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ABSTRACTThe connection between the pinch technique and the background �eld method is fur-ther explored. We show by explicit calculations that the application of the pinch techniquein the framework of the background �eld method gives rise to exactly the same results as inthe linear renormalizable gauges. The general method for extending the pinch technique tothe case of Green's functions with o�-shell fermions as incoming particles is presented. Asan example, the one-loop gauge independent quark self-energy is constructed. We brie
ydiscuss the possibility that the gluonic Green's functions, obtained by either method, cor-respond to physical quantities. 1



The pinch technique (PT) [1] is an algorithm that allows the construction of modi�edgauge independent (g.i.) n-point functions, through the order by order rearrangement ofFeynman graphs contributing to a certain physical and therefore ostensibly g.i. process,such as an S-matrix element (Fig.1) or a Wilson loop. Its original motivation was to devise aconsistent truncation scheme for the Schwinger-Dyson equations that govern the dynamicsof gauge theories. In fact, it has been extensively employed as a part of a non-perturbativeapproach to continuum QCD [2]. On the other hand, most of its recent applications havebeen in the area of electroweak physics [3-5]. The simplest example that demonstrateshow the PT works is the gluon two point function (propagator). Consider the S-matrixelement T for the elastic scattering of two fermions of massesm1 and m2. To any order inperturbation theory T is independent of the gauge �xing parameter �. On the other hand,as an explicit calculation shows, the conventionally de�ned proper self-energy (collectivelydepicted in graph 1(a) depends in on �. At the one loop level this dependence is canceledby contributions from other graphs, such as 1(b), 1(c), and 1(d), which, at �rst glance, donot seem to be propagator-like. That this cancellation must occur and can be employedto de�ne a g.i. self-energy, is evident from the decomposition:T (s; t;m1;m2) = T1(t; �) + T2(t;m1;m2; �) + T3(s; t;m1;m2; �) ; (1)where the function T1(t) depends only on the Mandelstam variable t = �(p̂1�p1)2 = �q2,and not on s = (p1+p2)2 or on the external masses. Typically, self-energy, vertex, and boxdiagrams contribute to T1, T2, and T3, respectively. Such contributions are � dependent,in general. However, as the sum T (s; t;m1;m2) is g.i., it is easy to show that Eq. (1) canbe recast in the formT (s; t;m1;m2) = T̂1(t) + T̂2(t;m1;m2) + T̂3(s; t;m1;m2) ; (2)where the T̂i (i = 1; 2; 3) are individually �-independent. The propagator-like parts ofgraphs, such as 1(e), 1(f), and 1(g), which enforce the gauge independence of T1(t), are2



called "pinch parts". They emerge every time a gluon propagator or an elementary three-gluon vertex contribute a longitudinal k� to the original graph's numerator. The action ofsuch a term is to trigger an elementary Ward identity of the form /k = (/p+/k�m)� (/p�m)once it gets contracted with a 
 matrix. The �rst term removes the internal fermionpropagator (that is a "pinch"), whereas the second vanishes on shell. The g.i. functionT̂1 is identi�ed with the contribution of the new e�ective propagator. Its one-loop closedform, renormalized in the MS scheme, reads�̂��(q) = t���̂(q) (3)�̂(q) = �q2bg2[ln(�q2�2 )� 6733 ] : (4)t�� = (g�� � q�q�q2 ), b = 11ca48�2 is the coe�cient in front of �g3 in the usual one loop �function, and ca the Casimir operator for the adjoint representation. [ca = N for SU(N)]This procedure can be generalized to an arbitrary n-point function. In particular, theg.i. three and four point functions �̂��� and �̂���� derived in [6] and [7] respectively,satisfy the following Ward identities [8]:q�1 �̂���(q1; q2; q3) = t��(q2)d̂�1(q2) � t��(q3)d̂�1(q3)q�1 �̂abcd���� = fabp�̂cdp���(q1 + q2; q3; q4) + c:p: ; (5)where d̂�1(q) = [q2 � �̂(q)], the fabc are the structure constants of the gauge group, and"c.p." stands for "cyclic permutations". The above results have been originally obtainedin the non-covariant light-cone gauge [2], and later in the linear renormalizable R� gauges[6]. The purpose of this paper is to discuss recent important developments in this �eld.Recently, an important connection between the PT and the background �eld method(BFM) [9] has been established [10-12]. In particular, it was shown that when QCD isquantized in the context of BFM, the conventional n-point functions, calculated with theBFM Feynman rules, coincide with those obtained via the PT, for the special value �Q = 1of the gauge �xing parameter �Q, used to gauge-�x the "quantum" �eld. For any other3



value of �Q the resulting expressions di�er from those obtained via the PT. However, theBFM n-point functions, for any choice of �Q, satisfy exactly the same Ward identities asthe PT n-point functions (Eq. (5) for example). Based on these observations, it was argued[10] that the PT is but a special case of the BFM, and represent one out of an in�nitenumber of equivalent choices, parameterized by the values chosen for �Q. Alternatively,one could say that the Feynman gauge (�Q = 1) in the BFM has the special propertyof rendering pinching trivial; thus, it provides an alternative, more economical way, forobtaining the PT results. It is important to emphasize however that the aforementionedequivalence between the PT and the BFM has only been established for speci�c, one-loopexamples (two, three, and four point functions), mainly due to the fact that no formalunderstanding of the PT algorithm exists thus far. Although we have no progress toreport in this direction, in the present paper we explore additional issues related to theconnection between the PT and the BFM. In particular, we show via explicit one-loopcalculations that:(a) The PT, when applied in the context of the BFM, for any value of the gauge-�xingparameter �Q, gives exactly the same answer as in any other gauge checked so far. Thisexercise furnishes an additional check for the internal consistency of the PT.(b) After extending the PT to the fermionic sector, we show that the g.i. quark-propagator obtained, coincides with the expression obtained for the quark propagator inthe context of the BFM, again for the special value of �Q = 1.(c) Finally, we conjecture that the PT and the BFM n-point functions correspond tophysical quantities, which, at least in principle, can be measured.To the extend that the BFM n-point functions display a residual (even though mild)�Q-dependence, one may still apply the PT algorithm, in order to obtain a g.i. answer. Itturns out that the PT results can be recovered for every value of �Q as long as one properlyidenti�es the relevant pinch contributions concealed in the rest of the graphs contributingto the S-matrix element. These contributions vanish for �Q = 1, but are non-vanishing4



for any other value of �Q. It seems therefore that, after the PT procedure is completedthe same result emerges, regardless of the gauge �xing procedure (BFM, R�, light-cone,etc), or the value of the gauge �xing parameter (�Q, �, n�, etc) used [13]. Therefore, asfar as the PT is concerned, the di�erence between various gauge �xing procedures is onlyoperational; in the BFM, for instance, the pinch contributions to the gluon two, three andfour point functions are ultra-violet �nite [14].We now proceed to apply for the �rst time the PT in the context of the BFM. Asshown in [10], n-point functions, even when computed in the framework of the BFM,depend explicitly on �Q. The one-loop gluon self-energy, for example, reads:��� = �(�Q=1)�� + C(�Q)t��= �̂�� +C(�Q)t�� : (6)C(�Q) does not depend on q2; its explicit value isC(�Q) = �4 [�8 + �]cag2 ; (7)where � = 1 � �Q. It is amusing to notice that C(�Q) vanishes not only for �Q = 1, butalso for the less appealing value of �Q = �7.We next compute the propagator-like pinch contributions of the amplitude shownin Fig.1. using the BFM Feynman rules. It should be emphasized that no additionalassumptions will be made, other than the straightforward application of the PT rules,which are common for any type of gauge-�xing procedure. The main characteristics of theFeynman rules in the BFM [9] are that the gauge �xing parameters for the "background"(classical) and the "quantum" �elds are di�erent (�C and �Q respectively [15]), the threeand four-gluon vertices are �Q-dependent at tree-level, and the couplings to the ghosts aremodi�ed (they are however �Q-independent). In particular, the three-gluon vertex assumesthe form [10](omitting a factor ifabc)�(0)��� = (1 � �Q�Q )�P��� +�F��� ; (8)5



with �P��� = (q + k)�g�� + k�g���F��� = 2q�g�� � 2q�g�� � (2k + q)�g�� : (9)�F��� satis�es the Ward identity q��F��� = [k2�(k+q)2]g�� . �P��� gives rise to pinch parts,when contracted with 
 matrices. Clearly, it vanishes for �Q = 1, and so do the longitudinalparts of the gluon propagators; therefore pinching in this gauge is zero. However, for anyother value of �Q the pinch contributions are non-vanishing.Setting Rk � g2�4�n(2�)n R dnk, the dimensionally regularized loop integral, we obtain fromthe box diagrams [Fig.1(d) and the crossed, not shown]BP�� = i�caq4"t�� Zk 1k4(k + q)2 � �2 t��t�� Zk k�k�k4(k + q)4# ; (10)and from the vertex diagrams[V P1 ]�� = �i�caq2t�� Zk 1k4 ;[V P2 ]�� = i�caq2"t�� Zk 2qkk4(k + q)2 + �2 t��t�� Zk k�k�k4(k + q)4#�BP�� � [V P1 ]�� : (11)[V P1 ]�� originates from graph (c) of Fig.1, the self-energy corrections for the externalfermions (not shown), and the mirror graphs (also not shown); [V P2 ]�� from graph (b)of Fig.1 and its mirror graph (not shown). Notice that BP�� = BP�� jR� . Adding thecontributions of Eq. (10) and Eq. (11) we obtain the total pinch contribution to the gluonself-energy: �P�� = i�caq2"t�� Zk 2qkk4(k + q)2 + �2 q2t��t�� Zk k�k�k4(k + q)4#= ��4 [�8 + �]cag2t��= �C(�Q)t�� : (12)The �nal step in constructing ~��� , the PT gluon self-energy in the BFM, is to appendthe pinch contributions from Eq. (12) to the conventional expression of Eq. (6). The answeris ~��� = �̂�� : (13)6



So, the PT self-energy in the BFM (~��� ) is identical to that constructed in the R� or thenon-covariant light-cone gauge (�̂�� ).Turning to the conventional three and four-point functions, it is straightforward toestablish that, when calculated in the context of the BFM for an arbitrary value of �Q,they are also �Q-dependent. The answer has the general form:����(�Q; q1; q2; q3) = �̂���(q1; q2; q3) +R���(�Q; q1; q2; q3)�����(�Q; q1; q2; q3; q4) = �̂����(q1; q2; q3; q4) + S����(�Q; q1; q2; q3; q4) : (14)Both R��� and S���� are ultra-violet �nite, obey Bose symmetry, and vanish at �Q = 1.In addition, as one can verify by an explicit calculation, they satisfy the following Wardidentities: q�1R��� = C(�Q)[q23t��(q3) � q22t��(q2)]q�1Sabcd���� = fabpRcdp���(q1 + q2; q3; q4) + c:p: (15)This is of course expected; indeed, since both ����(�Q; q1; q2; q3) and �̂���(q1; q2; q3) satisfyEq. (5), with d $ d̂, and since ��� and �̂�� are related by Eq. (6), Eq. (15) mustbe satis�ed. The above argument provides an additional consistency test; we emphasizehowever that, in the context of the PT, Eq. (15) can only be veri�ed through an explicitcalculation, but cannot be established a priori, based on more general arguments.One can construct �Q-independent e�ective three and four gluon vertices in the BFM,~���� and ~����� , respectively, following directly the PT rules. To that end one has to usethe BFM Feynman rules and isolate vertex-like pieces from all relevant Feynman diagramscontributing to the appropriate scattering processes to a given order (Fig.2). The sums�P��� and �P���� of all such vertex-like contributions satisfy �P��� = �R��� and �P���� =�S����. Adding �P��� and �P���� to the regular �Q-dependent contributions ���� and�����, respectively, one obtains~���� = ���� + �P��� = ����j(�Q=1) = �̂���~����� = ����� + �P���� = �����j(�Q=1) = �̂���� : (16)7



The PT has been so far applied to n-point functions, where all n incoming particlesare o�-shell gauge bosons (gluons). It is possible however to extend the PT to the case of n-point functions involving fermions (quarks) as incoming o�-shell particles. Such an exerciseis useful, for two reasons. First, one is interested in exploring the range of applicabilityof the PT by itself. Second, the connection between the PT and the BFM has only beenestablished through explicit examples; it is therefore important to determine whether ornot the aforementioned connection holds in the fermionic sector as well.In order to apply the PT in the fermionic sector, one has to embed a given n-pointfunction with N o�-shell fermion legs (N � n) into a process containing N gluons asincoming particles. A g.i. quark propagator can be extracted, for example, by applyingthe PT to a process such as gluon + quark ! gluon + quark (Fig.3) . Similarly, theg.i. gluon-quark vertex, with all three incoming momenta o�-shell may be obtained byconsidering a process of the form quark + quark ! 2 gluons+ 2 quarks.For simplicity we will treat the case of the quark propagator. It is important to noticethat the conventional expression for the quark propagator is gauge-dependent both in BFMand the R� gauges. In fact, the two answers are identical; one can be obtained from theother by simply exchanging � $ �Q. The gauge dependent answer is given by�ij(p) = �ij(p)j(�Q=1) + �g2cf�ij"�(/p�m)Zk 1k4 + (/p�m)Zk 1[/k + /p �m]k4 (/p�m)# ;(17)where cf is the Casimir eigenvalue of the quark representation. We notice that the gauge-dependent term in the r.h.s. of Eq. (17), even in the BFM context, is no longer ultra-violet�nite. This is to be contrasted with the gluon n-point functions, which, as already men-tioned, have ultra-violet �nite gauge-dependent terms, at least for the n=2,3,4 cases, whichhave been explicitly calculated. The relevant pinch parts, some of which are schematicallyshown in Fig.3e, Fig.3g, and Fig.3i, exactly cancel the �Q-dependent terms in the r.h.s.of Eq. (17). The technical details of how such a cancellation proceeds will be presented8



elsewhere. The g.i. one-loop e�ective quark self-energy reads:~�ij(p) = �̂ij(p) = �(p)ij j(�Q=1) = �(p)ij j(�=1) : (18)We see that the g.i. answer obtained from the extension of the PT to the fermionic sector(quark propagator) again coincides with the conventional expression calculated at �Q = 1(or � = 1 for the R� gauges). It would be interesting to check if the same is true for theo�-shell gluon-quark vertex [16]. The results of this study will be presented in a futurecommunication.An important open question is if the g.i. quantities extracted via the PT (and equiv-alently the BFM) correspond to physical quantities. Using Eq. (4), it is straightforward toverify that, up to �nite constant terms, which can be absorbed in the �nal normalization[17], the one-loop expression for T̂1 is :T̂1 = �u1
�u1f g2q2[1 + bg2 ln(�q2�2 )]g�u2
�u2 ; (19)where ui are the external quark spinors. Thus, up to the kinematic factor 1q2 , the r.h.s. ofEq. (19) is the one-loop running coupling [18]. Equivalently, modulo �nite constant terms,the expression of Eq. (19) is the Fourier transform of the static quark-antiquark potential,in the limit of very heavy quark masses [19] Clearly, the quark-antiquark potential isa physical quantity, which, at least in principle, can be extracted from experiment, ormeasured on the lattice. In fact, as was recently realized [20], when one computes the one-loop contribution to the scattering amplitude q�q ! q�q of quarks with mass M , retainingleading terms in q2M2 , one arrives again at the expression of Eq. (19). So in principle, onecan extract the quantity of Eq. (19) from a scattering process, in which the momentumtransfer q2 is considerably larger than the QCDmass �2, so that perturbation theory will bereliable, and, at the same time, signi�cantly smaller than the mass of the external quarks,so that the sub-leading corrections of order O( q2M2 ) can be safely neglected. Top-quarkscattering, for example, could provide a physical process, where the above requirementsare simultaneously met. 9



These observations lead to the conjecture that, the PT (or BFM) expressions for thegluonic n-point functions correspond (up to �nite constant terms) to the static potentialof a system of n heavy quarks. One obvious way of further testing this conjecture (al-though it would not conclusively prove it) is to determine through an explicit one-loopcalculation, whether or not the PT (and BFM) expressions for the three (four) point func-tions are physically equivalent to the static potential of a system of three (four) heavyquarks. Calculations in this direction are already in progress. Regardless of the validityof the previous conjecture, however, it would clearly be very useful to establish a formalconnection between the PT and the BFM for arbitrary Green's functions. An importantstep for accomplishing such a task would be the formulation of the PT at the level of thepath integral (generating functional).In conclusion, in this paper we showed that the proper application of the PT in thecontext of the BFM gives rise to exactly the same n-point function as in the context ofthe R� gauges. Thus, the calculational simpli�cations of the BFM, especially for the value�Q = 1 of the gauge �xing parameter, may be freely exploited. Furthermore, the PT wasapplied for the �rst time to the case of fermion (quark) self-energies. The g.i self-energy soobtained coincides with the conventional one, again for the special value of �Q = 1. Thegeneralization of the arguments presented above to the electro-weak sector of the StandardModel, is technically more involved, but conceptually straightforward.Acknowledgments: The author thanks K. Philippides, K. Sasaki, and M. Schaden,for useful discussions. This work was supported by NSF Grant No. PHY-9313781.
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2. Figure Captions(i) Figure 1 : Graphs (a)-(d) are some of the contributions to the S-matrix T . Graphs(e), (f) and (g) are pinch parts, which, when added to the usual self-energy graphs (a),give rise to a gauge independent e�ective self-energy.(ii) Figure 2: The general structure of the S-matrix elements used for the constructionof gauge-independent three and four gluon vertices [(2a) and (2b), respectively], and sometypical diagrams contributing vertex-like pinch contributions.(iii) Figure 3: Graphs (3b) and (3c) are the gauge dependent parts arising from theconventional self-energy graph (3a); they cancel against pinch contributions, such as (3e),(3g) and (3i).
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