shortly see: the renormalized stress-energy ten-
sor does not grow with the mass.

B. Stress-energy tensor

Due to the symmetries of de Sitter spacetime, the ex-
pression for the renormalized stress-energy tensor can be
obtained from its quantum trace as

〈Tµν〉r =
1

4
gµν〈T ρρ 〉r . (106)

As analyzed in the last section, the formal expression
for 〈T ρρ 〉 contains UV divergences. From (64), (65) and
(106), it is given by

〈Tµν〉 =
1

4
gµν
−mH3

π2

∫ ∞
0

dz
[(∣∣hIk∣∣2 − ∣∣hIIk ∣∣2) z2

]
(107)

More specifically, it contains quadratic and logarithmic
divergences, because for z →∞,(∣∣hIk∣∣2 − ∣∣hIIk ∣∣2) z2 z→∞∼ z − 1

z
+O

(
1

z3

)
(108)

Therefore, in order to obtain the renormalized trace we
subtract the corresponding adiabatic terms up to fourth
order

〈T ρρ 〉r =
−mH3

π2
× (109)∫ ∞

0

dzz2

(∣∣hIk∣∣2 − ∣∣hIIk ∣∣2 − ∣∣∣gI (4)
k

∣∣∣2 +
∣∣∣gII (4)
k

∣∣∣2) .

This integral is convergent and can be solved numerically.
However, it can also be evaluated analytically by intro-
ducing an auxiliary regulator. This regulator has nothing
to do with the regularization/renormalization process,
which has already finished producing the above finite ex-
pression for the renormalized trace. The regulator that
we are going to introduce now is a mere mathematic trick
to evaluate analytically the finite integral (109).

First of all, the contribution of the exact modes to the
integral (109) can be written as∫ ∞

0

dz z2
(∣∣hIk∣∣2 − ∣∣hIIk ∣∣2) =

∫ ∞
0

dzz3

(∣∣∣h̃Ik∣∣∣2 − ∣∣∣h̃IIk ∣∣∣2)
= lim
σ→0
− ∂2

∂σ2

∫ ∞
0

dzz cos (σz)

(∣∣∣h̃Ik∣∣∣2 − ∣∣∣h̃IIk ∣∣∣2)(110)

where we have defined hIk =
√
zh̃Ik and hIIk =

√
zh̃IIk in

order to extract the dependence on powers of z from hk
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Figure 2. Density of energy ρ = (1/4)〈T 00〉 as a function of
the mass of the particle m = µH for H = 1.

and work with the regulator. The integration of (110)
gives

〈T ρρ 〉= lim
σ→0

(
H2m2

π2σ2
−
m2
(
H2 +m2

)
4π2

×

1 + 2γ + 2 log
(
σ
2

)
+ 2Re

[
ψ
(
−2− imH

)]
4π2

)
(111)

which is divergent in the σ → 0 limit. We can repeat the
same procedure for the adiabatic subtraction integral∫ ∞

0

dz z2
(∣∣gIk∣∣2 − ∣∣gIIk ∣∣2) =

∫ ∞
0

dzz3
(∣∣g̃Ik∣∣2 − ∣∣g̃IIk ∣∣2)

= lim
σ→0
− ∂2

∂σ2

∫ ∞
0

dzz cos (σz)
(∣∣g̃Ik∣∣2 − ∣∣g̃IIk ∣∣2)(112)

and integrating (112), we obtain

〈T ρρ 〉Ad = lim
σ→0

(
H2m2

π2σ2
− 11H4 + 190H2m2 + 60m4

240π2

−
m2
(
H2 +m2

) (
2γ + 2 log

(
σ
2

)
+ 2 log

(
m
H

))
4π2

)
. (113)

Equation (113) is also divergent when σ → 0. However,
if (113) is subtracted from (111) the result is finite in
the σ → 0 limit and gives the quantum trace. From it
we can immediately obtain an analytic expression for the
renormalized stress-energy tensor

〈Tµν〉r =
1

960π2
gµν

(
11H4 + 130H2m2 + (114)

120m2(H2 +m2)
(

log
(m
H

)
−Re

[
ψ
(
−1 + i

m

H

)]))
where ψ(z) is the digamma function. The function 〈T 00〉r
is shown in Fig. 2 for H = 1. We observe that the en-
ergy density is bounded from above as a function of the
mass. In fact, for a large mass 〈Tµν〉r ∼ 0, in sharp con-
trast with the behavior of the density of created particles
obtained above.

VI. CONCLUSIONS

Since the original work [5] introducing the systematics
of the adiabatic regularization method for scalar fields,
the extension of the method to spin-1/2 fields has been
lacking. We have developed here a satisfactory extension
of the adiabatic method. The ansatz for the adiabatic ex-
pansion for spin-1/2 field modes differs significantly from
the WKB-type template that works for scalar modes.
We have tested the consistency of the extended method
by working out the conformal and axial anomalies for
a Dirac field in a FLRW spacetime, in exact agreement
with those obtained from other renormalization prescrip-
tions. We have also given a detailed overview of the
adiabatic prescription to analyze particle creation and
renormalize expectation values of relevant physical ob-
servables. We have focused on the computation of parti-
cle creation in de Sitter spacetime. Using the extended
method we have been able to obtain an exact, analytical
expression of the renormalized stress-energy tensor for a
Dirac field in de Sitter spacetime.

APPENDIX: FOURTH ADIABATIC ORDER
FOR SPIN-1/2 FIELDS

The first-, second-, and third order contributions to
(37) are given in Sec. V. The fourth-order calculations
are detailed in [22]. The contributions with the simplify-
ing condition, F (4)(m) = G(4)(−m), are

ω(4) =
[
ȧ4
(
−1105m6 + 1348m4ω2 − 377m2ω4 + 12ω6)

+ 2aω2ȧ2ä
(
442m4 − 389m2ω2 + 52ω4)

+ 4a2ω4ȧ
...
a
(
−28m2 + 15ω2)

+ 4a2ω4 (ä2 (−19m2 + 8ω2)+ 2aω2....
a
)] m2

128a4ω11
,

and

F (4) =

[
ȧ4
(

9140m7 − 9040m6ω − 10104m5ω2 + 10444m4ω3

+2371m3ω4 − 2664m2ω5 − 48mω6 + 64ω7

)
+8aω2ȧ2ä

(
−914m5 + 904m4ω + 725m3ω2 − 749m2ω3

−76mω4 + 88ω5)+ 32a2ω4ȧ
...
a
(
28m3 − 28m2ω − 13mω2

+14ω3)+ 4a2ω4 (4 (m− ω)
(
41m2 + (m− 16ω)ω

)
ä2

+16aω2....
a (−m+ ω)

)] m

2048a4ω12
.
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