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Spacetime correlators of perturbations in slow-roll de Sitter inflation
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Two-point correlators and self-correlators of primordial perturbations in quasi-de Sitter space-
time backgrounds are considered. For large separations two-point correlators exhibit nearly
scale invariance, while for short distances self-correlators need standard renormalization. We
study the deformation of two-point correlators to smoothly match the self-correlators at coinci-
dence. The corresponding angular power spectrum is evaluated in the Sachs-Wolfe regime of low
multipoles. Scale invariance is maintained, but the amplitude of Cℓ could change in a nontrivial way.
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I. INTRODUCTION

In recent years de Sitter space has received consider-
able attention. Astronomical observations [1] are point-
ing out that our universe now has a very tiny positive
cosmological constant, which, however, embodies around
three quarters of the energy of the observable universe.
Moreover, according to inflationary cosmology the very
early universe underwent a period of very rapid expan-
sion powered by a large effective cosmological constant.
The discovery of the anisotropies in the cosmic microwave
background (CMB) [2] constitutes a very sensitive probe
of the primordial density perturbations and its quantum
mechanical origin [3]. The comparison of observations [4]
with theoretical predictions is currently a sharp tool to
test inflation and the theory of quantized fields in curved
backgrounds [5, 6]. Therefore, a precise understanding
of the quantum properties of fields in de Sitter space is
fundamental for both the very early and the late-time
universe.

In this article we will focus on the quantum treat-
ment of primordial perturbations, which will be re-
garded as quantum fields φ living in a curved (quasi-
de Sitter) spacetime. The two-point correlation function
〈φ(t, ~x)φ(t, ~x′)〉 exhibits scale invariance at large separa-
tions |~x−~x′|H ≫ 1 or, equivalently, at late-time Ht≫ 1.
On the other hand, the amplitude of the perturbation at
a given spacetime point can be quantified by the self-
correlator 〈φ2(t, ~x)〉, which requires one to get rid off the
corresponding ultraviolet (UV) divergences and renor-
malize the expectation value.

In the first part of this work we will compute and an-
alyze the above quantities in a slow-roll de Sitter back-
ground. We will also project the large-distance behavior
of the correlator of scalar perturbations on a sphere of
fixed radius. This sphere is linked by time evolution to
the last scattering surface, where the cosmic microwave
background and its anisotropies are formed, and the an-
gular power spectrum can easily be obtained within this
spacetime picture. In the second part we will redo the

calculation for the angular power spectrum by using a
deformed two-point correlator. The new correlator is de-
fined in such a way that it matches the self-correlator
at coincidence. To this end we naturally use methods
of renormalization in homogeneous backgrounds [5, 6].
The revised angular power spectrum maintains the nearly
scale invariance, but the amplitude of the multipole co-
efficients Cℓ may be altered in a non-trivial way. We will
focus on the lower multipoles, where the Sachs-Wolfe ef-
fect dominates.

II. SPACETIME CORRELATORS IN

SLOW-ROLL INFLATION

A. Correlator of tensorial perturbations in a

slow-roll scenario

Tensorial perturbations can be described by two in-
dependent, massless scalar fields propagating in the un-
perturbed quasi de Sitter background. These two scalar
fields represent the two independent polarization compo-
nents of the fluctuation tensorial modes Dij in the in-
flationary universe: ds2 = dt2 − a2(t)(δij + Dij)dx

idxj .
Expanding the fluctuating fields Dij in plane wave modes

Dk(t)eije
i~k~x, where eij is a constant polarization tensor

obeying the conditions eij = eji, eii = 0 and kieij = 0,

one obtains the equation D̈k + 3HḊk + k2

a2Dk = 0, with

k ≡ |~k| and H = ȧ/a. The conditions for the polar-
ization tensor imply that the perturbation field Dij can
be decomposed into two polarization states described by
a couple of massless scalar fields Dij = D+e

+
ij + D×e

×

ij ,

where esije
s′

ij = 2δss′ (s = +,× stands for the two in-
dependent polarizations), both obeying the above wave
equation (see, for instance, [7]). For simplicity we omit
the subindex + or ×.
In the slow-roll approximation one assumes that the

Hubble parameter H(t) changes very gradually, and the
change is parametrized by a slow-roll parameter ǫ ≡
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−Ḣ/H2 ≪ 1. Within this approximation it is possible
to solve the wave equation in a closed form in terms of
the conformal time η ≡

∫

dt/a(t). Taking into account

that (1− ǫ)η = − 1
aH , the wave equation for Dk turns out

to be of the form

d2Dk

dη2
− 2

η(1− ǫ)

dDk

dη
+ k2Dk = 0 . (1)

Treating now the parameter ǫ as a constant, one can
univocally solve the above equation with the requirement
of recovering, for ǫ → 0, the Bunch-Davies vacuum [8].
The properly normalized solutions for the modes are

Dk(t) =

√
16πG

√

2(2π)3a3
(−η a π/2)1/2H(1)

ν (−kη) , (2)

where G is the Newton constant and the index of the
Hankel function is exactly ν = 3

2 + ǫ
1−ǫ . Having the

explicit form of the modes, we can now compute the two-
point function. At equal times t = t′ we find

〈D(t, ~x)D(t, ~x′)〉 = G

πa2η2
Γ

(

3

2
+ ν

)

Γ

(

3

2
− ν

)

× 2F1

(

3

2
+ ν,

3

2
− ν; 2; 1− (∆x)2

4η2

)

.(3)

where ∆x ≡ |~x − ~x′|. For ν = 3/2 (ǫ = 0) we have
the unavoidable infrared divergence of the Bunch-Davies
vacuum [9].
For large separations a∆x≫ H−1 one obtains

〈D(t, ~x)D(t, ~x′)〉 ∼ 4GΓ(3/2− ν)

π3/2

Γ(ν)

a2η2

(

∆x

−η

)2(ν−3/2)

.

(4)
One can immediately observe that the amplitude above is
nearly scale invariant. Moreover, the term (−η)1−2ν/a2

is time independent, which allows us to evaluate it at
the most convenient time. In fact, the correlator can be
rewritten as

〈D(t, ~x)D(t, ~x′)〉 ∼ −16πG

2ǫ

(

H(t∆x)

2π

)2

, (5)

where the time t∆x is defined as a(t∆x)∆x = H−1(t∆x).
Note that there is an implicit ∆x dependence on H(t∆x),
given by the one in (4).

B. Correlator of scalar perturbations in a slow-roll

scenario

Scalar perturbations can be studied through the gauge-
invariant field R (the comoving curvature perturbation;
see, for instance, [7]). For single-field inflation, the modes
of the scalar perturbation are given by

Rk(t) = (−πη/4(2π)3z2)1/2H(1)
ν (−ηk) , (6)

where now ν = 3/2+(2ǫ+ δ)/(1− ǫ) and δ ≡ Ḧ/2HḢ is

a second slow-roll parameter. Moreover, z ≡ aφ̇0/H ,
where φ0(t) is the homogeneous part of the inflaton
field. These modes determine the vacuum state of scalar
perturbations. Such a state can also be regarded as
the natural extension of the Bunch-Davies vacuum of
de Sitter space. The corresponding two-point function
〈R(t, ~x),R(t, ~x′)〉 is given by

〈R(t, ~x)R(t, ~x′)〉 = 1

16π2z2η2
Γ

(

3

2
+ ν

)

Γ

(

3

2
− ν

)

(7)

× 2F1

(

3

2
+ ν,

3

2
− ν; 2; 1− (∆x)2

4η2

)

.

For separations larger than the Hubble radius a|~x −
~x′| ≫ H−1 we get

〈R(t, ~x)R(t, ~x′)〉 ∼ Γ(32 − ν)

4π2z2η2
Γ(ν)√
π

(

∆x

−η

)2(ν−3/2)

. (8)

This expression can be rewritten, assuming ν − 3/2 ≡
(1− n)/2 ≈ 0 (n is the scalar spectral index), as

〈R(t, ~x)R(t, ~x′)〉 ∼ − 4πG

(1− n)ǫ

(

H(t∆x)

2π

)2

. (9)

C. Angular power spectrum

Restricting the two-point function of scalar perturba-
tions to points such that |~x| = |~x′|, we can further obtain

∆x1−n = 2
1−n

2 |~x|(1−n)(1 − cos θ)(1−n)/2 where θ is the
angle formed by ~n = ~x/|~x| and ~n′ = ~x′/|~x|. Then, taking
|~x| = rL, where rL is the comoving radial coordinate of
the last scattering surface

rL = H(t0)
−1a(t0)

−1

∫ 1

1
1+zL

dx√
ΩΛx4 +ΩMx+ΩR

,(10)

with the standard cosmological values for zL, ΩΛ, ΩR,
and ΩM [4], the correlator of scalar perturbations for
large separations (8) shows exactly

〈R(t, ~x)R(t, ~x′)〉 ∼ 4πG

ǫ

H2(1− ǫ)2

16π2

4Γ
(

2− n
2

)

√
π

Γ

(

n− 1

2

)

× 2
1−n

2 r̄1−n
L (1− cos θ)

1−n

2 (11)

where we have defined the dimensionless quantity r̄L(t) ≡
H(1 − ǫ) arL. This two-point function can be related to
the temperature fluctuations in the CMB,

〈∆T (~n)∆T (~n′)〉 =
∑

ℓ

Cℓ
2ℓ+ 1

4π
Pℓ(cos θ) , (12)

where Pℓ is the Legendre polynomial, via the Sachs-
Wolfe effect (see, e.g., [7]) 〈∆T (~n)∆T (~n′)〉SW =
T 2
0

25 〈R(rL~n)R(rL~n
′)〉. The coefficients Cℓ are obtained

by Legendre transformation of (12),

CSW
ℓ =

2πT 2
0

25

∫ 1

−1 d cos θPℓ(cos θ)〈R(rL~n)R(rL~n
′)〉 .(13)
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Therefore, the low multipole coefficients, dominated by
the Sachs-Wolfe effect, are proportional to the integral

CSW
ℓ ∝

∫ 1

−1

dy(1− y)
1−n

2 Pℓ(y) , (14)

with y ≡ cos θ. The above integral can be computed
analytically [10, 11], and we finally find

CSW
ℓ =

8πT 2
0

25

4πG

ǫ

H2(1 − ǫ)2

16π2

Γ(3− n)Γ(ℓ+ n−1
2 )

Γ(ℓ+ 2− n−1
2 )

r̄1−n
L ,

(15)

in exact agreement with the result obtained with the
momentum-space power spectrum Ps(k) = |N |2kn−1 [7],

Cℓ,SW =
16π2T 2

0

25

∫

∞

0

dk

k
Ps(k)j

2
ℓ (krL) , (16)

where the amplitude |N |2 is given by |N |2 =

4πG
ǫ

H2(1−ǫ)2

16π2

23−n

π2 Γ
(

2− n
2

)2
(

r̄L
rL

)1−n

∼ 8πGH2

32π3ǫ . For

completeness, taking approximately n ≈ 1 in (15) and

using the standard assumption r̄
(1−n)
L ≈ O(1) [7], the es-

timated order of magnitude for the amplitude of CSW
ℓ

is

ℓ(ℓ+ 1)CSW
ℓ ≈ 2GH2T 2

0

25ǫ
r̄1−n
L ∼ 2GH2T 2

0

25ǫ
. (17)

We will go back to this point at the end of Sec. IV.
We note that if the coefficients CSW

ℓ in (13) were actu-
ally evaluated using the exact expression (7) for the two-
point function 〈R(t, ~x)R(t, ~x′)〉, the integral (13) would
have been divergent [due to the UV divergences of (7) as
points ~x and ~x′ merge]. The use of the large distance be-
havior (8 and 11) everywhere in the integral (13) bypasses
the UV divergences and makes the integral convergent.
We will see in Sec. IV how the use of a renormalized
form of the two-point correlator 〈R(t, ~x)R(t, ~x′)〉 does
the same job, but with a slightly different final result for
the integral. In a certain limit both results eventually
agree, but in general we find a difference that could be
potentially probed by observations.

III. AMPLITUDE OF QUANTUM

PERTURBATIONS

We shall use φ to denote both scalar and tensorial fluc-
tuations, and ν to represent the corresponding Hankel
index. The two-point function 〈φ(t, ~x), φ(t, ~x′)〉 can be
expanded at short distances as

〈φ(t, ~x)φ(t, ~x′)〉 = H2(1−ǫ)2

16π2

{

4
∆x̄2 +

(

1
4 − ν2

)

(

−1 + 2γ + ψ(3/2− ν) + ψ(3/2 + ν) + log ∆x̄2

4

)

+O(∆x̄2)
}

, (18)

where we have introduced the dimensionless quantity ∆x̄ ≡ H(1− ǫ) a∆x. An additional prefactor, 4πG/ǫ or 16πG,
needs to be included in considering scalar or tensorial perturbations, respectively. As expected, one encounters the
typical quadratic and logarithmic UV divergences of a quantum field in a curved background. Since we are now
interested in evaluating the mean square fluctuation 〈φ2(t, ~x)〉 at a given spacetime point, we have to remove these
divergences by standard renormalization in curved spacetime [5, 6]. Different methods can be used to this end. A
preferred method for our purposes is the point-splitting version of the adiabatic regularization scheme [5, 12, 13].
In short, the two-point function 〈φ(t, ~x)φ(t, ~x′)〉 at coincidence can be naturally renormalized by subtracting the

second-order adiabatic terms G
(2)
Ad((t, ~x), (t, ~x

′))

〈φ(t, ~x)φ(t, ~x′)〉ren ≡ 〈φ(t, ~x)φ(t, ~x′)〉 −G
(2)
Ad((t, ~x), (t, ~x

′)) (19)

and taking the limit ~x′ → ~x. The method determines univocally the subtraction terms, which are found to be

G
(2)
Ad((t, ~x), (t, ~x

′)) =
H2(1− ǫ)2

16π2

{

4

∆x̄2
+

(

1

4
− ν

2

)

log
∆x̄2

4
+

2− ǫ

3(1− ǫ)2
+

(

1

4
− ν

2

)(

2γ + log
µ2

H2(1− ǫ)2

)}

, (20)

where µ is a renormalization scale and the corresponding prefactor mentioned above for scalar or tensorial pertur-
bations must be considered [14]. We observe immediately that the UV divergences cancel exactly and we are left
with

〈φ2(t, ~x)〉ren =
H2(1− ǫ)2

16π2

{(

1

4
− ν2

)(

−1 + ψ(3/2− ν) + ψ(3/2 + ν)− log
µ2

H2(1− ǫ)2

)

− 2− ǫ

3(1− ǫ)2

}

. (21)

The above self-correlators quantify the amplitude of per-
turbations at a given spacetime point.

IV. MODIFIED CORRELATORS AND

ANGULAR POWER SPECTRUM

In previous sections we have studied the correlator
〈φ(t, ~x)φ(t, ~x′)〉 and self-correlator 〈φ2(t, ~x)〉 of tensorial
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and scalar perturbations in slow-roll inflation. For an or-
dinary quantum mechanical system, with a finite number
N of degrees of freedom, expectation values of the form
〈φ(i)φ(j)〉 and 〈φ2(i)〉 match when j = i [for instance,
in a chain of spins with φ(i) ≡ Sz(i) and i = 1, . . . , N ].
However, we are facing here a field theory (with an infi-
nite number of degrees of freedom), and the above match-
ing is not a priori guaranteed. This is so because the
self-correlator requires renormalization. We may either
assume this discontinuity or modify the two-point corre-
lation function to force it to match 〈φ2(t, ~x)〉ren in the
coincidence limit ~x′ → ~x [5]. This second possibility
was indirectly explored in [16] by analyzing the power
spectrum of perturbations in momentum space. It has
been somewhat debated in the literature and properly
reviewed in [17]. One could naturally argue that the
point-separated correlator has a well-defined definition
in the distributional sense and there is not a mathemat-
ical need for any regularization [17, 18]. However, as
the spatial points approach each other, the two-point
correlator will grow without bound and diverge as the
points merge. Therefore, from the physical point of view
it seems reasonable to use a regularized form of the two-
point correlator to consistently match the self-correlator
at coincidence [5, 19]. In the conventional approach the
expectation value of the self-correlator 〈φ2(t, ~x)〉 plays al-
most no role. We assume here that the (renormalized)
self-correlator is actually playing a physical role (as in
the Casimir effect). As we will see shortly, the regu-

larized form of the two-point correlator makes the inte-
gral (13) UV convergent. The consequences of this merit
to be explored. Therefore, we further analyze here this
possibility taking advantage of the spacetime viewpoint
sketched above.

We shall modify the correlators by adding the sub-
traction terms prescribed by renormalization and accord-
ing to (19). We note that a distinguishing character-
istic of adiabatic renormalization is that the subtrac-
tion terms G

(2)
Ad((t, ~x), (t, ~x

′)) are well-defined for arbi-
trary point separation. In general this is not possible for
an arbitrary spacetime, but for the homogeneous spaces
relevant in cosmology the adiabatic subtraction terms ex-
tend to arbitrary large distances. With this in mind, we
will finally compute the angular power spectrum for pri-
mordial perturbations using the modified spacetime cor-
relators.

As a previous step we will compute the two-point func-
tion at leading order in slow-roll.

A. Two-point function at leading order in slow-roll

The procedure is similar for scalar and tensorial fluctu-
ations, so we will do a general treatment. First, we start
off splitting Eqs. (3) and (7) as a combination of two
hypergeometric functions. To this end we use the trans-
formation properties of hypergeometric functions [11]

F

(

3

2
+ ν,

3

2
− ν, 2, 1− Z

)

=
Z−

3
2
−νΓ(−2ν)

Γ(32 − ν)Γ(12 − ν)
Re

{

F

(

3

2
+ ν,

1

2
+ ν, 1 + 2ν,

1

Z

)}

+
Z−

3
2
+νΓ(2ν)

Γ(32 + ν)Γ(12 + ν)
Re

{

F

(

3

2
− ν,

1

2
− ν, 1− 2ν,

1

Z

)}

(22)

with Z = ∆x̄2/4 ≥ 0. We now expand expression (22) as a power series of the “slow-roll” parameter ν around ν = 3/2,
and stay at first order (for details see the Appendix). Grouping terms, we arrive at the following expression for the
two-point function:

〈φ(x)φ(x′)〉 ≈ H2(1−ǫ)2

16π2

{

4
∆x̄2 − 2 log ∆x̄2

4 − 1 + 2
(3/2−ν)

(

∆x̄2

4

)ν−3/2

+ 4Re

[

log

(

∆x̄
2 +

√

∆x̄2

4 − 1

)]}

(23)

Notice that the UV divergences are just the same as those found in (18), but now they are obtained at leading order in
the slow-roll expansion. We recover exactly expression (18) taking the limit ∆x̄→ 0 and the slow-roll approximation.

B. Modified two-point function

We can now proceed to do the subtraction. The modified two-point function then reads

〈φ(x)φ(x′)〉ren ≈ H2(1−ǫ)2

16π2

{

2
(3/2−ν)

(

∆x̄2

4

)ν−3/2

+ 4Re

[

log

(

∆x̄
2 +

√

∆x̄2

4 − 1

)]

− 5
3 + 4γ + 2 log µ2

H2

}

. (24)

We remark that, at leading order in the slow-roll ex-
pansion, this is an expression valid for small and large

separations. For scales larger than the Hubble hori-
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zon, ∆x̄ ≫ 1, we can further take the approximation,

4Re

[

log

(

∆x̄
2 +

√

∆x̄2

4 − 1

)]

≈ 2 log(∆x̄2).

C. Angular power spectrum

We now compute the corresponding angular power
spectrum from the modified two-point function for scalar
perturbations and for low multipoles

CSW
ℓ =

2πT 2
0

25

∫ 1

−1

〈R(x)R(x′)〉ren(y)Pℓ(y)dy . (25)

By construction this is a finite quantity, even without
taking the large separation limit for the two-point func-
tion [as it was assumed in going from (13) to (14) and
(15)]. To evaluate the logarithmic contributions of (24)

to (25) we take into account that
∫ 1

−1 dy log(1−y)Pℓ(y) =

−2/ℓ(ℓ+1), ℓ = 1, 2, . . . . The final result for the angular
power spectrum with the modified two-point function is
very well approximated by the following analytical ex-
pression:

CSW
ℓ ≈ 4πG

ǫ

8πT 2
0

25

H2(1− ǫ)2r̄1−n
L

16π2

×
{

Γ(ℓ + n−1
2 )

Γ(ℓ+ 2− n−1
2 )

− r̄n−1
L

ℓ(ℓ+ 1)

}

, (26)

where we have used ν − 3
2 = 1−n

2 , and n represents the

scalar index of inflation n = 1− 4ǫ− 2δ +O(ǫ, δ)2. Also
notice that expression (26) is valid for ℓ ≥ 1, as for ℓ =
0 there would be present all the constant contributions
from the renormalized two-point function (24), including
the one depending on the renormalization scale. In fact,
the renormalization scale may be fixed by imposing the
natural condition CSW

0 = 0.
Notice that the first term in (26) reproduces the stan-

dard result (15). The second one comes from the subtrac-
tion terms that we have added to the two-point correlator
to continuously match the self-correlator at coincidence,
but it shows scale invariance as well. Therefore, Eq. (26)
is consistent with observations [4].
However, the two terms in (26) are competing, and

the resulting amplitude for the coefficients CSW
ℓ depends

on the instant of time one evaluates r̄L. The first term

is proportional to H2(t)r̄
(1−n)
L (t)/ǫ(t), and it is time in-

dependent. However, the second term depends slightly
on time. The value of r̄L varies along the inflationary
period, ranging from r̄L ≈ 1, immediately after the in-
stant of time ti at which the scale rL crosses the Hubble
horizon [a(ti)rL ≈ H−1(ti)], to r̄L ≈ e60, at the end of
inflation (we have assumed that inflation lasts for around
N = 60 e-foldings since the scale rL exited the horizon at
ti). In the former case, r̄L ≈ 1, the amplitude is severely

reduced. In the latter situation, r̄
(n−1)
L ∼ 10−1, where

we have assumed that n ≈ 0.96 [4], and the amplitude
is then reduced at least 10%. The adequate value of

r̄L to properly evaluate the resulting amplitude in (26)
is unclear. This question is closely related to the so-
called “quantum-to-classical transition” [21], character-
izing the period of time at which the primordial quan-
tum perturbations behave as classical ones and define
the initial conditions for the postinflationary evolution,
along with its associated power spectrum. In momentum
space (mode-by-mode picture) this process is thought to
happen a few Hubble times after horizon exit [21], when
the modes are frozen as classical perturbations. It seems
natural to evaluate r̄L during this period, where quan-
tum fluctuations are imprinted as classical perturbations.
However, this quantum-to-classical mechanism is poorly
understood, and it has not been rigorously established

in the literature. Therefore one may regard r̄
(n−1)
L ≡ α

as a phenomenological parameter, varying in the range
1 > α > 0. Note that in the limiting case α → 0 one
recovers the standard prediction, and this happens when
the subtraction term is evaluated after inflation. This
parameter has influence on the relative strength between
multipole amplitudes

ℓ2(ℓ2 + 1)CSW
ℓ2

ℓ1(ℓ1 + 1)CSW
ℓ1

=
ℓ2(ℓ2 + 1)

Γ(ℓ2+
n−1

2
)

Γ(ℓ2+2−n−1

2
)
− α

ℓ1(ℓ1 + 1)
Γ(ℓ1+

n−1

2
)

Γ(ℓ1+2−n−1

2
)
− α

. (27)

Observations may properly fit the value of this param-
eter. It produces an observable effect for a significant
range of values of α. As remarked above, the details
of how this “quantum-to-classical transition” takes place
are not well established in the literature, and further
work is needed to fully understand this process. Within
the present understanding of quantum gravity it is diffi-
cult to determine theoretically the value of α and hence
the relative impact of the subtraction term in the ob-
served angular power spectrum. However, as we showed
above it can potentially be tested with observations.

V. CONCLUSIONS

We have analyzed two-point correlators and self-
correlators of primordial perturbations in quasi-de Sitter
spacetime backgrounds. For large separations two-point
correlators exhibit nearly scale invariance in a very ele-
gant way. We have deformed the two-point correlators
to smoothly match the self-correlators at coincidence.
To this end we have used renormalization methods in
homogeneous backgrounds. We have studied the physi-
cal consequences for the angular power spectrum at low
multipoles. Scale invariance is maintained, but the am-
plitude of Cℓ could change significantly. If one accepts
a mismatch between the standard two-point correlators
and the self-correlators and keeps only the large-scale be-
havior, the conventional predictions remain unaltered.
We finally stress the importance of getting a better

understanding of how to renormalize cosmological
observables. The analysis carried out in the spacetime
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framework for the tree-level power spectrum may offer a
way to experimentally probe this issue.
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APPENDIX

In this appendix we give the basic steps to obtain the
result (23). We consider (22) first. Since the first prefac-
tor is of orderO((32−ν)1), we only need the corresponding

hypergeometric function to be of order O((32 − ν)0). One
can see that

Z
−

3
2
−ν

Re

{

F

(

3

2
+ ν,

1

2
+ ν, 1 + 2ν,

1

Z

)}

∣

∣

∣

ν=3/2
= (28)

6Re {log(Z − 1)} − 6 log(Z) +
3

Z
−

3

(1− Z)

On the other hand, the second prefactor of (22) is of or-
der O((32 − ν)0), so it is necessary to evaluate the second
hypergeometric function at first order in the slow-roll se-
ries. To this end we will employ the following relation

[11]:

F

(

3

2
− ν,

1

2
− ν, 1− 2ν,

1

Z

)

= (29)

(

1− 1

Z

)

−3/4

P ν
1/2

[

2Z − 1

2
√

Z(Z − 1)

]

2−2νΓ(1 − ν)Z−ν ,

together with

P
ν
1/2(Z) =

(

Z + 1

Z − 1

)ν/2 F
(

− 1
2
, 3
2
, 1− ν, 1−Z

2

)

Γ(1− ν)
. (30)

At this point one can expand

F

(

−
1

2
,
3

2
, 1− ν,

1− Z

2

)

≈ F

(

−
1

2
,
3

2
,−

1

2
,
1− Z

2

)

(31)

+
(

ν −
3

2

)dF
(

− 1
2
, 3
2
, 1− ν, 1−Z

2

)

dν

∣

∣

∣

ν=3/2
,

where the derivative can be performed using the repre-
sentation series of the hypergeometric function. Doing
all the calculation properly one finally arrives at the fol-
lowing result:

Re

{

F

(

3

2
− ν,

1

2
− ν, 1− 2ν,

1

Z

)}

≈ 1

+
(3

2
− ν

)

[

1

4Z
+

1

4(1− Z)
− 1

2
Re {log(Z − 1)} − 1

2
log(Z)

+ 2Re
{

log
(√

Z +
√
Z − 1

)}]

. (32)

Taking all these results together for Z ≡ ∆x̄2/4 in (22)
we can approximate the two-point function as in (23).
We have also checked numerically that this expansion
works well irrespectively of the value of Z.
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