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ABSTRACT

We use the S-matrix pinch technique to construct at one loop order
a four-gluon vertex for QCD, which is independent of the choice of the
gauge parameter, when one or more of the incoming momenta are off-shell.
We discuss some of the technical subtleties in the application of the pinch
technique and show that this vertex satisfies a very simple Ward identity,
relating it to a previously costructed gauge independent three-gluon vertex,
also found with the same technique. This analysis serves as a prelude to the
costruction of an effective potential for QC D, which is gauge independent
order by order in the dressed-loop expansion.
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1. Introduction.

The pinch technique was first introduced by Cornwall over a decade ago [1] and has
received considerable interest ever since. The original mo‘tivation was to device a consistent
truncation scheme for the Schwinger-Dyson (S.D.) equations that govern the dynamics of
gauge theories. These equations are inherrently non-perturbative and could in principle
provide important information about a plethora of phenomena in non-Abelian gauge the-
ories not captured by perturbation theory. In practice however, one is severely limited in
exploiting them, mainly because they constitute an mnfinite set of coupled non-linear inte-
gral equations. Even though the need for a truncation scheme is evident, particular care is
needed for respecting the crucial property of gauge invariance. Indeed, the $.D. equations
are conventionally built out of gauge dependent Green’s functions. Since the mechanism of
gauge cancellation is very subtle and involves a delicate consiracy of terms coming from all
orders, a casual trancation of the series often gives rise to gauge dependent approximations
for ostencibly gauge independent quantities. The pinch technique attempts to address this
problem in its root, namely the building blocks of the S.D. equations. According to this ap-
proach, the Feynman graphs cont;ibuting to a given gauge invariant process are resummmed
into new propagators and vertices where the gauge dependence has been reduced to an
absolute minimum - that of the free gluon propagator. The proper self-energy of the new
propagator and the new vertices are themselves gauge independent and as 1t turns out so
are the S.D. equations governing these new Green’s functions. These new 5.D. equations
are in general more complicated than the usual ones because of the presence of extra terms
which enforce gauge invariance. Nonetheless, it 1s possible to truncate them, usually by
keeping only a few terms of a dressed loop expansion, and maintain exact gauge invari-
ance, while at the same time accommodating non-perturbative effects. One very important
aspect of gauge invariance in the context of 5.D. equations is that the Green’s functions

defined via the pinch technique satisfy simple QED like Ward identities. This feature is very



important since it enables the cancellation of the final gauge dependences stemming from

the free parts of the gluon propagators entering in the expressions for the 5.D. equations.

Although the program described above is not yet complete, several interesting results
have been obtained by the application of PT in a variety of physical problems. In the
context of QCD a gauge invariant gluon self energy was derived, and its S.D. equation
constructed and solved for T = 0 [2], as well as finite T [3]. The plasmon decay rate was
also calculated at finite T using the same method [4]. Later the QCD gauge invariant
three gluon vertex was calculated at one loop level and was shown to satisfy a very simple
Ward dentity [5]. Finally, the subleading corrections to the self-energy were calculated by
Lavelle [6]. The P.T. was also extended to the case of non-Abelian gauge theories with
spontaneously broken gauge symmetry (with elementary Higgs) in the context of a toy
field theory based on SU(2) and a gauge independent electromagnetic form factor for the
Standard Model neutrino was constructed [7]. The most recent contribution known to
the author is that by Degrassi and Sirlin (8], who derived one loop gauge invariant self
energies and vertices for the Standard Model and proposed to identify the pinch parts with

the contributions of equal time commutators in the relevant Ward 1dentities.

As we already mentioned the upshot of this program is the construction of a 3.D. series
which is manifestly gauge independent even in its one dressed loop truncated version. The
systematic derivation of such a series for QCD has been the focal point of extensive research.
In a ghost free gauge, the usual S.D. equations for quarkless QCD are build out of three
basic quantities; the gluon propagator &\ | the three gluon vertex I'z, and the four gluon
vertex ['y. One may construct the effective potential © [9-10], a functional of the three
Greens functions, and then extremise independently the variations of Q(A, [3.T4) with
respect to A, ['; and T'4, e.g. % =0, 3619—3 = 0 and é_ﬁl% = 0 The resulting expresions will
be the corresponding S.D. equations for A, I'y and T'y. In such a picture the solutions to

the S.D. equations will in general be gauge dependent in a non-trivial way. If one could

solve the entire renormalised $.D. series and tlhen substitute the resulting gauge dependent



solutions A, I'; and T4 back into (A, T'3, I'y) and calculate its value, (A, T3, T4), the final
answer would be gauge independent, since 2 is a physical quantity (vacuumn energy). The
way this gauge cancellations would manifest themselves is complicated and involves non-
trivial mixing of all orders. However, since solving the entirte S.D. 1s practically impossible,
some form of truncation is necessary. The minimum requirement for any such truncation
scheme must be that the solutions of the truncated S.D. equations, when substituted
into €2, should still preserve its gauge invariance. U;lfortunately this is not the case if
one truncates the series without a particular guiding principle. The alternative approach
that has been proposed [11]is to demand from the beginning that the effective potential
S:Z(A, I, f4) as well as the individual expresions for the self energy d, for I'3 and for I's be
gauge independent order by order in the dressed loop expansion. (We use hats to indicate
that these expresions are in general different from their conventionally derived unhatted
counterparts). Assuming that d, '3 and [y are individually gauge independent is not
sufficient however to guarantee the order by order gauge independence of {1, because there
is a residual dependence on the gauge fixing parameter coming from the free part of the
propagators A entering in the expression for 2. The necessary and sufficient condition for
the order by order cancellation of the residual gauge dependence is that the renormalized

self energy II,, is transverse, e.g.

¢“f,, =0 (1.1)

order by order in the dressed expansion. The one loop expresion for fIW in a ghost free
gauge is given by the two graphs in Fig. 1 (There is an additional ghost graph in covariant
gauges). We see that already at the one loop level the fully dressed-expressions for I'5 and
'y make their appearance. The second graph would be zero in dimensionally regularized
perturbation theory, but that need not be the case beyond perturbation theory (see ref
[2]}). It turns out that Eq. {1.1) can be satisfied as long as d. 'y and Ty satisfy the following

Ward identities:



fo‘uua (Q'la 9,43) = Pua(q2) (Z_l (QL’) — Pya (Q3)C§—1 ((I3) (12)
and
giTabed, = £,05% (01 + a2, 93,94) + cp. (1.3)

with P, the projection operator defined in Eq. (2.12) and fabc the structure constants
of the gauge group. If Eq. (1.2) and Eq. (1.3) are satisfied, than 2 is manifestly gauge
independent order by order in the dressed loop expansion and so are the 5.D. equations
generated after its variation. Once solved they will give rise to gauge independent d. T3 and
I';. Finally, the self-consistency of the whole program requires that, in addition to beeing
gauge independent, d, I'; and Ty satisfy the correct Ward identities, namely Eq. (1.2) and
Eq. (1.3), whose validity was assumed.

Although this program has been layed out conceptually, its practical implementation
is as vet incomplete. If Green’s functions with the properties described above can arise out
of a self-consistent treatment of QCD, one should be able to construct Green's functions
with the same properties at the level of ordinary perturbation theory, after appropriate
resumation. The pinch technique accomplishes this task by providing the systematic al-
gorithm needed to recover the desired Green’s functions order by order in perturbation
theory.

Both the gluon self-energy and the three-gluon vertex have already been studied in
detail in references [2], [3], and [5] in the context of the pinch technique at one loop
order; explicit gauge independent expressions were derived and the validity of the Ward
identity Eq. (1.2) was verified. On the contrary, very little has been said thus far about
the new four gluon vertex, even at the level of perturbation theory.

In this paper we apply the pinch technique to the case of the of the four gluon vertex.
This is a non-trivial task. not only because of the large number of graphs, but also because
certain subtleties of the pinch technique. not encounterted before, need be discused. We

show that
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a) At one loop level the pinch technique gives rise to a gauge independent four

gluon vertex.

b) The new four gluon vertex satisfies the Ward identity given in Eq. (1.3).

The paper is organised as follows. In section 2 we review the S-matrix pinch technique
and discuss some of the most relevant results for our purposes. In section 3 we present the
analysis for the construction of the gauge independent four gluon vertex and discuss the
subtleties involved in the application of the pinch technique in this case. In section 4 we
prove the Ward identity relating the gauge independent four gluon vertex constructed in
the previous section to the gauge independent three gluon vertex of reference [51. Finally,

we present our conclusions in section 3.

2. The Pinch Technique.

In this section we briefly review the S-matrix P.T. and summarise results obtained in
the past few years, partially in an attempt to establish notation and partially because we
will need the results presented in this section in the analysis that follows. In particular
we outline the method of derivation of a gauge independent proper self-energy and a
gauge independent proper three gluon vertex, and comment on the simple QED-like Ward

identity relating them.

The S-matrix pinch technique is an algorithm that allows the construction of modified
gauge independent n-point functions, through the order by order resummation of Feyn-
man graphs contributing to a certain physical and therefore ostencibly gauge independent
process (an S-matrix in our case). The simplest example that demonstrates how the P.T.

works 1s the two point function (gluon propagator).
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A. Gluon Seif-Energy
Consider the S-matrix element T for the elastic scattering of two test quarks of masses
M, and M;. To any order in perturbation theory T is independent of the gauge fixing

parameter A, defined by the free gluon propagator

_Q'uv’*'(l_)‘)q_;gi )
Au (¢) = e (2.1)

On the other hand, as an explicit calculation shows, the conventionally defined proper
self-energy (collectively depicted in graph 2a) depends on A. At the one loop level this
dependence is canceled by contributions from other graphs, like 2b and 2¢, which do not
seem to be of propagator type at first glance. That this must be so is evident from the
form of T

T(s,t, M, My) =Ty (t)+ T (t, M1, M) + T3 {s.t, My, M>}) (2.2)

where the function T} (#) depends only on the Mandelstam variable t = —(p1 —p1}* = —q*,
and not on s = (p; + p2)” or on the external masses. The propagator-like parts of graphs
like le and 1f, which enforce the gauge independence of Ti(t), are called “pinch parts”.
The pinch parts emerge every time a gluon propagator or an elementary three gluon vertex
contribute a longitudinal term &, to the original graph’s numerator. The action of such a
term is to trigger an elementary Ward identity of the form
oy =k = (p+F—m) = (h—m)
=57 Hp+ k)~ STHp)

(2.3)

once it gets contracted with a v matrix. The first term on the right-hand side of Eq. {2.3)
will remove the internal fermion propagator - that is a “pinch” - whereas S~!{p) vanishes
on shell. This last property characterises the S-matrix P.T. we will use troughout this
paper. Returning to the decomposition of Eq. (2.2), the function T1(%) 1s gauge invariant
and unique and represents the contribution of the new propagator. We can construct the
new propagator, or equivalently T1(#), directly from the Feynman rules. In doing so it is

evident that any value for the gauge parameter A may be chosen, since 1, 1>, and T3 are
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all independent of A. The simplest of all covariant gauges is certainly the Feynman gauge
(A = 1), which gets rid of the longitudinal part of the gluon propagator. Therefore, the
only possibility for pinching arises from the four-momentum of the three-gluon vertices,
and the only propagator-like contributions come from graph 2b.

To explicitly calculate the pinching contribution of a graph such as 2b it is convenient
to decompose the vertex in the following way, first proposed by 't Hooft. Group theory

factors aside,

Puva =Tl + T4, (2.4)
with
Lo =0+ k), Gua + Fura (2.5)
and
Ff:ua = 2quGva — 2qudva — (2K + q), Guv (2.6)
I‘fm satisfies a Feynman-gauge Ward identity:
¢“TE, o = |k = (k+ 9| g (2.7)

where the RHS is the difference of two inverse propagators. As for Ffm (P for “pinch”) 1t

gives rise to pinch parts when contracted with v matrices

Guo (d + F') =Y [(15+ é - ?n) - (}& - ﬂ - 771)}
=Yua [S_l (p+q)— 57 (p— '1‘7)]

and

Jvaf =gva (P~ m) —(p— § —m)]]

=¢ue ST (p) = ST (p— k)]
Now both S~1(p + ¢) and S~!(p) vanish on shell, whereas the two terms proportional
to S~!(p — k) pinch out the internal quark propagator in graph 2b. The total pinch

contribution I (¢) from graph 2b and its counterpart mirror image graph with the bubble



attached to the left line is given by:

P . 1 29‘2 d4]€
o= (‘-’N) e {(2«)4] /k2(k+q)2

5] 2 4
-3 )
167 e

where in the second equality we give the renormalized version of the integral. The factors

(2.10)

in front of the integral are a group-theoretic factor %N [ N = number of colors in SU(NV)
]; one factor of 2 for the two pinching terms from Eq. (2.8) and Eq. {(2.9); another factor
of 2 from the contribution of the mirror graph. In adding the pinch parts to the usual
gluon self-energy one ambiguity needs resolution. Because we are working with the on-shell
S-matrix, any terms ~ ¢,g, in the pinch parts do not show up in 7y(t). We define uniquely
the proper self energy associated with the pinch parts by demanding that it be conserved

[12]. So we define 117, (¢) as

ity

I° (¢) = Pu ()07 (q) (2.11)

where

I
—
S

PMV(‘Y}E_Q'ZQ.L:U""Y#(IV (2.1

Adding this to the usual Feynman-gauge proper self energy

A= _
Hiw 1}(({):}3”:/((})1-[“ ”(fj) (213)
with
=1 (g) = —2 N9 1o (=4 3
(1) 3 1672 I JTx: (2.14)

with




and

1IN
T 4872

the coefficient of —g? in the usual one loop 3 function. Finally, the full modified propagator

(2.17)

Auu(g) at one-loop order reads

B (9) = Puv (@) d(g) = A (2.18)

with

d'{g) =1-TI(g)
=1+bg'31n(—q2> (2.19)
2

We see that the modified propagator has a gauge independent self energy and only a trivial
gauge dependence originating from the tree part given by Eq. (2.1).
B. The 3-gluon vertex

The gauge independent three gluon vertex is constructed by considering the connected
S-matrix element for scattering of three test quarks of arbitrary masses. As with the
propagator A;w the Feynman gauge A = 1 is the most convenient. The relevant graphs in
this gauge are given in Ref [5]. We can extract a gauge independent improper vertex by
identifying all the parts of Feynman graphs which are independent of the external momenta
p; and p;, and the test quark masses M;, and depend only on the momentum transfers

¢i = pi — pi- The sum T{q1, ¢2,q3) of ail these contributions has the form
T(1,2.3) ~ @1y uriinvsuaitzyruz AP (1) A% (2) AT (3) T pa (2.20)

where the propagators A are now the new ones defined in Eq. {2.18). T is gauge nvariant,
agd the trivial gauge dependence of Ain Eq. {2.18) does not appear in T, since the external
quarks are on their mass shell (f; = yi = M;). So we can recover the gauge independent
f'#,,,, from T by stripping off the AW as 1f they had no ¢,¢, terms at all. The final vertex

has full Bose symmetry and has the form [13]

- = 1 »
Lpva = F,(u,)x‘ral) - ‘,‘Srgwcr [Hf {q1) + HP (2) + HP((IIS)

s}

+ [Vi5 Aoy, (1) + ¢p]
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In the formula above [',q is the bare three vertex, I' Ef},ﬁl) 1s the contribution qf the usual
graphs in the Feynman gauge. The third term, as the explicit presence of the free inverse
propagator Aj ! indicates, contains the pinch contributions from graphs like 3a and 3c,
graphically shown in 3b and 3d respectively. It is important to notice the relative minus
sign of the second term and that the third term is ultraviolet finite. The exact closed form

of T 4va is lengthy and has been reported in Ref [3]. We will not reproduce it here.

-

I, was shown to obey a simple Ward identity:

T (01,92, 03) = P (2) d7" (42) = Poa (93)d™" (g3) (2.22)
with similar Ward identities upon multiplication of f‘wa by ¢4 or ¢§. It is very important
to notice that the Ward identity of Eq. (2.22) makes no reference to ghost Green’s functions
as the usual covariant-gauge Ward identities do. Finally we note that with the exception
of ghost-free gauges the RHS of Eq. (2.22) is not the difference of two inverse propagators,

because the projection operators P, have no inverse.

3. The four-gluon vertex.

In the previous section we established the general rules of the S-matrix pinch technique
and showed how a gauge independent self energy and three gluon vertex can be constructed.
In this section we use these rules to construct the gauge independent four gluon vertex
at one loop order. This is a more formidable task mainly because of the larger number
of Feynman graphs involved. In addition new complications arise from the fact that one-
particle irreducible and one-particle reducible graphs exchange contributions in a non-
trivial way that we will explain shortly. Our analysis will be essentially diagramatic and

we will mainly focus on the subtleties of the method. The main points are the following:
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a) The bare four-gluon vertex I‘zz"o‘fﬁ is given by

b
Thvas = £ % (9ua9v0 = Guo9ua)

+ facefdbe (gnpgAv - gﬁvg)\p) (3-1)

+ fadefbce (g,ut/gp)\ - gy/\gpu)
and is related to the three gluon bare vertex I‘f‘?};‘} by the following elementary Ward
identity:
d
qfrii?/%iﬁ = fabplourg (41 + 2,03, 44)

+ facpriipﬁ (g2, 91 + 93, 44) (3.2)

+ faap D% (g2, 43, @1 + g4)
and similarly for any other of the ¢, ¢ and qf (Fig. 4a). Both [,.e and T'yap are
manifestly gauge independent at tree level. If we consider the usual one loop corrections
to these vertices they become gauge dependent. Moreover Eq. {3.2) is not satisfied any
more. As we will show in the next section Eq. (3.2) can be generalised to one loop for the
gauge independent three- and four-gluon vertices constructed via the pinch technique.

b) We consider the S-matrix element of four test “quarks” of arbitrary masses. The
external fermions are considered to be om shell, eg. i = pi — ¢ = M;. The proper
4-gluon vertex will be extracted from the part of the S-matrix T(ql,qg,Q3,q4) that only
depends on the momentum tranfers ¢;. The general form of T (q1,92, 93, q4) 18 shown in Fig
4b. As before we use the Feynman gauge A = 1 since it involves the smallest number of
graphs. This is no loss of generality since T(q1. 92,93, q4) is ostencibly gauge independent.
Moreover, we only keep the graphs of quark-less QCD (no quark loops), since the quark
contributions are individually gauge-independent and do not affect the Ward 1dentity.

¢) The Feynman graphs contributing to ff’(ql,qz,@,q,;) in the Feynman gauge are
shown in Fig 5. Graph 3a stands collectively for the one particle irreducible {1PI) graphs,
explicitly shown in Fig 6. (see also Ref {14]|). Graph 5b stands for all the one particle
reducible (1PR) graphs, like those explicitly shown in 7a, Tb and Te. One particle reducible

graphs certainly contribute to T(q1, ¢2, ¢3. ¢4 ) and are essential for its gauge independence.
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Finally, graphs like 5¢ and 5d will contribute to T(ql, 42,93, ga) only trough their pinched
four vertex-like pieces (shown in 8a and 8b) and will ensure both the gauge independence
of the vertex under construction and the generalisation of the Ward identity in Eq. (3.2) to
this order. We note that, as in the case of the pinched parts of the three vertex, the pinched
graphs of the four vertex are ultraviolet finite, as one can easily verify by simple power
counting. Finally, for calculational purposes we mention that there is a Bose statistics
factor of -,f; multiplying graph 6b, a Fermi statistics factor of (-1} for the ghost loop of
graph 6a, and the number of permutations for each topology is given in Ref [14].

d) We make extensive use of the following group-theoretical identities for the structure

constants fe0¢:

e phve _ 7 geb (3.3)
fupefbpmfcem — ;}.N'fabc (34)
and the usual Jaccobi identity:
fabe pede | gace ghde | pade ghoe _ g (3.5)
In addition, we use that
(o, Tp) = ¢ fupcTC (3.6)

where T, is the representation of the external “test” fermions.

e) For the construction of the gauge independent 1PI vertex out of T(q1.¢2, 43, q4)
particular care is needed. Specificaly, ’f(ql 42,743, ¢1) contains 1PR graphs. like those in 7a,
7b, and Te, which, as we already emphasised. are mstrumental for its gauge independence.
On the other hand 1PR graphs should not be included in a definition of a 1P four vertex.
The resolution of this dilemma lies on the following observation: Up to residual pinch
parts which are effectively 1PI, all 1PR graphs organise themselves into gauge independent
substructures built out of the gauge independent two-point function A,, and the gauge

independent three point function T'y,q, defined in the previous section. To demonstrate
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with an example how this arrangement takes place, we concentrate on the 1PR graphs
7a, Th, and 7e. Graph Te contains allh the usual one loop self-energy Feynman graphs
of AE{},=1), whereas graphs contain some of the usual three gluon vertex graphs of I“E{}El)
(ghost graphs omitted). It is important to notice that there is another set of graphs like
7a and 7b, which we obtain by rotating the figures by 180%. So in effect we have two sets
of three-gluon vertex graphs appearing along the diagonal of our figure, one in the low left
corner (shown) and one in the upper right corner (not shown). In order to construct a
gauge independent self energy AW, out of Agfl), and a gauge independent three gluon
vertices f‘wa out of FL’};I), the appropriate pinch parts must be supplemented. We can

convert Aff” to AM by adding the pinch II¥ and then subtracting %HP from each one

of the two I‘L’},‘:” {one in the low left and one in the upper right corner). Two more

terms like this will be suplemented to I’ E[},ﬁl) from the two legs hooked on the two external
fermions. Thus we have accounted for the second term in Eq. (2.21). The pinch parts
of Tc and 7d will contribute two out of the three pieces of the third term in Eq. (2.21),
namely Viuaq129”* + Vipaqe?g?” We now add and subtract the missing part Vi, ,¢3®¢”
and so we end up with exactly f‘um of Eq. (2.21) and the leftover ﬂVL,,,,pqggg""’, which is

effectively 1P, due to the presence of g3, which cancells the propagator é_gin the original

1PR diagram, as shown in Fig 8c. All such terms are instrumental for the gauge invariance

3P

of the vertex under construction. We will collectively call Ty, -

g all 1PI terms left over
from the process of converting 1PR conventional three giuon vertices to gauge independent
P g & gaug P

ones. Similarly, we call ]."'fp all 1PI contributions left over after converting conventional

w3

self-energies to gauge independent ones.

f) Finally we must isolate all the pinch parts that originate from 1PI graphs like 5¢
and 5d. Such pinch contributions are schematically shown in 8a and 8b. It is important
to include the contributions of the crossed graphs corresponding to 8a and Sc (not shown}).
Such contributions are essential because, when added to the regular ones. they give r1se to

group-theoretical factors of the form [Ty, T;], which, after use of Eq. (3.6), give rise to the
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correct group theoretical structures. We collectively call all the pinch parts I"f;fa g- Clearly
they are all multiplied by a free inverse propagator Ag 1,
The final form of the gauge invariant and fully Bose symmetric four gluon vertex T avaf

is given by the following sum:
{A=1) P
praf + rﬁwaﬂ

4P
g+ Duvag

Fuvas =T (3.7)
n FSP .

nra
The exact closed form 1s very lengthy and of limited usefulness for our general program,
and we do not report it here. Far more interesting is the Ward identity that this vertex
satisfies. We will undertake the proof of the Ward identity in the next section. Here it

should suffice to mention that knowledge of the exact closed form of r uvad 18 DOt neccessary

for proving the Ward 1dentity.

4. The Ward Identity

In the previous section we described the construction of the gauge independent four
gluon vertex f‘umﬁ through the S-matrix pinch technique. In this section we deal with the
second central topic of this paper, namely the Ward identity that f‘m,o, 3 satisfies. It turns

out that f‘“mﬁ and f“m are related by the following Ward identity:

Pabed 2
N Tvapg = FabpL g (1 + 42,43, ¢4)

F Fuep TP (qor g1 + g3, a) (4.1)

v}
+ faapDoy (q2oq3, a1 + qa)
Eq. (4.1) is the generalisation of the tree level Ward identity of Eq. (3.2) and the major
result of this paper. It must be emphasised that as in the case of the Ward identity in
Eq. (2.22) this new Ward identity makes no reference to ghost Green’s functions; Eq. (4.1)

is completely gauge invariant. Before diving into the complexities of the full proof, it 1s
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instructive and relatively straightforward to first establish the validity of Eq. (4.1) only for
the ultraviolet divergent parts of [#¥® and ['#vaf | Z,#** and Z,#7*F respectively. Saving

only terms ~ % we have that their tensorial structure is simply
Z#e = ZzIHve (4.2)

and

Z4me8 = Z,oevd (4.3)

where Z3 and Z4 are scalar quantities. From Eq. (2.21) we see that only the first two
terms are ultraviolet divergent and contribute to Z3, whereas the third is ultraviclet finite.
Similarly, the first two terms of Eq. (3.7) contribute to Z4, whereas the last two are finite.

So, using the fact [14] that

(A=1) _ 2¢°N }
Z9™ =1+ (J (4.4)
and
2
(A=1) _ 4 g°N E .
Z4 =1 4872 (e (45)

and the value of II? from Eq. (2.10) we have

2¢°N ‘N
2=+ (7)) - [ox ()
i /) € 48w~ J € (4.6)
=1+ bg2 (l) -
€

and

Clearly
Z3 = 24 {4.8)

and so from Eq. (3.2), Eq. (4.2}, Eq. (4.3) and Eq. (4.8) immediately follows that Zgﬁi’ﬁ,

and Zqziffﬁ satisfy Eq. {4.1) as advertised.
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We now turn to the full proof of Eq. (4.1). To prove Eq. (4.1). we act with gy on f‘umﬂ
given by the RHS of Eq. (3.7) and try to recover the appropriate combinations of [, as
they appear in the RHS of Eq. (4.1). In that vein it is far more convenient to act on the
individual graphs that define r avog instead of first evaluating them and then acting with ¢¥
on the final answer. In this way it is much easier to immediately identify entire structures
that contribute to the RHS of Eq. {4.1) as well as major cancellations among different
graphs. This in retrospect explains the distinction between the topologically equivalent
graphs 6a and 6¢, since when acting with ¢f on them we hit on different elementary
vertices (four-gluon vertex for 6a, three-gluon vertex for 6c). Troughout the algebraic
manipulations we make extensive use of the tree level Ward identity of Eq. (3.2) to convert

Tyvap to Duva, the tree level version of Eq. (2.22) namely
q#r,rwa [Q‘,k-,—(k-l-q)] = Pyo (k) = Pua (k+q) (4.9)

to convert ['4,, to inverse gluon propagators, as well as the identities of Eq. (3.3), Eq. (3.4),
Eq. (3.5), and Eq. (3.6). The actual algebra is straightforward but tedious. In what follows
we will provide for the reader a roadmap of the proof and highlight some of the most

important steps.
A=1)

ol

a) Acting with ¢} on Fi the first term of Eq. (3.7), we find three different types

of terms, namely

A= A= - —
qfri,m};) = FoTUZ (01 + @ a5, 00) + Ko Aoy (91) + Suap
(4.10)
+c.p.

where f @ T' is shorthand for the usual color index contraction. The second term in
Eq. (4.10) stands coilectively for all those terms arising every time an inverse external
propagator Ay '(¢i) will be generated from the elementary Ward identity of Eq. (4.9); 1t is

finite in the ultraviolet and will be cancelled by the appropriate pinch contributions, coming

4P

from I‘umﬂ,

introduced in the previous section. The third term 5,,4 1s also ultraviolet
finite, but does not have the typical pinch structure, e.g. it is not multiplied by free inverse

propagators.
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b} The second term of Eq. (3.7) upon contraction yields

T2l = é [HP (22) + % (g3) + T (q4)| £ ® Toap (01 + 02,43, ¢1) (4.11)
+ c.p.

This term has the same structure as the second term in Eq. {2.21). It is important to

notice however that in the equation above the first argument of T',,p is (1 + ¢2) as it

should, but the argument of the first one of the II¥ is ¢; instead of (¢1 + ¢2). In order

to obtain the complete second term of Eq. (2.21) [defined at (g1 + ¢2,¢3,¢4)] we add and

subtract %HP (q1 + ¢2). The difference

1

R=3

7 (q + q2) — 7 (Q2)] (4.12)

is ultraviolet finite, and we are leftover with a term RI',,3.

c) Next we act on the fourth term in equation Eq. (3.7) and get two types of terms

s = FOVEAT (@) — Kuapdy?,, (91) 1)
+ c.p.

The first term of Eq. {4.13) provides the last term of f‘wa (third term in RHS of Eq. (2.21)),
whereas the second term in Eq. (4.13) exactly cancels against the second term of Eq. (4.10).
d) Finally, contracting the third term of Eq. (3.7) and adding it to the leftover finite

parts given in Eq. (4.10) and Eq. (4.12), we get exactly zero, e.g.

qitr?tf&ﬁ + S,,a,;;‘ + th/ab’ =0 (414:)

Adding Eq. (4.10),Eq. (4.11), Eq. (4.13) and Eq. (4.14) we arrive at the desired resuit
of Eq. (4.1). It is obvious from the above presentation that the inclusion of the pinch

contribution is instrumental for the validity of Eq. (4.1).
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5. Conclussions

In this paper we showed how to use the S-matrix pinch technique to construct at one
loop order a gauge independent four gluon vertex. As it turned out, the new vertex satisfies
a very simple Ward identity, relating it to a previously constructed gauge independent three
gluon vertex. The exact closed expression is very lengthy and of limited usefulness; we did
not report it here. Far more interesting for practical purposes would be a gauge technique
inspired Ansatz for the new vertex. The gauge technique [15-16] expresses a vertex in
terms of other Green’s functions in such a way as to satisfy by construction a given Ward
identity exactly, to all orders in perturbation theory. The vertex so constructed is certainly
not unique, since any transverse (divergenceless) part may be added, without affecting the
Ward identity. Even though the correct transverse part must be eventually supplemented
for the exact cancellation of overlapping ultraviolet divergences [17-18], its omission does
not affect the infrared domain significantly. In the context of quarkless QCD the gauge
technique has been successfully implemented by Cornwall and Hou [3] for the gauge
invariant three gluon vertex r uvas Which was expressed in terms of the gauge independent
self energy T, in such a way as to exactly satisfy the Ward identity in Eq. (2.22). The

Cornwall-Hou vertex is given by:

Rl 4 -~
puse = pive — B8 () ga)Tig (3)

2qi95
S CAREEUEREREAC] o1
3

+ c.p.
with Quu(g) = %P;Ly(q). It would be interesting to construct a similar Ansatz expressing
the gauge invariant four gluon vertex in terms of the three gluon vertex, so that the Ward
identity in Eq. (4.1) is automatically satisfied. Calculations in this direction are already

In Progress.
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8. Figure Captions.

1) One-dressed-loop Feynman graphs for the renormalized 1 pv (in a ghost free gauge)
necessary to implement the gauge invariance of the effective potential

2) Graphs (a)-(c) are some of the contributions to the S-matrix T. Graphs (e} and
(f) are pinch parts, which, when added to the original propagator parts (d), give a gauge-
invariant effective propagator.

3) Graphs (a) and (c) contribute to the gauge invariant three-gluon vertex trough their
pinch parts, graphs (b) and (d) respectively.

4} Graph (a} is the bare four-gluon vertex, with incoming momenta, Lorenz- and color
indices displayed. Graph (b) represents the general form of the part T(q1,492,93,¢4) of the
S-matrix, that only depends on the momentum transfers g;.

5) The three different kinds of graphs that contribute to 7. Graphs (¢} and (d) con-
tribute trough their pinch parts, shown in Fig 8.

6) Some of the one particle irreducible {1PI) graphs. As explained in the text, graphs
(a) and (c), even though topologically equivallent, contribute differently to the Ward iden-
tity.

7) Some of the one particle reducible {1PR) graphs.

8) Graphs (a) and (b) are the pinch contributions from graphs (5¢) and (5d) respec-
tively. Graph (c) originates from the conversion of gauge dependent three-gluon vertices

to gauge independent ones, as explained in section 3.
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