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ABSTRACT

We present a new gauge-independent approach to resonant transition amplitudes with

nonconserved external currents, based on the pinch technique method. In the context of

2 → 2 and 2 → 3 scattering processes, we show explicitly that the analytic results derived

respect U(1)em gauge symmetry and do not depend on the choice of the SU(2)L gauge fixing.

Our analytic approach treats, on equal footing, fermionic as well as bosonic contributions to

the resummed gauge boson propagators, does not contain any residual space-like threshold

terms, shows the correct high-energy unitarity behaviour, admits renormalization, and

satisfies a number of other required properties, including the optical theorem. Even though

our analysis has mainly focused on the Standard Model gauge bosons, our method can easily

be extended to the top quark, and be directly applied to the study of unstable particles

present in renormalizable models of new physics.
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1 Introduction

Several years after the first experimental observations of decaying quantum mechan-

ical systems [1], Weisskopf and Wigner [2] formulated a theory for the time evolution of

decaying states, which has been used with great success for the description of CP violation

in the K0 − K̄0 and other systems. This theory is however approximate, and deviations

from its predictions are expected, when observations take place at very short or very long

times as compared to the lifetime of the unstable particle [3]. Subsequently, Veltman [4]

showed that an S-matrix theory, where the dynamics of unstable particles is described in

terms of initial and final asymptotic states, is unitary and causal, despite the presence of

on-shell particle configurations.

The correct treatment of unstable particles has received a renewed attention within

the framework of the S-matrix perturbation theory, mainly because the straightforward

generalization of the Breit-Wigner (BW) propagator derived from naive scalar field theo-

ries [4] to gauge field theories, violates the gauge symmetry [5,6,7,8,9,10,11,12,13]. This fact

is perhaps not so surprising, since the naive resummation of the self-energy graphs takes

into account higher order corrections, for only certain parts of the tree-level amplitude.

Even though, as we will show, the amplitude possesses all the desired properties, this un-

equal treatment of its parts distorts subtle cancellations, resulting in numerous pathologies,

which are artifacts of the method used. Evidently, a self-consistent calculational scheme

needs be devised, which will exploit all the healthy field theoretical properties intrinsic in

every S-matrix element.

An early attempt in this direction has been based on the observation that the po-

sition of the complex pole is a gauge independent (g.i.) quantity [6,7,8]. Exploiting this

fundamental property of the S-matrix, Stuart [7] has developed a perturbative approach

in terms of three gauge invariant quantities: the constant complex pole position of the

resonant amplitude, the residue of the pole, and a q2-dependent non-resonant background

term. Even though this approach, which is based on a Laurent series expansion of the

resonant transition element [7], may eventually furnish a gauge invariant result, the pertur-

bative treatment of these three g.i. quantities [11] introduces unavoidably residual space-like

threshold terms, which become more apparent in CP-violating scenarios of new-physics. In

fact, the precise q2-dependent shape of a resonance [8] is reproduced, to a given loop order,
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by considering quantum corrections to the three g.i. quantities mentioned above [7,11],

while the space-like threshold contributions, even though are shifted to higher orders, do

not disappear completely.

Within the framework of the S-matrix perturbation theory, it was suggested [5]

that finite width effects can induce sizeable CP violation and resonantly enhance CP-

violating observables [14] in supersymmetric theories, and other extensions of the minimal

Standard Model (SM) [15]. The quest of the proper BW form for a resonant W and

t propagator [9,10,16] is equally important for processes, such as e+e− → W+W− [12],

e−γ → µ−ν̄µνe [13,17], etc.

In this paper, we present a new g.i. approach to resonant transition amplitudes im-

plemented by the pinch technique (PT) [18,19,20,21]. The PT is an algorithm that sys-

tematically exploits the known field theoretical properties of the S-matrix, which is the

fundamental physical quantity of interest. Operationally, the PT leads to a rearrangement

of the Feynman graphs contributing to a gauge-invariant amplitude, in such a way as to

define individually g.i. propagator,vertex, and box-like structures. For example, the PT

arranges the S-matrix element T for the process q1q̄2 → q1q̄2, where q1, q2 are two on-shell

test quarks with masses m1 and m2, in the form

T (s, t, m1, m2) = T̂1(t) + T̂2(t, m1) + T̂2(t, m2) + T̂3(s, t, m1, m2) , (1.1)

where the T̂i (i = 1, 2, 3) are individually ξ independent. The parts of vertex and box

graphs which are kinematically akin to propagators and enforce the gauge independence

of T̂1(t), are called propagator-like pinch parts. Similarly, vertex-like pinch parts of boxes

enforce the gauge independence of T2(t).

The crucial novel ingredient we introduce in the context of resonant transition am-

plitudes is the proposition that the resummation of graphs must take place only after the

amplitude of interest has been cast via the PT algorithm into manifestly g.i. sub-amplitudes,

with distinct kinematic properties, order by order in perturbation theory. For example, it

is the resummations of the T̂1 which will provide the effective, manifestly g.i., resummed

propagators.

The main points of our approach have already presented in a brief communication

[22]; in this paper we mainly focus on the detailed treatment of several technical issues.

The outline of the present work is as follows. In Section 2, we define the framework of our
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perturbative g.i. S-matrix approach by considering the resonant reaction e−ν̄e → µ−ν̄µ.

Issues of resummation and the resummation procedure within the PT will be discussed in

Section 3 and 4, respectively. In Section 5, we show that the position of the pole does not

get shifted when using the PT resummation algorithm in the stable particle theory —a

heuristic proof is given in Appendix A. In Section 6, we further show that this is still true

for the case of unstable particles. Section 7 deals with issues related to unitarity of resonant

processes. In Section 8, we give an application of our approach to the resonant processes

γe− → µ−ν̄µνe and QQ′ → e−ν̄eµ
−µ+, which involve the γWW and ZWW vertices,

respectively. Further technical details of such reactions are relegated in Appendices B and

C. Section 9 contains our conclusions.

2 The process e−ν̄e → µ−ν̄µ

Despite the fact that the S matrix is well defined, the evaluation of physical pro-

cesses has to rely on its perturbative expansion in the coupling constants of the theory, as

there is not yet an analytic method to calculate the complete S-matrix amplitude. On the

other hand, this perturbative approximation of S is not unique, and depends on the form

of the expansion adopted, and, to some extend, on the renormalization prescription used

to remove the ultra-violet (UV) divergences. However, the summation of all infinite per-

turbative contributions should formally reproduce the unique expression of the S-matrix

element of the process under consideration. Although the perturbative expansion itself may

contain such difficulties, there are some well-defined features that characterize a consistent

perturbative expansion of S matrix within gauge field theories:

(i) The expansion should obey a number of required properties, including unitarity [or

equivalently the optical theorem] [4], causality [23], analyticity etc. [24]

(ii) Since we are interested in renormalizable field theories based on Lagrangians which

contain operators of dimension no higher than four and so have an inherent predictive

power, the expansion under consideration should consistently admit renormalization.

(iii) The perturbative S-matrix element should respect the fundamental gauge symme-

tries. In particular, since it represents a physical quantity, it should be independent
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on the choice of gauge used, which can only be shown to be the case with the help of

Becchi–Rouet–Stora (BRS) transformations [25].

Conditions (i) and (iii) are the main source of problems, when considering resonant S-

matrix transition amplitudes. In what follows, we will discuss some of the crucial differences

between our approach and the conventional S-matrix perturbation theory. In the context

of the latter, the one-loop W -boson self-energy has the general form

Π(ξ)
µν (q) = tµν(q)Π

(ξ)
T (q2) + ℓµν(q)Π

(ξ)
L (q2), (2.1)

where

tµν(q) = − gµν +
qµqν

q2
,

ℓµν(q) =
qµqν

q2
. (2.2)

The self-energy of Eq. (2.1) is a gauge-dependent quantity; in the conventional S-matrix

approach it depends explicitly on the gauge parameter ξ. The two-point function for the

mixing W−G−, Θµ, and G−G− self-energy, Ω, are also ξ-dependent. Using the general form

of Eq. (2.1) for the self-energy, the one-loop resummed W propagator is given by

∆(ξ)
µν (q) =

(
∆

−1(ξ)
0µν (q) − Π(ξ)

µν (q)
)−1

= tµν(q)
1

q2 − M2 − Π
(ξ)
T (q2)

− ℓµν(q)
ξ

q2 − ξ(M2 − Π
(ξ)
L (q2))

, (2.3)

where

∆
(ξ)
0µν(q) = tµν(q)

1

q2 − M2
− ℓµν(q)

ξ

q2 − ξM2

= Uµν(q) −
qµqν

M2
D

(ξ)
0 (q2) . (2.4)

In Eq. (2.4), Uµν stands for the free W propagator in the unitary gauge, which has the

form

Uµν(q) = [−gµν +
qµqν

M2
]

1

q2 − M2

= tµν(q)
1

q2 − M2
+ ℓµν(q)

1

M2
, (2.5)

and

D
(ξ)
0 (q2) =

1

q2 − ξM2
, (2.6)

5



is the tree-level propagator of the associated Goldstone boson G+ in a general ξ gauge. Its

resummed propagator reads

D(ξ)(q2) =
1

q2 − ξM2 − Ω(ξ)(q2)
. (2.7)

For purposes of illustration, we have only considered the lowest order of resummation,

where higher order W−G− mixing effects have not been taken into account. However,

our conclusions will still be valid for the general case. Using the resummed ξ-dependent

propagators given in Eqs. (2.3) and (2.7) for the calculation of a resonant process, such as

e−ν̄e → µ−ν̄µ, to a given order of perturbation theory, one can then verify easily that the ξ

dependence does not disappear. The reason is that Π(ξ)
µν (q2) is a ξ dependent quantity in a

region not far away from the resonant point q2 = M2 [only at this point the self-energy is g.i.]

and the propagators (2.3) and (2.7) induce ξ dependence to all orders, while ξ-dependent

terms coming from vertices and box graphs can remove this gauge dependence only to a

given order of the conventional perturbation theory. Instead, within our framework, the

above problems associated with the resummed self-energies are absent, because the entire

ξ dependence has been eliminated via the PT order by order in perturbation theory, before

resummation takes place.

We will now consider an approach implemented by the PT. Within the PT framework,

the transition amplitude T (s, t, mi) of a 2 → 2 process, such as e−ν̄e → µ−ν̄µ shown in

Fig. 1, can be decomposed as

T (s, t, mi) = T̂1(s) + T̂2(s, mi) + T̂3(s, t, mi), (2.8)

in terms of three individually g.i. quantities: a propagator-like part (T̂1), a vertex-like piece

(T̂2), and a part containing box graphs (T̂3). The important observation is that vertex and

box graphs contain in general pieces, which are kinematically akin to self-energy graphs

of the transition amplitude. The PT is a systematic way of extracting such pieces and

appending them to the conventional self-energy graphs. In the same way, effective gauge

invariant vertices may be constructed, if after subtracting from the conventional vertices

the propagator-like pinch parts we add the vertex-like pieces coming from boxes. The

remaining purely box-like contributions are then also g.i. Finally, the entire S-matrix can

be rearranged in the form of Eq. (2.8). In the specific example e−ν̄e → µ−ν̄µ, the piece

T̂1 consists of three individually g.i. quantities: The WW self-energy Π̂µν (Fig. 1(a)), the
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W−G− mixing term Θ̂µ (Figs. 1(b) and 1(c)),∗ and the GG self-energy Ω̂ (Fig. 1(d)).

Similarly, T̂2(s, mi) consists of two pairs of g.i. vertices We−ν̄e, Ge−ν̄e (Γ̂(1)
µ and Λ̂(1), given

in Figs. 1(e) and 1(f), respectively) and Wµ−ν̄µ and Gµ−ν̄µ (Γ̂(2)
µ and Λ̂(2), in Figs. 1(g)

and 1(h)). In addition to being g.i., the PT self-energies and vertices possess a very crucial

property, e.g. they satisfy tree-level Ward identities, summarized as follows:

qµqνΠ̂µν − 2MqµΘ̂µ + M2Ω̂ = 0 , (2.9)

qµΠ̂µν − MΘ̂ν = 0 , (2.10)

qµΘ̂µ − MΩ̂ = 0 , (2.11)

qµΓ̂i
µ − MΛ̂i = 0 , (i = 1, 2). (2.12)

These Ward identities are a direct consequence of the requirement that T̂1 and T̂2 are fully

ξ independent. As explained in detail in [19] and [26], after having cancelled via the PT

all ξ dependences inside loops, these Ward identities enforce the final cancellations of the ξ

dependences stemming from the tree-level propagators. In fact, the derivation of the Ward

identities does not require knowledge of the closed expressions of the quantities involved.

To see how the final ξ dependences cancel by virtue of the aforementioned Ward identities

we turn to T̂1. After the PT process has been completed, T̂1 reads:

T̂1 = Γσ
0∆

(ξ)
0σρΓ

ρ
0 + Γσ

0∆
(ξ)
0σµΠ̂µν∆

(ξ)
0νρΓ

ρ
0 + Λ0D

(ξ)
0 Λ0 + Λ0D

(ξ)
0 Ω̂D

(ξ)
0 Λ0

+Γσ
0∆

(ξ)
0σµΘ̂µD

(ξ)
0 Λ0 + Λ0D

(ξ)
0 Θ̂ν∆(ξ)

νρ Γρ
0

= Γσ
0UσρΓ

ρ
0 + Γσ

0UσµΠ̂µνUνρΓ
ρ
0, (2.13)

where in the second step the Ward identities of Eqs. (2.10) and (2.11) were used. Clearly,

all ξ dependence has disappeared. We can actually go one step further and rewrite this last

ξ independent expression as a sum of two pieces, one transverse and one longitudinal, by

employing Eq. (2.5) and the Ward identities of Eqs. (2.10) and (2.11). Indeed, if we write

Π̂µν in the form of Eq. (2.1), i.e. Π̂µν = tµνΠ̂T + ℓµνΠ̂L we have

Π̂T = −
1

3

(

Π̂σ
σ −

M2

q2
Ω̂

)

, (2.14)

Π̂L =
M2

q2
Ω̂ , (2.15)

∗ In fact, we define Θ̂µ(q) = Π̂W−G−

µ (q) = Π̂G−W−

µ (q) = −Π̂W+G+

µ (q) = −Π̂G+W+

µ (q), where the

momentum always flows from the left to the right in the language of Feynman diagrams.
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and so T̂1 may be written as

T̂1 = Γµ
0

[
tµν

q2 − M2

(

1 +
Π̂T

q2 − M2

)

+
ℓµν

M2

(

1 +
Π̂L

M2

)]

Γν
0 . (2.16)

Let us now assume for a moment that the PT decomposition holds to any order in

perturbation theory (we will extensively discuss the validity of this assumption in the next

sections). In such a case, summing up contributions from all orders in perturbation theory

we obtain for T̂1 (suppressing contraction of Lorentz indices)

T̂1 = Γ0UΓ0 + Γ0UΠ̂UΓ0 + Γ0UΠ̂UΠ̂UΓ0 + · · ·

= Γ0∆̂Γ0, (2.17)

with

∆̂µν(q) = tµν(q)
1

q2 − M2 − Π̂T (q2)
+ ℓµν(q)

1

M2 − Π̂L(q2)
. (2.18)

It is important to emphasize that the propagator of Eq. (2.17) is process-independent; one

arrives at exactly the same expression for ∆̂µν , Π̂T , and Π̂L, regardless of the quantum

numbers of the external particles [27]. In the last step of Eq. (2.17), we have assumed

that the analytic continuation of the result to the resonant point q2 = M2 will not cause

any theoretical difficulty. In the case of the conventional propagator such an assumption

is justified, since the resonant propagator can be directly derived as a solution of the

corresponding Dyson–Schwinger (DS) integral equation, which is well defined, even at the

singular point q2 = M2. The reason is that the DS integral equations can be deduced

directly from the action of the theory, through a variational principle [28]. Even though

the corresponding task has not been yet accomplished for the SD equation governing the

dynamics of PT Green’s functions [29], we will consider the analytic continuation of our

results as a plausible assumption. We will therefore carry out our diagrammatic approach

in terms of Feynman graphs and then continue analytically our results to describe the

physics of unstable particles.

3 Issues of resummation in the PT

Even though the PT has been developed in detail to one-loop, its generalization to

higher orders has not yet been presented in the literature. In this section we will briefly

outline how this generalization proceeds; the full presentation will be given elsewhere [30].
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Here we will focus particularly on issues of resummation, and show that the gauge-

invariant PT self-energy may be resummed in the same way as one carries out the Dyson

summation for the conventional self-energy. In other words, the PT self-energies have

the same resummation properties as regular self-energies. The crucial point is that, even

though contributions from vertices and boxes are instrumental for the definition of the PT

self-energies, their resummation does not require a corresponding resummation of vertex

or box parts. In order to see that, consider the usual Dyson series for the conventional

self-energy of QCD. The building blocks of this series are strings of the basic self-energy

Πµν(q) = tµν(q)Π(q2), computed to a given order in perturbation theory, which repeats

itself. The net effect of the resummation of all such strings is to bring the quantity Π(q2)

in the denominator of the free gluon propagator ∆0 µν .

Let us now see how one can resum, i.e. bring in the denominator the one-loop PT

self-energy. To that end, consider a string of regular one-loop self-energies (in any gauge)

in QCD. Clearly, in order to convert the string of self-energies into a string of PT self-

energies one needs to furnish the missing pinch parts (in the same gauge). At one loop

any pinch contribution has the general form [∆µρ
0 (q)]−1V P (q) (for propagator-like pinch

parts coming from vertices) and [∆µρ
0 (q)]−1BP (q)[∆ρν

0 (q)]−1 for propagator-like pinch parts

coming from boxes). To simplify the picture (without loss of generality) let us work in the

Feynman gauge ξ = 1. Then at one-loop the only pinch contribution comes from vertices

(beyond one loop we have propagator-like pinch parts from boxes, even for ξ = 1). So for

each conventional Πµν(q) we need to supply a factor [∆µν
0 (q)]−1 1

2
V P (q)+ 1

2
V P (q)[∆µν

0 (q)]−1.

Some of the necessary pinch contributions will be provided by graphs containing at least

one vertex, such as in Fig. 2(b), 2(c), and 2(d). These existing pinch parts are however not

sufficient for converting all Πµν into Π̂µν . If we add by hand (and subsequently subtract)

the missing pieces to each Πµν

(a) The string has been converted into a string with Πµν → Π̂µν

(b) The left-overs, due to the presence of the inverse [∆µν
0 ]−1 are effectively one-particle

irreducible.

To see that in detail, let us turn to the specific example shown in Fig. 2. The original

string L with two one-loop self-energies reads (there is an overall factor tµν which is factored
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out)

L =
1

q2

[

Π1

(
1

q2

)

Π1

]
1

q2
(3.1)

and is accompanied by the three strings L1, L2 and L3 shown in Figs. 2(b), 2(c), and 2(d),

respectively. After extracting the pinch contributions from the one-loop vertices of L1 L2

and L3 as is depicted in Figs. 2(e), 2(f), and 2(g), we receive the following propagator-like

contributions:

LP
1 =

1

q2

[

q21

2
V P

1

(
1

q2

)

Π1

]
1

q2

LP
2 =

1

q2

[

Π1

(
1

q2

)
1

2
V P

1 q2

]
1

q2

LP
3 =

1

q2

[

q21

2
V P

1

(
1

q2

)
1

2
V P

1 q2

]
1

q2
(3.2)

Returning to L, we know that in order for a Π to be converted into a Π̂ an amount

(q2 1
2
V P + 1

2
V P q2) must be added. Let us call L̂ the corresponding string containing two

Π̂1 instead of two Π. Let us see how we can construct it from the existing pieces:

L̂ =
1

q2

[

Π̂1

(
1

q2

)

Π̂1

]
1

q2

=
1

q2

[
Π1 + q2 1

2
V P

1 +
1

2
V P

1 q2
] (

1

q2

) [
Π1 + q21

2
V P

1 +
1

2
V P

1 q2
]

1

q2

= L + LP
1 + LP

2 + LP
3 +

1

q2
R

1

q2
(3.3)

where

R = Π1
1

2
V P

1 +
1

2
V P

1 Π1 +
1

4
(V P

1 V P
1 q2 + q2V P

1 V P
1 + V P

1 q2V P
1 ) (3.4)

We see that in addition to the existing pieces L, LP
1 , LP

2 , and LP
3 , one needs to supply R. As

advertised, R has the very important property that it is effectively one-particle irreducible.

So, R has the same structure as the one-particle irreducible two-loop self-energy graphs

shown in Fig. 3. Evidently, −R together with the genuine two-loop vertex and box pinch

contributions displayed in Fig. 4 will then convert the conventional two-loop self-energy

into the g.i. two-loop PT self-energy. So, the general form of the QCD propagator-like

pinch contributions in the Feynman gauge, to a given loop order n in perturbation theory,

has the form tµν(q)Π
P
n (q2), with

ΠP
n (q2) = q2V P

n (q2) + (q2)
2
BP

n (q2) + RP
n (q2) . (3.5)
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For example, propagator-like pinch contributions from one-loop vertex graphs have the

general form of the first term in the r.h.s of Eq. (3.5), whereas one-loop contributions from

boxes have the general form of the second term. The Rn(q2) contains contributions of all

terms described in (b). Clearly, R1(q
2) = 0, but Rn(q2) 6= 0 for n > 1. For example, for

n = 2 we have that RP
2 is the negative of R of Eq. (3.4). In this notation, RP

2 reads

RP
2 (q2) = −R = −

(
Π1V

P
1 +

3

4
q2V P

1 V P
1

)
. (3.6)

Obviously, the RP
n terms consist in general of products of lower order conventional self-

energies Πk(q
2), and lower order pinch contributions V P

ℓ and/or BP
ℓ , with k + ℓ = n.

We emphasize that the procedure described above has not been tailored for the par-

ticular needs of the present problem, but it is of general validity. In fact, this is the way

how the PT must be generalized to higher orders: one has to first convert subset of di-

agrams locally into the corresponding PT subsets using the results of the previous order,

by adding (and subsequently subtracting) the appropriate pinch parts, every time they are

not present. Due to their characteristic structure the extra pieces give rise to diagrams

which then can (and they should) be allotted to the remaining graphs, and they are crucial

for their gauge independence. In this way, one can rewrite the S matrix at each order in

perturbation theory, into manifestly g.i. sub-amplitudes, with the characteristic properties

one knows from one loop. In fact, it is of particular importance to explicitly demonstrate

that the procedure described above will indeed give rise to a g.i. two-loop self-energy, whose

divergent part will coincide with the g.i. two-loop QCD β function. Results in this direction

will be presented in detail in [30].

We conclude this section with some technical remarks. It has been known for years

that when computing the PT Green’s functions any convenient gauge may be chosen, as long

as one properly accounts for the pinch contributions within that gauge [18]. In the context

of the “renormalizable” Rξ gauges the most convenient gauge-fixing choice is the Feynman

gauge (ξ = 1). This is so because the longitudinal parts of the gauge boson propagators,

which can pinch, vanish for ξ = 1, and the only possibility for pinching stems from the

tree-boson vertices. As was recently realized [31], the task of the PT re-arrangement of

the S matrix can be further facilitated, if one quantizes the theory in the context of the

Background Field Method (BFM) [32]. Even though the Feynman rules obtained via the

BFM are rather involved, they become particularly convenient for one-loop pinching, if one
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chooses the Feynman gauge (ξQ = 1) inside the quantum loops. In fact, all possible one-

loop pinch contribution are zero in this gauge, e.g. V P
1 |ξQ=1 = BP

1 |ξQ=1 = 0. Consequently,

the one-loop PT Green’s functions (which one can obtain for every gauge) are identical

to the conventional Green’s functions, calculated in the Feynman gauge of the BFM. This

correspondence between PT and BFM at ξQ = 1 breaks down for the two-loop purely

bosonic part [33]. Therefore, V P
n |ξQ=1 6= 0 and BP

n |ξQ=1 6= 0, for n > 1. The technical

details leading to these conclusions will be presented in [30].

4 PT resummation with non-conserved currents

We now describe how to generalize the form of T̂1, presented in Eq (2.13) for the

one-loop case, to higher orders. In particular we want to show that when the external

currents are non-conserved, all possible g.i. propagator-like strings assume the form of

Eq. (2.16). For definiteness, we concentrate on the case where the external currents are

charged. Exactly analogous arguments hold for neutral currents. To accomplish that we

must follow a three-step procedure:

(a) As described in the previous section, if we work at loop order n in perturbation theory,

the strings containing conventional Πµν , Θµ and Ω self-energies (of individual order

less that n, but of combined order n) must be converted to the corresponding PT

strings containing Π̂µν , Θ̂µ, and Ω̂, i.e. we must replace conventional with “hatted”

quantities. In doing so we use the formulas and methodology developed in [19]. As in

the previous section, we assume that the necessary pinch parts form the lower orders

are known; in particular, the missing pinch contributions are supplied by hand, and

subsequently subtracted. The left-overs are effectively one-particle irreducible and

will be added to the corresponding Πµν , Θµ and Ω of order n. All such terms,

together with the normal pinch parts from box and vertex graphs of order n, will

finally give rise to the Π̂µν Θ̂µ, and Ω̂ of that order.

(b) By close analogy to Eq. (3.5), the general form of the transverse propagator-like pinch

contribution to the massive gauge boson is given by

ΠP
n (q2) = (q2 − m2

0)V
P
n (q2) + (q2 − m2

0)
2
BP

n (q2) + RP
n (q2) . (4.1)
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The generic form of RP
n is also very similar; the R2 for example is simply

R2 = −
(
Π1V

P
1 +

3

4
(q2 − m2

0)V
P
1 V P

1

)
(4.2)

Of course, the closed expressions of the individual V P
n , BP

n , and RP
n are in general

different from the QCD case. It is important to notice that Rn contains a non-zero

number of terms which are not explicitly proportional to (q2−m2
0); this is so because,

as explained above, the explicit [∆µν
0 ]

−1
in front of the Πk(q

2) cancels against one of

the ∆µν
0 of the string.

(c) When all possible strings have been converted to PT strings, one can show that due

to the Ward identities in Eqs. (2.9)–(2.11), they finally reorganize themselves into

two different types of g.i. strings, T̂ t
1 and T̂ ℓ

1 of the form

[T̂ t
1]µν = tµνD0Π̂

i1
T D0Π̂

i2
T D0{...}D0Π̂

ik−1

T D0Π̂
ik
T D0 (4.3)

and

[T̂ ℓ
1 ]µν = ℓµν [

1

M2
]Π̂i1

L [
1

M2
]Π̂i2

L [
1

M2
]{...}[

1

M2
]Π̂

ik−1

L [
1

M2
]Π̂ik

L [
1

M2
] . (4.4)

Here, D0 ≡ D
(ξ=1)
0 = (q2 −M2)−1 defined in Eq. (2.6), Π̂

ij
T is the PT transverse WW

self-energy of loop order ij , Π̂
ij
L is the PT G−G− self-energy, and

∑k
j=1(ij) = n. Of

course, for resummation purposes to a given loop order n, we have to identify all the

possible combinatorial strings of self-energies in Eqs. (4.3) and (4.4), which will yield

the resummed propagator of order n.

To give a concrete example, let us consider the entire set of possible strings at n = 2,

for the process e−ν̄e → µ−ν̄µ shown in Fig. 5. Their explicit expressions are:

(a) = [Uµρ −
qµqρ

M2
D

(ξ)
0 ]Π̂ρσ[Uσλ −

qσqλ

M2
D

(ξ)
0 ]Π̂λτ [Uτν −

qτqν

M2
D

(ξ)
0 ]

(b) =
qµ

M
D

(ξ)
0 Θ̂ρ[Uρσ −

qρqσ

M2
D

(ξ)
0 ]Π̂στ [Uτν −

qτqν

M2
D

(ξ)
0 ]

(c) = [Uµρ −
qµqρ

M2
D

(ξ)
0 ]Θ̂ρD

(ξ)
0 Θ̂τ [Uτν −

qτqν

M2
D

(ξ)
0 ]

(d) =
qµ

M
D(ξ)Ω̂D

(ξ)
0 Θ̂τ [Uτν −

qτqν

M2
D

(ξ)
0 ]

(e) = [Uµρ −
qµqρ

M2
D

(ξ)
0 ]Θ̂ρD(ξ)Ω̂D

(ξ)
0

qν

M

(f) =
qµ

M
D

(ξ)
0 Ω̂D

(ξ)
0 Ω̂D

(ξ)
0

qν

M

(g) = [Uµρ −
qµqρ

M2
D

(ξ)
0 ]Π̂ρσ[Uστ −

qσqτ

M2
D

(ξ)
0 ]Θ̂τD

(ξ)
0

qν

M

(h) =
qµ

M
D

(ξ)
0 Θ̂ρ[Uρσ −

qρqσ

M2
D

(ξ)
0 ]Θ̂σD

(ξ)
0

qν

M
(4.5)
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It is now straightforward to prove that due to the Ward identities of Eqs. (2.10) and (2.11)

all remaining ξ-dependences cancel. To see that we can simply isolate powers of D(ξ)

and verify that their cofactors, by virtue of the Ward identities add up to zero (this is

essentially the approach presented in [26]). Equivalently, we notice that the above strings

may be combined pairwise [(a) with (b), (c) with (d), (e) with (f), and (g) with (h)], to

yield, (after using Eqs. (2.10) and (2.11)):

(a) + (b) = UµρΠ̂
ρσ[Uσλ −

qσqλ

M2
D

(ξ)
0 ]Π̂λτ [Uτν −

qτqν

M2
D

(ξ)
0 ]

(c) + (d) = UµρΘ̂
ρD

(ξ)
0 Θ̂τ [Uτν −

qτqν

M2
D

(ξ)
0 ]

(e) + (f) = UµρΘ̂
ρD(ξ)Ω̂D

(ξ)
0

qν

M

(g) + (h) = UµρΠ̂
ρσ[Uστ −

qσqτ

M2
D

(ξ)
0 ]Θ̂τD

(ξ)
0

qν

M
(4.6)

We can then further combine (a)+(b) with (g)+(h) and (c)+(d) with (e)+(f):

(a) + (b) + (g) + (h) = UµρΠ̂
ρσ[Uσλ −

qσqλ

M2
D

(ξ)
0 ]Π̂λτUτν

(c) + (d) + (e) + (f) = UµρΘ̂
ρD

(ξ)
0 Θ̂τUτν (4.7)

which finally gives

[T̂1]µν = UµρΠ̂
ρσUσλΠ̂

λτUτν (4.8)

We may now write the [T̂1]µν of Eq. (4.8) as the sum of two pieces, [T̂ t
1 ]µν and [T̂ ℓ

1 ]µν , of the

general form advertised in Eqs. (4.3) and (4.4), respectively. Indeed, using the identity of

Eq. (2.5), and the Ward identities, we obtain

[T̂1]µν = tµνD0Π̂T D0Π̂T D0 + ℓµν [
1

M2
]Π̂L[

1

M2
]Π̂L[

1

M2
]

= [T̂ t
1 ]µν + [T̂ ℓ

1 ]µν (4.9)

It is obvious how to generalize the above arguments to an arbitrary loop order n, which will

formally lead to the resummed propagator, ∆̂µν , stated in Eq. (2.18) in the limit n → ∞.

5 The position of the pole in the PT

Another important issue in the context of the PT is the following. It is known that

even though the conventional gauge boson self-energy is gauge dependent, the position of
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the pole is a g.i. quantity [6,7]. On the other hand, the PT self-energy is by construction g.i.

for all values of q2, and therefore its pole is also guaranteed to be g.i. Given the fact that

the pole position of the conventional propagator is related to physical quantities (mass and

width) it is important to inquire, whether or not the PT pole position is different from that

of the conventional one. It turns out that, to any order in perturbation theory the two poles

are identical. Put in different words, if one works at loop order n in perturbation theory,

the two poles differ by a gauge independent amount, which is of order n + 1. This fact

may come as no surprise since the PT seems to have the general property of not affecting

quantities which are already g.i.

In order to gain some intuition, let us first concentrate on the simpler case of a

stable particle, and show that its mass does not get shifted by the PT. The conventional

propagator ∆µν(q) (computed at some gauge), and the PT propagator ∆̂µν(q) have the

form:

∆µν(q) =
−igµν

q2 − m2
0 − Π(q2)

+ · · · (5.1)

and

∆̂µν(q) =
−igµν

q2 − m2
0 − Π̂(q2)

+ · · · , (5.2)

where the ellipses denote the omission of terms proportional to qµqν . The corresponding

masses m and m̂, respectively, are defined as the solution of the following two equations

m2 = m2
0 + Π(m2) (5.3)

and

m̂2 = m2
0 + Π̂(m̂2) (5.4)

In perturbation theory clearly m2 = m2
0 +

∑∞
1 g2nCn and m̂2 = m2

0 +
∑∞

1 g2nĈn, and to

zeroth order m2 = m̂2 = m2
0. Therefore

m̂2 − m2
0 = O(g2) (5.5)

At one loop it is easy to see what happens. To begin with, to any order in perturbation

theory

Π̂n(q2) = Πn(q2) + ΠP
n (q2) . (5.6)

The general form of the one-loop ΠP
1 (q2), in any gauge, is given by

ΠP
1 (q2) = (q2 − m2

0)V
P
1 (q2) + (q2 − m2

0)
2
BP

1 (q2) , (5.7)
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and of course RP
1 = 0 for every gauge; in addition, in the Feynman gauge BP

1 = 0 So, from

Eqs. (5.3)–(5.7) and assuming that V P
1 (m̂2) and BP

1 (m̂2) are non-singular, we have that

m̂2
1 = m2

0 + Π1(m̂
2) + O(g4) (5.8)

= m2
1 + O(g4) (5.9)

from which follows that C1 = Ĉ1.

The non-trivial step in generalizing this proof to higher orders is to observe that not

all pinch contributions in the previous equation contribute terms of higher order. Indeed, as

already mentioned in Section 4, the RP terms of Eq. (4.1) do not always have a characteristic

factor (q2 − m2
0) in front, because it has been cancelled by an internal propagator of the

string. Such terms are not of higher order, as is the case with the graphs which are of the

form given in Eq. (5.7). To see why such contributions are instrumental for our proof, let

us repeat the previous calculation, in the two-loop case. At the two-loop order, m2 and m̂2

are given by:

m2 = m2
0 + Π1(m

2) + Π2(m
2) (5.10)

and

m̂2 = m2
0 + Π1(m̂

2) + Π2(m̂
2) + ΠP

1 + ΠP
2 (5.11)

where

ΠP
1 (m̂2) + ΠP

2 (m̂2) = (m̂2 − m2
0)[V

P
1 (m̂2) + V P

2 (m̂2)] + (m̂2 − m2
0)

2
[BP

1 (m̂2) + BP
2 (m̂2)]

+RP
2 (m̂2) . (5.12)

We want to show that ΠP
1 (m̂2)+ΠP

2 (m̂2) = O(g6); substituting m̂2−m2
0 = Π1(m̂

2)+O(g4)

into Eq. (5.12), and neglecting terms of O(g6) or higher, we find

ΠP
1 (m̂2) + ΠP

2 (m̂2) = RP
2 (m̂2) + Π1(m̂

2)V P
1 (m̂2) + O(g6) = 0 + O(g6) (5.13)

In the final step we have used Eq. (4.2) at q2 = m̂2, i.e.

RP
2 (m̂2) = −Π1(m̂

2)V P
1 (m̂2) −

3

4
(m2 − m2

0)V
P
1 (m̂2)V P

1 (m̂2)

= −Π1(m̂
2)V P

1 (m̂2) + O(g6) (5.14)

The generalization of the previous proof to an arbitrary loop order n in perturbation

theory proceeds by induction. First of all, to simplify things we will work in the Feynman
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gauge. In that case, the general form of the RP terms becomes

RP
n = (q2 − m2

0)v
P
n + (q2 − m2

0)
2
bP
n + R̃P

n , (5.15)

where R̃P
n is the part of RP

n which is of O(g2n) at q2 = m2
0, whereas the rest is O(g2(n+1)).

For example, from RP
2 of Eq. (4.2), or equivalently Eq. (5.14), we have that R̃P

2 (q) =

−Π1(q)V
P
1 (q). Finally, we define VP

n and BP
n as follows:

VP
n = V P

n + vP
n ,

BP
n = BP

n + bP
n . (5.16)

Let us now assume that m̂2 = m2, up to order n − 1, i.e. Ck = Ĉk, for every k ≤ n − 1.

The expression for m̂2 to order n is

m̂2 = m2
0 +

n∑

k=1

Πk + (m̂2 − m2
0)

n∑

k=1

VP
k + (m̂2 − m2

0)
2

n∑

k=1

BP
k +

n∑

k=1

R̃P
k . (5.17)

Using the fact that m̂2 − m2
0 =

∑n−1
1 Πk + O(g2n) (from the previous order), and that,

as before, both (m̂2 − m2
0)V

P
n and (m̂2 − m2

0)
2
BP

n are of O(g2n+2) and higher, Eq. (5.17)

becomes

m̂2 = m2
0 +

n∑

k=1

Πk +
n−1∑

k=1

Πk

n−1∑

m=1

VP
m +

[ n−1∑

k=1

Πk

]2 n−1∑

m=1

BP
m +

n∑

k=1

R̃P
k

= m2 +
n∑

k=1

k∑

ℓ=1

ΠℓV
P
k−ℓ +

n∑

k=1

k∑

j=1

j∑

ℓ=1

ΠℓΠj−ℓB
P
k−j +

n∑

k=1

R̃P
k

= m2 +
n∑

k=1



R̃P
k +

k∑

ℓ=1

ΠℓV
P
k−ℓ +

k∑

j=1

j∑

ℓ=1

ΠℓΠj−ℓB
P
k−j



 . (5.18)

It is a matter of careful counting to convince oneself that each term of the series in the

r.h.s. of the last Eq. (5.18) vanishes, i.e.

R̃P
k +

k∑

ℓ=1

ΠℓV
P
k−ℓ +

k∑

j=1

j∑

ℓ=1

ΠℓΠj−ℓB
P
k−j = 0 , (5.19)

which means that to order n, m̂2 = m2, or equivalently, Cn = Ĉn, for every n. In Ap-

pendix A, we present a proof of Eq. (5.19). It is interesting to see that it is precisely the

left-over contributions we obtain when we convert conventional strings into g.i. strings,

which enforce the equality between the conventional and PT poles.
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6 The case of the unstable particle

We now proceed to the case of an unstable particle; we want to show that both the

mass and the width remain unshifted in the context of the PT. We will adopt the definitions

and methodology introduced by Sirlin [8]. Calling s = q2, the pole position s̄ is defined as

the solution of the following equation:

s̄ = m2
0 + Π(s̄) (6.1)

We adopt the following definition of mass m and width Γ in terms of s̄:

s̄ = m2 − imΓ (6.2)

Similarly, in the context of the PT we define the pole position ŝ = m̂2− im̂Γ̂ as the solution

of

ŝ = m2
0 + Π̂(ŝ) (6.3)

We want to show that s̄ = ŝ —or equivalently, m = m̂ and Γ = Γ̂— to every order in

perturbation theory. Since both Γ and Γ̂ are of O(g2), at one loop we have just the result

of the previous section, i.e. m = m̂, for n = 1. Going to the next order, we expand

Eqs. (6.1) and (6.3) up to terms of O(g4),

s̄ = m2
0 + Π(m2) − Π′(m2)imΓ (6.4)

and

ŝ = m2
0 + Π̂(m̂2) − Π̂′(m̂2)im̂Γ̂ (6.5)

where Π′(m2) ≡ dΠ(q2)/dq2|q2=m2 . Separating real and imaginary parts (we omit the

arguments m2 and m̂2, respectively) we have

m2 = m2
0 + ℜeΠ + mΓℑmΠ′ , (6.6)

m̂2 = m2
0 + ℜeΠ̂ + m̂Γ̂ℑmΠ̂′ , (6.7)

for the real parts, and

mΓ = −ℑmΠ + mΓℜeΠ′ , (6.8)

m̂Γ̂ = −ℑmΠ̂ + m̂Γ̂ℜeΠ̂′ , (6.9)
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for the imaginary parts. Let us write m̂2 and m̂Γ̂ as follows:

m̂2 = m2 + ǫ1 , (6.10)

m̂Γ̂ = mΓ + ǫ2 , (6.11)

where

ǫ1 = ℜeΠP + m̂Γ̂ℑmΠP ′
, (6.12)

ǫ2 = −ℑmΠP + m̂Γ̂ℜeΠP ′
. (6.13)

In Eqs. (6.12) and (6.13), ΠP is the total pinch contribution to order g4, i.e. ΠP = ΠP
1 +ΠP

2 ,

with the general form given in Eq. (5.12). We now want to show that both ǫ1 and ǫ2 are of

O(g6). Using again Eq. (5.12) we have that

ℜeΠP = ℜeΠ1ℜeV P
1 + ℜeR2 + O(g6) (6.14)

and

m̂Γ̂ℑmΠP ′
= [ℑmV P

1 + O(g4)][−ℑmΠ1 + O(g4)]

= −ℑmV P
1 ℑmΠ1 + O(g6) (6.15)

Therefore, up to terms of O(g6)

ǫ1 = ℜeRP
2 + ℜeV P

1 ℜeΠ1 − ℑmV P
1 ℑmΠ1

= ℜe(RP
2 + Π1V

P
1 )

= 0 , (6.16)

where we used Eq. (5.14). Similarly, using the fact that to O(g4)

ℑmΠP = ℑmRP
2 + ℑm[(m̂2 − m2

0)V
P
1 + O(g6)]

= ℑmRP
2 + ℑm[V P

1 ℜeΠ1 + O(g6)]

= ℑmRP
2 + ℜeΠ1ℑmV P

1 (6.17)

and

m̂Γ̂ℜeΠP ′
= −ℜeV P

1 ℑmΠ1 + O(g6) (6.18)

we have

ǫ2 = −ℑmRP
2 − ℜeΠ1ℑmV P

1 − ℜeV P
1 ℑmΠ1

= −ℑm(RP
2 + Π1V

P
1 )

= 0 (6.19)
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where again Eq. (4.2) was used.

It is straightforward to generalize this result to an arbitrary order n in perturbation

theory. One should simply notice that the formula of Eq. (4.2) and its generalization to

higher orders given by Eq. (5.19) is crucial to obtain a general proof. In particular, we have

seen in Section 3 that the extension of the PT to higher orders has given rise to new PT

terms, RP
n , which guarantee that the position of the pole remains unchanged.

7 Unitarity and related properties

In this section, we will analyze issues of unitarity pertinent to a consistent S-matrix

perturbation theory involving unstable particles. In particular, we will mainly focus on

the optical theorem, which is a direct consequence of the unitarity of the S matrix, and

prescribes the form of the perturbative expansion for the transition operator T .

The T -matrix element of a reaction i → f is defined via the relation

〈f |S|i〉 = δfi + i(2π)4δ(4)(Pf − Pi)〈f |T |i〉, (7.1)

where Pi (Pf) is the sum of all initial (final) momenta of the |i〉 (|f〉) state. Furthermore,

imposing the unitarity relation S†S = 1 leads to the optical theorem:

〈f |T |i〉 − 〈i|T |f〉∗ = i
∑

i′

(2π)4δ(4)(Pi′ − Pi)〈i
′|T |f〉∗〈i′|T |i〉. (7.2)

In Eq. (7.2), the sum
∑

i′ should be understood to be over the whole phase space and spins

of all possible on-shell intermediate particles i′. A corollary of this theorem is obtained if

i = f . In this particular case, we have

ℑm〈i|T |i〉 =
1

2

∑

f

(2π)4δ(4)(Pf − Pi)|〈f |T |i〉|2. (7.3)

In the conventional S-matrix theory with stable particles, Eqs. (7.2) and (7.3) hold also

perturbatively. To be precise, if one expands the transition operator in power series of the

coupling constants, say g, as T = T (1) + T (2) + · · ·+ T (n) + · · ·, in a given order n one has

T
(n)
fi − T

(n)∗
if = i

∑

i′

(2π)4δ(4)(Pi′ − Pi)
n∑

k=1

T
(k)∗
i′f T

(n−k)
i′i . (7.4)
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In a scalar model containing an unstable particle, Veltman showed [4] that unitarity can

be preserved by suitably modifying the S-matrix perturbation theory, in which unstable

particles should always appear as intermediate states. Obviously, the S-matrix perturbation

expansion arising from the truncation of the unstable particles as asymptotic states should

be reformulated accordingly. A convincing example of how the PT algorithm gives rise to

amplitudes which, in addition to being g.i. also respect unitarity, is the calculation of the

magnetic dipole moment µW and the electric quadruple QW for the W boson [21]. Such

quantities are of particular interest in view of the upcoming experiments of the type e+e− →

W+W− [34] that will be studied at the CERN Large Electron Positron collider (LEP2),

which is planned to operate at a centre of mass system (c.m.s.) energy s = 200 GeV.

In order to understand under what conditions an expansion based on resummed prop-

agators can respect the unitarity relation of Eq. (7.3), let us first consider the toy model

of Ref. [4]. This model is a superrenormalizable φ3-scalar theory, which contains a light

scalar, φ, and a heavy one, Φ, having a mass MΦ > 2Mφ. In order to provide a decay mode

for the heavy scalar into two φ’s, one introduces the interaction term in the Lagrangian

Lint =
λ

2
φ2(x)Φ(x), (7.5)

where λ is a non-zero coupling constant. For concreteness, we consider the reaction φφ →

φφ at c.m.s. energies s ≃ M2
Φ. This process proceeds via three graphs; one resonant s-

channel graph, and two nonresonant t and u graphs. After performing a Dyson summation

for the s-, t-, and u-channel propagators, we arrive at the following expression for the

transition amplitude:

T (s, t, u) = −λ2

(
1

s − M2
Φ + ℜeΠΦ(s) + iℑmΠΦ(s)

+
1

t − M2
Φ + ΠΦ(t)

+
1

u − M2
Φ + ΠΦ(u)

)

, (7.6)

where ΠΦ(q2) is the irreducible two-point function of the ΦΦ self-energy at the one-loop

order. It is easy to verify from Eq. (7.6), that the amplitude T (s, t, u) is endowed with the

analyticity property of crossing symmetry. In other words, the various processes can be

obtained by appropriately interchanging the Mandelstam variables s, t, and u; obviously

T (s, t, u) = T (t, s, u) = · · ·. These crossing properties can be naturally implemented,

when the resummed self-energies appearing in Eq. (7.6) are momentum-dependent. When

crossing is applied in such a case, the unphysical absorptive parts are killed by the kinematic
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θ functions, whereas the new physical absorptive contributions, which emerge after crossing,

will regulate the resulting resonant channels. This feature persists even if vertex and box

graphs are included. A qualitatively similar behaviour is expected in gauge theories; since

the resummed self-energy derived from the PT depends on q2, we conclude that our PT

approach to gauge theories with unstable particles respects the crossing symmetry.

We will now discuss the main reason which clearly advocates for a q2-dependent

regulator, rather than a constant one. If we consider the l.h.s. of Eq. (7.3), we have for the

process φφ → φφ

ℑmT (s, t, u) =
λ2 ℑmΠΦ(s)

[s − M2
Φ + ℜeΠΦ(s)]2 + [ℑmΠΦ(s)]2

, (7.7)

which is related to the amplitude squared of the resonant s-exchange graph, say Ts. In

fact, one finds that

ℑmT (s, t, u) =
1

2

∫
dLIPS |Ts(s)|

2 , (7.8)

where LIPS stands for the Lorentz-invariant phase space for the two on-shell φ particles.

Eq. (7.8) is consistent with Eq. (7.4) in a perturbative sense. At this point it is important to

notice that the unitarity relation of Eq. (7.8) is only valid when the resummation involves an

s-dependent two-point function and width for the unstable scalar Φ. If a constant width for

Φ had been considered instead, unitarity would have been violated through Eq. (7.8), when

s 6= M2
Φ. It is therefore evident that the regulator of a resummed propagator should be

s-dependent in this scalar theory. The above problem is expected to appear if one attempts

to use a constant pole expansion in the context of a gauge field theory. Indeed, there is no

fundamental reason to believe that one could consistently describe gauge theories using a

resummation procedure which is not well justified even for scalar theories. On the other

hand, the reordering of Feynman graphs via the PT and the resummation of the momentum

dependent PT self-energies provides a g.i. solution to the problem at hand, while, at the

same time, does not introduce residual unitarity-violating terms in the resonant matrix

element.

In what follows we will analyze some crucial aspects of the PT algorithm in relation

to the unitarity, and underline the analogies between the PT results in gauge theories and

some known facts from the φ3 scalar theory. In the φ3 model, the transition amplitude of

Eq. (7.6) exhibits a clear separation of the dependence on the Mandelstam variables s, t

and u. In this way, resummation can be applied to each channel independently. Because of
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this property, T (s, t, u) displays the correct high-energy unitarity behaviour, and vanishes

as s, t → ∞. In gauge theories, this is generally not the case. For example, consider the

process l−ν̄l → W−H shown in Fig. 6, where the charged lepton (l) is massive. In the Born

approximation, there exist two graphs: an s- and t-mediated graph in the unitary gauge

(see, also, Figs. 6(a) and 6(c)). Taking the infinite limit of s and t for the s-channel graph,

one can verify that this amplitude alone does not vanish. On the other hand, the total

matrix element tends to zero in the high-energy unitarity limit. Evidently, the t-exchange

graph contains terms, which, when properly taken into account, conspire in such a way so

as to give the correct high-energy unitarity limit. The PT algorithm accomplishes, via the

decomposition given in Eq. (2.8), the same clear kinematic separation one knows from the

scalar theory.

The above discussion becomes more transparent if one employs the Ward identities

which relate the Feynman graphs of Fig. 6(a) to those of Fig. 6(b), and the diagram of

Fig. 6(c) to that of Fig. 6(d). For the process lνl → W−(p−)H(pH), we have in an arbitrary

ξ gauge

pµ
−

MW

T
(ξ)
(a) µ = T

(ξ)
(b) −

gw

2MW

Λ0, (7.9)

pµ
−

MW

T
(ξ)
(c) µ = T

(ξ)
(d) +

gw

2MW

Λ0. (7.10)

In the high-energy limit where p− → ∞, the polarization vector, εµ
L(p−), of the longitudinal

W boson approaches to pµ
−/MW . In the Feynman gauge, the amplitudes T(d) and T(b) vanish

in the limit s → ∞. In this limit, it is easy to see that the remaining constant term in

Eq. (7.9) is responsible for the bad high-energy behaviour, and can only be cancelled if

a corresponding term coming from Eq. (7.10) is added. It turns out that, when loop

corrections are considered, this latter term is furnished by the relevant PT part thus leading

to a proper s-dependent propagator [19].

An issue related to the discussion of unitarity is whether the PT self-energy which reg-

ularizes the singular propagator contains any unphysical absorptive parts. From Eq. (7.4),

one has to show that the propagator-like part T̂1 of a reaction should contain imaginary

parts associated with physical Landau singularities only, whereas the unphysical poles re-

lated to Goldstone bosons and ghosts must vanish in the loop. Although the PT algorithm

produces a g.i. result for T̂1, there would still have been a problem if this procedure had

introduced some fixed unphysical poles. A qualitative argument suggesting that this is
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not the case, is that the PT results can be obtained equally well by working directly in the

unitary gauge [20], where only physical Landau poles are present. We will also demonstrate

this fact by an explicit calculation of the ℑmT̂1 of the process eν̄e → µν̄µ at the one-loop

electroweak order. We will assume that only the W and H particles can come kinemat-

ically on the mass shell, as shown in Fig. 7. Then, the absorptive amplitude, ℑmM , for

the aforementioned process may be conveniently written as (suppressing contraction over

Lorentz indices)

ℑmM = ∆̃0H(pH)

[

T
1(ξ)
(a) ∆̃

(ξ)
0 (p−)T

2(ξ)
(a) + T

1(ξ)
(b) D̃

(ξ)
0 (p−)T

2(ξ)
(b) + T

1(ξ)
(c) ∆̃

(ξ)
0 (p−)T

2(ξ)
(a)

+T
1(ξ)
(a) ∆̃

(ξ)
0 (p−)T

2(ξ)
(c) + T

1(ξ)
(d) D̃

(ξ)
0 (p−)T

2(ξ)
(b) + T

1(ξ)
(b) D̃

(ξ)
0 (p−)T

2(ξ)
(d)

+T
1(ξ)
(c) ∆̃

(ξ)
0 (p−)T

2(ξ)
(c) + T

1(ξ)
(d) D̃

(ξ)
0 (p−)T

2(ξ)
(d)

]

, (7.11)

where T 1 (T 2) denotes the electron (muon) mediated amplitude present in Fig. 7, and the

tilde acting on the tree-level propagators simply projects out the corresponding absorptive

parts, as these are effectively obtained after applying the Cutkosky rules. More explicitly,

we have

∆̃0H(pH) = 2πi δ+(p2
H − M2

H) (7.12)

D̃
(ξ)
0 (p) = 2πi δ+(p2 − ξM2

W ) (7.13)

∆̃
(ξ)
0 µν(p) = 2πi

[(

−gµν +
pµpν

M2
W

)

δ+(p2 − M2
W ) −

pµpν

M2
W

δ+(p2 − ξM2
W )

]

= Ũµν(p) −
pµpν

M2
W

D̃
(ξ)
0 (p) , (7.14)

with δ+(p2 − M2) = δ(p2 − M2)θ(p0). After identifying the PT piece [T i
P = gwΛ

(i)
0 /2MW ,

with i = 1(: e), 2(: µ)], which is obtained from Eq. (7.10) each time the pµ
−pν

−-dependent

part of ∆̃
(ξ)
0µν gets contracted with T

i(ξ)
(c) , we find that the imaginary propagator-like part is

ℑmT̂1 = ∆̃0H(pH)

{

T
1(ξ)
(a) ∆̃

(ξ)
0 (p−)T

2(ξ)
(a) + T

1(ξ)
(b) D̃

(ξ)
0 (p−)T

2(ξ)
(b) + (2πi)

[

T 1
P

pν
−

MW

T
2(ξ)
(a) ν

+T
1(ξ)
(a) λ

pλ
−

MW

T 2
P + T 1

P T 2
P

]

[δ+(p2
− − M2

W ) − δ+(p2
− − ξM2

W )]

}

= ∆̃0H(pH)

{

T
1(∞)
(a) Ũ(p−)T

2(∞)
(a) + (2πi)

[

T 1
P

pν
−

MW

T
2(∞)
(a) ν

+T
1(∞)
(a) λ

pλ
−

MW

T 2
P + T 1

P T 2
P

]

δ+(p2
− − M2

W )

}

+ δT̂1. (7.15)
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In the last step of Eq. (7.15), we have separated contributions originating from the physical

poles at p2
H = M2

H and p2
− = M2

W from those that occur at p2
− = ξM2

W and are included in

δT̂1, where

δT̂1 = ∆̃0H(pH)D̃
(ξ)
0 (p−)

[

− T
1(ξ)
(a) λ

pλ
−pν

−

M2
W

T
2(ξ)
(a) ν + T

1(ξ)
(b) T

2(ξ)
(b) − T 1

P

pν
−

MW

T
2(ξ)
(a) ν

−T
1(ξ)
(a) λ

pλ
−

MW

T 2
P − T 1

P T 2
P

]

. (7.16)

Obviously, the imaginary parts coming from the physical Landau singularities are

manifestly g.i., whereas the term δT̂1 not only should be g.i. because of the PT reordering,

but it should vanish identically. With the help of Eq. (7.9), it is a matter of simple algebra

to show that indeed δT̂1 = 0.

It is therefore important to emphasize the conclusions of this section. The PT algo-

rithm can effectively disentangle the different kinematic dependences on the Mandelstam

variables s and t via the decomposition given in Eq. (2.8), when radiative corrections are

considered. Furthermore, this algorithm yields a proper q2-dependent propagator display-

ing the desired unitarity behaviour in the high-energy limit. The PT method not only

produces g.i. analytic results but also gives rise to a well-defined self-energy, in which all

possible physical absorptive parts are present, while unphysical Landau singularities origi-

nating from ghosts and Goldstone bosons do not survive. This latter property is particularly

advantageous, since we wish to resum the q2-dependent PT self-energy in order to unitarize

the singular resonant amplitude, and, at the same time, avoid the presence of unphysical

residual absorptive phases, which could be generated if a constant pole expansion had been

used instead.

8 The process γe− → µ−ν̄µνe

We will study the process γe− → µ−ν̄µνe, in which two gauge W bosons are involved.

This process is of potential interest at the LEP2. Furthermore, the collider TEVATRON

at Fermilab offers the possibility to study the scattering process qq′ → γµ−ν̄µ [13].

In the Born approximation, the process γe− → µ−ν̄µνe consists of three Feynman

graphs shown in Fig. 8, with the gauge bosons in the unitary gauge. The transition ampli-
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tude then reads

T (γe− → µ−ν̄µνe) = εµ
γ(q) T0µ, (8.1)

with

T0µ = Γ0ρU
ρν
W (p−) ΓγW−W+

0µνλ (q, p−, p+) Uλσ
W (p+)Γ0σ

+ Γ0ρS
(e)
0 Γγ

0µUρν
W (p+)Γ0ν + Γ0ρU

ρν
W (p−)Γγ

0µS
(µ)
0 Γ0ν . (8.2)

In Eq. (8.2), S
(f)
0 = (6p − mf )

−1 denotes the free f -fermion propagator, ΓγW−W+

0 (Γγ
0µ) is

the tree-level γWW (l−l+γ) coupling, and p− (p+) is the momentum of the W− (W+)

boson flowing into the γW−W+ vertex. The form of the amplitude given in (8.1) is gauge

invariant, in the sense that it does not depend on the gauge fixing procedure nor the

gauge-fixing parameter chosen. In the Rξ gauges, for example, additional graphs with

Goldstone bosons must be included, but at the end, the expression of (8.1) will emerge

again. In addition, since the action of the photonic momentum on the tree-level γWW

vertex triggers the elementary Ward identity

1

e
qµΓγW−W+

0 µνλ = U−1
Wνλ(p+) − U−1

Wνλ(p−) , (8.3)

the electromagnetic gauge invariance of the tree-level amplitude is evident, i.e. qµT0µ = 0.

In Eq. (8.3), U−1
Wµν is the inverse free propagator, of the W boson in the unitary gauge. In

general, the inverse free propagator of a vector boson, V , including massless gauge bosons,

such as photons and gluons, may be obtained from Eq. (2.5) in the same gauge. Its explicit

form is given by

U−1
V µν(q) = tµν(q)(q

2 − M2
V ) + ℓµν(q)M

2
V . (8.4)

However, since the T0µ of (8.2) exhibits a physical pole at p2
+ = M2

W , the use of a resummed

propagator is needed. As we have discussed in Section 2, the naive form of a BW propagator

for the singular amplitudes violates U(1)em and Rξ gauge invariance. On the other hand,

the PT method used to reorder the Feynman graphs, restores both the U(1)em and the Rξ

invariance of the amplitude, which are present at the tree level.

To see that, let us concentrate on the part T̂1µ of the amplitude, shown in Fig. 8,

which contains the trilinear γWW vertex. Applying the PT, and then resumming the PT

self-energies following a procedure exactly analogous to the one described in Section 2, we

arrive at the resonant transition amplitude (suppressing all the contracted Lorentz indices
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except of the photonic one):

T̂1µ = Γ0∆̂W (ΓγW−W+

0 µ + Γ̂γW−W+

µ )∆̂W Γ0 + Γ0S
(e)
0 Γγ

0 µ∆̂W Γ0 + Γ0∆̂W Γγ
0 µS

(µ)
0 Γ0 . (8.5)

The PT procedure renders all hatted quantities in the above expression independent of the

gauge-fixing parameter ξ; ∆̂W is given in Eq. (2.18). The final ingredient which enforces

the full Rξ-invariance of the resonant amplitude T̂1µ, and allows it to be cast in the form

of Eq (8.5), is a number of Ward identities, satisfied by the PT vertices. These identities

can be summarized as follows (all momenta flow into the vertex, i.e., q + p− + p+ = 0):

1

e
qµΓ̂γW−W+

µνλ = Π̂W
νλ(p−) − Π̂W

νλ(p+) , (8.6)

1

e
qµΓ̂γG−W+

µν =
1

e
qµΓ̂γW−G+

µν = Θ̂ν(p−) + Θ̂ν(p+) , (8.7)

1

e
qµΓ̂γG−G+

µ = Ω̂(p−) − Ω̂(p+) , (8.8)

1

e
[pν

−Γ̂γW−W+

µνλ − MW Γ̂γG−W+

µλ ] = Π̂W
µλ(p+) − Π̂γ

µλ(q) −
cw

sw

Π̂γZ
µλ (q) , (8.9)

1

e
[pλ

+Γ̂γW−W+

µνλ + MW Γ̂γW−G+

µν ] = −Π̂W
µν(p−) + Π̂γ

µν(q) +
cw

sw

Π̂γZ
µν (q) , (8.10)

1

e
[pν

−Γ̂γW−G+

µν − MW Γ̂γG−G+

µ ] = −Θ̂µ(p+) , (8.11)

1

e
[pλ

+Γ̂γG−W+

µλ + MW Γ̂γG−G+

µ ] = −Θ̂µ(p−) , (8.12)

1

e
[pν

−pλ
+Γ̂γW−W+

µνλ + M2
W Γ̂γG−G+

µ ] = MW Θ̂µ(p+) − MW Θ̂µ(p−)

−pλ
+[Π̂γ

µλ(q) +
cw

sw

Π̂γZ
µλ (q)] . (8.13)

In the derivation of the above equations, we have used the fact that

qµΠ̂γ
µλ(q) = 0 , (8.14)

qµΠ̂γZ
µλ (q) = 0 , (8.15)

which implies that Π̂γ
µν(0) = 0 and Π̂γZ

µν (0) = 0.

The one-loop PT self-energy [19] and the one-loop γWW vertex [21] are respectively

given by:

Π̂W
µν(p) = ΠW (ξ=1)

µν (p) − 4g2
wU−1

Wµν(p)[s2
wIWγ(p) + c2

wIWZ(p)], (8.16)

Γ̂γW−W+

µνλ (q, p−, p+) = Γ
γW−W+(ξ=1)
µνλ (q, p−, p+) − gwsw

[
U−1 α

γ µ (q)Bανλ(q, p−, p+)

+U−1 α
Wν (p−)B+

µαλ(q, p−, p+) + U−1 α
Wλ (p+)B−

µνα(q, p−, p+)
]
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− 2g2
wΓγW−W+

0µνλ (q, p−, p+)
[
IWW (q) + s2

wIWγ(p−) + s2
wIWγ(p+)

+c2
wIWZ(p−) + c2

wIWZ(p+)
]

+ gwsw

[
gµνp+λM

−(q, p−, p+)

+ gµλp−νM
+(q, p−, p+)

]
, (8.17)

where ΠW (ξ=1)
µν [35] and Γ

γW−W+(ξ=1)
µνλ [36] are the conventional one-loop WW self-energy

and γWW coupling, respectively, evaluated in the Feynman gauge, and the functions Iij,

Bµνλ, B±
µνλ, and M± are defined in Appendix B.

If we now contract T̂1µ of Eq. (8.5) with qµ, it is elementary to verify, that by virtue

of the Ward identity of Eq. (8.6), qµT̂1µ = 0. So we conclude that the resonant amplitude

obtained by the PT satisfies both Rξ and U(1)em invariance.

Note finally, that all PT Green’s functions defined thus far satisfy QED-like Ward

identities (for example, Eqs. (8.6)–(8.13)). This feature not only enforces the Rξ and U(1)em

invariance, but it constitutes a sufficient condition that our approach admits multiplicative

renormalization [37].

Another process that is of particular interest in testing the electroweak theory at

TEVATRON is QQ′ → e−ν̄eµ
−µ+; there, in addition to the γWW , the ZWW coupling

appears also. The phenomenological relevance of the ZWW coupling becomes important

as soon as the invariant-mass cut m(µ−µ+) ≃ MZ is imposed. In a similar way, one can

analytically derive the T̂1 amplitude for this process, which is more involved due to the

presence of Zγ-mixing effects [38]. As an example, we consider the g.i. amplitude T̂Z
1 ,

which, as can be seen from Fig. 9, does not contain tree-level photonic contributions. T̂Z
1

can be cast into the form

T̂Z
1 = Γ0∆̂W (p−)(ΓZW−W+

0 + Γ̂ZW−W+

)∆̂Z(q)ΓZ
0 ∆̂W (p+)Γ0

+ Γ0S
(Q)

0 ΓZ
0 ∆̂Z(q)ΓZ

0 ∆̂W (p+)Γ0 + ΓZ
0 S

(Q′)

0 Γ0∆̂Z(q)ΓZ
0 ∆̂W (p+)Γ0

+ Γ0∆̂W (p−)ΓZ
0 ∆̂Z(q)ΓZ

0 S
(e)
0 Γ0 + Γ0∆̂W (p−)ΓZ

0 ∆̂Z(q)Γ0S
(νe)
0 ΓZ

0

+ Γ0∆̂W (p−)Γ0S
(νµ)
0 Γ0∆̂W (p+)Γ0, (8.18)

where ΓZ
0 stands for the Z coupling to fermions at the tree level. The PT Ward identities,

which are necessary for maintaining gauge invariance, are listed in Appendix C. It should

be noted that the inclusion of the Zγ mixing in Eq. (8.18) proceeds in a straightforward

way, since in the PT framework these additional contributions form a distinct g.i. subset
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of graphs. Indeed, both Π̂γ
µν(q) and Π̂γZ

µν (q) are by construction independent of the gauge-

fixing parameter, and the final gauge cancellations proceed by virtue of the transversality

properties of Π̂γ
µν(q) and Π̂γZ

µν (q), as explicitly stated in Eqs. (8.14) and (8.15). By analogy,

the Higgs-mixing terms, which become significant for external heavy fermions, also form a

g.i. subset; possible additional refinements necessary for their proper inclusion in T̂1 will

be studied elsewhere.

9 Conclusions

We have presented a new g.i. approach to resonant transition amplitudes with external

nonconserved currents, based on the PT method. We have explicitly demonstrated how

our analytic approach bypasses the theoretical difficulties existing in the present literature,

by considering the resonant processes e−ν̄e → µ−ν̄µ and γe− → µ−ν̄µνe in the SM, with

massive external charged leptons. In particular, it has been found that our approach defines

a consistent g.i. perturbative expansion of the S matrix, where singular propagators are

regularized by resumming PT self-energies. Through an explicit proof, particular emphasis

has been put on the fact that the PT resummed propagator does not shift the complex

pole position of the resonant amplitude. Furthermore, it has been demonstrated that the

so-derived propagator does not give rise to fixed unphysical Landau poles. The main points

of our approach can be summarized as follows:

(i) The analytic expressions derived with our approach are, by construction, independent

of the gauge-fixing parameter, in every gauge-fixing scheme (Rξ gauges, axial gauges,

background field method, etc.). In addition, by virtue of the tree-level Ward identities

satisfied by the PT Green’s functions, the U(1)em invariance can be enforced, without

introducing residual gauge-dependent terms of higher orders.

(ii) As can be noticed from Section 9 and Appendix C, the two- and three-point PT

functions satisfy abelian-type Ward identities. This is a sufficient condition in order

that multiplicative renormalization is admissible within our approach.

(iii) We treat, on equal footing, bosonic and fermionic contributions to the resummed prop-

agator of the W -, Z-boson, t quark or other unstable particle. This feature is highly
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desirable when confronting the predictions of extensions of the SM with data from

high energy colliders, such as the planned Large Hadron Collider at CERN (LHC).

Most noticeably, extra gauge bosons, such as the Z ′, W ′, ZR predicted in SO(10) or

E6 unified models [39], can have widths predominantly due to bosonic channels; the

same would be true for the standard Higgs boson (H) within the minimal SM, if it

turned out to be heavy. In such cases it becomes particularly apparent that prescrip-

tions based on resumming only g.i. subsets of fermionic contributions are bound to

be inadequate.

(iv) The main drawback of using an expansion of the resonant matrix element in terms of

a constant complex pole is that this approach introduces space-like threshold terms

to all orders, whereas non-resonant corrections can remove such terms only up to a

given order. These space-like terms manifest themselves when the c.m.s. energy of

the process does not coincide with the position of the resonant pole. As we showed

in Section 7, these terms explicitly violate the unitarity of the amplitude. On the

contrary, our approach avoids this kind of problems by yielding an energy-dependent

complex-pole regulator. For instance, for channels below their production threshold,

such residual unitarity-violating terms coming from unphysical absorptive parts have

already been killed by the corresponding kinematic θ functions.

(v) Finally, our approach provides a good high-energy unitarity behaviour to our ampli-

tude, as the c.m.s. energy s → ∞. In fact, far away from the resonance, the resonant

amplitude tends to the usual PT amplitude, showing up the correct high-energy uni-

tarity limit of the entire tree-level process.

Although more attention has been paid to the unstable W and Z gauge particles, our

considerations will also apply to the case of the heavy top quark discovered recently [40].

Our formalism is particularly suited for a systematic study of the CP properties of the

top quark [5] at LHC. Our method may find important applications in the context of

supersymmetric theories, especially when resonant CP effects in the production and decay

of heavy gluinos and scalar quarks are studied [9]. It may also be interesting to consider our

g.i. approach as an appealing alternative to the conventional formulation of supergravity

theories in the background field gauges, where, in addition to the regular Fadeev–Popov

ghosts [41], the Nielsen–Kallosh ghosts [42] may appear. Finally, our analysis could be of
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relevance for the study of nonperturbative or Coulomb-like phenomena, which may appear

in the production of unstable particles [43], and are currently estimated by using special

forms of DS integral equation [44,43].
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A The structure of the R̃P terms

In order to understand the structure of the R̃P , we study in detail the three-loop case.

To avoid notational clutter we remove the superscript “P” from VP , V P , vP , BP , BP , and

bP .

For k = 3, Eq. (5.19) gives

R̃3 = − [Π1V2 + Π2V1] , (A.1)

where we used that B1 = B1 = 0 in the Feynman gauge.

We now proceed to derive Eq. (A.1). To that end, we first express a string with the

three Π̂1 self-energies in terms of conventional strings, and the necessary pinch contribu-

tions. We have:

L̂1 = D0Π̂1D0Π̂1D0Π̂1D0

= D0

[
Π1 + V1D

−1
0

]
D0

[
Π1 + V1D

−1
0

]
D0

[
Π1 + V1D

−1
0

]
D0

= D0

[
Π3

1D
2
0 + 3Π2

1V1D0 + 3Π1V
2
1 + V3

1D−1
0

]
D0

= L1 + D0

[
3Π2

1V1D0 + 3Π1V
2
1 + V3

1D−1
0

]
D0. (A.2)

In a similar way, we have for the string containing a Π̂1 and Π̂2 :

L̂2 = 2D0Π̂1D0Π̂2D0

= 2D0

[
Π1 + V1D

−1
0

]
D0

[
Π2 + V2D

−1
0 + B2D

−2
0 + R̃2

]
D0

= 2D0

[
Π1Π2D0 + (Π1V2 + Π2V1 − Π1V

2
1 ) − Π2

1V1D0

+(Π1B2 + V1V2)D
−1
0 + V1B2D

−2
0

]
D0

= L2 + 2D0

[
(Π1V2 + Π2V1 − Π1V

2
1 ) − Π2

1V1D0 + (Π1B2 + V1V2)D
−1
0

+V1B2D
−2
0

]
D0 , (A.3)

where we used that R̃2 = −Π1V1. From the graphs depicted in Fig. 10, we receive the

propagator-like pinch contributions L3, L4, L5, L6, and L7 respectively, given by

L3 = D0Π1D0V2 = D0 [Π1V2] D0, (A.4)

L4 = D0Π2D0V1 = D0 [Π2V1] D0 , (A.5)

L5 = D0Π1D0Π1D0V1 = D0

[
Π2

1V1D0

]
D0 , (A.6)
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L6 =
1

4
V1D0Π1D0V1 = D0

[
1

4
Π1V

2
1

]
D0 , (A.7)

L7 =
1

2
V1D0V2 = D0

[
1

2
V1V2D

−1
0

]
D0 . (A.8)

We now add by parts the hatted and unhatted quantities from Eq. (A.1) – (A.8);

their difference represents the contributions one has to add (and subsequently subtract, as

described in Section 2) in order to convert “unhatted” strings into “hatted” strings. Using

the fact that V1 = V1, v2 = −3
4
V 2

1 , and

V2 = V2 + v2 = V2 −
3

4
V 2

1 (A.9)

we finally have:
7∑

i=1

Li =
2∑

j=1

L̂j + D0R3D0 (A.10)

with

R3 = −
[
2Π1B2 +

5

8
V3

1 +
3

2
V1V2

]
D−1

0 − 2V1B2D
−2
0 − [Π1V2 + Π2V1] . (A.11)

From Eq. (A.11), we obtain

v3 = −
[
2Π1B2 +

5

8
V3

1 +
3

2
V1V2

]
, (A.12)

b3 = −2V1B2 , (A.13)

and

R̃3 = − [Π1V2 + Π2V1] . (A.14)

We notice that all unwanted terms proportional to Π2
1V1D0 have canceled against each

other as they should. R̃3 of Eq. (A.14) is precisely what Eq.(5.19) predicts for k = 3,

namely Eq (A.1). As we explained in section 3, the R3 terms, together with the V3 and B3

propagator-like pinch terms will eventually convert Π3 to Π̂3.

Having gained enough insight on the structure of the R̃P terms through the study of

explicit examples, we can now generalize our arguments to obtain Eq.(5.19). For the rest

of this Appendix we restore the superscript “P”

The basic observation is that the conversion of regular strings of order n into “hatted”

strings gives rise to R̃P
n terms only when:

(a) The regular string is of the form D0ΠkD0ΠℓD0, with k + ℓ = n, or
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(b) The regular string is of the form D0ΠkD0ΠℓD0ΠjD0, with k + ℓ + j = n.

In other words, only strings with two or three self-energy bubbles give rise to R̃P
n

terms. To understand the reason for that, let us consider a string of order n, consisting of

more than three self-energy insertions, i.e.

D0Πi1D0Πi2D0Πi3D0{· · ·}D0Πik−1
D0ΠikD0 ,

where k > 3, and
∑k

j=1(ij) = n. As discussed in section 3, in order to convert any of the

self-energy bubbles Πiℓ into Π̂iℓ we must supply the appropriate pinch terms of order iℓ (see

Eq. (4.1)), and subsequently subtract them from other appropriately chosen graphs. These

extra vertex-like pinch terms, of the form VP
iℓ

D−1
0 , cancel one of the D0 in the string, and

give rise to strings of the form

D0Πi1D0Πi2D0{· · ·}D0Πiℓ−2
D0[Πiℓ−1

VP
iℓ

]D0{· · ·}D0Πik−1
D0ΠikD0 ,

D0Πi1D0Πi2D0{· · ·}D0Πiℓ−1
D0[ViℓΠiℓ+1

]D0{· · ·}D0Πik−1
D0ΠikD0 ,

whereas the D−1
0 BP

ℓ D−1
0 box-like terms cancel two of the internal D0, thus leading to a

string of the type

D0Πi1D0Πi2D0{· · ·}D0Πiℓ−2
D0[Πiℓ−1

BP
iℓ
Πiℓ+1

]D0{· · ·}D0Πik−1
D0ΠikD0 .

The terms inside square brackets in the above expressions contribute to the quantities

R̃P
(iℓ−1+iℓ)

, R̃P
(iℓ+iℓ+1)

, and R̃P
(iℓ−1+iℓ+iℓ+1)

, respectively. They will correspondingly be added

to the strings

D0Πi1D0Πi2D0{· · ·}D0Πiℓ−2
D0[Π(iℓ−1+iℓ)]D0{· · ·}D0Πik−1

D0ΠikD0 ,

D0Πi1D0Πi2D0{· · ·}D0Πiℓ−1
D0[Π(iℓ+iℓ+1)]D0{· · ·}D0Πik−1

D0ΠikD0 ,

D0Πi1D0Πi2D0{· · ·}D0Πiℓ−2
D0[Π(iℓ−1+iℓ+iℓ+1)]D0{· · ·}D0Πik−1

D0ΠikD0 ,

in order to eventually convert Π(iℓ−1+iℓ), Π(iℓ+iℓ+1), and Π(iℓ−1+iℓ+iℓ+1) into Π̂(iℓ−1+iℓ),

Π̂(iℓ+iℓ+1), and Π̂(iℓ−1+iℓ+iℓ+1), respectively. For example, the vertex-like piece Vi2D
−1
0 will

give rise to a string of the form

D0Πi1D0[Vi2Πi3 ]D0{· · ·}D0Πik−1
D0ΠikD0 ,
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which will be added to the string D0Πi1D0Π(i2+i3)D0{· · ·}D0Πik−1
D0ΠikD0, as part of the

R̃P
(i2+i3) term, whereas the box-like piece Bi2D

−2
0 will produce a string

D0[Πi1Bi2Πi3 ]D0{· · ·}D0Πik−1
D0ΠikD0 ,

which will be added to the string D0Π(i1+i2+i3)D0{· · ·}D0Πik−1
D0ΠikD0, as part of the

R̃P
(i1+i2+i3)

terms.

We see therefore that the terms that one needs to add to a string of order n, which

contains more than three self-energy bubbles, will be absorbed by other strings of the

same order, containing a smaller number of bubbles. Therefore, the only time that one

will obtain terms which must be added to the string containing the single self-energy

Π(i1+i2+···+ik−1+ik) = Πn, e.g. they are part of R̃P
n , is if the string has a maximum number

of three self-energies [(a) or (b) above]. A string of type (a) has the form L
(a)
(k,n−k) =

D0ΠkD0Πn−kD0 and produces a R̃P
(k,n−k) term, given by R̃P

(k,n−k) = −1
2
[ΠkV

P
n−k +VP

k Πn−k].

Of course, for every L
(a)
(k,n−k) there is a L

(a)
(n−k,k), giving rise to R̃(k,n−k) = R̃(n−k,n). So, the

total contribution of strings of type (a) to R̃P
n is

R̃P
n,(a) = −

n∑

k=1

R̃P
(k,n−k) = −

n∑

k=1

ΠkV
P
n−k . (A.15)

We now turn to the strings of type (b); their general structure is L
(b)
(ℓ,n−j,j−ℓ) =

D0ΠℓD0Πn−jD0Πj−ℓD0, and the contribution to R̃P
n comes from the box-like pinch con-

tribution Bn−j to the self-energy Πn−j, in the middle of the string. So, the contribution

R̃P
(ℓ,n−j,j−ℓ) from L

(b)
(ℓ,n−j,j−ℓ) is given by R̃P

(ℓ,n−j,j−ℓ) = −ΠℓΠj−ℓB
P
n−j , and the total contribu-

tion from strings of type (b) is

R̃P
n,(b) = −

n∑

j=1

j∑

ℓ=1

R̃P
(ℓ,n−j,j−ℓ) = −

n∑

j=1

j∑

ℓ=1

ΠℓΠj−ℓB
P
n−j . (A.16)

Clearly, R̃P
n = R̃P

n,(a) + R̃P
n,(b), which is Eq (5.19) (for k = n).

B One-loop functions

Using the sum convention of the momenta q+p1+p2 = 0, we first define the following

useful integrals:

Iij(q) = µ4−n
∫

dnk

i(2π)n

1

(k2 − M2
i )[(k + q)2 − M2

j ]
, (B.1)
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Jijk(q, p1, p2) =
∫ dnk

i(2π)n

1

[(k + p1)2 − M2
i ][(k − p2)2 − M2

j ](k2 − M2
k )

, (B.2)

Jµ
ijk(q, p1, p2) =

∫ dnk

i(2π)n

kµ

[(k + p1)2 − M2
i ][(k − p2)2 − M2

j ](k2 − M2
k )

,

= pµ
1J

−
ijk(q, p1, p2) + pµ

2J
+
ijk(q, p1, p2), (B.3)

where the loop integrals are analytically continued in dimensions n = 4 − 2ǫ. Armed

with the one-loop functions given in Eqs. (B.1)–(B.3), we can now present the analytic

expressions for the functions B, B±, and M± [21]. They are given by

M−(q, p−, p+) = g2
w

(s2
w

c2
w

JWWγ +
c2
w − s2

w

2c2
w

JWWZ +
1

2
JWWH +

1

2c2
w

JZHW

)
, (B.4)

M+(q, p−, p+) = − M−(q, p+, p−), (B.5)

Bµνλ(q, p−, p+) =
∑

V =γ,Z

g2
V

{

gνλ

[
p−µ(J−

WWV −
3

2
JWWV ) + p+µ(J+

WWV +
3

2
JWWV )

]

−gµν(3p−λJ
−
WWV + 3p+λJ

+
WWV + 2qλJWWV )

−gµλ(3p−νJ
−
WWV + 3p+νJ

+
WWV − 2qνJWWV )

}

, (B.6)

B−
µνλ(q, p−, p+) =

∑

V =γ,Z

g2
V

{

gνλ

[
3p−µ(J

−
WWV + JWWV ) + p+µ(3J

+
WWV − 2JWWV )

]

+gµλ

[
p−ν(3J

−
WWV + JWWV ) + 3p+νJ

+
WWV − 2qνJWWV

]

−gνµ

[
p−λ(J

−
WWV + 2JWWV ) + p+λJ

+
WWV − 2qλJWWV

]}

, (B.7)

B+
µνλ(q, p−, p+) = − B−

µλν(q, p+, p−), (B.8)

where the coupling constants have been abbreviated by gγ = gwsw = e and gZ = gwcw, and

the arguments of the functions J , Jijk, and J±
ijk should be evaluated at (q, p−, p+).

The one-loop functions Iij , Jijk, and Jµ
ijk defined in Eqs. (B.1)–(B.3) are closely related

to the Passarino–Veltman [45] integrals. In this way, if we adopt the Minskowskian metric

gµν = diag(1,−1,−1,−1) in our conventions, very similar to Ref. [46], we can make the

following identifications:

Iij(q) =
1

16π2
(1 + 2ǫ ln 2πµ) B0(q

2, M2
i , M2

j ) , (B.9)

Jijk(q, p1, p2) = −
1

16π2
C0(p

2
1, q

2, p2
2, M

2
k , M2

i , M2
j ) , (B.10)

Jµ
ijk(q, p1, p2) = −

1

16π2

[
pµ

1C11(p
2
1, q

2, p2
2, M

2
k , M2

i , M2
j ) + qµC12(p

2
1, q

2, p2
2, M

2
k , M2

i , M2
j )
]
.

(B.11)
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From Eq. (B.11), it is then easy to derive that

J−
ijk(q, p1, p2) =−

1

16π2

[
C11(p

2
1, q

2, p2
2, M

2
k , M2

i , M2
j ) − C12(p

2
1, q

2, p2
2, M

2
k , M2

i , M2
j )
]
,(B.12)

J+
ijk(q, p1, p2) =

1

16π2
C12(p

2
1, q

2, p2
2, M

2
k , M2

i , M2
j ). (B.13)

C Ward identities for the ZWW vertex

Using the PT, one can derive all the relevant Ward identities related to the ZWW

vertex, which warrant an analytic g.i. result. These identities are listed below

1

gwcw

[qµΓ̂ZW−W+

µνλ − MZ Γ̂G0W−W+

νλ ] = Π̂W
νλ(p−) − Π̂W

νλ(p+) , (C.1)

1

gwcw

[qµΓ̂ZW−G+

µν − MZ Γ̂G0W−G+

ν ] = Θ̂ν(p−) + Θ̂ν(p+) , (C.2)

1

gwcw

[qµΓ̂ZG−G+

µ − MZ Γ̂G0G−G+

] = Ω̂(p−) − Ω̂(p+) , (C.3)

1

gwcw

[pν
−Γ̂ZW−W+

µνλ − MW Γ̂ZG−W+

µλ ] = Π̂W
µλ(p+) − Π̂Z

µλ(q) −
sw

cw

Π̂Zγ
µλ (q) , (C.4)

1

gwcw

[pλ
+Γ̂ZW−W+

µνλ + MW Γ̂ZW−G+

µν ] = −Π̂W
µν(p−) + Π̂Z

µν(q) +
sw

cw

Π̂Zγ
µν (q) , (C.5)

1

gwcw

[pν
−Γ̂ZW−G+

µν − MW Γ̂ZG−G+

µ ] = −Θ̂µ(p+) , (C.6)

1

gwcw

[pλ
+Γ̂ZG−W+

µλ + MW Γ̂ZG−G+

µ ] = −Θ̂µ(p−) , (C.7)

1

gwcw

[pν
−Γ̂G0W−W+

νλ − cwqµΓ̂ZG−W+

µλ ] = cwΘ̂λ(p−) + cwΘ̂λ(p+) + Π̂ZG0

λ (q) , (C.8)

1

gwcw

[pλ
+Γ̂G0W−W+

νλ − cwqµΓ̂ZW−G+

µν ] = cwΘ̂ν(p−) + cwΘ̂ν(p+) + Π̂ZG0

ν (q) , (C.9)

1

gwcw

[pν
−pλ

+Γ̂ZW−W+

µνλ + M2
W Γ̂ZG−G+

µ ] = MW Θ̂µ(p+) − MW Θ̂µ(p−)

−
1

2
(p+ − p−)λ

[
Π̂Z

µλ(q) +
sw

cw

Π̂Zγ
µλ (q)

]
. (C.10)

The PT three-point function for the ZWW coupling is related to the conventional

vertex in the Feynman gauge via the following expression:

Γ̂ZW−W+

µνλ (q, p−, p+) = Γ
ZW−W+(ξ=1)
µνλ (q, p−, p+) − gwcw

[
U−1 α

Zµ (q)Bανλ(q, p−, p+)

+U−1 α
W ν (p−)B+

µαλ(q, p−, p+) + U−1 α
Wλ (p+)B−

µνα(q, p−, p+)
]
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− 2g2
wΓZW−W+

0µνλ (q, p−, p+)
[
IWW (q) + s2

wIWγ(p−) + s2
wIWγ(p+)

+c2
wIWZ(p−) + c2

wIWZ(p+)
]

+ gwcw

[
M2

W gµνp+λM
−(q, p−, p+)

+ M2
W gµλp−νM

+(q, p−, p+) + M2
ZqµgνλM(q, p−, p+)

]
. (C.11)

In Eq. (C.11), Γ
ZW−W+(ξ=1)
µνλ is the conventional one-loop ZWW vertex calculated in the

Feynman gauge. The loop functions Iij, B±, M± are given in Appendix B, except of M.

The analytic result for the latter may be obtained by

M(q, p−, p+) =
1

2
g2

w

[
JHZW (q, p−, p+) + JZHW (q, p−, p+)

]
. (C.12)
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Figure Captions

Fig. 1: The PT decomposition of the process e−ν̄e → µ−ν̄µ (the arrow of time shows

downwards).

Fig. 2: The PT method applied to the scattering qq̄ → q′q̄′ at the two-loop QCD

order.

Fig. 3: Two-loop PT contributions to the gluon vacuum polarization.

Fig. 4: Typical two-loop vertex and box graphs giving PT contributions to the two-

loop PT self-energy

Fig. 5: The propagator-like part T̂1 of the transition element for the process e−ν̄e →

µ−ν̄µ at the two-loop electroweak order.

Fig. 6: The process lν̄l → HW− in an arbitrary Rξ gauge

Fig. 7: The one-loop absorptive graphs of the reaction e−ν̄e → µ−ν̄µ involving the on-

shell intermediate bosons W− and H (the arrow of time shows downwards).

Feynman lines with Goldstone bosons are not displayed.

Fig. 8: The process e−γ → µ−ν̄µνe. The bubbles denote PT self-energies and three-

point functions. Goldstone boson lines are not shown.

Fig. 9: The process QQ′ → µ+µ−e−ν̄e, where Zγ-mixing effects and other photonic

contributions are not shown. Crossed Z-boson exchange graphs are also

implied.

Fig. 10: Structures of Feynman graphs responsible for the vanishing of the shift of the

pole at the three-loop case —see, also, Appendix A.
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