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ABSTRACT

In the context of the Standard Model we extend the S—matrix pinch technique for
non—conserved currents to the case of three boson vertices. We outline in detail how
effective gauge invariant three boson vertices can be constructed, with all three incoming
momenta off-shell. Explicit closed expressions for the vertices yYW-"W*, ZW-W™, and
XxW-WT are reported. The three boson vertices so constructed satisfy naive QED-like
Ward identities which relate them to the gauge invariant gauge boson self-energies pre-
viously constructed by the same method. The derivation of the aforementioned Ward
identities relies on the sole requirement of complete gauge invariance of the S—matrix
element considered; in particular, no knowledge of the explicit closed form of the three
boson vertices involved is necessary. The validity of one of these Ward identities is demon-
strated explicitly, through a detailed diagrammatic one-loop analysis, in the context of
three different gauges.



1 Introduction

The pinch technique (PT) is an algorithm that allows the construction of modified gauge
independent (g.i.) off-shell n-point functions, through the order by order rearrangement of
Feynman graphs contributing to a certain physical and therefore ostensibly g.i. amplitude,
such as an S-matrix element or a Wilson loop [1]. The PT was originally introduced in an
attempt to gain insight from perturbation theory on issues encountered in developing a
consistent truncation scheme for the Schwinger-Dyson (SD) equations governing the non-
perturbative QCD dynamics [2]. Specifically, one wishes to construct a SD series which
is manifestly g.i. already in its one-dressed loop truncated version. This is a non-trivial
task, since the mechanism of gauge cancellations is very subtle, and involves in general a
delicate conspiracy of terms coming from all orders.

The systematic derivation of such a SD series for QCD has been the focal point of
extensive research [3] [4]. Of particular interest in this context is the study of the three
gluon vertex I's [5], and the four gluon vertex I'y [6]. In particular, as explained first in [4]
and later in [6], one attempts to construct an effective potential  [7] for quarkless QCD,
which, in ghost-free gauges, is a functional of only three basic quantities: the gluon self-
energy (ci), the three gluon vertex (f‘g,), and the four gluon vertex (f‘4), e.g. Q(ci, f‘3,f‘4).
One then requires that ) is manifestly gauge-independent for off-shell ci, f‘3, and f‘4, e.g.
when they do not necessarily satisfy their respective SD equations. This requirement can
be enforced if cz, f‘3, and T’ are individually gauge-independent, and, at the same time,

the renormalized self energy ﬂuv is transverse, e.g.
¢“Il,,, =0 (1.1)

order by order in the dressed loop expansion [8]. The one-loop dressed expression for ﬂuv
is schematically shown in Fig.1; we see that already at this level the fully dressed vertices
I'; and I'y make their appearance. It turns out that Eq.(1.1) can be satisfied as long as
d, T's, and T4 satisfy the following Ward identities (WI):

A A A

(_ﬁruva(Qh q2, q3) = Tva(qZ)d_l(qZ) - Tva(q3)d_1(q3) (1‘2)
Qi‘f‘Z;‘ftj@ = fabpf‘zczipﬁ(ql + 92,93, Q4) + C.p- (13)
(1.4)

where ci_l(q) = q% — f[(q), T..(q9) = g — 9.9,/ is the usual transverse projection
operator, f2% the structure constants of the gauge group, and the abbreviation c.p. in
the r.h.s. of Eq.(1.4) stands for ”cyclic permutations” [9].

Although this program has been layed out conceptually, its practical implementation is

as yet incomplete. One thing is certain however: if Green’s functions with the properties



described above can arise out of a self-consistent treatment of QCD, one should be able to
construct Green’s functions with the same properties at the level of ordinary perturbation
theory after appropriate rearrangement of Feynman graphs. The PT accomplishes this
task by providing the systematic algorithm needed to recover the desired Green’s functions
order by order in perturbation theory. So, g.i. three and four- gluon vertices have already
been constructed via the PT at one-loop, and they satisfy the Ward identities of Eq.(1.4)
[10] .

A program similar to that outlined above for QCD has also been proposed for the case
of non-Abelian gauge theories with either elementary Higgs particles or with dynamical
symmetry breaking [11]. In an attempt to study the general structure of the g.i. Green’s
functions involved, the PT was extended to the case of theories with tree-level symmetry
breaking. The technical modifications necessary to accomplish such a task have been
presented in [12], in the context of an SU(2) toy model. The upshot of that analysis was
that the PT, when properly applied, gives rise to g.i. two- and three point functions,
which satisfy the same WI as in the symmetric (unbroken) case, provided one includes
appropriate longitudinal Goldstone boson Green’s functions. So, for example Eq.(1.1)

becomes

¢TI, + MII, = 0 (1.5)

where II, is the g.i one-loop mixed self-energy between the (massive) gauge boson and
the corresponding Goldstone boson. Clearly, Eq.(1.1) may be enforced, if we redefine the
gauge boson self-energy to be f[ffu = fIW + %ﬂy with similar redefinitions for other
n-point functions. Subsequently, the PT was extended to the full SM [13], and several
interesting applications were proposed [14], [15], [16], [17].

Even though formal considerations similar to those of the QCD case would provide
sufficient grounds for a detailed study of g.i. three and four gauge boson vertices in the
context of the SM, such a study was precipitated by phenomenological issues. In particu-
lar, the possibility of directly probing non-Abelian vertices in the upcoming LEP2 exper-
iments, through the process ete™ — WTW ™, has led to extensive studies of anomalous
gauge boson couplings, induced either by extensions of the SM, or by one-loop correc-
tions within the SM [18], [19], [20]. In computing the latter, issues of gauge invariance
become very important. So, form factors of the W boson, such as the magnetic dipole
and electric quadrupole moments, turn out to be gauge dependent when extracted from
the conventional off-shell YWW and ZWW vertices, calculated in the context of the R,
gauges [22]. In addition, these quantities are infrared divergent and violate perturbative

unitarity. All the above pathologies can be bypassed, as long as one instead extracts them

from g.i. off-shell YWW and ZWW vertices constructed via the PT [23].



Given the relevance of g.i three boson vertices (TBV) both from the theoretical and the
phenomenological point of view, we present in this paper the general methodology for their
construction, for the electro-weak sector of the SM. We focus on the vertices involving one
neutral and two charged incoming particles, with all three incoming momenta off-shell.
In order to construct such vertices we consider a matrix element for six-fermion elastic
scattering of the form e"e”v — e”e” v, where the external electrons e are considered to be
massive. This assumption is important, since, in addition to the g.i. vertices with three
incoming gauge bosons (YWTW~ and ZW*W ™) it enables the construction of g.i. three
boson vertices where at least one of the incoming bosons is a scalar particle (unphysical
would-be Goldstone bosons and physical Higgs boson). As we will see in what follows,
the latter play a crucial role in the Ward identities enforcing the gauge-invariance of the
S—-matrix In particular, in this paper we focus on the following issues.

a) We discuss the technical difficulties involved in the application of the PT when the
necessary assumption is made that m, # 0.

b) We present the most general algorithm for constructing g.i vertices involving one
neutral and two charged bosons.

¢) We explain how the requirement of the gauge invariance of the S-matrix gives rise
to a set of WI, relating several of the g.i. vertices to each other. The derivation is general
and does not require knowledge of the explicit closed form of the quantities involved.

Most noticeably, the following WI,

~ZW-Wt . ~xW—W+ ~W ~W
s (@p1,p2) +iMzTLs 7 (4,p1,02) = ge [TMp(p1) — Ts(p2) (1.6)

~7Z

relates the g.i vertices I', 4 k and f‘zgv_WJr to the g.i. W self-energy f[:; To the best
of our knowledge the WI we present here has not been derived before within the PT or
any other framework

There is one additional reason why the study of the g.i. vertices and WI via the PT
is interesting. As it was recently realized there is a close connection between the PT and
the background field method (BFM) [24]. In particular it was shown that in all cases
considered so far the PT Green’s functions may be obtained directly, if one computes the
conventional Green’s functions in the context of the BFM, using the special value {gp =1
of the gauge fixing parameter used to gauge-fix the quantum field [25] [26]. Since however
no formal connection between the two methods has yet been established, additional cases
may have to be considered, at least for those Green’s functions which are of particular
physical relevance. The method for constructing vertices advertised above provides the
framework for such a detailed investigation.

It is important to emphasize that the closed form of the g.i. TBV obtained by the



application of the S-matrix PT does not depend on the particular process employed. So,
instead of the process eev — eev one could equally well extract the g.i TBV from a process
of the form bbt — bbt where t and b are the top and bottom quarks, respectively, or even
a process involving gauge bosons as external on shell particles, such as WWy — WW+.
The fact that the PT gives rise to process—independent results had been conjectured some
time ago [12], and has been recently proven [28] via detailed calculations. Moreover,
the PT algorithm gives rise to ezactly the same answers, regardless of the gauge fixing
procedure chosen. This has been shown by explicit calculations for a wide variety of gauge
fixing choices, such as the R, gauges, the light-cone gauge [2], the unitary gauge [29], and
the background field gauges [25].

The paper is organized as follows: In section 1 we briefly review some of the features of
the PT, which are relevant to our purposes. In particular, we present a detailed analysis
of the modifications necessary for the application of the PT in the context of the SM
with non-conserved external currents. In section 2 the method for constructing the g.i.
vertices is described in detail. In section 3 we apply the formalism developed in the
previous section to a concrete example, and we perform an explicit one-loop calculation.
In section 4 we outline the general method for obtaining WI within the PT framework,
and we derive a set of WI for the newly constructed TBVs. In section 5 we explicitly
prove the first of the Ward identities derived in the previous section, to one-loop order,

in the context of three different gauges. Finally, in section 6 we present our conclusions.

2 The Pinch Technique for non conserved currents

The simplest example that demonstrates how the PT works is the gluon two point func-
tion (propagator). Consider the S-matrix element T for the 2—2 process of the elastic

scattering of two fermions of masses m; and m,

q1(p1) + q2(p2) — @1(P1) + q2(P2) - (2.1)

To any order in perturbation theory T is independent of the gauge fixing parameter one
has to use to define the free gluon propagator. For example in the covariant R, gauges
the gluon propagator is given by

Au(q) = %[guv — (1)l (2.2)

q q

On the other hand, as an explicit calculation shows, the conventionally defined proper
self-energy depends on the gauge fixing parameter, in this case £&. At the one loop level
the gauge dependence of the self-energy graphs is cancelled by contributions from other

graphs, vertex or box, which, at first glance, do not seem to be propagator-like. That this



cancellation must occur and can be employed to define a g.i. self-energy, is evident from

the decomposition:
T(Satamhm?) = Tl(taé) + T2(t,m1,m2,f) + T3(s,t,m1,m2,f) (23)

where the function Ti(¢) depends only on the Mandelstam variable t = —(p; —p1)? = —¢?,
and not on s = (p; + p2)? or on the external masses. Typically, self-energy, vertex, and
box diagrams contribute to 77, 75, and T3, respectively. Moreover, such contributions are
¢ dependent. However, as the sum T'(s,t,mq, ms) is g.i., it is easy to show that Eq.(2.3)

can be recast in the form

T(37t7m17m2) = Tl(t) + T2(t7m17m2) + T3(S,t,m1,m2), (2‘4)
where the 7} (i = 1,2,3) are separately ¢-independent. The propagator-like parts of the
vertex and box diagrams which enforce the gauge independence of T1(t), are called ”pinch
parts”. The pinch parts emerge every time a gluon propagator or an elementary three-
gluon vertex contribute a longitudinal k, to the original graph’s numerator. The action

of such a term is to trigger an elementary Ward identity of the form

Eyp= B=H+p—m)— (P —m)
= St (p+k)— 57 (p) (2-5)

once it gets contracted with a 4 matrix. The first term on the right-hand side of 2.5
will remove the internal fermion propagator - that is a ”pinch” - whereas S™!(p) vanish
on shell. Returning to the decomposition of Eq.(2.4), the function Ty is g.i. and may
be identified with the contribution of the new propagator. We can construct the new
propagator, or equivalently Tl, directly from the Feynman rules. In doing so it is evident
that any value for the gauge parameter ¢ may be chosen, since Tl, TZ, and 75 are all
independent of ¢. The simplest of all covariant gauges is certainly the Feynman gauge
(¢ = 1), which removes the longitudinal part of the gluon propagator. Therefore, the only
possibility for pinching in four-fermion amplitudes arises from the four-momentum of the
three-gluon vertices, and the only propagator-like contributions come from vertex graphs
and not from boxes.

The generalization of the PT from vector-like theories (such as QCD) to the SM is
technically and conceptually straightforward, as long as one assumes that the external
fermionic currents are conserved. For example, applying the PT to a SM amplitude, such
as e v, — e U, with m, = m, = 0, a {-independent self-energy for the W-boson may be
constructed [13].

The situation becomes more involved if one decides to consider non-conserved external



fermionic currents, e.g. fermions with non-vanishing masses. The main reasons are the
following;:
(a) The charged W couples to fermions with different, non-vanishing masses m;, m; #

0, and consequently the elementary Ward identity of Eq.(2.5) gets modified to :
ku')’MPL = ]}éPL = Si_l(p + k)PL — PRSj_l(p) + miPL — ijR (26)

where
B 1+ s
RL =

are the chirality projection operators. The first two terms of Eq.(2.6) will pinch and

(2.7)

vanish on shell, respectively, as they did before. But in addition, a term proportional to
m; P, — m; Pg is left over. In a general R, gauge such terms give rise to extra propagator
and vertex-like contributions, not present in the massless case. For the neutral Z that
couples to fermions of the same mass we have to set m; = m; = m in Eq.(2.6).

(b) Additional graphs involving the ”unphysical” Goldstone bosons x and ¢, and
physical Higgs H , which do not couple to massless fermions, must now be included.
Such graphs give rise to new pinch contributions, even in the Feynman gauge, due to the
momenta carried by interaction vertices such as y¢T¢~, Z¢Td~, Wto~x, HW¢~ etc,
e.g. vertices with one vector gauge boson and two scalar bosons. So, for example, all the
graphs of Fig.4 give rise to new vertex-like pinch contributions to the yYWW and ZWW
vertices, while in the massless case considered in [23], only graphs (1) and R(*?) were
present.

(c) After the pinch contributions have been identified, particular care is needed in
deciding how to allot them among the (eventually ¢ independent) quantities one is at-
tempting to construct. When constructing g.i. TBVs, for example, in the massless case
(m; = m; = 0), all vertex-like pinch contributions are allotted among the yWW and
ZWW, the only two vertices which contribute to the amplitude. In the massive case
we propose to study, vertices such as x\W-W+t |, HW-W* | Z¢~ W™, etc, contribute
non-vanishingly to the amplitude, and they must also be rendered g.i. through proper
allocation of the available vertex-like pinch parts. The details of how this is accomplished
will be presented in the next section.

Before we proceed with the construction of the vertices and the subtleties involved
we record some useful formulas. In what follows we use the Feynman rules and the
conventions of [30]. The tree-level vector-boson propagator A (q) in the R gauges is
given by

1 He¥
M (4,6) = S qple ~ (-8 om] (2.8)



with : = W, Z,~, and M, = 0. Its inverse A;'(q,&)" is given by
A7H g 6" = (4" — M7)g™ — ¢"¢" + éq“q” : (2.9)
The propagators A,(g,¢;) of the unphysical (would-be) Goldstone bosons are given by
_ -t
¢ - &M

with (s,3) = (¢, W) or (x,Z) and explicitly depend on ¢;. On the other hand, the
propagators of the fermions (quarks and leptons), as well as the propagator of the physical

Ay(g,&) = (2.10)

Higgs particle are ¢;-independent at tree-level.
The following identities, which hold for every value of the gauge fixing parameters ¢&;,
will be used extensively [21]:

v

H
Aﬁ”’(q,&)ZUZ‘”(q)—qM—%As(q,&) , (2.11)
where ., ,
y ., g
U (q) = [¢" — Mf]m (2.12)

is the W and Z propagator in the unitary gauge ({w,{z — o0) and

U (9™ = g™(¢" — M}?) — ¢*¢" (2.13)
its inverse . Furthermore,
95 = AL (4, 8)AT (g, &) = AL (q,6) U7 ()" — 0.0°Au(q, &) (2.14)
and
¢ = —M?q A (q,&) — 4" As(g, &) (2.15)

Finally, the divergences of the currents J% , Jl , Jii/* of [13] are related at tree-level

to the currents of the would-be Goldstone bosons J,, Js, J, ;’ by the following elementary

identities:

_ —iq"

eye) = eZe),

(xe) = 2 (20
_. p

(5pe) = —L2 (5W~e), (2.16)
MW

edty ' h vWe),

(e87) = S Wre)

where ¢, p;, and p; are the momenta carried by the bosons as shown in Fig.2.



3 The gauge independent three boson vertices

In this section we show how to use the PT in order to construct gauge invariant three-
boson-vertices (TBV) , with all three of their incoming momenta off shell.

We consider the S-matrix element for the process
e (n)+v(l)+e(r)—e (R)+ e_(é) + v(7) (3.1)

where

g=n-—mn, p :f—é,p2 =r—7, (3.2)

are the momentum transfers at the corresponding fermion lines; they represent the in-
coming momenta of each of the bosons, merging in the TBV. The TBV’s which can be

extracted from the S-matrix element of the above process will be in general denoted as
~NLR

r ,with N=~,Z,x,H; L =W ,¢~ and R = W+,¢*, where N, L, and R stand
for the neutral, left (positive charge created), and right (positive charge destroyed) legs
of the vertex.

We can extract g.i. improper vertices by identifying the part T(q,pl,p2) of the S-
matrix which is independent of the external momenta n,r,f,ﬁ,ﬁ,é, and only depends
on the momentum transfers q,p;,ps. The general form of T(q,pl,p2) is shown in Fig.3.
T(q,pl,p2) is g.i. as long as we append to the regular vertex graphs all parts of the rest of
the graphs, which only depend on the momentum transfers ¢, p;, ps. Examples of graphs
containing such vertex-like pinch parts are shown in Fig.4.

The inclusion of these extra pieces cancels all ¢;-dependent parts of the regular vertex
diagrams; the only gauge dependence remaining stems from the tree-level expressions
of the propagators of the boson legs. As we will see in section 5 the cancellation of this

residual ¢; dependence is enforced by a set of WI satisfied by the g.i T “™s. The final form
of the g.i. T(q,pl,p2) is a sum of individually g.i. sub-amplitudes TNLR(q,pl,p2) and is

given by
~ ~TLR
T(q,p1,p2) = Y, (eTe) (eLv.) (ZRe) T~ (g,p1,p2) (3.3)
{TLR}
~ A A ~TLR
= Y. (eTe) (eLv.) (7.Re) An(q)AL(p1)Ar(p2) I (q,p1,p2)
{TLR}

where all internal Lorentz indices have been suppressed. In order to extract the proper
f‘NLR(q,pl,p2) from the respective TNLR(q,pl,p2) one must strip off the three g.i. As,
by multiplying TNLR(q,pl,p2) with the respective inverse propagators A-1. We remind
the reader that the A may be individually constructed through the application of the PT

to appropriate four-fermion amplitudes (see for example [13] and [16]).



Another equivalent and more economical way to isolate the proper vertex, described
in detail in [5] and [23], is to notice that the conventional self-energies of the external
boson legs can be converted to the respective g.i. PT self-energies, except for certain
missing pinch pieces. These missing pieces may be supplemented to the self-energy by
hand, and correspondingly subtracted from the TBV. All such terms are multiplied by an
inverse tree-level propagator (which is the characteristic structure of all pinch terms), and
they remove the tree-level boson propagator connecting them to the rest of the graph.
Therefore, they are effectively one-particle irreducible, and they may be freely added to
the rest of the one-particle irreducible terms contributing to the TBV [6].

Schematically the g.i. TBV f‘NLR will consist of the following pieces :

- — 1 1 1
_ pl&=1) P p (0 p 10 P 1)

where I‘Sé";%l ) are the conventional graphs contributing to the 7BV in the Feynman gauge,

IX g are all vertex-like pinch parts of box diagrams (also computed with ¢ = 1 [31] ),
which are kinematically equivalent to the TBV in question (this point will be further
clarified later in this section), I‘g\%R are tree-level expressions of respective TBVs, and Hf;
(i,j = N, L, R) is the pinch contribution to the ¢j-boson self-energy (again at ¢ = 1).
Since the derivation of the pinch parts of propagators has been extensively discussed in
the literature, we will first focus on the technical details pertaining to the construction of
the term T'E; » in Eq.(3.4)

The pinch parts of graphs are extracted using Eq.(2.6), whenever possible. The box
diagrams of Fig.4 for example, represent the complete set of diagrams that can contribute
vertex-like parts to the yW-"W*, ZW-W*, and xW W™ vertices [32]. Depending on
which of the internal fermion propagator has been removed, the vertex-like pinch ampli-

tudes assume one of the following forms:

no

(¢10). (#Te) AL (p)AMps) | (e Pie) B, + Gma(ere) Y |

2
(7Re)..(ENe) AR (p)AN(q) | (EW*w)* BE, + iMw(eptv) ME |
(eNe).(eLv). AN (q)AE (p) [ (3W™e)* BR, + iMw(7¢~e) M" ] (3.5)

The ellipses in Eq.(3.5) represent appropriately contracted Lorentz indices, which we
suppress. We note that the M terms originate from the mass left-overs of Eq.(2.6). The
factors B and M in the expressions above are in general complicated functions of g,
p1, and ps, and boson masses; however they do not depend on the individual momenta
and masses of the external "test” fermions. Notice also that they are ultra-violet finite

since they originated from box diagrams. Clearly, the B’s or the M’s may be zero for



some graphs. Once all relevant pinch contributions have been extracted, they must be
judiciously allotted to the appropriate TBV’s. To that end, one has to perform the
following three steps:

(i) The couplings multiplying the B and M in the r.h.s. of the first relation in Eq.(3.5)
must be rewritten as a linear combination of the couplings of the bosons which can be
attached to the corresponding fermion current. So, for the couplings of the neutral bosons
on the top fermion line we write :

2

%v”PL = —gc(eZe)’ — gs(eve)”

2 M
%mePL = —gMw(eHe) + gc 2Z(éxe) (3.6)

On the other hand, the appropriate couplings for the charged bosons have already ap-
peared in the r.h.s. of the second and third relation of Eq.(3.5).

(ii) We use the identities given in Eq.(2.17) to rewrite the couplings of the Goldstone
bosons to the fermions as divergences of the corresponding currents of the gauge bosons.
At the end of these two steps the pinch parts in the square brackets of Eq.(3.5) assume

the following form:

[—gc(éZe)” <B{Yp — %MN> — gs(é'ye)”B.JYM — gMW(éHe)M?Y (3.7)
[B, +poME] (W) (3.8)
[BR, + poy MP| (5W ey (3.9)

(iii) The final step in transforming these expressions into the desired form of TBV
is to recognize that a tree-level boson propagator must be attached at the point where
the pinching took place. It is straightforward to make the missing photon and Higgs
propagator appear. We only need to insert unity written as a product of a propagator
and its inverse. The inverse propagator will be incorporated to the rest of the pinch
expression. We emphasize that no additional ¢ dependencies are introduced into the
pinch expressions through this process, since the part of the inverse photon propagator
proportional to ¢, vanishes from the amplitude due to conservation of the electromagnetic
current J¥,
to accomplish this last step for the massive gauge bosons, we have to use the identities

whereas the Higgs propagator and its inverse are g.i at tree-level. In order

of Eq.(2.14), since now the relevant currents J; and Jj;, are not conserved. Finally we
obtain :
eve), & [~ gs T(q) BY eHe) A —gMw A (q) MY
(&ve)s [—gs T"(q) BY,| + (¢He) An(q) [~gMwAF (9M"]

10



+ (eZe), A7 (q) [—chJJ(Q)z <B.J.\.C, + %M?Y)]

+ (exe) Ax(q) [ iMzgcg” <B.J.\.C, +q2—MM?Y>] (3.10)
(B, + pruME] [UH(01)uu Ny (1, €w ) EW ), — i Mwpli Ag(py, éw ) (BT )| (3.11)

[BE, + pauMP] (U (p2)us D5 (P2, €w ) (EW "0, — i Miwphy Ag(pa, éw ) (¢ v)|  (3.12)

It is now evident how the pinch parts must be allotted among the various (eventually
g.i.) TVB’s. We demonstrate it schematically below.
From the graphs that pinch at the top (neutral) fermion line (Eq.3.10) the pinch parts

are distributed as follows ;

~gs T*(q) BY, — T"
~9eU (@)on (B, + T MY) — B
tMzgcg" <B{YM + %MN> — f‘XLR
~gMyw AF (MY — T (3.13)
From the graphs that pinch on the left (Eq.3.11) we have :
Ut (p)on (BE, —pruME) — T7 "
iMwpt (B, —puME) — TV0° (3.14)
and from the graphs that pinch on the right (Eq.3.12) :
U (p2)un (B.I.Q.M - PmM.].%.) — fﬁLWJr
iMwps (BR, - pMB) —s T (3.15)

The final step in the construction of the g.i. TBVs is the inclusion of all pinch terms
that have been left over from converting gauge dependent boson self energies into their
gauge independent PT counterparts, at other parts of the amplitude considered; they
constitute the third term in the r.h.s. of Eq.(3.4). To begin with, it is important to
recognize that in addition to the boson legs attached to the TBVs, the boson legs of the
“monodromic” graphs (collectively depicted in Fig.8 (e),(f),(g)) must be rendered g.i. We
call them “monodromic” (one-way), because their graph structure of vertices and edges

(propagators) is that of an “Eulerian-path” or self avoiding curve. That is , all the vertices

11



can be visited by a line that does not run through an edge twice. Notice that they contain
an off-shell fermion propagator. In the rest of this section we outline how such pieces are
included in the vertices through a specific example.

Let us concentrate on the Z self-energy legs. In the Feynman gauge (¢, = 1), the only
propagator-like pinch parts for the g.i. Z self-energy originate from the graph shown in
Fig.3.a and its mirror graph Fig.3.b and their contribution is equal. For the Z self-energy
leg attached to the ZWW vertex, one of the above graphs (Fig.3.c), is already present in
the amplitude we consider and supplies half of the necessary pinch contribution. The other
half, where the pinch would occur at the side where we now have the TBV vertex, is miss-
ing. Therefore its pinch contribution must be supplemented by hand to the Z self-energy
graphs and subsequently subtracted from the ZWW vertex graphs. We observe that this
contribution to the vertex will be of the form —2¢c*Iww(q) [U;V(q)]_l AY(q,¢z) I‘ﬂgw.
This last expression is explicitly gauge dependent. The effect of the monodromic graphs
is to precisely cancel this residual gauge dependence. To understand how this cancellation
mechanism works we now concentrate on the vertex—like pieces originating from the mon-
odromic graphs. As a first step, their bosonic legs must be rendered g.i; in doing so we
notice that, unlike the previous case, all the necessary propagator-like pinch parts are now
available (an example of a graph that contributes such a pinch term is shown in Fig.3(d)).
One then proceeds as usually and first pinches the fermion propagator inside the loop and
then uses Eqs.(2.14 , 2.15) to attach boson propagators at the point where the pinching
took place. At this point one observes that the momenta accompanying the part with
the scalar propagator A, in Eqs.(2.14 , 2.15) can trigger additional pinching and remove
the remaining fermion propagator that was outside of the loop. Thus a vertex-like piece
finally emerges from this part and must be included with the rest of the vertex graphs.
Clearly, all these pieces are also explicitly gauge dependent since they carry a A,(q,£z),
and by using Eq.(2.11) exactly cancel against the relevant A,(q,¢z) part coming from the
leg attached to the TBV. In the remaining expression the tree level propagators in the
unitary gauge also cancel and the part that needs to be appended to the ZWW vertex
is —2¢%ctIww(q) T2WW. A similar procedure must be followed case by case for all the

pa3
TBVs and will conclude the construction of a g.i. three boson vertex.

4 The vertices YW W™, ZW- W+, x\W- W+

In the previous section we presented the general procedure for constructing g.i. TBVs
SAW-WH SZW-W+

via the PT. In this section we focus on three particular TBVs, namely T’ , I
o W-WH
and ¥ , and we describe in detail their derivation. This section is rather technical;

we present several intermediate results, which will also be used in subsequent sections.
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) AW Wt ~ZW-WT “xW-W+ . .
The final expressions for anﬁ s Lo and zﬁ , are summarised in Eq.(4.33)-

Eq.(4.35).
We adopt the following convention: The scalar parts of boson propagators of mass M4

and momentum ¢ will be denoted by

1
A = — . 4.1
@ = (4.1)
For example, with this notation the tree-level propagator for the W in Eq.(2.8) assumes
the form : ,
M) =9~ (1 &) 3 L1 W) (42)
q* — &M} ’

We introduce the following short-hand notation:

/ (ABC) {..} = / (dk)A(k + p)B(k — p2)C(E) {...}, (4.3)

dtk
i(2m)*
(dk) = p4_"i(‘§:’§n for dimensionally regularized integrals. Furthermore, we define the

scalar integrals

where the momentum integration measure is (dk) = for convergent integrals and

Japc = Japc(q,p1,p2) = /(ABO) ) (4.4)

Lis(9) = [(ak)A(R)B(k+q) . (45)
The box diagrams containing vertex-like contributions, in the Feynman gauge are
shown in Fig.4. From the first two diagrams of Fig.4, which we treat as one, we ob-
tain
Nuag = 9¢ Uz (9);, 9" Brap (4.6)
and
ag = —iMz gc 4°9° Boag (4.7)

where g?B,,s is the same expression as in the case for conserved currents (see [23] Eq.3.5

and Eq.3.6), namely

3
9B = D 9v /(WWV) [gaﬁ (k= 5(p1 = P2))u = e (3 +20)5 — gou (3k — 29)a
V=~,Z
(4.8)
; . ~ZW-W+
with g, = gs and gz = gec. Niaﬁ is allotted to the vertex I', 5 whereas ./\/’01‘5 to
A W-WH
[.s
Similarly, the graphs containing a Higgs boson (2 and 3 in Fig.4) yield:
Nyap + Niag = =Mz g°c qugap M., (4.9)

13



and
25T N2 = —iMz ¢ g°c gug M, (4.10)

with
M = = (JHZW + Jzaw) . (4.11)

We note that box diagrams which contain any two internal neutral bosons, except the
Higgs boson, give zero total pinch contribution. This is so because the pinch parts of
the direct diagrams cancel against the corresponding pinch parts of the crossed diagram.
Similarly, the pinch contributions of diagrams with one ¢ and one W in the loop cancel
against the corresponding contribution from the mirror graphs, e.g. W « ¢.

The pinch contributions of the diagrams 1,...,6 of the second row of Fig.4, where the
pinching occurs at the leg of the W, are extracted following exactly similar steps. We
denote these pinch contributions by Rz op Where 2 = 1,..,6. In what follows the suffix cr
is used to denote the inclusion of the crossed graphs which are not shown in Fig.4 . The

relevant expressions of the pinch contributions of these graphs are :

1,2,2¢r _
R/(J,OL,B ) = gc le(pZ),BgZBy,ap + Rla,@ + Ry,a,B ’ (4]‘2)
where
1 1 — 252 9

R5 = 9°cs’ My pagguadwwy 5, Rins = g°c( 5 )My p26Guadwwz (4.13)

and
9’Bos(q,p1,p2) = . gv/ (WWV) Guap(q,p1,p2) (4.14)

_’Y:
with

Gruap(3,P15P2) = gap (3 + 3p1 — 2p2),, + 9us (3% + p1 — 2q), — g (K + 2p1 — 29)
(4.15)
Notice that the result of the conserved current case can be recovered from Eq.(4.14) if we
neglect the terms proportional to p;, and psg (Eq.3.11 of [23]).
The rest of the diagrams give :

4
S
Rya,@ 3?M12V P289uaIWww (4.16)
or s2(1 — 2s?
R4a:8 + Riaﬁ = 93%]‘4%/ P289ua > Jwwz (4.17)
3CM2
Rua,@ gTW P289uaJWWH (4.18)

14



3 2
g M
Rua,@ 72CW P289uad zHW (4.19)

We next turn to the rest of the graphs of Fig.4, third and fourth row, and isolate the
o W-WH
pinch contributions, which will be appended to the vertex I‘zﬁ . We denote them by

’foﬁ where ¢ = 1,..9. Their explicit expressions are:

3

R LR R — 9 S . by J 4.20
op T Roap T Raop My 2e WOW (p2) ﬁvgz vdwwv , (4.20)
g3
Roy= 5 My [ (W) (h - 20), (4.21)
3 2
g cMy,
Rap + Rap + Rap = / WW Z) ke, 4.2
g3 1 — g2 g3 2
- M; o aD2gJ )
iMy 2c wP289aJwwz + i8cMy p1 Psdwwz

The last term in the r.h.s. of Eq.(4.22) cancels against the corresponding contribution
from the left,coming from the graphs £46 + £4 + E

6 g My
Rs = Sy g pes / (WWH) k. , (4.23)
RZ@ j; ]‘f qaP28JzHW (4.24)
REs+ R3S = U‘(i;z ]‘ﬁv U (p2)apuzw (4.25)
Ris+ R = ii;z %Mgm / (HZW)(2k +p1),, - (4.26)

The corresponding diagrams where the pinching occurs at the left fermion line we will

denote as Lipﬁ and 5;36 respectively. (these diagrams are not shown). They are given by:

Los(,01,02) = — Rga(@02,m1) 5 Lig(a:p1,02) = — Ria(a,p2,p1)  (4:27)

The total pinch contribution is the sum of all relevant terms. We define :

ZR a8 — 9 CMWPZ,BgMOl M™ ’ ZL/J,OL,B = g3CMI%Vp10‘gN,3 M+ ’ (428)
3 6 . g3c .

'R, 'R,_ L .= L 4.29

Z MZ ’ ; af ’LMZ af ( )
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where crossed graphs are included in the sums and

B 82 1 — 252 1 1
M™(q,p1,p2) = c_2JWW7 t o2 Jwwz + 3 Jwwr + 902 Jzaw (4.30)
M™(g,p1,p2) = =M (¢, p2,1) - (4.31)
The last step is to add the pinch contributions to the regular vertex graphs. Thus, if
we define
— ny W 21

QZQFZO% v &=1 — EV;a,B &=1 > 930F§g &=1 = ZS;ﬁ &=1 (4'32)

=1 =1

to be the sum of the usual graphs of the respective vertices in the Feynman gauge (depicted
respectively at Fig.5 , with V=+v,7Z n, = 28 , nz = 34 and Fig.6 ), we arrive at the
following expressions for the g.i. TBVs

1 ~yw—wt -+ _ _ —
gTS 7‘0‘,3 = I‘ZaW,B v &=1 + QZT(Q)Z BPOl,B + le(pl)gB:p,B + le(pZ),gBuap
—2T 0 [ Iww(q) + 8> Iw~(p1) + ETwz(p1) + 8*Iw.(p2) + S Iwz(ps) ]
‘|‘p2,8.gua M~ ‘I’plaguﬁ M+ ) (433)
1 ~zw-w+t - _ _ _ _
E]‘-‘ua,@ = ]‘-‘Zo% wr &=1 + UZ1(Q)ZBPOL,3 + le(pl)gB:p,B + UW1 (pZ),gBuap
—2T 0 [ Iww(q) + 8’ Iw~(p1) + S Iwz(p1) + $°Iwy(p2) + S Twz(p2) ]
+qudap Mz M + paggue My M™ + pragus My M7, (4.34)
1 ~w-w+ w-w+t . . 2 7 - 1 +
Eraﬁ = 1_‘2,3 &i=1 —1qupoaB —zqu M — E Ra,@ — E ‘Ca,B . (435)

5 The Ward Identities

In the previous two sections we outlined the construction of a generic g.i. TBV, and we
computed the exact one-loop closed forms for the g.i. f‘ZZVB_WJr AZ:;_WJF, AEZV_WJr. In
this section we proceed to derive a set of Ward identities that the g.i. TBV satisfy. These
Ward identities are a direct consequence of the gauge independence of the S-matrix, order
by order in perturbation theory. It should be emphasized that the derivation of the WI
does not require knowledge of the explicit closed form of the TBVs involved.

After the construction of g.i. TBVs has been completed, the amplitude we consider

has been reorganized into individually ¢-independent structures connected by ¢-dependent
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tree level propagators. In other words, the PT algorithm only cancels all {-dependencies
originating from the tree-level propagators appearing inside the loops, but a residual ¢-
dependence, stemming from boson propagators outside of loops, survives at the end of
the pinching process. The cancellation of this last ¢-dependence becomes possible due
to a set of WI satisfied by the g.i. TBV. One can actually derive these WI without any
detailed knowledge of the algorithm which gives rise to the g.i. TBV. All one needs to
assume is that such an algorithm exists (in our case the PT algorithm), and that all
residual ¢-dependencies should cancel from the S-matrix. So, once the g.i. TBVs have
been constructed, one should examine whether or not they actually satisfy the required
WI, as a self-consistency check. In this section we use the above arguments to derive the
WIs, and we will explicitly check their validity at one-loop in the next section.

It is instructive to illustrate the derivation of WI for a simpler case, namely the g.i. W

propagator. We consider the one-loop S-matrix element of the process
e (b) + ve(t) — ve(b) + e (f) (5.1)

with g=t—+¢ = b—b , and apply the PT rules. As shown in Fig.7, the part of the

S-matrix which only depends on ¢ assumes the form:

Ty = (eW+v), A% T, A (W =e), + (W*w), At T A, (vge)
1 (edTr) Ay T, A% (5W-e), + (edtv) Ag TT® Ay (5de) (5.2)

Using Eq.(2.17) in order to pull out the factor (eW*v), (VW ~e), , as well as Eq.(2.14),

we can cast the above expression in the following form :

Ty = (eWt), l <U{;§‘ ”q”A¢> " <Uﬁ;’ - ‘1"‘1°A¢> + CIOA A, e (5.3)

M2, My

—igP ~W _
b (08 - ) BlAv + HEAR (v - %Aqs) |-

In this last expression the ¢-dependence is carried solely by the tree-level Goldstone
boson propagators Ag(g,éw). The requirement that Ty is ¢-independent, gives rise to two
independent equations; the first enforces the cancellation of the terms with only one A,
factor, whereas the second enforces the cancellation of the terms with a Ay Ay factor. It

is then a matter of simple algebra to show that the following WI should hold [33] :
~W . ~
¢“I1,.(q) F iMwll, () = 0 (5.4)
~+ . b
¢“IL, (q) £ iMwlIl (q) = 0 (5.5)
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vi W ¢
¢“q"1L,,(q) — My 1" (g) = 0 (5.6)
Similarly, the requirement of gauge independence for the S-matrix element of a neu-

tral current process gives rise to the following set of WI, relating the two-point Greens

functions of Z and its Goldstone boson x :

~ 7 s =7
¢“IL,(q) — zMZHVX(q) =0 (5.7)

~7 . ~
¢"IL, (q) +iMzIT(q) = 0 (5.8)

~7 ~
¢“¢"IL,,(¢) — MZIT"(g) = 0 (5.9)

We now turn to our main objective, namely the derivation of the WI for the g.i TBVs.
We consider again the S-matrix element of the process in Eq.(3.1). After the pinching
is performed we focus on the diagrams of Fig.8, where now the “blobs” represent g.i.
expressions. As before the residual (¢ —dependence of these graphs enters only through the

tree-level bosonic propagators (solid, not-oriented lines) We call these graphs respectively

(a) )

(d))
(iii) monodromic graphs ( Fig.8 (e),(f),(g) ) [34]

At first sight, the monodromic graphs do not appear to be akin to the graphs of type

(i) three-boson vertex graphs ( Fig.8
(ii) self-energy graphs ( Fig.8 (b),(c)

?

(i) and (ii) (which only depend on the momentum transfers g, p1,ps), since they seem to
explicitly depend on the external fermion momenta n,l,r or n, i,f', through the internal
off-shell fermion propagators. Equivalently, one might think that the characteristic factor
(eTe) (eLv.) (veRe) , containing the external fermionic currents, cannot be pulled out
from the monodromic graphs. One should notice however, that, in the monodromic graphs
additional pinching can take place, triggered by the longitudinal part of the bare vector
boson propagators, thus eliminating the dependence on the internal fermion propagator.
These pinch parts are vertex-like, and will therefore combine with the graphs of (i) and
(ii), in order to cancel the remaining gauge dependence from the amplitude.

To demonjstrate this final cancellation, we use again Eq.(2.11) in order to isolate the
residual gauge dependence of the S-matrix into bare Goldstone boson propagators only.
All gauge dependent terms will display a characteristic structure, depending on the num-
ber and kind of Goldstone boson propagators they contain, and the momenta they carry.
Clearly, all such terms form linearly independent combinations. A term with a gauge
dependence of the form A, (q,éz)As(p1,Eéw), for example, cannot cancel against a term
of the form Ay(ps, {w )As(p1,Eéw ), nor a term of the form A, (q,¢z)As(p2,éw ). Therefore,
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for the final cancellation to occur, the cofactors in front of all such linearly independent
terms must individually vanish. This last condition gives rise to the advertised WI.

Let us first look at terms carrying only a gauge dependent factor of A, (g,€z) . Such
terms can arise only from the diagrams shown in Fig.9. In what follows we use the WI
of the boson self-energies Eqgs.(5.4- 5.9) as well as the WI of the tree-level three vector

boson vertex

¢ T00% 7 (4,01,02) = 9v [Ui! (P2)os — Ui (P1)as] (5.10)
and pull out the common factor (€Ze), (vWte),(eW~v), . Then, the A,(q,{z) gauge
dependent part is given by :

1 vpo
@Ax(q,éz) {Cy + Cuc + Cp ¥ (5.11)
where C,,C,.,CE are the contributions of the vertex, self-energy, and the pinched mon-

odromic graphs, respectively:

v = Upf(1) Ui (2) ¢ [ T+ iMw TS, ] (5.12)
Cup7 = ~UR (1) U (2) ¢ ge (Tip() ~ Tp(2) ) — g™ (5.13)
(Cm)*7 = geH™™ (5.14)

with

7 = ¢ | U (VTiLa(1) UEF(1) — Uge(2) Tiog(2) U (2)
+ % Ts(q) UL (q) [Ugt(1) — URE(2) ] (5.15)

where 1, 2 in the arguments means p; and p,, respectively.

Since the gauge independence of the amplitude requires that the sum C, + C,. + CE
in Eq.(5.11) must vanish, we arrive at the following WI, relating the ZWW and xWW
vertices :

~ZW-W+ o Wow ~W ~W
P Tmg  +iMTyy " = ge [Tg(1) - T(2) (5.16)
Repeating similar steps and requiring the cancellation of the Ay(1) and Ag(2) gauge

dependencies, we obtain the following Ward identities, respectively

(5.17)

aAZW‘W"’ . ~Zp~ W+ ~W ~7Z 8 ~Zy
P ]'-‘uoz,B + zMW]-‘MIB = gc [ HM,B(2) - HM,B(Q) - ;Huﬁ(q) :|
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~ZW-Wt | ~ZH—WT ~Z S ~Zy ~W

plgrua,@ + zMWI‘uoz = gc HM,B(Q) + ;Huﬁ(q) - Hu,@(]‘) :| (5]‘8)

N +
The WI for the I‘WW v vertex can be derived in a similar manner. We have:

aYWowt ~yp W ~W o~y CvZ

P ]'-‘uoz,B + zMW]'-‘u,B = 4gs [ Hu,@(2) - HM,B(Q) - gﬂuﬁ(q) (5]‘9)
~ZW-Wt+ | ~Zb—WT ~y CavZ ~W

pgl—‘ua,@ + zMWI‘uoz —gs [ HM,B(Q) + ;Huﬁ(q) - Hu,@(]‘) :| (520)

which are the counterparts of Eq.(5.17) and Eq.(5.18). It is elementary to derive additional

WI, through straightforward algebraic manipulations of the W1 listed above. For example,
the WI

. a B W-wt . aAZ(f)_W‘l' aAW aAW aAZ
Mo Myt T = e [plnaﬁ(1)+p2naﬁ(z)+q Haﬁ(q)] (5.21)
or equivalently
~xW-Ww+t ~Zp~ Wt ~ ~ ~7
wiy gl —ge | MG+ ell@) + 870|522

can be immediately obtained from Eq.(5.16) and Eq.(5.17), after contracting them with
the appropriate four-momenta, and using the WIs of the self energies and the fact that
ﬁf;(q) is transverse.

Finally, WIs where the g.i. TBV are contracted with two or three momenta can be
easily derived, by demanding the cancellation of gauge dependencies stemming from terms
with more than one Goldstone boson propagator.

It is interesting to notice that an equation analogous to Eq.(5.16) for the f‘WW_WJr
vertex, cannot be derived via this procedure. The reason is simply that all residual
dependence on ¢, automatically disappears from the final expressions, due to current
conservation, e.g. ¢*J] = 0. In order to derive the remaining WI one must choose a
gauge—fixing procedure like the axial or light—cone gauge, where the dependence of the
gauge—boson legs on the gauge parameter does not vanish due to current conservation. In
fact, this was the way the PT was originally implemented by Cornwall, when constructing
the one-loop g.i. gluon self-energy [2]. In the axial (light—cone) gauge, for example, the

tree-level propagator for the photon reads

v 1 NuGy + N qu
where n,, is the gauge—fixing parameter (in the light—cone gauge n,n* = 0). So, after

using current conservation, the n with the appropriate Lorentz index will vanish, but the
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other n will survive, and will only vanish if the desired WI are satisfied. Finally we obtain

0
0

and

+ ~W ~
= gs |Ting(1) — Tilg(2)], (5.25)

which was first proved in [23] by an explicit one-loop calculation. Clearly, similar WI can
be derived for the gluon self-energy and three gluon vertex in QCD.

All previous WI are the one-loop generalizations of the respective tree level WI. As
shown in this section, their validity is crucial for the gauge independence of the S—matrix.
It is important to emphasize that these WI make no reference to ghost terms, unlike the
corresponding Slavnov-Taylor identities satisfied by the conventional, gauge—dependent
vertices.

The WI derived in this section are also true in the context of the BFM. In fact, in
the BFM framework they are true to all orders in perturbation theory; their validity is
enforced by the requirement that the Lagrangian is invariant under gauge transformations
of the background fields. It should be emphasized however that the Green’s functions of
the background fields, which satisfy the aforementioned Wls, display in general a residual
dependence on the parameter ¢y used to gauge fix the quantum gauge fields. As shown in
[27] this remaining gauge dependence can be eliminated by the straightforward application
of the PT in the context of the BFM. The analysis presented in this section indicates that
these "naive”, Wls are not an exclusive property of the BFM, but can be recovered for any
type of gauge fixing procedure via the PT algorithm. Strictly speaking the WIs we have
presented are valid to one loop order. This is so because our derivation relies on the ability
to construct the {—independent Green’s functions (shown as blobs in Fig.8) with the PT
algorithm, which has only been tested at one-loop. If one assumes that this procedure of
isolating {-independent blobs can be generalized to higher orders in perturbation theory,
the generalization of the WI to higher orders will be relatively straightforward. Even

though such an assumption is rather plausible no such proof exists.
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6 Proof of the Ward Identities
6.1 Feynman gauge

In this section we prove by an explicit calculation the first of the Ward identities derived

~ZW- W+ W W ~W ~W
IJ'O‘IB ‘I‘ zMZI‘a,B — gC |:]:[Ol,3(1) - ]:[OL,B(2):| . We

work in the Feynman gauge, where § = 1 for ¢+ = v, W,Z. To that end, it is more

in the previous section, namely g+T

economical to act with ¢* directly on the individual graphs of f‘faﬁ and try to generate
the r.h.s. of Eq.(5.16). The Feynman diagrams contributing to the g.i. W self-energies
of the r.h.s. are shown in Fig.10 . The closed expression for the g.i. W self-energy has
been obtained in [16] and it is

flg(q) = % ()lecr + 4UZE(q) [s2Tws(a) + w2 (q)] (6.1)
We also emphasize that all necessary cancellations between graphs or parts of graphs are
evident before any of the loop momentum integrations are carried out.

To begin with, we notice that, all pinch parts originating from the top (neutral current)
fermion line, automatically cancel in the Lh.s. Eq.(5.16), by virtue of the second and third
of Eqgs.(3.13).

We start by considering the fermion graphs Fig.5 (1) and Fig.6 (1). This subset
of graphs is automatically g.i., and receives therefore no pinch contributions. After a
straightforward calculation we obtain ( in what follows we have pulled out a common

factor of gc from the r.h.s. of all equations ) :

where H}xﬁ corresponds to the self-energy diagram (1) of Fig.10 .

The remaining diagrams can be divided into three classes, depending on the type of
internal boson propagators they contain. Following the notation of Eq.(4.3), these classes
are denoted as (i) WWV diagrams, where V = v,Z ( Fig.5 (2)—-(22), Fig.6 (2)-(13) )
(i) WW H diagrams ( Fig.5 (23)-(28), Fig.6 (14),(15) ), and (iii) ZHW diagrams ( Fig.5
(29)-(34), Fig.6 (16)—(21) ).

WWYV graphs :

Vector boson graphs

23: [ Mep(1) — Mip(2) ]

7=

8
> Vi

2
- Y GAME, / (WWV) T pas(a,p1 — by + )

V=+Z
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+ 3 g [ W+ p)VR) kags + (1 2)

V=+Z

Z gv/ WWV) q-(k—p2) ka(k —p2)s + (1 < 2)

29" [ Ui (Vas = Ui 2)as] [ Wk -+ p)W (k — p2)
- Jap D gv/ WWV) [¢°ks + @' Trpa(k — p2, —k,p2)| + (1= 2)  (6.3)

V=2

where the tree-level WI of Eq.(5.10), as well as the identities given in equations (4.11)
and (4.12) of [23], have been used. The notation (1 «» 2) means to interchange in the
precceding term p; <+ —p, and a < S. From the terms appearing in the r.h.s. of Eq.(6.3)
only the first is part of the r.h.s. of the WI we attempt to prove. All other terms will cancel
against other contributions from the remaining graphs. In particular, the left-over term
of the second line will cancel against similar terms coming from the graphs which contain
unphysical Goldstone bosons. Similarly, the terms in the next two lines of Eq.(6.3) will
cancel against corresponding left-overs from the ghost graphs. Finally, the last two lines
of Eq.(6.3), which display the characteristic pinch structure, will cancel against some of
the pinch contributions to the ZWW vertex. All these cancellations will become evident
in what follows.

We next consider the ghost graphs (Fig.5 (9)-(12) and Fig.6 (2)—(5)). We have:

7

un hes = 2 [ Mig(1) — Iis(2)]

1=4

— 3 G [ Wk p)V(R) kags + (1 2)

V=Z

+ X G [WWY)q-(k—pa) kalk—p2)s + (1> 2)  (64)

V=2

and

apZ,B + k,@pla ) (65)

5
iMz ) Sk
=2

We see that the left-over terms of Eq.(6.4) cancel against parts of Eq.(6.3) as advertised.

The contribution of Eq.(6.5) will cancel against pinch contributions to the yWW vertex.
Similarly, the graphs containing unphysical Goldstone bosons (Fig.5 (13)—-(22) and Fig.6

(6)-(13)) yield:

S ¢V +zMzzsaﬁ = @My Y by [(WWV)@Tpaplasps — kopa + F)
=13 V=+,2
2
S
+ &My [Uw (Dap — Ui (2)as] X0 bvTwwy (6.6)

V=2
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9

Z Vi +1M225aﬁ = Y [M(1) — Iy(2)] (6.7)

=17 7=8

21
S Vi = Y1) - I%(2)
2=19
z / W (k) [Z(k + 1) — Z(k — p2)] (2k + p1)a(2k — p2)s (6.8)
Vmﬁ =0 (6.9)

The first term in the r.h.s. of Eq.(6.6) cancels the appropriate term in Eq.(6.3), after
employing the elementary identity —gcgsy AM3,, = —byg®cs®’ M, where b, = +1 and
bz = —1. The second term in the r.h.s. of Eq.(6.6) will cancel against pinch contributions
to the xWW vertex. Finally, we note that the left-over term in the r.h.s. of Eq.(6.8)
contains only two internal propagators.

The pinch parts give:

¢ BopsUi' (1)o + BlL,Uw'(p)5] = (6.10)
2[ U (p1)as + Ui (p2)as ]szgv Iwv(p1) = Twv(p2) |
+U o0 3 g [WWY) [k + ¢ Tangl—k = pi ] + (12
—20°¢"Tpap | - ] = 20" [ U (pr)as — Ui (p2)as | [ -] (6.11)

where the ellipses in the square brackets in Eq.(6.11) represent the terms of the second
line of Eq.(4.34) multiplying T',g.

: u g i 2272 s? (1—2s%)
>4 (Ruozﬁ + Lua,@) = 9" My [P2890 — P1a98) C_2JWW7 + oz Jwwz | (6.12)
=1
2 . . 2
iMZ.z; <R;5 T £;5> =9 MW2 2 [Uojﬁl(Pl) - Uo?ﬁl(PZ)] VZZ by Jwwv (6.13)
= =7
2
iMz (Ros +L35) = 2M5v2 ; / (WW7) [(k — 2q)ap2s + pra(k + 29)s]  (6.14)
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) 5 ) ) M2
iMg Y (Rig+Lis) = + 92TW / (WW2Z) [kapzs + Praks]
1=4
1—2s%)
— a*M=: (7
g w 9202

At this point we notice that the contributions of the pinch parts cancel all the remaining

[PZﬁQa - PlaQﬁ] Jwwz (6.15)

left-overs of all other graphs we have considered thus far, except for the left-over term
of Eq.(6.8). If we now collect all W self-energy terms in the r.h.s., we notice that all
pinch and regular graphs have already appeared, except for the two graphs containing an
internal Higgs boson, shown in Fig.10 (11) and (12)

Next we consider the WW H graphs

15

S Vi b iMy S S, = II(1)— I (2)
1=23 1=14
202
g“ M.
o 4C2W /(WWH) [kaPZ,B + k,@pla]
2M2
- 9 [plaplﬁ P2aP2s| JwwH (6.16)
28 .
2 d Vs = Tap(1) —T5(2) (6.17)
1=26
L WY H(k+ 1) — Bk — p2)) (2K + p)a(2k — p2)s
The relevant pinch diagrams of this class contributing to the ZWW vertex give
2MZ,
<R5aﬁ + Lya,@) g 5 = [p1aP1s — P2aP2s| Jwwr (6.18)

whereas the ones contributing to the xWW vertex give

2 2
. M
iMz (Res+ L) = T&W / (WWH) [kapas + kspia] (6.19)

It is now evident that all the W self-energy terms which constitute the r.h.s. of the
WI have already appeared. The only two redundant terms are (i) the left-over term of
Eq.(6.8), and (ii) the left-over term of Eq.(6.18), which survives after Eq.(6.16)-Eq.(6.19)
have been added by parts. Like the term in (i) it also contains two internal propagators.
Both terms will cancel exactly against the entire contribution of the graphs belonging to
the ZHW class, which we now proceed to evaluate.

We will only evaluate the diagrams where the Higgs boson appears on the left. The
mirror graphs, with the Higgs boson on the right, can be treated in an exactly analogous

way.
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uaB

2M2
gV _ 9 2W/(HZW)q“I‘Wg(—k—PhPhk) (6.20)
c

- v 9My u o, M3,
iMzSap = 5 | (HZW) @ Tuas(—k = p1, 01, k) — ¢° 5% U (p2)apTHzw
M2 M2
- ¢ 52 /(HZW)k ks + g 5o Y 9apluz(q) (6.21)

The last term in the r.h.s. of the last equation will cancel against an equal and opposite

contribution coming from the mirror diagram S;%

2M
gV, = SV [ EZW) 2k + p)a (6.22)
. 2M2 2 M2 9
iMgSLy = L5 2 qs [(HZW) (2K + pi)a — ¢*~ 5 [(HZW) (2k + pr)alk — pa)s
(6.23)
2
s
PV = 8 T (M3 - M) /(HZW) (2k + p1)a(2k — p2)s
t 32 /W H(k +p1) — Z(k — p2)] (2k + p1)a(2k — p2)s (6.24)
iMsSZy = 2MH / (HZW) (2k + p1)a(2k — p)a (6.25)
The pinch parts are :
uré . 7 ZMI%V
@ Ling +iMzLly = —g" 20 pla/(HZW) ks (6.26)
M2
My ( Riﬁ + Ri%’") = g 902 UW (p2)apJHZW (6.27)
’I:MZ ( Ri,@ + Rz:g) = %ng / (HZW) (2k ‘I’pl)a (628)

When all the above equations, together with the corresponding contributions from
the mirror graphs, are added by parts, all terms in the r.h.s. cancel among each other
as expected, except for the terms with two internal propagators, from Eq.(6.24) and the
mirror graph result, which exactly cancel the left-over terms mentioned previously, (i) and
(ii). This concludes the proof of the advertised WI of Eq.(5.16), which is a central result
of this paper. It is obvious from the previous proof that the pinch parts are instrumental

for the validity of Eq.(5.16).
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6.2 Unitary gauge

The fact that the WIs of Green’s functions constructed via the PT hold regardless of the
gauge in which one chooses to work, can be most effectively demonstrated by proving
their validity in different gauges. Although the usual graphs of a Green’s function as
well as its pinch parts assume different forms in different gauges, when summed they
nevertheless combine into a unique expression independent of any specific gauge. In this
section we will work in the unitary gauge, where additional pinch parts can originate from
the longitudinal parts of the gauge boson propagators.

We note that, even though the unitary gauge has been traditionally considered patho-
logical, in the sense that it gives rise to non-renormalizable Green’s functions , in the
context of the PT it can be treated on an equal footing as the renormalizable R, gauges.
In particular, as shown in [29] the application of the PT in the context of the unitary
gauge gives rise to renormalizable Green’s functions which are in fact identical to the
¢-independent Green’s functions obtained in the framework of the R, gauges.

Applying the PT to the case of the three boson vertices in the unitary gauge, we
have verified that the WI of Eq.(5.16) and Eq.(5.25) again hold true. We point out, that
although the usual vertex graphs are fewer in this gauge, the graphs which can contribute
pinch parts are quite numerous, a fact that makes calculations lengthier. We therefore do
not present the entire proof of the WI, but only outline the steps in its derivation.

The usual YW~ W™ vertex diagrams in this gauge are shown in Fig.5 (1)-(8) and (23),
while for the ZW~ W™ vertex we have the additional graphs (29) and (30) of the same
figure. The relevant W self energy diagrams in the unitary gauge are those shown in
Fig.10 (1)~(3) and (11). The vertex graphs will be denoted as V; 3, and the self energy
graphs as L{;B, where the index ¢ counts the corresponding graphs of Fig.5 and Fig.10.

The interesting feature of the unitary gauge is that the WI of the YW ~W™ vertex is
satisfied separately by the usual and pinch parts, as one can verify immediately.

For the fermion graphs Eq.(6.2) holds as usual since they are gauge invariant, e.g.

Vig= V}mﬁ and H}xﬁ = L{;ﬁ . The boson graphs give :

pa3
@Viss + @V + ¢ Vi = ge | UZ5(1) — U5 (2) | (6.1)
and
¢Vis=0 (6.2)

From the Higgs diagram we get :
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V2 g = ge[UL(1) —UL(2) | (6.3)

For the yWW vertex the above equations when summed give :

¢"Vyes = ge | UlG(1) —UL(2) | (6.4)

Evidently the Ward identity holds already for the usual vertex graphs, before any pinch
contributions are included. One can then verify that the vertex like pinch contributions
in the unitary gauge (VZQB>P (some of the additional ones, specific to the unitary gauge,

are shown in Fig.11) , when contracted with ¢, yield :

¢ (Vis) = ge[ PH(L) - PH(2) | (6.5)

where ’Po% are the relevant propagator like parts, to be appended to the W self-energy in
the unitary gauge. As shown in [29] the W self-energy obtained via the PT in the unitary

gauge is identical to the one obtained via the PT in the context of the R, gauges, namely

-~

fios(q) = UM%+ PY; . (6.6)
Adding Eqs.(6.4) and (6.5) by parts we arrive again at the advertised WI of Eq.(5.25).
For the ZWW vertex the proof proceeds in an analogous way. For the class of graphs

that are common to both vertices YWW and ZWW the proof is identical. The WI is

again satisfied separately by the regular vertex graphs and the pinch graphs. There are
however two additional classes of contributions that need be considered. First, there are
the extra regular vertex graphs 29 and 30 of Fig.5 along with similar box graphs that
will contribute a pinch part to the vertex ; all the above graphs contain a Higgs particle.
Second, unlike the photon case, the vertex like pinch parts originating from boxes where
the pinching takes place at the leg of the Z, (fermion line on the top) do not vanish when
contracted with ¢*. Since all propagator graphs of the W have already appeared on the
left hand side of the WI, the sole role of these graphs is to provide a left over expression
which is recognized as being equal to T‘EZV_WJr. Of course, in the context of the unitary
gauge this expression cannot be identified with a xWW vertex, because there are no

x—fields to begin with.

6.3 Feynman background field gauge

In this section we prove the validity of the WI of Eqs.5.16 and Eq.(5.25) in the Feynman
gauge of the BFM.

In the BFM every bosonic field is decomposed into two parts, the quantum field ¢ and
the background field &, e.g. ® — ® + &. In the path integral one integrates the quantum
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fields only, whereas the background fields are treated as additional sources ; consequently
only the quantum fields appear inside loops.

The ordinary gauge transformation of the gauge fields, for example W¢, a = 1,2,3
and B, in the case of an SU(2) x U(1) group, is also split into two transformations. One
of them corresponds to an ordinary gauge transformation, but only for the background
fields W;, BN, and is therefore called a background gauge transformation. By judiciously
adding a non conventional gauge fixing term for the quantum fields we can promote this
transformation to a symmetry of the Lagrangian. Therefore the Green’s functions of the
background fields are guaranteed to be background gauge invariant, namely I‘(W;}BV) =
I‘(W:’B;) As a result of this invariance the naive WI of section 5 are satisfied. Notice
however that these Green’s functions depend in general on the gauge parameters &w, g,
used to gauge fix the quantum fields W and B, which appear inside their loops. In this
formulation, S-matrix elements are calculated by forming trees of background Green’s
functions connected to each other by tree level background field propagators ; at this
point the background fields also require gauge fixing.

This gauge fixing is completely independent from the gauge fixing of the quantum fields,
and the parameters éw , éB may be in general different from the parameters {w , ¢5.

We choose to work in the Feynman gauge of the BFM where {w = (g = o = 1.
As was shown in [25] [27], at the one loop level, this particular gauge choice gives rise to
background Green’s functions which are identical to the g.i. Green’s functions constructed
via the PT. No formal understanding of this correspondence has yet been established ;
the aforementioned agreement has been verified by comparing all Green’s functions con-
structed so far at one loop via the PT with the corresponding BFM Green’s functions .
The operational reason for this identity of results is that pinching turns out to be zero in
this particular gauge . To this end we remind the reader that pinch parts can originate
in three ways :

i) from the longitudinal part of gauge boson propagators,

i) from three gauge-boson vertices, and

iii) from vertices with two Goldstone bosons and one gauge boson.

All these can provide the appropriate momenta which when contracted with a 4-matrix
will cancel a fermion propagator. By simple inspection of the Feynman rules of this gauge
one immediately recognizes that all the necessary pieces that could generate pinch terms
are missing. First of all, since this is a Feynman type of gauge there are no longitudinal
parts for the gauge boson propagators. Secondly, one observes that in this gauge the three

gauge boson vertex between a background and two quantum gauge fields ( which is gauge
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dependent even at tree level ) assumes the form

1
Lagr(q, ks —q — k) = Tgg, + (1 — g)rgﬁ7 (6.1)
where
Ffﬁv = (2k + q)agﬁv — 2989va + 2¢19ap (6.2)
and
Tisy = —ksgha — (K + 9)29ap- (6.3)

We see immediately that by setting {g = 1, the I‘gﬁy part, which is the only one that
can pinch, disappears. Finally, the elementary vertices of the form g%gi)G where gz,gﬁ are
scalars (Higgs or unphysical would be Goldstone bosons) and G, a quantum gauge field
(Wg,B,), depend only on the momentum carried by the background field g%, namely

I%%%(g,k, —q — k) o g, (6.4)

Therefore they also cannot trigger pinching. Consequently, since pinching has been ren-
dered trivial (zero) in this gauge, one readily concludes that the Green’s functions con-
structed via the PT in any gauge will be identical to the conventional Green’s functions of

the Feynman gauge of the BFM, i.e.

~W

W nZW-wH ZW-w
]:[a,B — ]:[a,B ’ ]_-‘

pef3 =

, etc... (6.5)

We now proceed to the proof of the WIs of Eq.(5.16) and Eq.(5.25). We need to
consider only the usual vertex and self energy graphs in this gauge. The vertex graphs
are those of Fig.5 and Fig.6 plus the additional ones of Fig.11 and Fig.12. Note that
for the YW ~W™ vertex there are no ghost graphs in this gauge ; so for this paragraph
the graphs of Fig.6 (2,3,4,5) are replaced by those of Fig.12 (2,3,4,5). The modifications
needed for the W self energy graphs are that an additional graph (Fig.10 (13)) must be
included and the pinch graph must be removed. In all these figures the external legs are
now considered to be background fields.

We will use the same symbols for the various diagrams as in section 6.1, even though
now, since we work in a different gauge, they correspond in general to different expressions.
So V;foz,B will correspond to a ZW W™ vertex diagram , S(iﬁ to a xW-WT vertex and
IT; 5 to a W self-energy graph.

By acting with ¢* on the three gauge boson vertex graphs we readily obtain the fol-
lowing results.

Fermion graphs :
¢" Vi +iMz SLy = ge [ MLe(1) — Mi(2) | (6.6)
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Gauge boson graphs :

¢ VI Vet Ve = ge |

po 7%:9¢] pa3

Ve

pa3

Ghost graphs :

7 V9,160 T V35,ﬁ36 T y3Tes

7 7 pa3

qu V39

pa3

11,12 41,40 43,42
qu Vuaﬁ + qu Vuaﬁ + qu Vuaﬁ

qu V44

pa3

= ge [IZ5(1) — TZ5(2) ]

0

(6.7)

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

In fact Eq.(6.9) is identical to Eq.(6.11) part by part and correspondingly Eq.(6.10) is
identical to Eq.(6.12). This is so because ghost graphs in this gauge result in identical

expressions regardless of the orientation of the ghost line.

Goldstone and gauge boson graphs :
WWY propagators

¢ V20t +iMz Sos =

pa3

g Vios® +iMz So5

pa3

¢ Vos® +iMz Sop™ +iMz Sagt? = ge

pa3

qu V22

pa3

0

¢ Vs = ge [TI(1) -

pa3

¢ Vs +iMz S

pa3

" Vo +iMz SZ5

pa3
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9,8
]:[7

af

(1) -

9,8

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)



WWH propagators

¢* VB, = ge [TZ5(1) — T25(2) |

pa3

¢ Vi +iMz S = 0

Vs +iMg Sy = 0

po
HZW and ZHW propagators

¢ Vs +iMz Sy = 0
and the mirror image graph

¢V, +iMy 19 = 0

pa3

HVEs +iMz Syy = 0

po

and the mirror image graph

¢ V2s +iMz S5 = 0
¢ Vs +iMy S35 +iMy S5 +iMz Sty = 0

¢" Vieg +iMg S35 + 1Mz S25 +iMz S5 = 0

The rest of the Goldstone boson graphs give :

VS + ¢V + ¢ VR = ge [IN(1) — TM(2) ]

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

_'g_Z/Z(k)W(k +p1) (2k 4+ p1)a 2k +p1 — q)3

+g_z [ 206W(k = p2) (2K — pa)s (2 — p2 + )

(6.30)

(6.31)

_g_Z/H(k)W(k +p1) 2k +p1)a (2k+p1 — a)s
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+g_z / H(k)W (k — p2) (2k — p2)s (2k — p2 + @)a
(6.32)

3
¢ Vs +iMz 5% = L [HRW(E+p) (2k+p)a (2k+ 51— g

8 [ 2Rk~ ) (2%~ s (2 12 + ) (6.33)

3
@ Vits +iMz S = S [ ZW(k+ i) (2K +pr)a (2K + 51— )

_g_z / H(E)YW (k —p2) (2k — pa)s (2k — p2 + ¢)a (6.34)

We observe that the left-over integrals of the above four equations Eq.(6.30)-Eq.(6.34)
cancel.

Adding equations Eq.(6.6)- Eq.(6.34) by parts we arrive at the desired result.

7 Conclusions

In this paper we have extended the S—matrix PT with non—conserved currents to the case
of three boson vertices, with all three incoming momenta off-shell. We have outlined in
detail how the effective gauge invariant three boson vertices can be constructed, and we
have given explicit closed expressions for the vertices YW-"W*, ZW-W™*, and x\W - W+
in Eq.(4.33), Eq.(4.34), and Eq.(4.35), respectively. The g.i. three boson vertices were
shown to satisfy naive tree-level Ward identities, which relate them to the g.i. gauge
boson self-energies previously constructed by the same method in [16]. The derivation
of the aforementioned Ward identities relies on the sole requirement of complete gauge
invariance of the S-matrix element considered. In particular, no knowledge of the explicit
closed form of the three boson vertices involved is necessary, as long as they have been
rendered individually {-independent. The validity of one of these Ward identities has
been proved explicitly, through a detailed diagrammatic one-loop analysis, in the context
of three different gauges. The above proofs convincingly illustrate the gauge invariant
nature of the entire procedure. Most noticeably, the proof of the Ward identity in the
unitary gauge supplies additional evidence that the PT endowes the Green’s functions
computed in the unitary gauge with several desired theoretical properties, as already
shown in [29] for the simpler case of the W self-energy.

Of particular interest is the further exploration of the recently advocated connection
between the PT and the BFM. Specifically, all cases studied thus far show that the
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PT Green’s functions coincide with the BFM Green’s functions, computed at g = 1.
Unfortunately, no general proof of this point exists yet. In section 6.3 we presented a
heuristic argument based on the structure of the Feynman rules in this particular gauge,
which supports the general validity of this hypothesis, at least at the one-loop level. Due to
the lack of a rigorous proof however, additional individual cases may have to be examined.
To that end one will have to construct physically relevant Green’s functions via the PT
and then compare them with the analogous Green’s functions of the BFM at {g = 1. The
general methodology presented in section 3, and the closed explicit expressions reported
in section 4 provide the starting point for such a detailed comparison. Furthermore, the
general character of the Ward identities derived in this paper may provide additional clues
towards a formal understanding of the PT algorithm. Results in this direction will be

reported elsewhere.

8 Acknowledgments

One of us (K.P.) would like to thank V. Filippidis for technical support. This work was
supported in part by the National Science Foundation Grant No.PHY-9313781.

9 Figure Captions

Figure 1 : One-loop-dressed Feynman graphs for the renormalized ﬁuv (in a ghost
free gauge ) necessary to implement the gauge invariance of the effective potential. All
vertices and propagators are fully dressed.

Figure 2 : The general structure of the part T(q,pl,p2) of the S-matrix that depends
only on the momentum transfers g, p;,p; . The solid lines without orientation represent
boson propagators.

Figure 3 : Graphs contributing pinch parts to the construction of g.i. Z self-energies.

Figure 4 : The graphs providing pinch parts to the yWW |, ZWW and xYWW
vertices in the Feynman gauge. The diagrams pinching the left fermion line as well as all
types of crossed diagrams are not shown.

Figure 5 : The usual graphs contributing to the the yWW and ZWW vertices in
the Feynman gauge. Their corresponding expressions are denoted as V;joz,B in the text. In
the unitary gauge only the graphs 1 to 8 , 23 and 29,30 are present; they are denoted as
meﬁ. In the context of the BFM additional graphs must be included.

Figure 6 : The usual graphs contributing to the yWW vertex in the Feynman gauge.
In the text they are denoted as Sfmﬁ. None of these graphs exist in the unitary gauge.
In the BFM additional graphs must be included, whereas graphs containing ghosts are
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absent.

Figure 7 : The g.i. self-energies ﬁz, ﬁ:, i, and i’ (a, b, ¢, and d, respectively)

Figure 8 : The vertex , self energy, and monodromic graphs of the S-matrix for the
six-fermion process, after the PT rearrangement. Solid lines without orientation represent
bosons. All loop expressions are now g.i. and the gauge dependence enters only through
the tree propagators of the gauge bosons and their respective scalars. The mirror image
and crossed graphs of the monodromic graphs are not shown.

Figure 9 : Graphs contributing a gauge dependent part of the form A(g,€z) to the
ZWW part of the amplitude.

Figure 10 : Feynman diagrams contributing to the W self-energy. Graph 13 is par-
ticular to the BFM.

Figure 11 : Box graphs that in the unitary gauge can provide vertex—like pinch parts.
In these graphs pinching is triggered through the longitudinal part of the vector bosons’
propagators.

Figure 12 : The additional YW W and ZWW vertex graphs of the Feynman gauge
of the background field method. Together with those of Figure 5 they are denoted by
V;joz,B in section 6.3.

Figure 13 : The additional xWW vertex graphs of the Feynman gauge of the back-
ground field method. Together with those of Figure 5 they are denoted by Sfmﬁ in section
6.3. Graphs 2 to 5 replace the ghost graphs 2 to 5 of Figure 5, which do not exist in this

gauge.
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