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ABSTRACT

A gauge-independent approach to resonant transition amplitudes with nonconserved ex-

ternal currents is presented, which is implemented by the pinch technique. The analytic

expressions derived with this method are U(1)em invariant, independent of the choice of the

gauge-fixing parameter, and satisfy a number of required theoretical properties, including

unitarity. Although special attention is paid to resonant scatterings involving the γWW

and ZWW vertices in the minimal Standard Model, our approach can be extended to the

top quark or other unstable particles appearing in renormalizable models of new physics.

PACS nos.: 14.70.Fm, 11.15.Bt, 11.15.Ex

∗E-mail address: pilaftsis@v2.rl.ac.uk

1

http://arXiv.org/abs/hep-ph/9506417v2


Three decades after Veltman’s pioneering work [1], the correct treatment of unstable

particles in the context of renormalizable gauge field theories is still an open question.

The interest in the problem resurfaced in recent years [2], mainly motivated by a plethora

of phenomenological applications linked to machines, such as the CERN Large Electron

Positron collider (LEP), the LEP2, planned to operate at centre of mass system (c.m.s.)

energy s = 200 GeV, the TEVATRON at Fermilab, and the CERN Large Hadron Collider

(LHC).

Even though the need for a resummed propagator is evident when dealing with unsta-

ble particles within the framework of the S-matrix perturbation theory, its incorporation to

the amplitude of a resonant process is non-trivial. When this incorporation is done naively,

e.g. by simply replacing the bare propagators of a tree-level amplitude by resummed prop-

agators, one is often unable to satisfy basic field theoretical requirements, such as the

gauge-parameter independence of the resulting S-matrix element, U(1)em symmetry, high-

energy unitarity, and the optical theorem. This fact is perhaps not so surprising, since the

naive resummation of the self-energy graphs takes into account higher order corrections,

for only certain parts of the tree-level amplitude. Even though the amplitude possesses

all the desired properties, this unequal treatment of its parts distorts subtle cancellations,

resulting in numerous pathologies, which are artifacts of the method used. It is therefore

important to devise a self-consistent calculational scheme, which manifestly preserves the

afore-mentioned field theoretical properties that are intrinsic in every S-matrix element.

In this paper, we present a new gauge-independent (g.i.) approach to resonant tran-

sition amplitudes implemented by the pinch technique (PT) [3]. The PT is an algorithm

which systematically exploits all the healthy properties of the S matrix and hence has nu-

merous applications in electro-weak physics. Operationally, it amounts to a rearrangement

of the Feynman graphs contributing to a g.i. amplitude so as to define individually g.i.

propagator-, vertex-, and box-like structures. In particular, due to technical limitations,
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one often attempts to cast the higher order corrections to a given process in the form of

its tree-level amplitude, by essentially omitting box diagrams. Since box graphs are how-

ever crucial for the final gauge independence (among other things) of the S matrix, their

omission introduces artificial gauge-dependences into the rest of the amplitude. The way

the PT circumvents such problems is by recognizing that the parts of the boxes, which

are instrumental for restoring the final gauge invariance, are effectively propagator-like and

vertex-like, and thus can be naturally cast in the form of the original tree-level amplitude.

The remaining box contributions are a g.i. subset and can be consistently subtracted out.

Even though the situation is conceptually and technically more subtle, the underlying ob-

jective remains the same when dealing with resonant amplitudes. Again, one attempts to

account for resonant effects by “dressing up” the tree-level amplitude; when this is done

without a concrete guiding principle, one ends up with the type of pathologies mentioned

above.

The crucial novelty we introduce here is that the resummation of graphs must take

place only after the amplitude of interest has been cast via the PT algorithm into manifestly

g.i. sub-amplitudes, with distinct kinematic properties, order by order in perturbation the-

ory. The application of the PT remarkably remedies all the afore-mentioned field-theoretical

problems existing at present in the literature. In particular,

(i) The analytic results obtained within our approach are, by construction, independent of

the gauge-fixing parameter, in every gauge-fixing scheme (Rξ gauges, axial gauges, back-

ground field method, etc.). In addition, by virtue of the tree-level Ward identities satisfied

by the PT Green’s functions, the U(1)em invariance can be enforced, without introducing

residual gauge-dependent terms of higher orders.

(ii) The PT treats bosonic and fermionic contributions to the resummed propagator of the

W -, Z-boson, t quark or other unstable particles, on equal footing. This feature is highly

desirable for applications to extensions of the SM at high energy colliders, such as the LHC.

3



For example, a heavy Higgs boson in the SM or new gauge bosons, such as e.g. Z ′, W ′,

ZR, etc., predicted in models beyond the SM, can have widths predominantly originating

from bosonic channels. In this way, it becomes even more obvious that prescriptions based

on resumming only fermionic contributions as g.i. subsets of graphs, are insufficient.

(iii) The use of an expansion of the resonant matrix element in terms of a constant com-

plex pole produces unavoidably space-like threshold terms to all orders, while non-resonant

corrections remove such terms only up to a given order. These space-like terms, which

explicitly violate unitarity, manifest themselves when the c.m.s. energy of the process does

not coincide with the position of the resonant pole. On the contrary, the PT circum-

vents these difficulties by giving rise to an energy-dependent complex-pole regulator. For

instance, possible unphysical absorptive parts originating from channels below their pro-

duction threshold have already been eliminated by the corresponding kinematic θ functions.

(iv) Lastly, the amplitude obtained from our approach exhibits a good high-energy unitarity

behaviour, as the c.m.s. energy s → ∞. In fact, far away from the resonance, the reso-

nant amplitude tends to the usual PT amplitude, thus displaying the correct high-energy

unitarity limit of the entire tree-level process.

We will now study some characteristic examples. Within the PT framework, the

transition amplitude T (s, t, mi) of a 2 → 2 process, such as e−ν̄e → µ−ν̄µ with massive

external charged leptons, can be decomposed as

T (s, t, mi) = T̂1(s) + T̂2(s, mi) + T̂3(s, t, mi), (1)

where the piece T̂1 contains three individually g.i. quantities: The WW self-energy Π̂W
µν ,

the WG mixing term Θ̂µ, and the GG self-energy Ω̂. Similarly, T̂2(s, mi) consists of two

pairs of g.i. vertices We−ν̄e, Ge−ν̄e [Γ̂(1)
µ and Λ̂(1)], and Wµ−ν̄µ and Gµ−ν̄µ [Γ̂(2)

µ and Λ̂(2)].

Most importantly, in addition to being g.i., the PT self-energies and vertices satisfy the
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following tree-like Ward identities:

qµΠ̂W
µν − MW Θ̂ν = 0,

qµΘ̂µ − MW Ω̂ = 0,

qµΓ̂i
µ − MW Λ̂i = 0 (i = 1, 2). (2)

These Ward identities are a direct consequence of the requirement that T̂1 and T̂2 are fully

ξ independent [3]. If we assume that the PT decomposition in Eq. (1) holds to any order in

perturbation theory (the validity of this assumption will be discussed extensively in Ref. [4]),

and sum up contributions from all orders, we obtain for T̂1 (suppressing contraction of

Lorentz indices)

T̂1 = Γ0UW Γ0 + Γ0UW Π̂W UWΓ0 + Γ0UW Π̂W
· · · Π̂W UW Γ0 = Γ0∆̂WΓ0, (3)

where UWµν(q) = tµν(q)(q
2
− M2

W )−1 + ℓµν(q)M
−2
W [tµν(q) = −gµν + qµqν/q

2 and ℓµν(q) =

qµqν/q
2], and

∆̂Wµν(q) =
tµν(q)

q2
− M2

W − Π̂W
T (q2)

−

ℓµν(q)

M2
W − Π̂W

L (q2)
. (4)

In Eq. (4), we have decomposed Π̂W
µν = tµνΠ̂

W
T + ℓµνΠ̂

W
L .

Next we apply our formalism to the process γe− → µ−ν̄µνe, in which two W gauge

bosons are involved. This process is of potential interest at the LEP2. We concentrate

on the part of the amplitude (T̂1µ) involving the γWW vertex, as given in Fig. 1. As

discussed above, the PT method reorders the Feynman graphs into manifestly g.i. subsets.

Resumming the PT self-energies one obtains the following resonant transition amplitude:

T̂1µ = Γ0∆̂W (ΓγW−W+

0 µ + Γ̂γW−W+

µ )∆̂W Γ0 + Γ0S
(e)
0 Γγ

0 µ∆̂W Γ0 + Γ0∆̂W Γγ
0 µS

(µ)
0 Γ0, (5)

where S(f) is the free f -fermion propagator and Γγ
0µ is the tree γff coupling. In Eq. (5),

contraction over all Lorentz indices except of the photonic one is implied. Since the action

of the photonic momentum (q) on the tree-level and one-loop PT γWW vertices gives:
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1
e
qµΓγW−W+

0 µνλ = U−1
Wνλ(p+)−U−1

Wνλ(p−) and 1
e
qµΓ̂γW−W+

µνλ = Π̂W
νλ(p−)−Π̂W

νλ(p+), respectively,

the U(1)em gauge invariance of this resonant process is restored, i.e. qµT̂1µ = 0. To any loop

order, U(1)em and Rξ invariance are warranted by virtue of the tree-type Ward identities

that the PT vertex γWW satisfy (all momenta flow into the vertex, i.e., q + p− + p+ = 0):

1

e
qµΓ̂γW−W+

µνλ = Π̂W
νλ(p−) − Π̂W

νλ(p+),

1

e
[pν

−
Γ̂γW−W+

µνλ − MW Γ̂γG−W+

µλ ] = Π̂W
µλ(p+) − Π̂γ

µλ(q) −
cw

sw

Π̂γZ
µλ (q),

1

e
[pλ

+Γ̂γW−W+

µνλ + MW Γ̂γW−G+

µν ] = −Π̂W
µν(p−) + Π̂γ

µν(q) +
cw

sw

Π̂γZ
µν (q). (6)

Of particular interest in testing electroweak theory at TEVATRON is the process

QQ′
→ e−ν̄eµ

−µ+. In addition to the γWW vertex, the ZWW coupling is now important,

especially when the invariant-mass cut m(µ−µ+) ≃ MZ is imposed. Noticing that the PT

self-energy of the photon and Zγ mixing are transverse [qµΠ̂γZ
µλ (q) = qµΠ̂γ

µλ(q) = 0], we find

that the part of T̂1, in which all tree photonic interactions are absent as shown in Fig. 2, is

individually g.i., having the form

T̂Z
1 = Γ0∆̂W (p−)(ΓZW−W+

0 + Γ̂ZW−W+

)∆̂Z(q)ΓZ
0 ∆̂W (p+)Γ0

+ Γ0S
(Q)

0 ΓZ
0 ∆̂Z(q)ΓZ

0 ∆̂W (p+)Γ0 + ΓZ
0 S

(Q′)

0 Γ0∆̂Z(q)ΓZ
0 ∆̂W (p+)Γ0

+ Γ0∆̂W (p−)ΓZ
0 ∆̂Z(q)ΓZ

0 S
(e)
0 Γ0 + Γ0∆̂W (p−)ΓZ

0 ∆̂Z(q)Γ0S
(νe)
0 ΓZ

0

+ Γ0∆̂W (p−)Γ0S
(νµ)
0 Γ0∆̂W (p+)Γ0, (7)

where ΓZ
0 stands for the tree Zff coupling. The PT Ward identities maintaining the gauge

invariance of this process have been derived in [5].

We continue with some important technical remarks. We first focus on issues of

resummation, and argue that the g.i. PT self-energy may be resummed, exactly as one

carries out the Dyson summation of the conventional self-energy. The crucial point is that,

even though contributions from vertices and boxes are instrumental for the definition of

the PT self-energies, their resummation does not require a corresponding resummation of
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vertex or box parts. In order to construct g.i. chains of self-energy bubbles, one can borrow

pinch contributions from existing graphs, which are however not sufficient to convert each

Πµν in the chain into the corresponding Π̂µν . If we add the missing pieces by hand, and

subsequently subtract them, we notice that: (i) The regular string has been converted into

a g.i. string, with Πµν → Π̂µν , and (ii) The left-overs, due to the characteristic presence of

the inverse bare propagator, (Uµν)−1, are effectively one-particle irreducible. In fact, the

left-over terms have the same structure as the one-particle irreducible self-energy graphs,

and together with the genuine vertex (V P ) and box pinch contributions (BP ) will convert

the conventional self-energy into the g.i. PT self-energy. This procedure is generalizable to

an arbitrary order. So, the transverse propagator-like pinch contributions in the Feynman

gauge, to a given order n in perturbation theory, have the general form

ΠP
n (q2) = (q2

− m2
0)V

P
n (q2) + (q2

− m2
0)

2
BP

n (q2) + RP
n (q2) , (8)

where RP
n are the residual pieces of order n. For n = 2, for example, it is easy to check

that the string ( 1
q2

−m2
0
)Π( 1

q2
−m2

0
)Π( 1

q2
−m2

0
), together with existing pinch pieces from graphs

containing vertices, needs an additional amount −RP
2 , given by

− RP
2 (q2) = ΠV P

1 +
3

4
(q2

− m2
0)V

P
1 V P

1 , (9)

in order to be converted into the g.i. string ( 1
q2

−m2
0
)Π̂( 1

q2
−m2

0
)Π̂( 1

q2
−m2

0
). However, RP

2 will be

absorbed by the one-particle irreducible two-loop self-energy shown in Fig. 3. In general,

the RP
n terms consist of products of lower order conventional self-energies Πk(q

2), and lower

order pinch contributions V P
ℓ and (or) BP

ℓ , with k + ℓ = n [4].

Another issue is whether the g.i. PT complex pole is identical to the g.i. physical pole

of the amplitude. Here we concentrate on the case of a stable particle, and demonstrate

how its mass does not get shifted by the PT. The masses m and m̂ are respectively defined

as the solution of the equations: m2 = m2
0 +Π(m2) and m̂2 = m2

0 +Π̂(m̂2). In perturbation

theory, m2 = m2
0 +

∑
∞

1 g2nCn and m̂2 = m2
0 +

∑
∞

1 g2nĈn, and one has hence to show that
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Cn − Ĉn = O(g2n+1). To zeroth order m2 = m̂2 = m2
0. Similarly, from Eq. (8), using

the fact that BP
1 = 0 (in the Feynman gauge), and RP

1 =0 (in any gauge), we have that

C1 = Ĉ1, because the pinch contribution (q2
− m2

0)V
P
1 is of O(g4). The non-trivial step

in generalizing this proof to higher orders is to observe that not all pinch contributions of

Eq. (8) contribute terms of higher order. To be precise, the terms of RP
n which do not have

the characteristic factor (q2
−m2

0) in front are not of higher order, and are instrumental for

our proof. We will illustrate this point at the two-loop order. The second order m2 and

m̂2 are given by:

m2 = m2
0 + Π1(m

2) + Π2(m
2)

m̂2 = m2
0 + Π1(m̂

2) + Π2(m̂
2) + ΠP

1 + ΠP
2

where the subscripts 1 and 2 denote loop order, and

ΠP
1 (m̂2) + ΠP

2 (m̂2) = (m̂2
− m2

0)[V
P
1 (m̂2) + V P

2 (m̂2)] + (m̂2
− m2

0)
2
[BP

1 (m̂2) + BP
2 (m̂2)]

+RP
2 (m̂2) . (10)

It is not difficult to show that ΠP
1 (m̂2) + ΠP

2 (m̂2) = O(g6). Substituting m̂2
− m2

0 =

Π1(m̂
2) + O(g4) into Eq. (10), and neglecting terms of O(g6) or higher, we find

ΠP
1 (m̂2) + ΠP

2 (m̂2) = RP
2 (m̂2) + Π1(m̂

2)V P
1 (m̂2) + O(g6) = 0 + O(g6),

where we have also used Eq. (9) at q2 = m̂2. The generalization of the proof to an arbitrary

order n in perturbation theory proceeds by induction and will be given in Ref. [4], together

with the case of an unstable particle—both mass and width remain unshifted.

Another point, important for unitarity, is whether the PT self-energy contains any

unphysical absorptive parts. In particular, the propagator-like part T̂1 of a reaction should

contain imaginary parts associated with physical Landau singularities only, whereas the

unphysical poles related to Goldstone bosons and ghosts must vanish in the loop. Explicit
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calculations (see Ref. [4]) show that, indeed, our g.i. procedure does not introduce any fixed

unphysical poles. Here we offer only a qualitative argument in that vein, namely that the

PT results may be obtained equally well if one works directly in the unitary gauge, where

only physical Landau poles are present.

Although our discussion has been restricted to the W and Z gauge bosons, our consid-

erations are also valid for the heavy top quark, and will provide a self-consistent framework

for investigating the CP properties of the t quark at LHC. Moreover, our analytic g.i.

approach can be straightforwardly extended to analyze possible new-physics phenomena

induced by non-SM gauge bosons, such as the bosons WR, Z ′, etc., predicted in SO(10) or

E6 unified models [6]. Since our analytic method treats bosonic and fermionic contributions

equally, it can provide a consistent framework for the study of the resonant dynamics of a

heavy Higgs boson and of a strong Higgs sector at the LHC.

Acknowledgements. The authors gratefully acknowledge discussions with J. M. Corn-

wall, K. Philippides, A. Sirlin, R. Stuart, and D. Zeppenfeld.
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Figure Captions

Fig. 1: The process e−γ → µ−ν̄µνe in our PT approach.

Fig. 2: The reaction QQ′
→ µ+µ−e−ν̄e, where photonic and Zγ-mixing graphs are

not shown.

Fig. 3: Typical two-loop self-energy graphs (a)–(d), and some of the residual pinch

contributions (e)–(h) contained in RP
2 .
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