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1 IntroductionThe pinch technique (PT) is an algorithm that allows the construction of modi�ed gaugeindependent (g.i.) o�-shell n-point functions, through the order by order rearrangement ofFeynman graphs contributing to a certain physical and therefore ostensibly g.i. amplitude,such as an S-matrix element or a Wilson loop [1]. The PT was originally introduced in anattempt to gain insight from perturbation theory on issues encountered in developing aconsistent truncation scheme for the Schwinger-Dyson (SD) equations governing the non-perturbative QCD dynamics [2]. Speci�cally, one wishes to construct a SD series whichis manifestly g.i. already in its one-dressed loop truncated version. This is a non-trivialtask, since the mechanism of gauge cancellations is very subtle, and involves in general adelicate conspiracy of terms coming from all orders.The systematic derivation of such a SD series for QCD has been the focal point ofextensive research [3] [4]. Of particular interest in this context is the study of the threegluon vertex �̂3 [5], and the four gluon vertex �̂4 [6]. In particular, as explained �rst in [4]and later in [6], one attempts to construct an e�ective potential 
 [7] for quarkless QCD,which, in ghost-free gauges, is a functional of only three basic quantities: the gluon self-energy (d̂), the three gluon vertex (�̂3), and the four gluon vertex (�̂4), e.g. 
(d̂; �̂3; �̂4).One then requires that 
 is manifestly gauge-independent for o�-shell d̂, �̂3, and �̂4, e.g.when they do not necessarily satisfy their respective SD equations. This requirement canbe enforced if d̂, �̂3, and �̂4 are individually gauge-independent, and, at the same time,the renormalized self energy �̂�� is transverse, e.g.q��̂�� = 0 (1.1)order by order in the dressed loop expansion [8]. The one-loop dressed expression for �̂��is schematically shown in Fig.1; we see that already at this level the fully dressed vertices�̂3 and �̂4 make their appearance. It turns out that Eq.(1.1) can be satis�ed as long asd̂, �̂3, and �̂4 satisfy the following Ward identities (WI):q�1 �̂���(q1; q2; q3) = T��(q2)d̂�1(q2)� T��(q3)d̂�1(q3) (1.2)q�1 �̂abcd���� = fabp�̂cdp���(q1 + q2; q3; q4) + c:p: ; (1.3)(1.4)where d̂�1(q) = q2 � �̂(q), T��(q) = g�� � q�q�=q2 is the usual transverse projectionoperator, fabc the structure constants of the gauge group, and the abbreviation c.p. inthe r.h.s. of Eq.(1.4) stands for "cyclic permutations" [9].Although this program has been layed out conceptually, its practical implementation isas yet incomplete. One thing is certain however: if Green's functions with the properties1



described above can arise out of a self-consistent treatment of QCD, one should be able toconstruct Green's functions with the same properties at the level of ordinary perturbationtheory after appropriate rearrangement of Feynman graphs. The PT accomplishes thistask by providing the systematic algorithm needed to recover the desired Green's functionsorder by order in perturbation theory. So, g.i. three and four- gluon vertices have alreadybeen constructed via the PT at one-loop, and they satisfy the Ward identities of Eq.(1.4)[10] .A program similar to that outlined above for QCD has also been proposed for the caseof non-Abelian gauge theories with either elementary Higgs particles or with dynamicalsymmetry breaking [11]. In an attempt to study the general structure of the g.i. Green'sfunctions involved, the PT was extended to the case of theories with tree-level symmetrybreaking. The technical modi�cations necessary to accomplish such a task have beenpresented in [12], in the context of an SU(2) toy model. The upshot of that analysis wasthat the PT, when properly applied, gives rise to g.i. two- and three point functions,which satisfy the same WI as in the symmetric (unbroken) case, provided one includesappropriate longitudinal Goldstone boson Green's functions. So, for example Eq.(1.1)becomes q��̂�� +M�̂� = 0 (1.5)where �̂� is the g.i one-loop mixed self{energy between the (massive) gauge boson andthe corresponding Goldstone boson. Clearly, Eq.(1.1) may be enforced, if we rede�ne thegauge boson self-energy to be �̂tr�� = �̂�� + Mq�q2 �̂� with similar rede�nitions for othern-point functions. Subsequently, the PT was extended to the full SM [13], and severalinteresting applications were proposed [14], [15], [16], [17].Even though formal considerations similar to those of the QCD case would providesu�cient grounds for a detailed study of g.i. three and four gauge boson vertices in thecontext of the SM, such a study was precipitated by phenomenological issues. In particu-lar, the possibility of directly probing non-Abelian vertices in the upcoming LEP2 exper-iments, through the process e+e� ! W+W�, has led to extensive studies of anomalousgauge boson couplings, induced either by extensions of the SM, or by one-loop correc-tions within the SM [18], [19], [20]. In computing the latter, issues of gauge invariancebecome very important. So, form factors of the W boson, such as the magnetic dipoleand electric quadrupole moments, turn out to be gauge dependent when extracted fromthe conventional o�-shell 
WW and ZWW vertices, calculated in the context of the R�gauges [22]. In addition, these quantities are infrared divergent and violate perturbativeunitarity. All the above pathologies can be bypassed, as long as one instead extracts themfrom g.i. o�-shell 
WW and ZWW vertices constructed via the PT [23].2



Given the relevance of g.i three boson vertices (TBV) both from the theoretical and thephenomenological point of view, we present in this paper the general methodology for theirconstruction, for the electro-weak sector of the SM. We focus on the vertices involving oneneutral and two charged incoming particles, with all three incoming momenta o�-shell.In order to construct such vertices we consider a matrix element for six-fermion elasticscattering of the form e�e�� ! e�e��, where the external electrons e are considered to bemassive. This assumption is important, since, in addition to the g.i. vertices with threeincoming gauge bosons (
W+W� and ZW+W�) it enables the construction of g.i. threeboson vertices where at least one of the incoming bosons is a scalar particle (unphysicalwould-be Goldstone bosons and physical Higgs boson). As we will see in what follows,the latter play a crucial role in the Ward identities enforcing the gauge-invariance of theS{matrix In particular, in this paper we focus on the following issues.a) We discuss the technical di�culties involved in the application of the PT when thenecessary assumption is made that me 6= 0.b) We present the most general algorithm for constructing g.i vertices involving oneneutral and two charged bosons.c) We explain how the requirement of the gauge invariance of the S-matrix gives riseto a set of WI, relating several of the g.i. vertices to each other. The derivation is generaland does not require knowledge of the explicit closed form of the quantities involved.Most noticeably, the following WI,q�b�ZW�W+��� (q; p1; p2) + iMZ b��W�W+�� (q; p1; p2) = gc � b�W��(p1)� b�W��(p2)� (1.6)relates the g.i vertices b�ZW�W+��� and b��W�W+�� to the g.i. W self-energy b�W��. To the bestof our knowledge the WI we present here has not been derived before within the PT orany other frameworkThere is one additional reason why the study of the g.i. vertices and WI via the PTis interesting. As it was recently realized there is a close connection between the PT andthe background �eld method (BFM) [24]. In particular it was shown that in all casesconsidered so far the PT Green's functions may be obtained directly, if one computes theconventional Green's functions in the context of the BFM, using the special value �Q = 1of the gauge �xing parameter used to gauge-�x the quantum �eld [25] [26]. Since howeverno formal connection between the two methods has yet been established, additional casesmay have to be considered, at least for those Green's functions which are of particularphysical relevance. The method for constructing vertices advertised above provides theframework for such a detailed investigation.It is important to emphasize that the closed form of the g.i. TBV obtained by the3



application of the S-matrix PT does not depend on the particular process employed. So,instead of the process ee� ! ee� one could equally well extract the g.i TBV from a processof the form bbt! bbt where t and b are the top and bottom quarks, respectively, or evena process involving gauge bosons as external on shell particles, such as WW
 ! WW
.The fact that the PT gives rise to process{independent results had been conjectured sometime ago [12], and has been recently proven [28] via detailed calculations. Moreover,the PT algorithm gives rise to exactly the same answers, regardless of the gauge �xingprocedure chosen. This has been shown by explicit calculations for a wide variety of gauge�xing choices, such as the R� gauges, the light-cone gauge [2], the unitary gauge [29], andthe background �eld gauges [25].The paper is organized as follows: In section 1 we brie
y review some of the features ofthe PT, which are relevant to our purposes. In particular, we present a detailed analysisof the modi�cations necessary for the application of the PT in the context of the SMwith non-conserved external currents. In section 2 the method for constructing the g.i.vertices is described in detail. In section 3 we apply the formalism developed in theprevious section to a concrete example, and we perform an explicit one-loop calculation.In section 4 we outline the general method for obtaining WI within the PT framework,and we derive a set of WI for the newly constructed TBVs. In section 5 we explicitlyprove the �rst of the Ward identities derived in the previous section, to one-loop order,in the context of three di�erent gauges. Finally, in section 6 we present our conclusions.2 The Pinch Technique for non conserved currentsThe simplest example that demonstrates how the PT works is the gluon two point func-tion (propagator). Consider the S-matrix element T for the 2!2 process of the elasticscattering of two fermions of masses m1 and m2 :q1(p1) + q2(p2)! q1(p̂1) + q2(p̂2) : (2.1)To any order in perturbation theory T is independent of the gauge �xing parameter onehas to use to de�ne the free gluon propagator. For example in the covariant R� gaugesthe gluon propagator is given by���(q) = 1q2 [g�� � (1 � �)q�q�q2 ]: (2.2)On the other hand, as an explicit calculation shows, the conventionally de�ned properself-energy depends on the gauge �xing parameter, in this case �. At the one loop levelthe gauge dependence of the self{energy graphs is cancelled by contributions from othergraphs, vertex or box, which, at �rst glance, do not seem to be propagator-like. That this4



cancellation must occur and can be employed to de�ne a g.i. self-energy, is evident fromthe decomposition:T (s; t;m1;m2) = T1(t; �) + T2(t;m1;m2; �) + T3(s; t;m1;m2; �) (2.3)where the function T1(t) depends only on the Mandelstam variable t = �(p̂1�p1)2 = �q2,and not on s = (p1 + p2)2 or on the external masses. Typically, self-energy, vertex, andbox diagrams contribute to T1, T2, and T3, respectively. Moreover, such contributions are� dependent. However, as the sum T (s; t;m1;m2) is g.i., it is easy to show that Eq.(2.3)can be recast in the formT (s; t;m1;m2) = T̂1(t) + T̂2(t;m1;m2) + T̂3(s; t;m1;m2); (2.4)where the T̂i (i = 1; 2; 3) are separately �-independent. The propagator-like parts of thevertex and box diagrams which enforce the gauge independence of T1(t), are called "pinchparts". The pinch parts emerge every time a gluon propagator or an elementary three-gluon vertex contribute a longitudinal k� to the original graph's numerator. The actionof such a term is to trigger an elementary Ward identity of the formk�
� � k= = (k=+ p= �mi)� (p= �mi)= S�1i (p+ k)� S�1i (p) (2.5)once it gets contracted with a 
 matrix. The �rst term on the right-hand side of 2.5will remove the internal fermion propagator - that is a "pinch" - whereas S�1(p) vanishon shell. Returning to the decomposition of Eq.(2.4), the function T̂1 is g.i. and maybe identi�ed with the contribution of the new propagator. We can construct the newpropagator, or equivalently T̂1, directly from the Feynman rules. In doing so it is evidentthat any value for the gauge parameter � may be chosen, since T̂1, T̂2, and T̂3 are allindependent of �. The simplest of all covariant gauges is certainly the Feynman gauge(� = 1), which removes the longitudinal part of the gluon propagator. Therefore, the onlypossibility for pinching in four-fermion amplitudes arises from the four-momentum of thethree-gluon vertices, and the only propagator-like contributions come from vertex graphsand not from boxes.The generalization of the PT from vector-like theories (such as QCD) to the SM istechnically and conceptually straightforward, as long as one assumes that the externalfermionic currents are conserved. For example, applying the PT to a SM amplitude, suchas e��e ! e��e, with me = m� = 0, a �-independent self-energy for the W -boson may beconstructed [13].The situation becomes more involved if one decides to consider non-conserved external5



fermionic currents, e.g. fermions with non-vanishing masses. The main reasons are thefollowing:(a) The chargedW couples to fermions with di�erent, non-vanishing massesmi;mj 6=0, and consequently the elementary Ward identity of Eq.(2.5) gets modi�ed to :k�
�PL � k=PL = S�1i (p+ k)PL � PRS�1j (p) +miPL �mjPR (2.6)where PR;L = 1� 
52 (2.7)are the chirality projection operators. The �rst two terms of Eq.(2.6) will pinch andvanish on shell, respectively, as they did before. But in addition, a term proportional tomiPL �mjPR is left over. In a general R� gauge such terms give rise to extra propagatorand vertex-like contributions, not present in the massless case. For the neutral Z thatcouples to fermions of the same mass we have to set mi = mj = m in Eq.(2.6).(b) Additional graphs involving the "unphysical" Goldstone bosons � and �, andphysical Higgs H , which do not couple to massless fermions, must now be included.Such graphs give rise to new pinch contributions, even in the Feynman gauge, due to themomenta carried by interaction vertices such as 
�+��, Z�+��, W+���, HW+�� etc,e.g. vertices with one vector gauge boson and two scalar bosons. So, for example, all thegraphs of Fig.4 give rise to new vertex-like pinch contributions to the 
WW and ZWWvertices, while in the massless case considered in [23], only graphs (1) and R(1;2) werepresent.(c) After the pinch contributions have been identi�ed, particular care is needed indeciding how to allot them among the (eventually � independent) quantities one is at-tempting to construct. When constructing g.i. TBVs, for example, in the massless case(mi = mj = 0), all vertex-like pinch contributions are allotted among the 
WW andZWW , the only two vertices which contribute to the amplitude. In the massive casewe propose to study, vertices such as �W�W+ , HW�W+ , Z��W+, etc, contributenon-vanishingly to the amplitude, and they must also be rendered g.i. through properallocation of the available vertex-like pinch parts. The details of how this is accomplishedwill be presented in the next section.Before we proceed with the construction of the vertices and the subtleties involvedwe record some useful formulas. In what follows we use the Feynman rules and theconventions of [30]. The tree-level vector-boson propagator �i��(q) in the R� gauges isgiven by ���i (q; �i) = 1q2 �M2i [g�� � (1 � �i) q�q�q2 � �iM2i ] ; (2.8)6



with i = W;Z; 
, and M
 = 0. Its inverse ��1i (q; �i)�� is given by��1i (q; �)�� = (q2 �M2i )g�� � q�q� + 1�i q�q� : (2.9)The propagators �s(q; �i) of the unphysical (would{be) Goldstone bosons are given by�s(q; �i) = �1q2 � �iM2i ; (2.10)with (s; i) = (�;W ) or (�;Z) and explicitly depend on �i. On the other hand, thepropagators of the fermions (quarks and leptons), as well as the propagator of the physicalHiggs particle are �i-independent at tree-level.The following identities, which hold for every value of the gauge �xing parameters �i,will be used extensively [21]:���i (q; �i) = U��i (q)� q�q�M2i �s(q; �i) ; (2.11)where U��i (q) = [g�� � q�q�M2i ] 1q2 �M2i (2.12)is the W and Z propagator in the unitary gauge (�W ; �Z !1) andU�1i (q)�� = g��(q2 �M2i )� q�q� (2.13)its inverse . Furthermore,g�� = �i��(q; �i)��1i (q; �i)�� = �i��(q; �i)U�1i (q)�� � q�q��s(q; �i) ; (2.14)and q� = �M2i q����i (q; �i) � q2q��s(q; �i): (2.15)Finally, the divergences of the currents J�Z ; J�W ; J+�W of [13] are related at tree-levelto the currents of the would{be Goldstone bosons J�; J�; J+� by the following elementaryidentities: (�e � e) = �i q�MZ (�eZe)�(����e) = �i p�2MW (��W�e)� (2.16)(�e�+�) = �i p�1MW (��W+e)�where q, p1, and p2 are the momenta carried by the bosons as shown in Fig.2.7



3 The gauge independent three boson verticesIn this section we show how to use the PT in order to construct gauge invariant three-boson-vertices (TBV) , with all three of their incoming momenta o� shell.We consider the S-matrix element for the processe�(n) + �(`) + e�(r)! e�(n̂) + e�(^̀) + �(r̂) (3.1)where q = n� n̂ ; p1 = ` � ^̀ ; p2 = r � r̂ ; (3.2)are the momentum transfers at the corresponding fermion lines; they represent the in-coming momenta of each of the bosons, merging in the TBV. The TBV's which can beextracted from the S-matrix element of the above process will be in general denoted asb�NLR, with N = 
; Z; �;H ; L = W�; �� and R = W+; �+, where N , L, and R standfor the neutral, left (positive charge created), and right (positive charge destroyed) legsof the vertex.We can extract g.i. improper vertices by identifying the part bT (q; p1; p2) of the S-matrix which is independent of the external momenta n; r; `; n̂; r̂; ^̀, and only dependson the momentum transfers q; p1; p2. The general form of bT (q; p1; p2) is shown in Fig.3.bT (q; p1; p2) is g.i. as long as we append to the regular vertex graphs all parts of the rest ofthe graphs, which only depend on the momentum transfers q; p1; p2. Examples of graphscontaining such vertex-like pinch parts are shown in Fig.4.The inclusion of these extra pieces cancels all �i-dependent parts of the regular vertexdiagrams; the only gauge dependence remaining stems from the tree-level expressionsof the propagators of the boson legs. As we will see in section 5 the cancellation of thisresidual �i dependence is enforced by a set of WI satis�ed by the g.i b�TLR's. The �nal formof the g.i. bT (q; p1; p2) is a sum of individually g.i. sub-amplitudes bTNLR(q; p1; p2) and isgiven bybT (q; p1; p2) = XfTLRg (�eTe) (�eL�e) (��eRe) bTTLR(q; p1; p2) (3.3)= XfTLRg (�eTe) (�eL�e) (��eRe) �̂N(q)�̂L(p1)�̂R(p2) b�TLR(q; p1; p2)where all internal Lorentz indices have been suppressed. In order to extract the proper�̂NLR(q; p1; p2) from the respective T̂NLR(q; p1; p2) one must strip o� the three g.i. �̂ s,by multiplying T̂NLR(q; p1; p2) with the respective inverse propagators �̂�1. We remindthe reader that the �̂ may be individually constructed through the application of the PTto appropriate four-fermion amplitudes (see for example [13] and [16]).8



Another equivalent and more economical way to isolate the proper vertex, describedin detail in [5] and [23], is to notice that the conventional self-energies of the externalboson legs can be converted to the respective g.i. PT self-energies, except for certainmissing pinch pieces. These missing pieces may be supplemented to the self-energy byhand, and correspondingly subtracted from the TBV. All such terms are multiplied by aninverse tree-level propagator (which is the characteristic structure of all pinch terms), andthey remove the tree-level boson propagator connecting them to the rest of the graph.Therefore, they are e�ectively one-particle irreducible, and they may be freely added tothe rest of the one-particle irreducible terms contributing to the TBV [6].Schematically the g.i. TBV b�NLR will consist of the following pieces :b�NLR = �(�i=1)NLR + �PNLR � 12�PNN 0�(0)N 0LR � 12�PLL0�(0)NL0R � 12�PRR0�(0)NLR0 (3.4)where �(�i=1)NLR are the conventional graphs contributing to the TBV in the Feynman gauge,�PNLR are all vertex-like pinch parts of box diagrams (also computed with �i = 1 [31] ),which are kinematically equivalent to the TBV in question (this point will be furtherclari�ed later in this section), �(0)NLR are tree-level expressions of respective TBVs, and �Pij(i; j = N;L;R) is the pinch contribution to the ij-boson self-energy (again at �i = 1).Since the derivation of the pinch parts of propagators has been extensively discussed inthe literature, we will �rst focus on the technical details pertaining to the construction ofthe term �PNLR in Eq.(3.4)The pinch parts of graphs are extracted using Eq.(2.6), whenever possible. The boxdiagrams of Fig.4 for example, represent the complete set of diagrams that can contributevertex-like parts to the 
W�W+, ZW�W+, and �W�W+ vertices [32]. Depending onwhich of the internal fermion propagator has been removed, the vertex-like pinch ampli-tudes assume one of the following forms:(�eL�):::(��Re):::�L:::(p1)�R:::(p2) " g22 (�e
�PLe) BN:::� + g22 me(�ePLe)MN::: #(��Re):::(�eNe):::�R:::(p2)�N:::(q) h (�eW+�)� BL:::� + iMW (�e�+�) ML::: i(�eNe):::(�eL�):::�N:::(q)�L:::(p1) h (��W�e)� BR:::� + iMW (����e)MR::: i (3.5)The ellipses in Eq.(3.5) represent appropriately contracted Lorentz indices, which wesuppress. We note that theM terms originate from the mass left-overs of Eq.(2.6). Thefactors B and M in the expressions above are in general complicated functions of q,p1, and p2, and boson masses; however they do not depend on the individual momentaand masses of the external "test" fermions. Notice also that they are ultra-violet �nitesince they originated from box diagrams. Clearly, the B's or the M's may be zero for9



some graphs. Once all relevant pinch contributions have been extracted, they must bejudiciously allotted to the appropriate TBV's. To that end, one has to perform thefollowing three steps:(i) The couplings multiplying the B andM in the r.h.s. of the �rst relation in Eq.(3.5)must be rewritten as a linear combination of the couplings of the bosons which can beattached to the corresponding fermion current. So, for the couplings of the neutral bosonson the top fermion line we write :g22 
�PL = �gc(�eZe)� � gs(�e
e)�g22 mePL = �gMW (�eHe) + gciMZ2 (�e�e) (3.6)On the other hand, the appropriate couplings for the charged bosons have already ap-peared in the r.h.s. of the second and third relation of Eq.(3.5).(ii) We use the identities given in Eq.(2.17) to rewrite the couplings of the Goldstonebosons to the fermions as divergences of the corresponding currents of the gauge bosons.At the end of these two steps the pinch parts in the square brackets of Eq.(3.5) assumethe following form:��gc(�eZe)� �BN:::� � q�2MN:::�� gs(�e
e)�BN:::� � gMW (�eHe)MN:::� (3.7)hBL:::� + p1�ML:::i (�eW+�)� (3.8)hBR:::� + p2�MR:::i (��W�e)� (3.9)(iii) The �nal step in transforming these expressions into the desired form of TBVis to recognize that a tree-level boson propagator must be attached at the point wherethe pinching took place. It is straightforward to make the missing photon and Higgspropagator appear. We only need to insert unity written as a product of a propagatorand its inverse. The inverse propagator will be incorporated to the rest of the pinchexpression. We emphasize that no additional � dependencies are introduced into thepinch expressions through this process, since the part of the inverse photon propagatorproportional to �
 vanishes from the amplitude due to conservation of the electromagneticcurrent J�
 , whereas the Higgs propagator and its inverse are g.i at tree-level. In orderto accomplish this last step for the massive gauge bosons, we have to use the identitiesof Eq.(2.14), since now the relevant currents J�Z and J�W are not conserved. Finally weobtain :(�e
e)� g��q2 h�gs T ��(q) BN:::�i + (�eHe) �H(q) h�gMW��1H (q)MN:::i10



+ (�eZe)� ���Z (q) ��gcU�1�� (q)Z �BN:::� + q�2MN:::��+ (�e�e) ��(q) � iMZgcq� �BN:::� + q�2MN:::� � (3.10)hBL:::� + p1�ML:::i hU�1W (p1)�����W (p1; �W )(�eW+�)� � iMWp�1��(p1; �W )(�e�+�)i (3.11)hBR:::� + p2�MR:::i hU�1W (p2)�����W (p2; �W )(�eW��)� � iMWp�2��(p2; �W )(�e���)i (3.12)It is now evident how the pinch parts must be allotted among the various (eventuallyg.i.) TVB's. We demonstrate it schematically below.From the graphs that pinch at the top (neutral) fermion line (Eq.3.10) the pinch partsare distributed as follows ; �gs T ��(q) BN:::� �! b�
LR�::�gcU�1Z (q)�� �BN:::� + q�2MN:::� �! b�ZLR�::iMZgcq� �BN:::� + q�2MN:::� �! b��LR�gMW��1H (q)MN::: �! b�HLR (3.13)From the graphs that pinch on the left (Eq.3.11) we have :U�1W (p1)�� �BL:::� � p1�ML:::� �! b�NW�R:�:iMWp�1 �BL:::� � p1�ML:::� �! b�N��R (3.14)and from the graphs that pinch on the right (Eq.3.12) :U�1W (p2)�� �BR:::� � p2�MR:::� �! b�NLW+::�iMWp�2 �BR:::� � p2�MR:::� �! b�NL�+ (3.15)The �nal step in the construction of the g.i. TBVs is the inclusion of all pinch termsthat have been left over from converting gauge dependent boson self energies into theirgauge independent PT counterparts, at other parts of the amplitude considered; theyconstitute the third term in the r.h.s. of Eq.(3.4). To begin with, it is important torecognize that in addition to the boson legs attached to the TBVs, the boson legs of the\monodromic" graphs (collectively depicted in Fig.8 (e),(f),(g)) must be rendered g.i. Wecall them \monodromic" (one-way), because their graph structure of vertices and edges(propagators) is that of an \Eulerian-path" or self avoiding curve. That is , all the vertices11



can be visited by a line that does not run through an edge twice. Notice that they containan o�-shell fermion propagator. In the rest of this section we outline how such pieces areincluded in the vertices through a speci�c example.Let us concentrate on the Z self{energy legs. In the Feynman gauge (�i = 1), the onlypropagator-like pinch parts for the g.i. Z self-energy originate from the graph shown inFig.3.a and its mirror graph Fig.3.b and their contribution is equal. For the Z self{energyleg attached to the ZWW vertex, one of the above graphs (Fig.3.c), is already present inthe amplitude we consider and supplies half of the necessary pinch contribution. The otherhalf, where the pinch would occur at the side where we now have the TBV vertex, is miss-ing. Therefore its pinch contribution must be supplemented by hand to the Z self-energygraphs and subsequently subtracted from the ZWW vertex graphs. We observe that thiscontribution to the vertex will be of the form �2g2c2IWW (q) [U��Z (q)]�1���Z (q; �Z) �ZWW��� .This last expression is explicitly gauge dependent. The e�ect of the monodromic graphsis to precisely cancel this residual gauge dependence. To understand how this cancellationmechanism works we now concentrate on the vertex{like pieces originating from the mon-odromic graphs. As a �rst step, their bosonic legs must be rendered g.i; in doing so wenotice that, unlike the previous case, all the necessary propagator{like pinch parts are nowavailable (an example of a graph that contributes such a pinch term is shown in Fig.3(d)).One then proceeds as usually and �rst pinches the fermion propagator inside the loop andthen uses Eqs.(2.14 , 2.15) to attach boson propagators at the point where the pinchingtook place. At this point one observes that the momenta accompanying the part withthe scalar propagator �s in Eqs.(2.14 , 2.15) can trigger additional pinching and removethe remaining fermion propagator that was outside of the loop. Thus a vertex-like piece�nally emerges from this part and must be included with the rest of the vertex graphs.Clearly, all these pieces are also explicitly gauge dependent since they carry a ��(q; �Z),and by using Eq.(2.11) exactly cancel against the relevant ��(q; �Z) part coming from theleg attached to the TBV. In the remaining expression the tree level propagators in theunitary gauge also cancel and the part that needs to be appended to the ZWW vertexis �2g2c2IWW (q) �ZWW��� . A similar procedure must be followed case by case for all theTBVs and will conclude the construction of a g.i. three boson vertex.4 The vertices 
W�W+, ZW�W+, �W�W+In the previous section we presented the general procedure for constructing g.i. TBVsvia the PT. In this section we focus on three particular TBVs, namely b�
W�W+, b�ZW�W+and b��W�W+, and we describe in detail their derivation. This section is rather technical;we present several intermediate results, which will also be used in subsequent sections.12



The �nal expressions for b�
W�W+��� , b�ZW�W+��� and b��W�W+�� , are summarised in Eq.(4.33){Eq.(4.35).We adopt the following convention: The scalar parts of boson propagators of mass MAand momentum q will be denoted byA(q) � 1q2 �M2A : (4.1)For example, with this notation the tree-level propagator for the W in Eq.(2.8) assumesthe form : ���W (q) = [g�� � (1� �i) q�q�q2 � �iM2i ] W (q) ; (4.2)We introduce the following short-hand notation:Z (ABC) f:::g � Z (dk)A(k + p1)B(k � p2)C(k) f:::g ; (4.3)where the momentum integration measure is (dk) = d4ki(2�)4 for convergent integrals and(dk) = �4�n dnki(2�)n for dimensionally regularized integrals. Furthermore, we de�ne thescalar integrals JABC � JABC(q; p1; p2) = Z (ABC) ; (4.4)IAB(q) = Z (dk)A(k)B(k + q) : (4.5)The box diagrams containing vertex-like contributions, in the Feynman gauge areshown in Fig.4. From the �rst two diagrams of Fig.4, which we treat as one, we ob-tain N1��� = gc U�1Z (q)�� g2B��� (4.6)and N 1�� = �iMZ gc q�g2B��� ; (4.7)where g2B��� is the same expression as in the case for conserved currents (see [23] Eq.3.5and Eq.3.6), namelyg2B��� = XV=
;Z g2V Z (WWV ) �g�� (k � 32(p1 � p2))� � g�� (3k + 2q)� � g�� (3k � 2q)�� :(4.8)with g
 = gs and gZ = gc. N1��� is allotted to the vertex b�ZW�W+��� whereas N 1�� tob��W�W+�� .Similarly, the graphs containing a Higgs boson (2 and 3 in Fig.4) yield:N2��� +N3��� = �M2Z g3c q�g�� M ; (4.9)13



and N 2�� +N 3�� = �iMZ q2 g3c g�� M ; (4.10)with M = 12 (JHZW + JZHW ) : (4.11)We note that box diagrams which contain any two internal neutral bosons, except theHiggs boson, give zero total pinch contribution. This is so because the pinch parts ofthe direct diagrams cancel against the corresponding pinch parts of the crossed diagram.Similarly, the pinch contributions of diagrams with one � and one W in the loop cancelagainst the corresponding contribution from the mirror graphs, e.g. W $ �.The pinch contributions of the diagrams 1,...,6 of the second row of Fig.4, where thepinching occurs at the leg of the W+, are extracted following exactly similar steps. Wedenote these pinch contributions by Ri��� where i = 1; ::; 6. In what follows the su�x cris used to denote the inclusion of the crossed graphs which are not shown in Fig.4 . Therelevant expressions of the pinch contributions of these graphs are :R(1;2;2cr)��� = gc U�1W (p2)��g2B���� +R1��� +R2��� ; (4.12)whereR1��� = g3cs2M2W p2�g��JWW
 ; R2��� = g3c(1 � 2s22 )M2W p2�g��JWWZ (4.13)and g2B����(q; p1; p2) = XV=
;Z g2V Z (WWV )G���(q; p1; p2) ; (4.14)withG���(q; p1; p2) = g�� (3k + 3p1 � 2p2)� + g�� (3k + p1 � 2q)� � g�� (k + 2p1 � 2q)� :(4.15)Notice that the result of the conserved current case can be recovered from Eq.(4.14) if weneglect the terms proportional to p1� and p2� (Eq.3.11 of [23]).The rest of the diagrams give :R3��� = g3 s4c M2W p2�g��JWW
 ; (4.16)R4��� +R4cr��� = g3 s2(1� 2s2)2c M2W p2�g�� ; JWWZ (4.17)R5��� = g3cM2W2 p2�g��JWWH ; (4.18)14



R6��� = g3M2W2c p2�g��JZHW ; (4.19)We next turn to the rest of the graphs of Fig.4, third and fourth row, and isolate thepinch contributions, which will be appended to the vertex b��W�W+�� . We denote them byRi�� where i = 1; ::9. Their explicit expressions are:R1�� +R2�� +R2cr�� = g3iMZ s22cM2WU�1W (p2)�� XV=
;Z bV JWWV ; (4.20)R3�� = g3iMZ s22cM2Wp2� Z (WW
) (k � 2q)� ; (4.21)R4�� +R4cr�� +R5�� = g3iMZ cM2W2 p2� Z (WWZ) k� (4.22)� g3iMZ 1 � s22c M2W p2�q�JWWZ + g3M2Wi8cMZ p1�p2�JWWZ :The last term in the r.h.s. of Eq.(4.22) cancels against the corresponding contributionfrom the left,coming from the graphs L4�� + L4cr�� + L5��.R6�� = g3iMZ M2W4c p2� Z (WWH) k� ; (4.23)R7�� = � g3iMZ M2W2c q�p2�JZHW ; (4.24)R8�� +R8cr�� = g3iMZ M2W2c U�1W (p2)��JHZW ; (4.25)R9�� +R9cr�� = g3iMZ (1 � 2s2)4c M2Zp2� Z (HZW ) (2k + p1)� : (4.26)The corresponding diagrams where the pinching occurs at the left fermion line we willdenote as Li��� and Li�� respectively. (these diagrams are not shown). They are given by:Li���(q; p1; p2) = � Ri���(q; p2; p1) ; Li��(q; p1; p2) = � Ri��(q; p2; p1) (4.27)The total pinch contribution is the sum of all relevant terms. We de�ne :6Xi=1Ri��� = g3cM2Wp2�g�� M� ; 6Xi=1Li��� = g3cM2Wp1�g�� M+ ; (4.28)9Xi=1Ri�� = g3ciMZ R��� ; 6Xi=1Li�� = g3ciMZ L+�� (4.29)15



where crossed graphs are included in the sums andM�(q; p1; p2) = s2c2JWW
 + 1 � 2s22c2 JWWZ + 12 JWWH + 12c2 JZHW ; (4.30)M+(q; p1; p2) = �M�(q; p2; p1) : (4.31)The last step is to add the pinch contributions to the regular vertex graphs. Thus, ifwe de�neg2g�VW�W+��� j�i=1 = nVXi=1 V i���j�i=1 ; g3c��W�W+�� j�i=1 = 21Xi=1 S i��j�i=1 ; (4.32)to be the sum of the usual graphs of the respective vertices in the Feynman gauge (depictedrespectively at Fig.5 , with V= 
; Z ,n
 = 28 , nZ = 34 and Fig.6 ), we arrive at thefollowing expressions for the g.i. TBVs1g3s b�
W�W+��� = �
W�W+��� j�i=1 + q2T (q)�� B��� + U�1W (p1)��B+��� + U�1W (p2)��B�����2���� h IWW (q) + s2IW
(p1) + c2IWZ(p1) + s2IW
(p2) + c2IWZ(p2) i+p2�g�� M� + p1�g�� M+ ; (4.33)1g3c b�ZW�W+��� = �ZW�W+��� j�i=1 + U�1Z (q)��B��� + U�1W (p1)��B+��� + U�1W (p2)��B�����2���� h IWW (q) + s2IW
(p1) + c2IWZ(p1) + s2IW
(p2) + c2IWZ(p2) i+q�g�� M2Z M+ p2�g�� M2W M� + p1�g�� M2W M+ ; (4.34)1g3c b��W�W+�� = ��W�W+�� j�i=1 � iMZq�B��� � iMZq2M � iMZ R��� � iMZ L+�� : (4.35)5 The Ward IdentitiesIn the previous two sections we outlined the construction of a generic g.i. TBV, and wecomputed the exact one-loop closed forms for the g.i. b�
W�W+��� b�ZW�W+��� , b��W�W+�� . Inthis section we proceed to derive a set of Ward identities that the g.i. TBV satisfy. TheseWard identities are a direct consequence of the gauge independence of the S-matrix, orderby order in perturbation theory. It should be emphasized that the derivation of the WIdoes not require knowledge of the explicit closed form of the TBVs involved.After the construction of g.i. TBVs has been completed, the amplitude we considerhas been reorganized into individually �-independent structures connected by �-dependent16



tree level propagators. In other words, the PT algorithm only cancels all �-dependenciesoriginating from the tree-level propagators appearing inside the loops, but a residual �-dependence, stemming from boson propagators outside of loops, survives at the end ofthe pinching process. The cancellation of this last �-dependence becomes possible dueto a set of WI satis�ed by the g.i. TBV. One can actually derive these WI without anydetailed knowledge of the algorithm which gives rise to the g.i. TBV. All one needs toassume is that such an algorithm exists (in our case the PT algorithm), and that allresidual �-dependencies should cancel from the S-matrix. So, once the g.i. TBVs havebeen constructed, one should examine whether or not they actually satisfy the requiredWI, as a self-consistency check. In this section we use the above arguments to derive theWIs, and we will explicitly check their validity at one-loop in the next section.It is instructive to illustrate the derivation of WI for a simpler case, namely the g.i. Wpropagator. We consider the one-loop S-matrix element of the processe�(b) + �e(t)! �e(b̂) + e�(t̂) (5.1)with q = t � t̂ = b̂ � b , and apply the PT rules. As shown in Fig.7, the part of theS-matrix which only depends on q2 assumes the form:T̂1 = (�eW+�)� ���W b�W�����W (��W�e)� + (�eW+�)� ���W b�+� �� (����e)+ (�e�+�) �� b��� ���W (��W�e)� + (�e�+�) �� b�� �� (����e) (5.2)Using Eq.(2.17) in order to pull out the factor (�eW+�)� (��W�e)� , as well as Eq.(2.14),we can cast the above expression in the following form :T̂1 = (�eW+�)� " �U��W � q�q�M2W ��� b�W�� �U��W � q�q�M2W ��� + (�iq�)MW �� b���� iq�MW (5.3)+ �U��W � q�q�M2W��� b�+��� iq�MW + (�iq�)MW �� b�W�� �U��W � q�q�M2W �� � #(��W�e)�In this last expression the �-dependence is carried solely by the tree-level Goldstoneboson propagators ��(q; �W ). The requirement that T̂1 is �-independent, gives rise to twoindependent equations; the �rst enforces the cancellation of the terms with only one ��factor, whereas the second enforces the cancellation of the terms with a �� �� factor. Itis then a matter of simple algebra to show that the following WI should hold [33] :q� b�W��(q)� iMW b��� (q) = 0 (5.4)q� b��� (q)� iMW b��(q) = 0 (5.5)17



q�q� b�W��(q)�M2W b��(q) = 0 (5.6)Similarly, the requirement of gauge independence for the S-matrix element of a neu-tral current process gives rise to the following set of WI, relating the two-point Greensfunctions of Z and its Goldstone boson � :q� b�Z��(q)� iMZ b�Z�� (q) = 0 (5.7)q� b�Z�� (q) + iMZ b��(q) = 0 (5.8)q�q� b�Z��(q)�M2Z b��(q) = 0 (5.9)We now turn to our main objective, namely the derivation of the WI for the g.i TBVs.We consider again the S-matrix element of the process in Eq.(3.1). After the pinchingis performed we focus on the diagrams of Fig.8, where now the \blobs" represent g.i.expressions. As before the residual ��dependence of these graphs enters only through thetree-level bosonic propagators (solid, not-oriented lines) We call these graphs respectively: (i) three-boson vertex graphs ( Fig.8 (a) )(ii) self-energy graphs ( Fig.8 (b),(c),(d) )(iii) monodromic graphs ( Fig.8 (e),(f),(g) ) [34]At �rst sight, the monodromic graphs do not appear to be akin to the graphs of type(i) and (ii) (which only depend on the momentum transfers q; p1; p2), since they seem toexplicitly depend on the external fermion momenta n; l; r or n̂; l̂; r̂, through the internalo�-shell fermion propagators. Equivalently, one might think that the characteristic factor(�eTe) (�eL�e) (��eRe) , containing the external fermionic currents, cannot be pulled outfrom the monodromic graphs. One should notice however, that, in the monodromic graphsadditional pinching can take place, triggered by the longitudinal part of the bare vectorboson propagators, thus eliminating the dependence on the internal fermion propagator.These pinch parts are vertex-like, and will therefore combine with the graphs of (i) and(ii), in order to cancel the remaining gauge dependence from the amplitude.To demon<strate this �nal cancellation, we use again Eq.(2.11) in order to isolate theresidual gauge dependence of the S-matrix into bare Goldstone boson propagators only.All gauge dependent terms will display a characteristic structure, depending on the num-ber and kind of Goldstone boson propagators they contain, and the momenta they carry.Clearly, all such terms form linearly independent combinations. A term with a gaugedependence of the form ��(q; �Z)��(p1; �W ), for example, cannot cancel against a termof the form ��(p2; �W )��(p1; �W ), nor a term of the form ��(q; �Z)��(p2; �W ). Therefore,18



for the �nal cancellation to occur, the cofactors in front of all such linearly independentterms must individually vanish. This last condition gives rise to the advertised WI.Let us �rst look at terms carrying only a gauge dependent factor of ��(q; �Z) . Suchterms can arise only from the diagrams shown in Fig.9. In what follows we use the WIof the boson self-energies Eqs.(5.4{ 5.9) as well as the WI of the tree-level three vectorboson vertex q� �VW�W+��� (q; p1; p2) = gV hU�1W (p2)�� � U�1W (p1)��i ; (5.10)and pull out the common factor (�eZe)� (��W+e)� (�eW��)� . Then, the ��(q; �Z) gaugedependent part is given by :1M2Z��(q; �Z) f Cv + Cse + CPm g��� (5.11)where Cv; Cse; CPm are the contributions of the vertex, self-energy, and the pinched mon-odromic graphs, respectively:C���v = U��W (1) U��W (2) q� � q�b�W��� + iMW b���� � (5.12)C���se = �U��W (1) U��W (2) q� gc� b�W��(1)� b�W��(2) � � gcH��� (5.13)(CPm)��� = gcH��� (5.14)with H��� = q� � U��W (1) b�W��(1) U��W (1) � U��W (2) b�W��(2) U��W (2) �+ q� b�Z��(q) U��Z (q) [ U��W (1) � U��W (2) ] (5.15)where 1, 2 in the arguments means p1 and p2, respectively.Since the gauge independence of the amplitude requires that the sum Cv + Cse + CPmin Eq.(5.11) must vanish, we arrive at the following WI, relating the ZWW and �WWvertices : q�b�ZW�W+��� + iMZ b��W�W+�� = gc �b�W��(1) � b�W��(2)� (5.16)Repeating similar steps and requiring the cancellation of the ��(1) and ��(2) gaugedependencies, we obtain the following Ward identities, respectivelyp�1 b�ZW�W+��� + iMW b�Z��W+�� = gc � b�W��(2) � b�Z��(q) � sc b�Z
�� (q) � (5.17)19



p�2 b�ZW�W+��� + iMW b�Z��W+�� = gc � b�Z��(q) + sc b�Z
�� (q) � b�W��(1) � (5.18)The WI for the b�
W�W+ vertex can be derived in a similar manner. We have:p�1 b�
W�W+��� + iMW b�
��W+�� = gs � b�W��(2) � b�
��(q) � cs b�
Z�� (q) � (5.19)p�2 b�ZW�W+��� + iMW b�Z��W+�� = gs � b�
��(q) + cs b�
Z�� (q) � b�W��(1) � (5.20)which are the counterparts of Eq.(5.17) and Eq.(5.18). It is elementary to derive additionalWI, through straightforward algebraic manipulations of the WI listed above. For example,the WIiMZp�1 b��W�W+�� � iMW q�b�Z��W+�� = gc � p�1 b�W��(1) + p�2 b�W��(2) + q� b�Z��(q) � (5.21)or equivalentlyp�1 b��W�W+�� � c q�b�Z��W+�� = gc � c b�+� (1) + c b�+��(2) + b�Z�� (q) � (5.22)can be immediately obtained from Eq.(5.16) and Eq.(5.17), after contracting them withthe appropriate four-momenta, and using the WIs of the self energies and the fact thatb�Z
��(q) is transverse.Finally, WIs where the g.i. TBV are contracted with two or three momenta can beeasily derived, by demanding the cancellation of gauge dependencies stemming from termswith more than one Goldstone boson propagator.It is interesting to notice that an equation analogous to Eq.(5.16) for the b�
W�W+vertex, cannot be derived via this procedure. The reason is simply that all residualdependence on �
 automatically disappears from the �nal expressions, due to currentconservation, e.g. q�J
� = 0. In order to derive the remaining WI one must choose agauge{�xing procedure like the axial or light{cone gauge, where the dependence of thegauge{boson legs on the gauge parameter does not vanish due to current conservation. Infact, this was the way the PT was originally implemented by Cornwall, when constructingthe one{loop g.i. gluon self{energy [2]. In the axial (light{cone) gauge, for example, thetree{level propagator for the photon reads���
 (q; n) = 1q2 "g�� � n�q� + n�q�n � q # ; (5.23)where n� is the gauge{�xing parameter (in the light{cone gauge n�n� = 0). So, afterusing current conservation, the n with the appropriate Lorentz index will vanish, but the20



other n will survive, and will only vanish if the desired WI are satis�ed. Finally we obtain: q� b�

��(q) = 0q� b�
Z�� (q) = 0 (5.24)q� b�
�� (q) = 0 ) b�
�� (q) = 0and q�b�
W�W+��� = gs � b�W��(1)� b�W��(2)� ; (5.25)which was �rst proved in [23] by an explicit one-loop calculation. Clearly, similar WI canbe derived for the gluon self{energy and three gluon vertex in QCD.All previous WI are the one{loop generalizations of the respective tree level WI. Asshown in this section, their validity is crucial for the gauge independence of the S{matrix.It is important to emphasize that these WI make no reference to ghost terms, unlike thecorresponding Slavnov-Taylor identities satis�ed by the conventional, gauge{dependentvertices.The WI derived in this section are also true in the context of the BFM. In fact, inthe BFM framework they are true to all orders in perturbation theory; their validity isenforced by the requirement that the Lagrangian is invariant under gauge transformationsof the background �elds. It should be emphasized however that the Green's functions ofthe background �elds, which satisfy the aforementioned WIs, display in general a residualdependence on the parameter �Q used to gauge �x the quantum gauge �elds. As shown in[27] this remaining gauge dependence can be eliminated by the straightforward applicationof the PT in the context of the BFM. The analysis presented in this section indicates thatthese "naive", WIs are not an exclusive property of the BFM, but can be recovered for anytype of gauge �xing procedure via the PT algorithm. Strictly speaking the WIs we havepresented are valid to one loop order. This is so because our derivation relies on the abilityto construct the �{independent Green's functions (shown as blobs in Fig.8) with the PTalgorithm, which has only been tested at one{loop. If one assumes that this procedure ofisolating �{independent blobs can be generalized to higher orders in perturbation theory,the generalization of the WI to higher orders will be relatively straightforward. Eventhough such an assumption is rather plausible no such proof exists.21



6 Proof of the Ward Identities6.1 Feynman gaugeIn this section we prove by an explicit calculation the �rst of the Ward identities derivedin the previous section, namely q�b�ZW�W+��� + iMZ b��W�W+�� = gc � b�W��(1) � b�W��(2)�. Wework in the Feynman gauge, where �i = 1 for i = 
;W;Z. To that end, it is moreeconomical to act with q� directly on the individual graphs of b�Z��� and try to generatethe r.h.s. of Eq.(5.16). The Feynman diagrams contributing to the g.i. W self-energiesof the r.h.s. are shown in Fig.10 . The closed expression for the g.i. W self{energy hasbeen obtained in [16] and it isb�W��(q) = �W��(q)j�=1 + 4U�1�� (q) hs2IW
(q) + c2IWZ(q)i (6.1)We also emphasize that all necessary cancellations between graphs or parts of graphs areevident before any of the loop momentum integrations are carried out.To begin with, we notice that, all pinch parts originating from the top (neutral current)fermion line, automatically cancel in the l.h.s. Eq.(5.16), by virtue of the second and thirdof Eqs.(3.13).We start by considering the fermion graphs Fig.5 (1) and Fig.6 (1). This subsetof graphs is automatically g.i., and receives therefore no pinch contributions. After astraightforward calculation we obtain ( in what follows we have pulled out a commonfactor of gc from the r.h.s. of all equations ) :q�V 1��� + iMZS1�� = �1��(1)��1��(2) (6.2)where �1�� corresponds to the self-energy diagram (1) of Fig.10 .The remaining diagrams can be divided into three classes, depending on the type ofinternal boson propagators they contain. Following the notation of Eq.(4.3), these classesare denoted as (i) WWV diagrams, where V = 
; Z ( Fig.5 (2){(22), Fig.6 (2){(13) )(ii) WWH diagrams ( Fig.5 (23){(28), Fig.6 (14),(15) ), and (iii) ZHW diagrams ( Fig.5(29){(34), Fig.6 (16){(21) ).WWV graphs :Vector boson graphs8Xi=2 q�V i��� = 3Xi=2 h �i��(1) ��i��(2) i� XV=
Z g2V�M2WV Z (WWV ) q�����(q; p1 � k; p2 + k)22



+ XV=
Z g2V Z W (k + p1)V (k) k�q� + (1$ 2)� XV=
Z g2V Z (WWV ) q � (k � p2) k�(k � p2)� + (1$ 2)�2g2 h U�1W (1)�� � U�1W (2)��i Z W (k + p1)W (k � p2)� U�1W (1)�� XV=
Z g2V Z (WWV ) hq�k� + q�����(k � p2;�k; p2)i+ (1$ 2) (6.3)where the tree-level WI of Eq.(5.10), as well as the identities given in equations (4.11)and (4.12) of [23], have been used. The notation (1 $ 2) means to interchange in theprecceding term p1 $ �p2 and �$ �. From the terms appearing in the r.h.s. of Eq.(6.3)only the �rst is part of the r.h.s. of the WI we attempt to prove. All other terms will cancelagainst other contributions from the remaining graphs. In particular, the left-over termof the second line will cancel against similar terms coming from the graphs which containunphysical Goldstone bosons. Similarly, the terms in the next two lines of Eq.(6.3) willcancel against corresponding left-overs from the ghost graphs. Finally, the last two linesof Eq.(6.3), which display the characteristic pinch structure, will cancel against some ofthe pinch contributions to the ZWW vertex. All these cancellations will become evidentin what follows.We next consider the ghost graphs (Fig.5 (9){(12) and Fig.6 (2){(5)). We have:12Xi=9 q�V i��� = 7Xi=4 h �i��(1) ��i��(2)i� XV=
Z g2V Z W (k + p1)V (k) k�q� + (1$ 2)+ XV=
Z g2V Z (WWV ) q � (k � p2) k�(k � p2)� + (1$ 2) (6.4)and iMZ 5Xi=2 S i�� = �M2W2c2 XV=
Z g2V Z (WWV ) ( k�p2� + k�p1� ) (6.5)We see that the left-over terms of Eq.(6.4) cancel against parts of Eq.(6.3) as advertised.The contribution of Eq.(6.5) will cancel against pinch contributions to the �WW vertex.Similarly, the graphs containing unphysical Goldstone bosons (Fig.5 (13){(22) and Fig.6(6){(13)) yield:16Xi=13 q�V i��� + iMZ 9Xi=6 S i�� = g2s2M2W XV=
;Z bV Z (WWV ) q�����(q; p1 � k; p2 + k)+ g2M2W s22c2 hU�1W (1)�� � U�1W (2)��i XV=
;Z bV JWWV (6.6)23



18Xi=17 q�V i��� + iMZ 13X10 S i�� = 9Xi=8 h �i��(1)��i��(2)i (6.7)21Xi=19 q�V i��� = �10��(1) ��10��(2)� g28c2 Z W (k) [Z(k + p1)� Z(k � p2)] (2k + p1)�(2k � p2)� (6.8)q� V 22��� = 0 (6.9)The �rst term in the r.h.s. of Eq.(6.6) cancels the appropriate term in Eq.(6.3), afteremploying the elementary identity �gcg2V�M2WV = �bV g3cs2M2W , where b
 = +1 andbZ = �1. The second term in the r.h.s. of Eq.(6.6) will cancel against pinch contributionsto the �WW vertex. Finally, we note that the left-over term in the r.h.s. of Eq.(6.8)contains only two internal propagators.The pinch parts give:q�[ B����U�1W (p1)�� + B+���U�1W (p2)�� ] = (6.10)2 h U�1W (p1)�� + U�1W (p2)�� i XV=
;Z g2V [ IWV (p1)� IWV (p2) ]+U�1W (p2)�� XV=
;Z g2V Z (WWV ) hq�k� + q�����(�k � p1; p1; k)i+ (1$ 2)� 2g2q����� [ ::: ] = 2g2 h U�1W (p1)�� � U�1W (p2)�� i [ ::: ] (6.11)where the ellipses in the square brackets in Eq.(6.11) represent the terms of the secondline of Eq.(4.34) multiplying ����.4Xi=1 q� �Ri��� + Li���� = g2M2W [p2�q� � p1�q�] " s2c2JWW
 + (1� 2s2)2c2 JWWZ # (6.12)iMZ 2Xi=1 �Ri�� + Li��� = g2M2W s22c2 hU�1�� (p1)� U�1�� (p2)i XV=
Z bV JWWV (6.13)iMZ �R3�� + L3��� = g2M2W s22c2 Z (WW
) [(k � 2q)�p2� + p1�(k + 2q)�] (6.14)24



iMZ 5Xi=4 �Ri�� + Li��� = + g2M2W2 Z (WWZ) [k�p2� + p1�k�]� g2M2W (1 � 2s2)2c2 [p2�q� � p1�q�]JWWZ (6.15)At this point we notice that the contributions of the pinch parts cancel all the remainingleft-overs of all other graphs we have considered thus far, except for the left-over termof Eq.(6.8). If we now collect all W self-energy terms in the r.h.s., we notice that allpinch and regular graphs have already appeared, except for the two graphs containing aninternal Higgs boson, shown in Fig.10 (11) and (12)Next we consider the WWH graphs25Xi=23 q�V i��� + iMZ 15Xi=14S i�� = �11��(1)��11��(2)� g2M2W4c2 Z (WWH) [k�p2� + k�p1�]� g2M2W2 [p1�p1� � p2�p2�]JWWH (6.16)28Xi=26 q�V i��� = �12��(1)��12��(2) (6.17)� g28c2 Z W (k) [H(k + p1)�H(k � p2)] (2k + p1)�(2k � p2)�The relevant pinch diagrams of this class contributing to the ZWW vertex giveq� �R5��� + L5���� = g2M2W2 [p1�p1� � p2�p2�]JWWH (6.18)whereas the ones contributing to the �WW vertex giveiMZ �R6�� + L6��� = g2M2W4c2 Z (WWH) [k�p2� + k�p1�] (6.19)It is now evident that all the W self-energy terms which constitute the r.h.s. of theWI have already appeared. The only two redundant terms are (i) the left-over term ofEq.(6.8), and (ii) the left-over term of Eq.(6.18), which survives after Eq.(6.16){Eq.(6.19)have been added by parts. Like the term in (i) it also contains two internal propagators.Both terms will cancel exactly against the entire contribution of the graphs belonging tothe ZHW class, which we now proceed to evaluate.We will only evaluate the diagrams where the Higgs boson appears on the left. Themirror graphs, with the Higgs boson on the right, can be treated in an exactly analogousway. 25



q�V 30��� = �g2M2Wc2 Z (HZW ) q�����(�k � p1; p1; k) (6.20)iMZS17�� = g2M2Wc2 Z (HZW ) q�����(�k � p1; p1; k)� g2M2W2c2 U�1W (p2)��JHZW� g2M2W2c2 Z (HZW ) k�k� + g2M2W2c2 g��IHZ(q) (6.21)The last term in the r.h.s. of the last equation will cancel against an equal and oppositecontribution coming from the mirror diagram S18��q�V 32��� = �g2M2Zs22c2 q� Z (HZW ) (2k + p1)� (6.22)iMZS19�� = g2M2Zs22c2 q� Z (HZW ) (2k + p1)� � g2M2Zs24c2 Z (HZW ) (2k + p1)�(k � p2)�(6.23)q�V 34��� = g28c2 �M2Z �M2H� Z (HZW ) (2k + p1)�(2k � p2)�+ g28c2 Z W (k) [H(k + p1)� Z(k � p2)] (2k + p1)�(2k � p2)� (6.24)iMZS21�� = g28c2M2H Z (HZW ) (2k + p1)�(2k � p2)� (6.25)The pinch parts are :q�L6��� + iMZL7�� = �g2M2W2c2 p1� Z (HZW ) k� (6.26)iMZ � R8�� + R8cr�� � = g2M2W2c2 U�1W (p2)��JHZW (6.27)iMZ � R9�� +R9cr�� � = g2M2Z(1� 2s2)8c2 p2� Z (HZW ) (2k + p1)� (6.28)When all the above equations, together with the corresponding contributions fromthe mirror graphs, are added by parts, all terms in the r.h.s. cancel among each otheras expected, except for the terms with two internal propagators, from Eq.(6.24) and themirror graph result, which exactly cancel the left-over terms mentioned previously, (i) and(ii). This concludes the proof of the advertised WI of Eq.(5.16), which is a central resultof this paper. It is obvious from the previous proof that the pinch parts are instrumentalfor the validity of Eq.(5.16). 26



6.2 Unitary gaugeThe fact that the WIs of Green's functions constructed via the PT hold regardless of thegauge in which one chooses to work, can be most e�ectively demonstrated by provingtheir validity in di�erent gauges. Although the usual graphs of a Green's function aswell as its pinch parts assume di�erent forms in di�erent gauges, when summed theynevertheless combine into a unique expression independent of any speci�c gauge. In thissection we will work in the unitary gauge, where additional pinch parts can originate fromthe longitudinal parts of the gauge boson propagators.We note that, even though the unitary gauge has been traditionally considered patho-logical, in the sense that it gives rise to non{renormalizable Green's functions , in thecontext of the PT it can be treated on an equal footing as the renormalizable R� gauges.In particular, as shown in [29] the application of the PT in the context of the unitarygauge gives rise to renormalizable Green's functions which are in fact identical to the�{independent Green's functions obtained in the framework of the R� gauges.Applying the PT to the case of the three boson vertices in the unitary gauge, wehave veri�ed that the WI of Eq.(5.16) and Eq.(5.25) again hold true. We point out, thatalthough the usual vertex graphs are fewer in this gauge, the graphs which can contributepinch parts are quite numerous, a fact that makes calculations lengthier. We therefore donot present the entire proof of the WI, but only outline the steps in its derivation.The usual 
W�W+ vertex diagrams in this gauge are shown in Fig.5 (1){(8) and (23),while for the ZW�W+ vertex we have the additional graphs (29) and (30) of the same�gure. The relevant W self energy diagrams in the unitary gauge are those shown inFig.10 (1){(3) and (11). The vertex graphs will be denoted as V i���, and the self energygraphs as U i��, where the index i counts the corresponding graphs of Fig.5 and Fig.10.The interesting feature of the unitary gauge is that the WI of the 
W�W+ vertex issatis�ed separately by the usual and pinch parts, as one can verify immediately.For the fermion graphs Eq.(6.2) holds as usual since they are gauge invariant, e.g.V 1��� = V1��� and �1�� = U1�� . The boson graphs give :q�V2;3��� + q�V6;5��� + q�V8;7��� = gc h U2;3�� (1) � U2;3�� (2) i (6.1)and q�V4��� = 0 (6.2)From the Higgs diagram we get : 27



q�V23��� = gc h U11��(1)� U11��(2) i (6.3)For the 
WW vertex the above equations when summed give :q�V
��� = gc h UW��(1)� UW��(2) i (6.4)Evidently the Ward identity holds already for the usual vertex graphs, before any pinchcontributions are included. One can then verify that the vertex like pinch contributionsin the unitary gauge �V
����P (some of the additional ones, speci�c to the unitary gauge,are shown in Fig.11) , when contracted with q�, yield :q� �V
����P = gc h PW��(1) �PW��(2) i (6.5)where PW�� are the relevant propagator like parts, to be appended to the W self{energy inthe unitary gauge. As shown in [29] theW self{energy obtained via the PT in the unitarygauge is identical to the one obtained via the PT in the context of the R� gauges, namely: b�W��(q) = UW�� + PW�� : (6.6)Adding Eqs.(6.4) and (6.5) by parts we arrive again at the advertised WI of Eq.(5.25).For the ZWW vertex the proof proceeds in an analogous way. For the class of graphsthat are common to both vertices 
WW and ZWW the proof is identical. The WI isagain satis�ed separately by the regular vertex graphs and the pinch graphs. There arehowever two additional classes of contributions that need be considered. First, there arethe extra regular vertex graphs 29 and 30 of Fig.5 along with similar box graphs thatwill contribute a pinch part to the vertex ; all the above graphs contain a Higgs particle.Second, unlike the photon case, the vertex like pinch parts originating from boxes wherethe pinching takes place at the leg of the Z, (fermion line on the top) do not vanish whencontracted with q�. Since all propagator graphs of the W have already appeared on theleft hand side of the WI, the sole role of these graphs is to provide a left over expressionwhich is recognized as being equal to b��W�W+�� . Of course, in the context of the unitarygauge this expression cannot be identi�ed with a �WW vertex, because there are no�{�elds to begin with.6.3 Feynman background �eld gaugeIn this section we prove the validity of the WI of Eqs.5.16 and Eq.(5.25) in the Feynmangauge of the BFM.In the BFM every bosonic �eld is decomposed into two parts, the quantum �eld � andthe background �eld b�, e.g. �! �+ b�. In the path integral one integrates the quantum28



�elds only, whereas the background �elds are treated as additional sources ; consequentlyonly the quantum �elds appear inside loops.The ordinary gauge transformation of the gauge �elds, for example W a� , a = 1; 2; 3and B� in the case of an SU(2)�U(1) group, is also split into two transformations. Oneof them corresponds to an ordinary gauge transformation, but only for the background�elds cW a� ; bB�, and is therefore called a background gauge transformation. By judiciouslyadding a non conventional gauge �xing term for the quantum �elds we can promote thistransformation to a symmetry of the Lagrangian. Therefore the Green's functions of thebackground �elds are guaranteed to be background gauge invariant, namely �(Ŵ a� B̂� :::) =�(Ŵ 0a� B̂ 0�:::). As a result of this invariance the naive WI of section 5 are satis�ed. Noticehowever that these Green's functions depend in general on the gauge parameters �W ; �B,used to gauge �x the quantum �elds W a� and B� which appear inside their loops. In thisformulation, S-matrix elements are calculated by forming trees of background Green'sfunctions connected to each other by tree level background �eld propagators ; at thispoint the background �elds also require gauge �xing.This gauge �xing is completely independent from the gauge �xing of the quantum �elds,and the parameters �̂W ; �̂B may be in general di�erent from the parameters �W ; �B.We choose to work in the Feynman gauge of the BFM where �W = �B � �Q = 1.As was shown in [25] [27], at the one loop level, this particular gauge choice gives rise tobackground Green's functions which are identical to the g.i. Green's functions constructedvia the PT. No formal understanding of this correspondence has yet been established ;the aforementioned agreement has been veri�ed by comparing all Green's functions con-structed so far at one loop via the PT with the corresponding BFM Green's functions .The operational reason for this identity of results is that pinching turns out to be zero inthis particular gauge . To this end we remind the reader that pinch parts can originatein three ways :i) from the longitudinal part of gauge boson propagators,ii) from three gauge-boson vertices, andiii) from vertices with two Goldstone bosons and one gauge boson.All these can provide the appropriate momenta which when contracted with a 
-matrixwill cancel a fermion propagator. By simple inspection of the Feynman rules of this gaugeone immediately recognizes that all the necessary pieces that could generate pinch termsare missing. First of all, since this is a Feynman type of gauge there are no longitudinalparts for the gauge boson propagators. Secondly, one observes that in this gauge the threegauge boson vertex between a background and two quantum gauge �elds ( which is gauge29



dependent even at tree level ) assumes the form���
(q; k;�q� k) = �F��
 + (1 � 1�Q )�P��
 (6.1)where �F��
 = (2k + q)�g�
 � 2q�g
� + 2q
g�� (6.2)and �P��
 = �k�g
� � (k + q)
g��: (6.3)We see immediately that by setting �Q = 1, the �P��
 part, which is the only one thatcan pinch, disappears. Finally, the elementary vertices of the form �̂�G where �̂; � arescalars (Higgs or unphysical would be Goldstone bosons) and G� a quantum gauge �eld(W a� ; B�), depend only on the momentum carried by the background �eld �̂, namely��̂�G� (q; k;�q � k) / q� (6.4)Therefore they also cannot trigger pinching. Consequently, since pinching has been ren-dered trivial (zero) in this gauge, one readily concludes that the Green's functions con-structed via the PT in any gauge will be identical to the conventional Green's functions ofthe Feynman gauge of the BFM, i.e.b�W�� = �Ŵ�� ; b�ZW�W+��� = �ẐŴ�Ŵ+ ; etc::: (6.5)We now proceed to the proof of the WIs of Eq.(5.16) and Eq.(5.25). We need toconsider only the usual vertex and self energy graphs in this gauge. The vertex graphsare those of Fig.5 and Fig.6 plus the additional ones of Fig.11 and Fig.12. Note thatfor the �W�W+ vertex there are no ghost graphs in this gauge ; so for this paragraphthe graphs of Fig.6 (2,3,4,5) are replaced by those of Fig.12 (2,3,4,5). The modi�cationsneeded for the W self energy graphs are that an additional graph (Fig.10 (13)) must beincluded and the pinch graph must be removed. In all these �gures the external legs arenow considered to be background �elds.We will use the same symbols for the various diagrams as in section 6.1, even thoughnow, since we work in a di�erent gauge, they correspond in general to di�erent expressions.So V i��� will correspond to a ZW�W+ vertex diagram , Si�� to a �W�W+ vertex and�i�� to a W self{energy graph.By acting with q� on the three gauge boson vertex graphs we readily obtain the fol-lowing results.Fermion graphs :q� V 1��� + iMZ S1�� = gc h �1��(1) � �1��(2) i (6.6)30



Gauge boson graphs :q� V 2;3��� + q� V 4;5��� + q� V 6;7��� = gc h �2;3��(1) � �2;3��(2) i (6.7)q� V 8��� = 0 (6.8)Ghost graphs :q� V 9;10��� + q� V 35;36��� + q� V 37;38��� = gc h �5;4��(1) � �4;5��(2) i (6.9)q� V 39��� = 0 (6.10)q� V 11;12��� + q� V 41;40��� + q� V 43;42��� = gc h �7;6��(1) � �4;5��(2) i (6.11)q� V 44��� = 0 (6.12)In fact Eq.(6.9) is identical to Eq.(6.11) part by part and correspondingly Eq.(6.10) isidentical to Eq.(6.12). This is so because ghost graphs in this gauge result in identicalexpressions regardless of the orientation of the ghost line.Goldstone and gauge boson graphs :WWV propagators q� V 13;14��� + iMZ S7;6�� = 0 (6.13)q� V 15;16��� + iMZ S9;8�� = 0 (6.14)q� V 17;18��� + iMZ S11;10�� + iMZ S13;12�� = gc h �9;8��(1) � �9;8��(2) i (6.15)q� V 22��� = 0 (6.16)q� V 45��� = gc h �13��(1) � �13��(2) i (6.17)q� V 46��� + iMZ S22�� = 0 (6.18)q� V 47��� + iMZ S23�� = 0 (6.19)31



WWH propagators q� V 23��� = gc h �11��(1) � �11��(2) i (6.20)q� V 24��� + iMZ S14�� = 0 (6.21)q� V 25��� + iMZ S15�� = 0 (6.22)HZW and ZHW propagatorsq� V 29��� + iMZ S17�� = 0 (6.23)and the mirror image graph q� V 30��� + iMZ S16�� = 0 (6.24)q� V 31��� + iMZ S19�� = 0 (6.25)and the mirror image graph q� V 32��� + iMZ S18�� = 0 (6.26)q� V 49��� + iMZ S25�� + iMZ S3�� + iMZ S4�� = 0 (6.27)q� V 48��� + iMZ S24�� + iMZ S2�� + iMZ S5�� = 0 (6.28)The rest of the Goldstone boson graphs give :q� V 19��� + q� V 20��� + q� V 21��� = gc h �10��(1) � �10��(2) i (6.29)�g38c Z Z(k)W (k + p1) (2k + p1)� (2k + p1 � q)�+g38c Z Z(k)W (k � p2) (2k � p2)� (2k � p2 + q)�(6.30)q� V 26��� + q� V 27��� + q� V 28��� = gc h �12��(1) � �12��(2) i (6.31)�g38c Z H(k)W (k + p1) (2k + p1)� (2k + p1 � q)�32



+g38c Z H(k)W (k � p2) (2k � p2)� (2k � p2 + q)�(6.32)q� V 33��� + iMZ S21�� = g38c Z H(k)W (k + p1) (2k + p1)� (2k + p1 � q)��g38c Z Z(k)W (k � p2) (2k � p2)� (2k � p2 + q)� (6.33)q� V 34��� + iMZ S20�� = g38c Z Z(k)W (k + p1) (2k + p1)� (2k + p1 � q)��g38c Z H(k)W (k � p2) (2k � p2)� (2k � p2 + q)� (6.34)We observe that the left-over integrals of the above four equations Eq.(6.30){Eq.(6.34)cancel.Adding equations Eq.(6.6){ Eq.(6.34) by parts we arrive at the desired result.7 ConclusionsIn this paper we have extended the S{matrix PT with non{conserved currents to the caseof three boson vertices, with all three incoming momenta o�{shell. We have outlined indetail how the e�ective gauge invariant three boson vertices can be constructed, and wehave given explicit closed expressions for the vertices 
W�W+, ZW�W+, and �W�W+in Eq.(4.33), Eq.(4.34), and Eq.(4.35), respectively. The g.i. three boson vertices wereshown to satisfy naive tree{level Ward identities, which relate them to the g.i. gaugeboson self{energies previously constructed by the same method in [16]. The derivationof the aforementioned Ward identities relies on the sole requirement of complete gaugeinvariance of the S-matrix element considered. In particular, no knowledge of the explicitclosed form of the three boson vertices involved is necessary, as long as they have beenrendered individually �{independent. The validity of one of these Ward identities hasbeen proved explicitly, through a detailed diagrammatic one-loop analysis, in the contextof three di�erent gauges. The above proofs convincingly illustrate the gauge invariantnature of the entire procedure. Most noticeably, the proof of the Ward identity in theunitary gauge supplies additional evidence that the PT endowes the Green's functionscomputed in the unitary gauge with several desired theoretical properties, as alreadyshown in [29] for the simpler case of the W self-energy.Of particular interest is the further exploration of the recently advocated connectionbetween the PT and the BFM. Speci�cally, all cases studied thus far show that the33



PT Green's functions coincide with the BFM Green's functions, computed at �Q = 1.Unfortunately, no general proof of this point exists yet. In section 6.3 we presented aheuristic argument based on the structure of the Feynman rules in this particular gauge,which supports the general validity of this hypothesis, at least at the one-loop level. Due tothe lack of a rigorous proof however, additional individual cases may have to be examined.To that end one will have to construct physically relevant Green's functions via the PTand then compare them with the analogous Green's functions of the BFM at �Q = 1. Thegeneral methodology presented in section 3, and the closed explicit expressions reportedin section 4 provide the starting point for such a detailed comparison. Furthermore, thegeneral character of the Ward identities derived in this paper may provide additional cluestowards a formal understanding of the PT algorithm. Results in this direction will bereported elsewhere.8 AcknowledgmentsOne of us (K.P.) would like to thank V. Filippidis for technical support. This work wassupported in part by the National Science Foundation Grant No.PHY-9313781.9 Figure CaptionsFigure 1 : One-loop-dressed Feynman graphs for the renormalized b��� (in a ghostfree gauge ) necessary to implement the gauge invariance of the e�ective potential. Allvertices and propagators are fully dressed.Figure 2 : The general structure of the part bT (q; p1; p2) of the S-matrix that dependsonly on the momentum transfers q; p1; p2 . The solid lines without orientation representboson propagators.Figure 3 : Graphs contributing pinch parts to the construction of g.i. Z self-energies.Figure 4 : The graphs providing pinch parts to the 
WW , ZWW and �WWvertices in the Feynman gauge. The diagrams pinching the left fermion line as well as alltypes of crossed diagrams are not shown.Figure 5 : The usual graphs contributing to the the 
WW and ZWW vertices inthe Feynman gauge. Their corresponding expressions are denoted as V i��� in the text. Inthe unitary gauge only the graphs 1 to 8 , 23 and 29,30 are present; they are denoted asV i���. In the context of the BFM additional graphs must be included.Figure 6 : The usual graphs contributing to the �WW vertex in the Feynman gauge.In the text they are denoted as Si���. None of these graphs exist in the unitary gauge.In the BFM additional graphs must be included, whereas graphs containing ghosts are34



absent.Figure 7 : The g.i. self-energies b�W�� , b�+� , b��� and b�� (a, b, c, and d, respectively)Figure 8 : The vertex , self energy, and monodromic graphs of the S-matrix for thesix-fermion process, after the PT rearrangement. Solid lines without orientation representbosons. All loop expressions are now g.i. and the gauge dependence enters only throughthe tree propagators of the gauge bosons and their respective scalars. The mirror imageand crossed graphs of the monodromic graphs are not shown.Figure 9 : Graphs contributing a gauge dependent part of the form �(q; �Z) to theZWW part of the amplitude.Figure 10 : Feynman diagrams contributing to the W self-energy. Graph 13 is par-ticular to the BFM.Figure 11 : Box graphs that in the unitary gauge can provide vertex{like pinch parts.In these graphs pinching is triggered through the longitudinal part of the vector bosons'propagators.Figure 12 : The additional 
WW and ZWW vertex graphs of the Feynman gaugeof the background �eld method. Together with those of Figure 5 they are denoted byV i��� in section 6.3.Figure 13 : The additional �WW vertex graphs of the Feynman gauge of the back-ground �eld method. Together with those of Figure 5 they are denoted by Si��� in section6.3. Graphs 2 to 5 replace the ghost graphs 2 to 5 of Figure 5, which do not exist in thisgauge.References[1] J. M. Cornwall, in Deeper Pathways in High Energy Physics, edited by B. Kursunoglu,A. Perlmutter, and L. Scott (Plenum, New York, 1977), p.683.[2] J. M. Cornwall, Phys. Rev. D 26 (1982) 1453.[3] J. M. Cornwall, Phys. Rev. D 38 (1988) 656.[4] J. M. Cornwall, Physica A 158 (1989) 97.[5] J. M. Cornwall and J. Papavassiliou , Phys. Rev. D 40 (1989) 3474.[6] J. Papavassiliou , Phys. Rev. D 47 (1993) 4728.[7] J. M. Cornwall, R. Jackiw, and E. T. Tomboulis Phys. Rev. D 10 (1974) 2428.J. M. Cornwall and R. Norton Ann. Phys. (N.Y.) 91 (1975) 106.35



[8] Even if one assumes that d̂, �̂3, and �̂4, are individually g.i., 
 still displays a residualdependence on the gauge-�xing parameter, stemming from the free part of the gluonpropagators. Eq.(1.1) is the necessary condition for the order by order cancellationof this residual gauge dependence[9] It is only after the gauge invariance of 
 has been guaranteed that one proceeds toobtain the SD equations for the g.i. Green's functions d̂, �̂3, and �̂4, by means ofa variational principle. To that end, one extremizes independently the variations of
(d̂; �̂3; �̂4) with respect to d̂, �̂3, and �̂4, e.g. �
�� = 0, �
��3 = 0, and �
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