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ABSTRACT

The scattering amplitude and the total scattering cross-section of massless
particles propagating in the gravitational field of a global monopole are derived.
We find that the physical signature of such defects is a ring-like angular region
where the scattering amplitude is very large. The size of this ring-like region is
determined by the ratio of the global monopole mass to the Planck mass and its
appearance stems from the fact that the metric of the global monopole is not
asymptotically flat but rather displays the characteristic spherical angle defect.
The situation is therefore very much reminiscent of scattering in the gravitational

field of the (spinning) string.
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Global monopoles are formed in the phase transitions that occur when a
global symmetry is broken. The situation is similar to what happens in the
condensed matter physics where in the different phases of the liquid helium ®He
one encounters a plethora of different defects classified by the homotopy groups
[1]. The simplest model giving rise to global monopoles as well as global textures,
is the model with the O(3) order parameter consisting of a triplet of scalar fields
®%, a = 1,2,3. In the case of the liquid helium *He we may classify different
kinds of defects according to the homotopy groups of the order parameter space
(O(3)) in the increasing order: domain walls, strings, monopoles, and textures
[1}. Those defects were first studied in condensed matter physics [1]. There one
writes down the Landau-Ginzburg free energy for the O(3) order parameter. In
the field theory case, which is more relevant to the Early Universe, one replaces

the L-G free energy density by the Lagrangian
1 a a 1 aF,0 242
L= -2-3,.<I' o'e —Z/\(@ ¢* — v)“, (1)
The generic O(3) invariant configuration is given‘ by the Skyrme hedgehog ansatz

mﬂ
P = vf(r)n®,n® = 0 (2)
The gravitational fields produced by the axisymmetric and spherically symmetric
Goldstone field configurations were studied by a number of authors [4,6,7,8] .

In this Letter we are interested in the long distance properties of the gravi-
tational field produced by a global monopole and its effect on the scattering of
massless particles, like photons of the cosmic background radiation (CBR). Un-
like the magnetic monopole case, where the gauge symmetry is broken down to
U(1)ipcar and the total energy is finite and concentrated in the monopole core, a
global monopole has a long range Goldstone field * with energy density falling
off like r=2, e. g T% = cv?r~2, where ¢ is an irrelevant constant. The static

and spherically symmetric metric for a global monopole was studied in [4]). The
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static metric is completely determined by the Hamiltonian constraint equation
Goo = 87GTyo, or

R = 167Gp,

p=T%. ®

The asymptotic behavior of the spatial metric is determined by the asymptotic
behavior of the energy density p of the Goldstone field. For p = cv?r=? we have
R = 16mcGuv®r~2. It is easy to convince oneself that the O(3)-invariant spatial

metric has a form [4]
ds? = dr? + B2 r3(d6® + sin®6d4?), (4)

where b? = 1 — 8mcGv?. We notice in passing that in the two-dimensional case
it is the Dirac-delta density of energy which produces the spatial metric of this
type. On the equatorial plane the metric (4) is exactly the same as that of a local
gauge string, in which case the azimuthal angle ¢ has the defect A = 27(1 — b)
[8]. Exactly for this reason one would expect that the classical and quantum
scattering on a global monopole will be reminiscent of the Sommerfeld scattering
on wedges [9,10], or what is the same, the scattering on the (spinning) cosmic
string [2]. The scattering of massless particles on the spinning cosmic string, first
studied in [2], is equivalent to the gravitational Aharonov-Bohm effect (with some
modifications caused by the wedge, or conical singularity). Another place where
the spatial metric (4) appears is the spatial metric of a global texture at some
time ¢ = ty (see Spergel and Turok [5]). We expect that the scattering on a global
texture, at least in the adiabatic approximation, will also bear some similarity to |
the characteristic scattering on a global monopole. It would be quite interesting
to recognize the characteristic physical signature of a global monopole (or global

texture) in the scattering of massless particles (like photons of the CBR).

In the following we will consider, for simplicity, the spin zero massless par-

ticles propagating in the gravitational field of a global monopole. We will be
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primarily interested in the small angle scattering amplitude for massless parti-
cles like photons of the CBR. For this reason, obviously, only the long distance
behavior of the metric is important. The details of the core of a global monopole
are completely irrelevant in this case. Also, the mass of a global monopole is as-
sumed to be much smaller than the Planck mass, which implies the small defect

angle A. We consider the covariant d’Alambert equation
V,.V*® =0, (5)
in the .(asymptotic) gravitational field of a global monopole {4]
ds? = —dt? + dr? + b*r%(d6* + sin0dé?), | (6)
where the free parameter b? is related to the vacuum expectation value v of the
Goldstone field %, b* = 1 — 87cGv?, and, therefore, to the mass of a global

monopole. Because the metric (6) is static we consider the wave of a given

frequency w
@ = e~hy(r, 6, ¢), (7)
which leads to the Helmholtz type equation [2,10]
—ViVih = Ay = wy. (8)
The covariant spatial Laplacian A has a form

A= —r~28,(r?8,) + (b*r®) 112, (9)

where L? is the square of the flat space angular momentum operator, or the
~ Laplace-Beltrami operator on the two-sphere S%. As usual in the problem of

scattering in the spherically symmetric field we employ the method of separation
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of variables. It is obvious that only m = 0 spherical harmonics will enter the sum
of the partial waves (10)
o0
¥(r,8) = ) _ aiRy(r)Pi(cosb). ~(10)

=0

We reduced the problem to the radial scattering problem with the radial equation
R) +2r~ 'Ry + (W = (1 + DO *r B)R = 0. (11)

As usual, changing variables R = r~1/2@; leads to the radial equation whose

solutions can be described in terms of the Bessel functions
r2Gy + Gy + (w2r2 — 1+ 1) + i-)) G, = 0. (12)

When b = 1 we have the solution corresponding to the spherical Bessel function
Ji(wr) or r1/2 Ji %(wr). Actually, our scattering problem should reduce to the
no-interaction situation when b = 1. This condition puts a strong constraint
on the form of the coefficients q; in the generic scattering solution when b # 1.
When b # 1 the radial solution which is regular at r =0 is

Gy = J,,(;)(wr), (13)

where

v(l) = b"l\/(l + %)2 - 114-93. (14)

The general scattering solution is
Y= Yin + "»bsc, (15)

where in = #7080 = ¢*2 and ¢, = r=1f(8)e*", as r — co. Also, we demand

that 15 = 0, when b = 1. This condition uniquely singles out the total scattering
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amplitude. The total dependence on b of the scattering phase shifts §;(b) in the
scattering amplitude is due to the dependence of the radial functions G on b (in
the order of the Bessel function 1(!)}). Standard arguments described above lead

to the following scattering amplitude f(8),(w = k)
o0

£(6) = i 321 + 1)(e®® — 1)Py(cosb), (16)
i

where the phase shift § depends on the “defect angle parameter” bin the following

way

51(6):%(1-{-%-—-!/(!))=%(z+%—b-lJ(l+%)2—l:—bz). (17)

The standard expression for the differential scattering cross-section in terms of
f(8) is:
do 2

sinbdaag — O (18)
We are really interested in the small angle behavior of the differential scattering
cross-section, or the scattering amplitude f(#). This is because we know only
the asymptotic form of the metric of a global monopole. From the small angle
behavior of f(#) we are able to infer the total scattering cross-section o as a

function of the “defect parameter” b via the optical theorem

o= ‘%‘"Im £(0). (19)
The phase shift 6 is not a simple function of ! (or [+ 1), and because of that the
exact form of the scattering amplitude f(6) is not available at hand. However,
at small angles § = O(A), where A is the “defect angle” which is much less than
one, we have a systematic asymptotic expansion for the scattering amplitude
f(8). In fact, f(9) in this regime of angles § can be easily calculated. In order
to evaluate the scattering amplitude f(6) it is useful first to change variables

6



l = z=1+4 % The reason for that change of variables is that for large z the

phase shift §(z) has a simple expansion

§(z) = g-(z —5E o) = %z(l —5N+0EY, @)

— 2 " .
where a? = 1—4—". In the case of interest a? is very small and may serve as

a convenient expansion parameter. In general, we can write §(z) = §0)(z) +
§0(2)+... = o2 46()(2), where §0)(2) = 2(1-b71)z, and 6™)(z) = O(="2"+1).
The next to the leading term §(®)(z) in this expansion is proportional to a? and

so on. The exponent of the phase shift is suitable for the power expansion

oo
(218(2) — (216 (z) o exp(2i26(“)(z)). (21)

n=1}
The second term in the product (21) can be expanded systematically in the
powers of a®. Below we calculate only the leading and the next to the leading
contributions to the scattering amplitude f(6). Those are the only “singular”
contributions which are significant for the small angles . This means that only

the following terms in the expansion will be important
1
8(z) = %((1 ~ bz +5a’ 7T 4 O(z-3)). (22)

We find that the scattering amplitude can be expressed in terms of the function
h(8, ) defined as follows

oo

; 1
h(8,a) =Y e™**() Pcosh) = 23
(6:2) ,g; ) t{cosb) /2(coswa — cosf)’ (23)
where we have used the generating function for the Legendre polynomials
(1 — 2tcosb + tg)_l" = Z t! P\(cosh). (24)

=0
The leading contribution to the scattering amplitude ) is proportiohal to
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the derivative of h(#, @) with respect to a, where & = 1 — b™!

£O6) =

2\}51‘: sinwa(coswa — cosd) ™32, (25)
From the optical theorem (19) we obtain easily the leading contribution o(%) to
the total scattering cross-section gy = o® 4 o) 4 ey

(0) _ w COST
k2 sintte "‘

(26)

The next to the leading order contribution to the scattering amplitude f(1)(8)
comes from the expansion of (21) up to the O(a?) term

F() = h(e a). (27)

2bk
The higher order corrections are given in terms of integrals of h(8, a) with respect
to a and they are obviously nonsingular at # = 8y = wa. This means that their
contribution to the total scattering cross-section will be negligible term by term
for the small defect parameter a. From (21) we find that the contribution to the
cross-section is negative and equal
2

o) = —%St:—'. (28)
The higher order in a? contributions to gio¢ are in principle calculable but are very
small for all practical purposes. This completes our calculation of the scattering
amplitude. We observe that the amplitude f(#) has a universal singular behavior
for angles @ close to fy = wa. This is the basic physical signature of a global
monopole in the gravitational scattering. The amplitude is very large in the ring-
like region with the angular size of order of 6. In principle, by measuring the size
8o of this ring-like region we can determine the parameter b in the asymptotic

metric of the global monopole, and, therefore, the mass of the monopole.
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